1
|
Wang X, Xie C, Shen K, Li D, Xie XS. Quantification and potential functional relevance of binding cooperativity of adjacent transcription factors on DNA. Proc Natl Acad Sci U S A 2025; 122:e2422555122. [PMID: 40305050 PMCID: PMC12067250 DOI: 10.1073/pnas.2422555122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/23/2025] [Indexed: 05/02/2025] Open
Abstract
In eukaryotes, the expression of specific genes is regulated by a combination of transcription factors (TFs) bound on regulatory regions of the genomic DNA (promoters and enhancers). Recent advances in genomic sequencing technology have enabled the measurements of TFs' footprints and binding affinities on DNA at the single-molecule level, facilitating the probing of binding cooperativity among adjacent TFs. This necessitates quantitative descriptions of TFs' binding cooperativity and understanding of its potential functional relevance. In this study, we show that the binding cooperativities between two adjacent TFs can be quantified by the [Formula: see text] coefficient, which can be experimentally determined. Under thermodynamic equilibrium, the binding affinities of two TFs can either increase together (positive cooperativity) or decrease together (negative cooperativity), but not in opposing directions (one increases while the other decreases). Within the framework of thermodynamics, we investigate the functional relevance of cooperativity. The functional relevance of positive cooperativity, which has been extensively discussed in the literature, is the sigmoidal binding curve around a TF concentration threshold (analogous to oxygen binding to hemoglobin), whereas the functional relevance of negative cooperativity is twofold. First, mutual exclusion of the two TFs enables bidirectional gene switching, akin to the CI-Cro system in phage [Formula: see text]. Second, while TFs often exhibit intranuclear concentration fluctuations, negative binding cooperativity assures fast TF dissociation from DNA and hence rapid response for gene expression regulation. Furthermore, the nonequilibrium steady states of living cells can lead to either positive or negative cooperativity, which can also be quantified by the [Formula: see text] coefficient.
Collapse
Affiliation(s)
- Xinyao Wang
- Biomedical Pioneering Innovation Center, Peking University, Beijing100871, People’s Republic of China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, People’s Republic of China
| | - Chen Xie
- Biomedical Pioneering Innovation Center, Peking University, Beijing100871, People’s Republic of China
- Changping Laboratory, Beijing102206, People’s Republic of China
| | - Ke Shen
- Biomedical Pioneering Innovation Center, Peking University, Beijing100871, People’s Republic of China
- Changping Laboratory, Beijing102206, People’s Republic of China
- School of Life Sciences, Peking University, Beijing100871, People’s Republic of China
| | - Dubai Li
- Biomedical Pioneering Innovation Center, Peking University, Beijing100871, People’s Republic of China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, People’s Republic of China
- Changping Laboratory, Beijing102206, People’s Republic of China
| | - Xiaoliang Sunney Xie
- Biomedical Pioneering Innovation Center, Peking University, Beijing100871, People’s Republic of China
- Changping Laboratory, Beijing102206, People’s Republic of China
| |
Collapse
|
2
|
Palo A, Patel SA, Shubhanjali S, Dixit M. Dynamic interplay of Sp1, YY1, and DUX4 in regulating FRG1 transcription with intricate balance. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167636. [PMID: 39708975 DOI: 10.1016/j.bbadis.2024.167636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/16/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Maintaining precise levels of FRG1 is vital. It's over-expression is tied to muscular dystrophy, while reduced levels are linked to tumorigenesis. Despite extensive efforts to characterize FRG1 expression and downstream molecular signaling, a comprehensive understanding of its regulation has remained elusive. This study focused on unravelling the cis -regulatory elements within the FRG1 gene and their interplay. Employing a dual luciferase reporter assay on fragments of the FRG1 promoter upstream of the transcription start site, we observed variations in FRG1 transcription induction. Our in-silico analysis unveiled binding sequences for Sp1 and DUX4 within FRG1 promoter region showing an enhanced luciferase signal. Conversely, we identified a YY1 binding sequence in the FRG1 promoter fragment showing decreased luciferase signal. Confirming these binding sites through site-directed mutagenesis, chromatin immunoprecipitation, and EMSA provided concrete evidence of Sp1, YY1, and DUX4's interaction within the FRG1 promoter. Additionally, interaction between Sp1, YY1, and DUX4 was elucidated using sequential chromatin immunoprecipitation (ChIP re-ChIP) and co-immunoprecipitation assays. Furthermore, alterations in the expression levels of Sp1, YY1, and DUX4 resulted in parallel changes in FRG1 gene expression. Notably, YY1 exhibited the ability to suppress SP1 or DUX4-mediated FRG1 transcription activation, while Sp1 and DUX4 together could counteract YY1-mediated transcription suppression. Our cell proliferation and colony formation assay underscored the tumorigenic properties of these three transcription factors through the modulation of FRG1 expression levels. The in vitro results were verified in vivo using mouse xenograft model. Leveraging RNA sequencing data from various tissues in the GTEx portal, we established a correlation between FRG1, Sp1, and YY1. In essence, this study revealed the vital cis-regulatory components residing in the FRG1 promoter. The combined influence of Sp1, YY1, and DUX4 plays a central role in controlling FRG1 expression.
Collapse
Affiliation(s)
- Ananya Palo
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Saket A Patel
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - S Shubhanjali
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Manjusha Dixit
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
3
|
Rezaei S, Timani KA, Liu Y, He JJ. Ectopic USP15 expression inhibits HIV-1 transcription involving changes in YY1 deubiquitination and stability. Front Cell Infect Microbiol 2024; 14:1371655. [PMID: 39624264 PMCID: PMC11609158 DOI: 10.3389/fcimb.2024.1371655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 10/21/2024] [Indexed: 01/13/2025] Open
Abstract
Introduction Protein homeostasis is maintained by the opposing action of ubiquitin ligase and deubiquitinase, two important components of the ubiquitin-proteasome pathway, and contributes to both normal physiological and pathophysiological processes. The current study aims to delineate the roles of ubiquitin-specific protease 15 (USP15), a member of the largest deubiquitinase family, in HIV-1 gene expression and replication. Methods We took advantage of highly selective and specific ubiquitin variants (UbV), which were recently designed and developed for USP15, and ascertained the inhibitory effects of USP15 on HIV-1 gene expression and production by transfection and Western blotting. We also used real-time RT-PCR, transcription factor profiling, subcellular fractionation, immunoprecipitation followed by Western blotting to determine the transcription factors involved and the underlying molecular mechanisms. Results We first confirmed the specificity of USP15-mediated HIV-1 gene expression and virus production. We then showed that the inhibition of HIV-1 production by USP15 occurred at the transcription level, associated with an increased protein level of YY1, a known HIV-1 transcription repressor. Moreover, we demonstrated that USP15 regulated YY1 deubiquitination and stability. Lastly, we demonstrated that YY1 siRNA knockdown significantly diminished the inhibition of USP15 on HIV-1 gene expression and virus production. Conclusion These findings together demonstrate that stabilization of YY1 protein by USP15 deubiquitinating activity contributes to USP15-mediated inhibition of HIV-1 transcription and may help the development of USP15-specific UbV inhibitors as an anti-HIV strategy.
Collapse
Affiliation(s)
- Sahar Rezaei
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL, United States
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, United States
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL, United States
| | - Khalid A. Timani
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL, United States
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, United States
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL, United States
| | - Ying Liu
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL, United States
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, United States
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL, United States
| | - Johnny J. He
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL, United States
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, United States
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL, United States
| |
Collapse
|
4
|
Vishnevsky OV, Bocharnikov AV, Ignatieva EV. Peak Scores Significantly Depend on the Relationships between Contextual Signals in ChIP-Seq Peaks. Int J Mol Sci 2024; 25:1011. [PMID: 38256085 PMCID: PMC10816497 DOI: 10.3390/ijms25021011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq) is a central genome-wide method for in vivo analyses of DNA-protein interactions in various cellular conditions. Numerous studies have demonstrated the complex contextual organization of ChIP-seq peak sequences and the presence of binding sites for transcription factors in them. We assessed the dependence of the ChIP-seq peak score on the presence of different contextual signals in the peak sequences by analyzing these sequences from several ChIP-seq experiments using our fully enumerative GPU-based de novo motif discovery method, Argo_CUDA. Analysis revealed sets of significant IUPAC motifs corresponding to the binding sites of the target and partner transcription factors. For these ChIP-seq experiments, multiple regression models were constructed, demonstrating a significant dependence of the peak scores on the presence in the peak sequences of not only highly significant target motifs but also less significant motifs corresponding to the binding sites of the partner transcription factors. A significant correlation was shown between the presence of the target motifs FOXA2 and the partner motifs HNF4G, which found experimental confirmation in the scientific literature, demonstrating the important contribution of the partner transcription factors to the binding of the target transcription factor to DNA and, consequently, their important contribution to the peak score.
Collapse
Affiliation(s)
- Oleg V. Vishnevsky
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia;
- Department of Natural Science, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Andrey V. Bocharnikov
- Department of Natural Science, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Elena V. Ignatieva
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia;
- Department of Natural Science, Novosibirsk State University, 630090 Novosibirsk, Russia;
| |
Collapse
|
5
|
Figiel M, Górka AK, Górecki A. Zinc Ions Modulate YY1 Activity: Relevance in Carcinogenesis. Cancers (Basel) 2023; 15:4338. [PMID: 37686614 PMCID: PMC10487186 DOI: 10.3390/cancers15174338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
YY1 is widely recognized as an intrinsically disordered transcription factor that plays a role in development of many cancers. In most cases, its overexpression is correlated with tumor progression and unfavorable patient outcomes. Our latest research focusing on the role of zinc ions in modulating YY1's interaction with DNA demonstrated that zinc enhances the protein's multimeric state and affinity to its operator. In light of these findings, changes in protein concentration appear to be just one element relevant to modulating YY1-dependent processes. Thus, alterations in zinc ion concentration can directly and specifically impact the regulation of gene expression by YY1, in line with reports indicating a correlation between zinc ion levels and advancement of certain tumors. This review concentrates on other potential consequences of YY1 interaction with zinc ions that may act by altering charge distribution, conformational state distribution, or oligomerization to influence its interactions with molecular partners that can disrupt gene expression patterns.
Collapse
Affiliation(s)
| | | | - Andrzej Górecki
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Physical Biochemistry, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.F.); (A.K.G.)
| |
Collapse
|
6
|
Abstract
Accumulating evidence strongly indicates that the presence of cancer stem cells (CSCs) leads to the emergence of worse clinical scenarios, such as chemo- and radiotherapy resistance, metastasis, and cancer recurrence. CSCs are a highly tumorigenic population characterized by self-renewal capacity and differentiation potential. Thus, CSCs establish a hierarchical intratumor organization that enables tumor adaptation to evade the immune response and resist anticancer therapy. YY1 functions as a transcription factor, RNA-binding protein, and 3D chromatin regulator. Thus, YY1 has multiple effects and regulates several molecular processes. Emerging evidence indicates that the development of lethal YY1-mediated cancer phenotypes is associated with the presence of or enrichment in cancer stem-like cells. Therefore, it is necessary to investigate whether and to what extent YY1 regulates the CSC phenotype. Since CSCs mirror the phenotypic behavior of stem cells, we initially describe the roles played by YY1 in embryonic and adult stem cells. Next, we scrutinize evidence supporting the contributions of YY1 in CSCs from a number of various cancer types. Finally, we identify new areas for further investigation into the YY1-CSCs axis, including the participation of YY1 in the CSC niche.
Collapse
|
7
|
Santiago FS, Li Y, Zhong L, Raftery MJ, Lins L, Khachigian LM. Truncated YY1 interacts with BASP1 through a 339KLK341 motif in YY1 and suppresses vascular smooth muscle cell growth and intimal hyperplasia after vascular injury. Cardiovasc Res 2021; 117:2395-2406. [PMID: 33508088 DOI: 10.1093/cvr/cvab021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/27/2020] [Accepted: 01/19/2021] [Indexed: 11/12/2022] Open
Abstract
AIMS In-stent restenosis and late stent thrombosis are complications associated with the use of metallic and drug-coated stents. Strategies that inhibit vascular smooth muscle cell (SMC) proliferation without affecting endothelial cell (EC) growth would be helpful in reducing complications arising from percutaneous interventions. Our group previously showed that the forced expression of the injury-inducible zinc finger (ZNF) transcription factor, yin yang-1 (YY1) comprising 414 residues inhibits neointima formation in carotid arteries of rabbits and rats. YY1 inhibits SMC proliferation without affecting EC growth. Identifying a shorter version of YY1 retaining cell-selective inhibition would make it more amenable for potential use as a gene therapeutic agent. METHODS AND RESULTS We dissected YY1 into a range of shorter fragments (YY1A-D, YY1Δ) and found that the first two ZNFs in YY1 (construct YY1B, spanning 52 residues) repressed SMC proliferation. Receptor Binding Domain analysis predicts a three residue (339KLK341) interaction domain. Mutation of 339KLK341 to 339AAA341 in YY1B (called YY1Bm) abrogated YY1B's ability to inhibit SMC but not EC proliferation and migration. Incubation of recombinant GST-YY1B and GST-YY1Bm with SMC lysates followed by precipitation with glutathione-agarose beads and mass spectrometric analysis identified a novel interaction between YY1B and BASP1. Overexpression of BASP1, like YY1, inhibited SMC but not EC proliferation and migration. BASP1 siRNA partially rescued SMC from growth inhibition by YY1B. In the rat carotid balloon injury model, adenoviral overexpression of YY1B, like full-length YY1, reduced neointima formation, whereas YY1Bm had no such effect. CD31 immunostaining suggested YY1B could increase re-endothelialization in a 339KLK341-dependent manner. CONCLUSIONS These studies identify a truncated form of YY1 (YY1B) that can interact with BASP1 and inhibits SMC proliferation, migration and intimal hyperplasia after balloon injury of rat carotid arteries as effectively as full length YY1. We demonstrate the therapeutic potential of YY1B in vascular proliferative disease.
Collapse
Affiliation(s)
- Fernando S Santiago
- Vascular Biology and Translational Research Laboratory, School of Medical Sciences, UNSW Medicine, University of New South Wales, Sydney NSW 2052, Australia
| | - Yue Li
- Vascular Biology and Translational Research Laboratory, School of Medical Sciences, UNSW Medicine, University of New South Wales, Sydney NSW 2052, Australia
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney NSW 2052, Australia
| | - Mark J Raftery
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney NSW 2052, Australia
| | - Laurence Lins
- Molecular Biophysics at Interface Lab, University of Liège-Gembloux Agro Bio Tech, Passage des Déportés, 2-5030 Gembloux-Belgium
| | - Levon M Khachigian
- Vascular Biology and Translational Research Laboratory, School of Medical Sciences, UNSW Medicine, University of New South Wales, Sydney NSW 2052, Australia
| |
Collapse
|
8
|
Vivarelli S, Falzone L, Ligresti G, Candido S, Garozzo A, Magro GG, Bonavida B, Libra M. Role of the Transcription Factor Yin Yang 1 and Its Selectively Identified Target Survivin in High-Grade B-Cells Non-Hodgkin Lymphomas: Potential Diagnostic and Therapeutic Targets. Int J Mol Sci 2020; 21:ijms21176446. [PMID: 32899428 PMCID: PMC7504013 DOI: 10.3390/ijms21176446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 12/19/2022] Open
Abstract
B-cell non-Hodgkin lymphomas (B-NHLs) are often characterized by the development of resistance to chemotherapeutic drugs and/or relapse. During drug-induced apoptosis, Yin Yang 1 (YY1) transcription factor might modulate the expression of apoptotic regulators genes. The present study was aimed to: (1) examine the potential oncogenic role of YY1 in reversing drug resistance in B-NHLs; and (2) identify YY1 transcriptional target(s) that regulate the apoptotic pathway in B-NHLs. Predictive analyses coupled with database-deposited data suggested that YY1 binds the promoter of the BIRC5/survivin anti-apoptotic gene. Gene Expression Omnibus (GEO) analyses of several B-NHL repositories revealed a conserved positive correlation between YY1 and survivin, both highly expressed, especially in aggressive B-NHLs. Further validation experiments performed in Raji Burkitt’s lymphomas cells, demonstrated that YY1 silencing was associated with survivin downregulation and sensitized the cells to apoptosis. Overall, our results revealed that: (1) YY1 and survivin are positively correlated and overexpressed in B-NHLs, especially in BLs; (2) YY1 strongly binds to the survivin promoter, hence survivin may be suggested as YY1 transcriptional target; (3) YY1 silencing sensitizes Raji cells to drug-induced apoptosis via downregulation of survivin; (4) both YY1 and survivin are potential diagnostic markers and therapeutic targets for the treatment of resistant/relapsed B-NHLs.
Collapse
Affiliation(s)
- Silvia Vivarelli
- Laboratory of Translational Oncology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.V.); (G.L.); (S.C.)
| | - Luca Falzone
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori ‘Fondazione G. Pascale’, 80131 Naples, Italy;
| | - Giovanni Ligresti
- Laboratory of Translational Oncology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.V.); (G.L.); (S.C.)
| | - Saverio Candido
- Laboratory of Translational Oncology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.V.); (G.L.); (S.C.)
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy; (A.G.); (G.G.M.)
| | - Adriana Garozzo
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy; (A.G.); (G.G.M.)
- Laboratory of Virology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Gaetano Giuseppe Magro
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy; (A.G.); (G.G.M.)
- Department of Medical and Surgical Sciences and Advanced Technology “G.F. Ingrassia”, University of Catania, 95123 Catania, Sicily, Italy
| | - Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Massimo Libra
- Laboratory of Translational Oncology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.V.); (G.L.); (S.C.)
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy; (A.G.); (G.G.M.)
- Correspondence: ; Tel.: +39-095-478-1271
| |
Collapse
|
9
|
Global changes of H3K27me3 domains and Polycomb group protein distribution in the absence of recruiters Spps or Pho. Proc Natl Acad Sci U S A 2018; 115:E1839-E1848. [PMID: 29432187 DOI: 10.1073/pnas.1716299115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Polycomb group (PcG) proteins maintain the silenced state of key developmental genes in animals, but how these proteins are recruited to specific regions of the genome is still poorly understood. In Drosophila, PcG proteins are recruited to Polycomb response elements (PREs) that include combinations of sites for sequence specific DNA binding "PcG recruiters," including Pho, Cg, and Spps. To understand their roles in PcG recruitment, we compared Pho-, Cg-, and Spps-binding sites against H3K27me3 and key PcG proteins by ChIP-seq in wild-type and mutant third instar larvae. H3K27me3 in canonical Polycomb domains is decreased after the reduction of any recruiter. Reduction of Spps and Pho, but not Cg, causes the redistribution of H3K27me3 to heterochromatin. Regions with dramatically depleted H3K27me3 after Spps knockout are usually accompanied by decreased Pho binding, suggesting their cooperative binding. PcG recruiters, the PRC2 component E(z), and the PRC1 components Psc and Ph cobind thousands of active genes outside of H3K27me3 domains. This study demonstrates the importance of distinct PcG recruiters for the establishment of unique Polycomb domains. Different PcG recruiters can act both cooperatively and independently at specific PcG target genes, highlighting the complexity and diversity of PcG recruitment mechanisms.
Collapse
|
10
|
Khachigian LM. The Yin and Yang of YY1 in tumor growth and suppression. Int J Cancer 2018; 143:460-465. [PMID: 29322514 DOI: 10.1002/ijc.31255] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/19/2017] [Accepted: 01/03/2018] [Indexed: 12/16/2022]
Abstract
Yin Yang-1 (YY1) is a zinc finger protein and member of the GLI-Kruppel family that can activate or inactivate gene expression depending on interacting partners, promoter context and chromatin structure, and may be involved in the transcriptional control of ∼10% of the total mammalian gene set. A growing body of literature indicates that YY1 is overexpressed in multiple cancer types and that increased YY1 levels correlate with poor clinical outcomes in many cancers. However, the role of YY1 in the promotion or suppression of tumor growth remains controversial and its regulatory effects may be tumor cell type dependent at least in experimental systems. The molecular mechanisms responsible for the apparently conflicting roles of YY1 are not yet fully elucidated. This review highlights recent advances in our understanding of regulatory insights involving YY1 function in a range of cancer types. For example, YY1's roles in tumor growth involve stabilization of hypoxia-inducible factor HIF-1α in a p53 independent manner, negative regulation of miR-9 transcription, control of MYCT1 transcription, a novel miR-193a-5p-YY1-APC axis, intracellular ROS and mitochondrial superoxide generation, p53 reduction and EGFR activation, control of genes associated with mitochondrial energy metabolism and miRNA regulatory networks involving miR-7, miR-9, miR-34a, miR-186, miR-381, miR-584-3p and miR-635. On the other hand, tumor suppressor roles of YY1 appear to involve YY1 stimulation of tumor suppressor BRCA1, increased Bax transcription and apoptosis involving cytochrome c release and caspase-3/-7 cleavage, induction of heme oxygenase-1, inhibition of pRb phosphorylation and p21 binding to cyclin D1 and cdk4, reduced expression of long noncoding RNA of SOX2 overlapping transcript, and MUC4/ErbB2/p38/MEF2C-dependent downregulation of MMP-10. YY1 expression is associated with that of cancer stem cell markers SOX2, BMI1 and OCT4 across many cancers suggesting multidynamic regulatory control and groups of cancers with distinct molecular signatures. Greater understanding of the mechanistic roles of YY1 will in turn lead to the development of more specific approaches to modulate YY1 expression and activity with therapeutic potential.
Collapse
Affiliation(s)
- Levon M Khachigian
- Vascular Biology and Translational Research, School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
11
|
Lu R, Mucaki EJ, Rogan PK. Discovery and validation of information theory-based transcription factor and cofactor binding site motifs. Nucleic Acids Res 2017; 45:e27. [PMID: 27899659 PMCID: PMC5389469 DOI: 10.1093/nar/gkw1036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 10/19/2016] [Indexed: 02/06/2023] Open
Abstract
Data from ChIP-seq experiments can derive the genome-wide binding specificities of transcription factors (TFs) and other regulatory proteins. We analyzed 765 ENCODE ChIP-seq peak datasets of 207 human TFs with a novel motif discovery pipeline based on recursive, thresholded entropy minimization. This approach, while obviating the need to compensate for skewed nucleotide composition, distinguishes true binding motifs from noise, quantifies the strengths of individual binding sites based on computed affinity and detects adjacent cofactor binding sites that coordinate with the targets of primary, immunoprecipitated TFs. We obtained contiguous and bipartite information theory-based position weight matrices (iPWMs) for 93 sequence-specific TFs, discovered 23 cofactor motifs for 127 TFs and revealed six high-confidence novel motifs. The reliability and accuracy of these iPWMs were determined via four independent validation methods, including the detection of experimentally proven binding sites, explanation of effects of characterized SNPs, comparison with previously published motifs and statistical analyses. We also predict previously unreported TF coregulatory interactions (e.g. TF complexes). These iPWMs constitute a powerful tool for predicting the effects of sequence variants in known binding sites, performing mutation analysis on regulatory SNPs and predicting previously unrecognized binding sites and target genes.
Collapse
Affiliation(s)
- Ruipeng Lu
- Department of Computer Science, Western University, London, Ontario, N6A 5B7, Canada
| | - Eliseos J Mucaki
- Department of Biochemistry, Western University, London, Ontario, N6A 5C1, Canada
| | - Peter K Rogan
- Department of Computer Science, Western University, London, Ontario, N6A 5B7, Canada.,Department of Biochemistry, Western University, London, Ontario, N6A 5C1, Canada.,Department of Oncology, Western University, London, Ontario, N6A 4L6, Canada.,Cytognomix Inc., London, Ontario, N5X 3X5, Canada
| |
Collapse
|
12
|
Cieślik M, Bekiranov S. Genome-wide predictors of NF-κB recruitment and transcriptional activity. BioData Min 2015; 8:37. [PMID: 26617673 PMCID: PMC4661973 DOI: 10.1186/s13040-015-0071-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 11/18/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Inducible transcription factors (TFs) mediate transcriptional responses to environmental cues. In response to multiple inflammatory signals active NF-κB dimers enter the nucleus and trigger cell-type-, and stimulus-specific transcriptional programs. Although much is known about NF-κB inducing pathways and about locus-specific mechanisms of transcriptional control, it is poorly understood how the pre-existing chromatin landscape determines NF-κB target selection and activation. Specifically, it is not known which epigenetic marks and pre-bound TFs serve genome-wide as positive (negative) cues for active NF-κB. RESULTS We applied multivariate and combinatorial data mining techniques on a comprehensive dataset of DNA methylation, DNase I hypersensitivity, eight epigenetic marks, and 34 TFs to arrive at genome-wide patterns that predict NF-κB binding. Strikingly, we observed NF-κB recruitment to accessible and nucleosome-bound sites. Within nucleosomal DNA NF-κB binding was primed by H3K4me1 and H2A.Z, but also hyper-methylated DNA outside of promoters and CpG-islands. Many of these predictors showed combinatorial cooperativity and statistically significant interactions. Recruitment to pre-accessible sites was more frequent and influenced by chromatin-associated TFs. We observed that specific TF-combinations are greatly enriched for (or depleted of) NF-κB binding events. CONCLUSIONS We provide evidence of NF-κB binding within genomic regions that lack classical marks of activity. These pioneer binding events are relatively often associated with transcriptional regulation. Further, our predictive models indicate that specific combinations of epigenetic marks and transcription factors predetermine the NF-κB cistrome, supporting the feasibility of using statistical approaches to identify "histone codes".
Collapse
Affiliation(s)
- Marcin Cieślik
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia USA
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109 USA
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia USA
| |
Collapse
|
13
|
Beketaev I, Zhang Y, Weng KC, Rhee S, Yu W, Liu Y, Mager J, Wang J. cis-regulatory control of Mesp1 expression by YY1 and SP1 during mouse embryogenesis. Dev Dyn 2015; 245:379-87. [DOI: 10.1002/dvdy.24349] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/20/2015] [Accepted: 09/12/2015] [Indexed: 11/08/2022] Open
Affiliation(s)
- Ilimbek Beketaev
- Center for Stem Cell Engineering, Department of Basic Research Laboratories; Texas Heart Institute at St. Luke's Episcopal Hospital; Houston Texas USA
| | - Yi Zhang
- In Vitro Fertilization Center; Affiliated Hospital of Hainan Medical University; Haikou Hainan People's Republic of China
| | - Kuo-Chan Weng
- Department of Biology and Biochemistry; University of Houston; Houston Texas USA
| | - Siyeon Rhee
- Department of Veterinary & Animal Sciences; University of Massachusetts; Amherst Massachusetts USA
| | - Wei Yu
- Department of Biology and Biochemistry; University of Houston; Houston Texas USA
| | - Yu Liu
- Department of Biology and Biochemistry; University of Houston; Houston Texas USA
| | - Jesse Mager
- Department of Veterinary & Animal Sciences; University of Massachusetts; Amherst Massachusetts USA
| | - Jun Wang
- Center for Stem Cell Engineering, Department of Basic Research Laboratories; Texas Heart Institute at St. Luke's Episcopal Hospital; Houston Texas USA
| |
Collapse
|
14
|
Mikulska JE. Analysis of Response Elements Involved in the Regulation of the Human Neonatal Fc Receptor Gene (FCGRT). PLoS One 2015; 10:e0135141. [PMID: 26252948 PMCID: PMC4529178 DOI: 10.1371/journal.pone.0135141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/19/2015] [Indexed: 12/26/2022] Open
Abstract
Human epithelial, endothelial and PMA-differentiated THP-1 cell lines were used as model systems to study the transcriptional regulation of the human FCGRT gene encoding the alpha chain of hFcRn. The data obtained from site-directed mutagenesis in transient transfection experiments indicate that the Sp1 sites at positions -641, -635, and -313, CF1/YY1 elements at positions -586 and -357, and the AP-1 motif at -276 within the-660/-233 fragment of the human FCGRT promoter (hFCGRT) participate in the regulation of human FCGRT in all selected cell lines. However, their individual contribution to promoter activity is not equivalent. The Sp1 binding site at -313 and the AP-1 site at -276 are critical for the activity of the hFCGRT promoter in epithelial and endothelial cells. Moreover, the CF1/YY1 site at -586 in differentiated THP-1 cells, plays an essential role in the transcriptional activity of the promoter. In addition, the C/EBPbeta binding site at -497 of the hFCGRT promoter in epithelial and endothelial cells, and the C/EBPbeta motif located at -497 and -233 within the hFCGRT promoter in differentiated THP-1 cells may function as positive regulatory sequences in response to LPS or PMA stimulation. EMSA and supershift analyses showed that the functionally identified binding motifs in the hFCGRT promoter were able to specifically interact with their corresponding (Sp1, Sp2, Sp3, c-Fos, c-Jun, YY1, and C/EBPbeta or C/EBPdelta) transcription factors (TFs), suggesting their possible involvement in the regulation of the human FCGRT gene expression.
Collapse
Affiliation(s)
- Joanna E. Mikulska
- Department of Immunochemistry, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
- * E-mail:
| |
Collapse
|
15
|
Beishline K, Azizkhan-Clifford J. Sp1 and the 'hallmarks of cancer'. FEBS J 2015; 282:224-58. [PMID: 25393971 DOI: 10.1111/febs.13148] [Citation(s) in RCA: 396] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 09/26/2014] [Accepted: 11/10/2014] [Indexed: 12/19/2022]
Abstract
For many years, transcription factor Sp1 was viewed as a basal transcription factor and relegated to a role in the regulation of so-called housekeeping genes. Identification of Sp1's role in recruiting the general transcription machinery in the absence of a TATA box increased its importance in gene regulation, particularly in light of recent estimates that the majority of mammalian genes lack a TATA box. In this review, we briefly consider the history of Sp1, the founding member of the Sp family of transcription factors. We review the evidence suggesting that Sp1 is highly regulated by post-translational modifications that positively and negatively affect the activity of Sp1 on a wide array of genes. Sp1 is over-expressed in many cancers and is associated with poor prognosis. Targeting Sp1 in cancer treatment has been suggested; however, our review of the literature on the role of Sp1 in the regulation of genes that contribute to the 'hallmarks of cancer' illustrates the extreme complexity of Sp1 functions. Sp1 both activates and suppresses the expression of a number of essential oncogenes and tumor suppressors, as well as genes involved in essential cellular functions, including proliferation, differentiation, the DNA damage response, apoptosis, senescence and angiogenesis. Sp1 is also implicated in inflammation and genomic instability, as well as epigenetic silencing. Given the apparently opposing effects of Sp1, a more complete understanding of the function of Sp1 in cancer is required to validate its potential as a therapeutic target.
Collapse
Affiliation(s)
- Kate Beishline
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
16
|
Khalil MI, Sommer M, Arvin A, Hay J, Ruyechan WT. Cellular transcription factor YY1 mediates the varicella-zoster virus (VZV) IE62 transcriptional activation. Virology 2014; 449:244-53. [PMID: 24418559 DOI: 10.1016/j.virol.2013.11.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/19/2013] [Accepted: 11/20/2013] [Indexed: 12/12/2022]
Abstract
Several cellular transcription factors have been shown to be involved in IE62-mediated activation. The YY1 cellular transcription factor has activating and repressive effects on gene transcription. Analysis of the VZV genome revealed 19 postulated YY1 binding sites located within putative promoters of 16 VZV genes. Electrophoretic mobility shift assays (EMSA) confirmed the binding of YY1 to ORF10, ORF28/29 and gI promoters and the mutation of these binding sites inhibited YY1 binding and the promoter activation by IE62 alone or following VZV infection. Mutation of the ORF28/29 YY1 site in the VZV genome displayed insignificant influence on virus growth in melanoma cells; but it inhibited the virus replication significantly at day 5 and 6 post infection in HELF cells. This work suggests a novel role for the cellular factor YY1 in VZV replication through the mediation of IE62 activation of viral gene expression.
Collapse
Affiliation(s)
- Mohamed I Khalil
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, United States; Department of Molecular Biology, National Research Center, Dokki, Cairo, Egypt.
| | - Marvin Sommer
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Ann Arvin
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - John Hay
- Department of Microbiology and Immunology and the Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, NY, United States
| | - William T Ruyechan
- Department of Microbiology and Immunology and the Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
17
|
Hernández-Monge J, Garay E, Raya-Sandino A, Vargas-Sierra O, Díaz-Chávez J, Popoca-Cuaya M, Lambert PF, González-Mariscal L, Gariglio P. Papillomavirus E6 oncoprotein up-regulates occludin and ZO-2 expression in ovariectomized mice epidermis. Exp Cell Res 2013; 319:2588-603. [PMID: 23948304 DOI: 10.1016/j.yexcr.2013.07.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 07/09/2013] [Accepted: 07/31/2013] [Indexed: 01/08/2023]
Abstract
We have studied the expression of the tight junction proteins (TJ) occludin, claudin-1 and ZO-2 in the epidermis of female mice. We observed a peak of expression of these proteins at postnatal day 7 and a decrease in 6 week-old mice to values similar to those found in newborn animals. We explored if the expression of the E6 oncoprotein from high-risk human papilloma virus type 16 (HPV16) in the skin of transgenic female mice (K14E6), altered TJ protein expression in a manner sensitive to ovarian hormones. We observed that in ovariectomized mice E6 up-regulates the expression of occludin and ZO-2 in the epidermis and that this effect was canceled by 17β-estradiol. Progesterone instead induced occludin and ZO-2 over-expression. However, the decreased expression of occludin and ZO-2 induced by 17β-estradiol in the epidermis was not overturned by E6 or progesterone. In addition, we employed MDCK cells transfected with E6, and observed that ZO-2 delocalizes from TJs and accumulates in the cell nuclei due to a decrease in the turnover rate of the protein. These results reinforce the view of 17β-estradiol and E6 as risk factors for the development of cancer through effects on expression and mislocalization of TJ proteins.
Collapse
Affiliation(s)
- Jesús Hernández-Monge
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Khalil MI, Sommer M, Arvin A, Hay J, Ruyechan WT. Regulation of the varicella-zoster virus ORF3 promoter by cellular and viral factors. Virology 2013; 440:171-81. [PMID: 23523134 DOI: 10.1016/j.virol.2013.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/20/2013] [Accepted: 02/24/2013] [Indexed: 11/18/2022]
Abstract
The varicella zoster virus (VZV) immediate early 62 protein (IE62) activates most if not all identified promoters of VZV genes and also some minimum model promoters that contain only a TATA box element. Analysis of the DNA elements that function in IE62 activation of the VZV ORF3 promoter revealed that the 100 nucleotides before the translation start site of the ORF3 gene contains the promoter elements. This promoter lacks any functional TATA box element. Cellular transcription factors Sp1, Sp3 and YY1 bind to the promoter, and mutation of their binding sites inhibited ORF3 gene expression. VZV regulatory proteins, IE63 and ORF29, ORF61 and ORF10 proteins inhibited IE62-mediated activation of this promoter. Mutation of the Sp1/Sp3 binding site in the VZV genome did not alter VZV replication kinetics. This work suggests that Sp family proteins contribute to the activation of VZV promoters by IE62 in the absence of functional TATA box.
Collapse
Affiliation(s)
- Mohamed I Khalil
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, United States.
| | | | | | | | | |
Collapse
|
19
|
Kassis JA, Brown JL. Polycomb group response elements in Drosophila and vertebrates. ADVANCES IN GENETICS 2013; 81:83-118. [PMID: 23419717 DOI: 10.1016/b978-0-12-407677-8.00003-8] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Polycomb group genes (PcG) encode a group of about 16 proteins that were first identified in Drosophila as repressors of homeotic genes. PcG proteins are present in all metazoans and are best characterized as transcriptional repressors. In Drosophila, these proteins are known as epigenetic regulators because they remember, but do not establish, the patterned expression state of homeotic genes throughout development. PcG proteins, in general, are not DNA binding proteins, but act in protein complexes to repress transcription at specific target genes. How are PcG proteins recruited to the DNA? In Drosophila, there are specific regulatory DNA elements called Polycomb group response elements (PREs) that bring PcG protein complexes to the DNA. Drosophila PREs are made up of binding sites for a complex array of DNA binding proteins. Functional PRE assays in transgenes have shown that PREs act in the context of other regulatory DNA and PRE activity is highly dependent on genomic context. Drosophila PREs tend to regulate genes with a complex array of regulatory DNA in a cell or tissue-specific fashion and it is the interplay between regulatory DNA that dictates PRE function. In mammals, PcG proteins are more diverse and there are multiple ways to recruit PcG complexes, including RNA-mediated recruitment. In this review, we discuss evidence for PREs in vertebrates and explore similarities and differences between Drosophila and vertebrate PREs.
Collapse
Affiliation(s)
- Judith A Kassis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
| | | |
Collapse
|
20
|
Trask MC, Tremblay KD, Mager J. Yin-Yang1 is required for epithelial-to-mesenchymal transition and regulation of Nodal signaling during mammalian gastrulation. Dev Biol 2012; 368:273-82. [PMID: 22669107 DOI: 10.1016/j.ydbio.2012.05.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 05/14/2012] [Accepted: 05/22/2012] [Indexed: 12/15/2022]
Abstract
The ubiquitously expressed Polycomb Group protein Yin-Yang1 (YY1) is believed to regulate gene expression through direct binding to DNA elements found in promoters or enhancers of target loci. Additionally, YY1 contains diverse domains that enable a plethora of protein-protein interactions, including association with the Oct4/Sox2 pluripotency complex and Polycomb Group silencing complexes. To elucidate the in vivo role of YY1 during gastrulation, we generated embryos with an epiblast specific deletion of Yy1. Yy1 conditional knockout (cKO) embryos initiate gastrulation, but both primitive streak formation and ingression through the streak is severely impaired. These streak descendants fail to repress E-Cadherin and are unable to undergo an appropriate epithelial to mesenchymal transition (EMT). Intriguingly, overexpression of Nodal and concomitant reduction of Lefty2 are observed in Yy1 cKO embryos, suggesting that YY1 is normally required for proper Nodal regulation during gastrulation. Furthermore, definitive endoderm is specified but fails to properly integrate into the outer layer. Although anterior neuroectoderm is specified, mesoderm production is severely restricted. We show that YY1 directly binds to the Lefty2 locus in E7.5 embryos and that pharmacological inhibition of Nodal signaling partially restores mesoderm production in Yy1 cKO mutant embryos. Our results reveal critical requirements for YY1 during several important developmental processes, including EMT and regulation of Nodal signaling. These results are the first to elucidate the diverse role of YY1 during gastrulation in vivo.
Collapse
Affiliation(s)
- Mary C Trask
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, 661 North Pleasant Street, Amherst, MA 01003, United States
| | | | | |
Collapse
|
21
|
Dhar SK, St Clair DK. Manganese superoxide dismutase regulation and cancer. Free Radic Biol Med 2012; 52:2209-22. [PMID: 22561706 DOI: 10.1016/j.freeradbiomed.2012.03.009] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 03/06/2012] [Accepted: 03/06/2012] [Indexed: 01/03/2023]
Abstract
Mitochondria are the power plants of the eukaryotic cell and the integrators of many metabolic activities and signaling pathways important for the life and death of a cell. Normal aerobic cells use oxidative phosphorylation to generate ATP, which supplies energy for metabolism. To drive ATP production, electrons are passed along the electron transport chain, with some leaking as superoxide during the process. It is estimated that, during normal respiration, intramitochondrial superoxide concentrations can reach 10⁻¹² M. This extremely high level of endogenous superoxide production dictates that mitochondria are equipped with antioxidant systems that prevent consequential oxidative injury to mitochondria and maintain normal mitochondrial functions. The major antioxidant enzyme that scavenges superoxide anion radical in mitochondria is manganese superoxide dismutase (MnSOD). Extensive studies on MnSOD have demonstrated that MnSOD plays a critical role in the development and progression of cancer. Many human cancer cells harbor low levels of MnSOD proteins and enzymatic activity, whereas some cancer cells possess high levels of MnSOD expression and activity. This apparent variation in MnSOD level among cancer cells suggests that differential regulation of MnSOD exists in cancer cells and that this regulation may be linked to the type and stage of cancer development. This review summarizes current knowledge of the relationship between MnSOD levels and cancer with a focus on the mechanisms regulating MnSOD expression.
Collapse
Affiliation(s)
- Sanjit Kumar Dhar
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | | |
Collapse
|
22
|
Mueller JK, Koch I, Lomniczi A, Loche A, Rulfs T, Castellano JM, Kiess W, Ojeda S, Heger S. Transcription of the human EAP1 gene is regulated by upstream components of a puberty-controlling Tumor Suppressor Gene network. Mol Cell Endocrinol 2012; 351:184-98. [PMID: 22209758 PMCID: PMC3288847 DOI: 10.1016/j.mce.2011.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 01/19/2023]
Abstract
Mammalian puberty is initiated by an increased pulsatile release of gonadotropin-releasing hormone (GnRH) from specialized neurons located in the hypothalamus. GnRH secretion is controlled by neuronal and glial networks, whose activity appears to be coordinated via transcriptional regulation. One of the transcription factors involved in this process is thought to be the recently described gene Enhanced at Puberty 1 (EAP1), which encodes a protein with dual transcriptional activity. In this study we used gene reporter and chromatin immunoprecipitation (ChIP) assays to examine the hypothesis that EAP1 expression is controlled by transcriptional regulators earlier postulated to serve as central nodes of a gene network involved in the neuroendocrine control of puberty. These regulators include Thyroid Transcription Factor 1 (TTF1), Yin Yang 1 (YY1), and CUX1, in addition to EAP1 itself. While TTF1 has been shown to facilitate the advent of puberty, YY1 (a zinc finger protein component of the Polycomb silencing complex) may play a repressive role. The precise role of CUX1 in this context is not known, but like EAP1, CUX1 can either activate or repress gene transcription. We observed that DNA segments of two different lengths (998 and 2744bp) derived from the 5'-flanking region of the human EAP1 gene display similar transcriptional activity. TTF1 stimulates transcription from both DNA segments with equal potency, whereas YY1, CUX1, and EAP1 itself, behave as transcriptional repressors. All four proteins are recruited in vivo to the EAP1 5'-flanking region. These observations suggest that EAP1 gene expression is under dual transcriptional regulation imposed by a trans-activator (TTF1) and two repressors (YY1 and CUX1) previously postulated to be upstream components of a puberty-controlling gene network. In addition, EAP1 itself appears to control its own expression via a negative auto-feedback loop mechanism. Further studies are needed to determine if the occupancy of the EAP1 promoter by these regulatory factors changes at the time of puberty.
Collapse
Affiliation(s)
- Johanna K. Mueller
- Institute of Clinical Biochemistry, Hannover Medical School, Hanover, Germany
| | - Ines Koch
- University Hospital for Children and Adolescents, University of Leipzig, Germany
| | - Alejandro Lomniczi
- Oregon National Primate Research Center/Oregon Health and Sciences University, Oregon, USA
| | - Alberto Loche
- Oregon National Primate Research Center/Oregon Health and Sciences University, Oregon, USA
| | - Tomke Rulfs
- Institute of Clinical Biochemistry, Hannover Medical School, Hanover, Germany
| | - Juan M. Castellano
- Oregon National Primate Research Center/Oregon Health and Sciences University, Oregon, USA
| | - Wieland Kiess
- University Hospital for Children and Adolescents, University of Leipzig, Germany
| | - Sergio Ojeda
- Oregon National Primate Research Center/Oregon Health and Sciences University, Oregon, USA
| | - Sabine Heger
- Institute of Clinical Biochemistry, Hannover Medical School, Hanover, Germany
- Children’s Hospital “Auf der Bult”, Hanover, Germany
| |
Collapse
|
23
|
Burdach J, O'Connell MR, Mackay JP, Crossley M. Two-timing zinc finger transcription factors liaising with RNA. Trends Biochem Sci 2012; 37:199-205. [PMID: 22405571 DOI: 10.1016/j.tibs.2012.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 01/16/2012] [Accepted: 02/02/2012] [Indexed: 02/01/2023]
Abstract
Classical zinc fingers (ZFs) are one of the most common protein domains in higher eukaryotes and have been known for almost 30 years to act as sequence-specific DNA-binding domains. This knowledge has come, however, from the study of a small number of archetypal proteins, and a larger picture is beginning to emerge that ZF functions are far more diverse than originally suspected. Here, we review the evidence that a subset of ZF proteins live double lives, binding to both DNA and RNA targets and frequenting both the cytoplasm and the nucleus. This duality can create an important additional level of gene regulation that serves to connect transcriptional and post-transcriptional control.
Collapse
Affiliation(s)
- Jon Burdach
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, NSW 2052, Australia
| | | | | | | |
Collapse
|
24
|
Challenges in whole exome sequencing: an example from hereditary deafness. PLoS One 2012; 7:e32000. [PMID: 22363784 PMCID: PMC3283682 DOI: 10.1371/journal.pone.0032000] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/17/2012] [Indexed: 11/19/2022] Open
Abstract
Whole exome sequencing provides unprecedented opportunities to identify causative DNA variants in rare Mendelian disorders. Finding the responsible mutation via traditional methods in families with hearing loss is difficult due to a high degree of genetic heterogeneity. In this study we combined autozygosity mapping and whole exome sequencing in a family with 3 affected children having nonsyndromic hearing loss born to consanguineous parents. Two novel missense homozygous variants, c.508C>A (p.H170N) in GIPC3 and c.1328C>T (p.T443M) in ZNF57, were identified in the same ∼6 Mb autozygous region on chromosome 19 in affected members of the family. Both variants co-segregated with the phenotype and were absent in 335 ethnicity-matched controls. Biallelic GIPC3 mutations have recently been reported to cause autosomal recessive nonsyndromic sensorineural hearing loss. Thus we conclude that the hearing loss in the family described in this report is caused by a novel missense mutation in GIPC3. Identified variant in GIPC3 had a low read depth, which was initially filtered out during the analysis leaving ZNF57 as the only potential causative gene. This study highlights some of the challenges in the analyses of whole exome data in the bid to establish the true causative variant in Mendelian disease.
Collapse
|
25
|
Okamoto K, Okamoto Y, Kawakubo T, Iwata JI, Yasuda Y, Tsukuba T, Yamamoto K. Role of the transcription factor Sp1 in regulating the expression of the murine cathepsin E gene. J Biochem 2011; 151:263-72. [DOI: 10.1093/jb/mvr135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
26
|
Abstract
The epithelial apical membrane Na+/H+ exchangers [NHE (sodium hydrogen exchanger)2 and NHE3] and Cl-/HCO3- exchangers [DRA (down-regulated in adenoma) and PAT-1 (putative anion transporter 1)] are key luminal membrane transporters involved in electroneutral NaCl absorption in the mammalian intestine. During the last decade, there has been a surge of studies focusing on the short-term regulation of these electrolyte transporters, particularly for NHE3 regulation. However, the long-term regulation of the electrolyte transporters, involving transcriptional mechanisms and transcription factors that govern their basal regulation or dysregulation in diseased states, has only now started to unfold with the cloning and characterization of their gene promoters. The present review provides a detailed analysis of the core promoters of NHE2, NHE3, DRA and PAT-1 and outlines the transcription factors involved in their basal regulation as well as in response to both physiological (butyrate, protein kinases and probiotics) and pathophysiological (cytokines and high levels of serotonin) stimuli. The information available on the transcriptional regulation of the recently identified NHE8 isoform is also highlighted. Therefore the present review bridges a gap in our knowledge of the transcriptional mechanisms underlying the alterations in the gene expression of intestinal epithelial luminal membrane Na+ and Cl- transporters involved in electroneutral NaCl absorption. An understanding of the mechanisms of the modulation of gene expression of these transporters is important for a better assessment of the pathophysiology of diarrhoea associated with inflammatory and infectious diseases and may aid in designing better management protocols.
Collapse
|
27
|
Mueller JK, Dietzel A, Lomniczi A, Loche A, Tefs K, Kiess W, Danne T, Ojeda SR, Heger S. Transcriptional regulation of the human KiSS1 gene. Mol Cell Endocrinol 2011; 342:8-19. [PMID: 21672609 PMCID: PMC3148268 DOI: 10.1016/j.mce.2011.04.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 04/28/2011] [Accepted: 04/28/2011] [Indexed: 01/28/2023]
Abstract
Kisspeptin, the product of the KiSS1 gene, has emerged as a key component of the mechanism by which the hypothalamus controls puberty and reproductive development. It does so by stimulating the secretion of gonadotropin releasing hormone (GnRH). Little is known about the transcriptional control of the KiSS1 gene. Here we show that a set of proteins postulated to be upstream components of a hypothalamic network involved in controlling female puberty regulates KiSS1 transcriptional activity. Using RACE-PCR we determined that transcription of KiSS1 mRNA is initiated at a single transcription start site (TSS) located 153-156bp upstream of the ATG translation initiation codon. Promoter assays performed using 293 MSR cells showed that the KiSS1 promoter is activated by TTF1 and CUX1-p200, and repressed by EAP1, YY1, and CUX1-p110. EAP1 and CUX-110 were also repressive in GT1-7 cells. All four TFs are recruited in vivo to the KiSS1 promoter and are expressed in kisspeptin neurons. These results suggest that expression of the KiSS1 gene is regulated by trans-activators and repressors involved in the system-wide control of mammalian puberty.
Collapse
Affiliation(s)
| | - Anja Dietzel
- University Hospital for Children and Adolescents, University of Leipzig, Germany
| | - Alejandro Lomniczi
- Oregon National Primate Research Center/Oregon Health and Science University, Oregon, USA
| | - Alberto Loche
- Oregon National Primate Research Center/Oregon Health and Science University, Oregon, USA
| | - Katrin Tefs
- Institute of Clinical Biochemistry, Hannover Medical School, Germany
| | - Wieland Kiess
- University Hospital for Children and Adolescents, University of Leipzig, Germany
| | - Thomas Danne
- Children’s Hospital “Auf der Bult”, Hannover, Germany
| | - Sergio R. Ojeda
- Oregon National Primate Research Center/Oregon Health and Science University, Oregon, USA
| | - Sabine Heger
- Institute of Clinical Biochemistry, Hannover Medical School, Germany
- Children’s Hospital “Auf der Bult”, Hannover, Germany
| |
Collapse
|
28
|
Robbins D, Zhao Y. The role of manganese superoxide dismutase in skin cancer. Enzyme Res 2011; 2011:409295. [PMID: 21603266 PMCID: PMC3092576 DOI: 10.4061/2011/409295] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 01/26/2011] [Indexed: 01/11/2023] Open
Abstract
Recent studies have shown that antioxidant enzyme expression and activity are drastically reduced in most human skin diseases, leading to propagation of oxidative stress and continuous disease progression. However, antioxidants, an endogenous defense system against reactive oxygen species (ROS), can be induced by exogenous sources, resulting in protective effects against associated oxidative injury. Many studies have shown that the induction of antioxidants is an effective strategy to combat various disease states. In one approach, a SOD mimetic was applied topically to mouse skin in the two-stage skin carcinogenesis model. This method effectively reduced oxidative injury and proliferation without interfering with apoptosis. In another approach, Protandim, a combination of 5 well-studied medicinal plants, was given via dietary administration and significantly decreased tumor incidence and multiplicity by 33% and 57%, respectively. These studies suggest that alterations in antioxidant response may be a novel approach to chemoprevention. This paper focuses on how regulation of antioxidant expression and activity can be modulated in skin disease and the potential clinical implications of antioxidant-based therapies.
Collapse
Affiliation(s)
- Delira Robbins
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| | | |
Collapse
|
29
|
Notarbartolo M, Giannitrapani L, Vivona N, Poma P, Labbozzetta M, Florena AM, Porcasi R, Muggeo VMR, Sandonato L, Cervello M, Montalto G, D'Alessandro N. Frequent alteration of the Yin Yang 1/Raf-1 kinase inhibitory protein ratio in hepatocellular carcinoma. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 15:267-72. [PMID: 21332389 DOI: 10.1089/omi.2010.0096] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The transcription factor Yin Yang 1 (YY1) can favor several aspects of tumorigenesis. In turn, Raf-1 Kinase Inhibitor Protein (RKIP) inhibits the oncogenic activities of MAPK and NF-κB pathways and promotes drug-induced apoptosis. Mutual influences between YY1 and RKIP may exist, and there are already separate evidences that relevant increases in YY1 and reductions in RKIP occur in hepatocellular carcinoma (HCC). However, the levels of the two factors have never been concomitantly examined in HCC. We evaluated by RT-PCR the mRNA levels of YY1, YY1AP, RKIP, and survivin in 35 clinical HCCs (91% HCV-related), in their adjacent cirrhotic tissues and in 6 healthy livers. Immunohistochemical analyses were also performed. The ratio of YY1 to RKIP mRNA was constantly profoundly inverted in the tumors compared with the adjacent nontumoral tissues. A similar result occurred frequently at protein level. Hyperactivation of YY1 in tumors was corroborated by its nuclear localization and the finding that in the tumors there were also increases in YY1AP, a YY1 coactivator not expressed in normal liver, and in survivin, as a possible target of YY1. The frequent alteration in the YY1-RKIP balance might represent a marker of malignant progression and be exploited for therapeutic interventions in HCC.
Collapse
Affiliation(s)
- Monica Notarbartolo
- Dipartimento di Scienze Farmacologiche Pietro Benigno, Università degli Studi di Palermo, Palermo, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Whitlock NC, Bahn JH, Lee SH, Eling TE, Baek SJ. Resveratrol-induced apoptosis is mediated by early growth response-1, Krüppel-like factor 4, and activating transcription factor 3. Cancer Prev Res (Phila) 2011; 4:116-27. [PMID: 21205742 PMCID: PMC3064282 DOI: 10.1158/1940-6207.capr-10-0218] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Resveratrol, a dietary phytoalexin readily available in the diet, is reported to possess antitumorigenic properties in several cancers, including colorectal. However, the underlying mechanism(s) involved is not completely understood. In the present study, we investigated the effect of resveratrol treatment on gene modulation in human colorectal cancer cells and identified activating transcription factor 3 (ATF3) as the most highly induced gene after treatment. We confirmed that resveratrol upregulates ATF3 expression, both at the mRNA and protein level, and showed resveratrol involvement in ATF3 transcriptional regulation. Analysis of the ATF3 promoter revealed the importance of early growth response-1 (Egr-1; located at -245 to -236) and Krüppel-like factor 4 (KLF4; located at -178 to -174) putative binding sites in resveratrol-mediated ATF3 transactivation. Specificity of these sites to the Egr-1 and KLF4 protein was confirmed by electrophoretic mobility shift and chromatin immunoprecipitation assays. Resveratrol increased Egr-1 and KLF4 expression, which preceded ATF3 expression, and further suggests Egr-1 and KLF4 involvement in resveratrol-mediated activity. We provide evidence for Egr-1 and KLF4 interaction in the presence of resveratrol, which may facilitate ATF3 transcriptional regulation by this compound. Furthermore, we demonstrate that induction of apoptosis by resveratrol is mediated, in part, by increased ATF3 expression. Taken together, these results provide a novel mechanism by which resveratrol induces ATF3 expression and represent an additional explanation of how resveratrol exerts its antitumorigenic effects in human colorectal cancer cells.
Collapse
Affiliation(s)
- Nichelle C. Whitlock
- Laboratory of Environmental Carcinogenesis, Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, Knoxville, TN
| | - Jae Hoon Bahn
- Laboratory of Environmental Carcinogenesis, Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, Knoxville, TN
| | - Seong-Ho Lee
- Laboratory of Environmental Carcinogenesis, Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, Knoxville, TN
| | - Thomas E. Eling
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC
| | - Seung Joon Baek
- Laboratory of Environmental Carcinogenesis, Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, Knoxville, TN
| |
Collapse
|
31
|
Itoh T, Miyake K, Yamaguchi T, Tsuge M, Kaneoka H, Iijima S. Constitutive expression of the brg1 gene requires GC-boxes near to the transcriptional start site. J Biochem 2010; 149:301-9. [DOI: 10.1093/jb/mvq145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
32
|
Abstract
Varicella zoster virus (VZV) is the causative agent of chickenpox and shingles. During productive infection the complete VZV proteome consisting of some 68 unique gene products is expressed through interaction of a small number of viral transcriptional activators with the general transcription apparatus of the host cell. Recent work has shown that the major viral transactivator, commonly designated the IE62 protein, interacts with the human Mediator of transcription. This interaction requires direct contact between the MED25 subunit of Mediator and the acidic N-terminal transactivation domain of IE62. A second cellular factor, host cell factor-1, has been shown to be the common element in two mechanisms of activation of the promoter driving expression of the gene encoding IE62. Finally, the ubiquitous cellular transcription factors Sp1, Sp3, and YY1 have been shown to interact with sequences near the VZV origin of DNA replication and in the case of Sp1/Sp3 to influence replication efficiency.
Collapse
|
33
|
The ubiquitin carboxyl hydrolase BAP1 forms a ternary complex with YY1 and HCF-1 and is a critical regulator of gene expression. Mol Cell Biol 2010; 30:5071-85. [PMID: 20805357 DOI: 10.1128/mcb.00396-10] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The candidate tumor suppressor BAP1 is a deubiquitinating enzyme (DUB) involved in the regulation of cell proliferation, although the molecular mechanisms governing its function remain poorly defined. BAP1 was recently shown to interact with and deubiquitinate the transcriptional regulator host cell factor 1 (HCF-1). Here we show that BAP1 assembles multiprotein complexes containing numerous transcription factors and cofactors, including HCF-1 and the transcription factor Yin Yang 1 (YY1). Through its coiled-coil motif, BAP1 directly interacts with the zinc fingers of YY1. Moreover, HCF-1 interacts with the middle region of YY1 encompassing the glycine-lysine-rich domain and is essential for the formation of a ternary complex with YY1 and BAP1 in vivo. BAP1 activates transcription in an enzymatic-activity-dependent manner and regulates the expression of a variety of genes involved in numerous cellular processes. We further show that BAP1 and HCF-1 are recruited by YY1 to the promoter of the cox7c gene, which encodes a mitochondrial protein used here as a model of BAP1-activated gene expression. Our findings (i) establish a direct link between BAP1 and the transcriptional control of genes regulating cell growth and proliferation and (ii) shed light on a novel mechanism of transcription regulation involving ubiquitin signaling.
Collapse
|
34
|
Brown JL, Kassis JA. Spps, a Drosophila Sp1/KLF family member, binds to PREs and is required for PRE activity late in development. Development 2010; 137:2597-602. [PMID: 20627963 DOI: 10.1242/dev.047761] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Polycomb group of proteins (PcG) is important for transcriptional repression and silencing in all higher eukaryotes. In Drosophila, PcG proteins are recruited to the DNA by Polycomb-group response elements (PREs), regulatory sequences whose activity depends on the binding of many different sequence-specific DNA-binding proteins. We previously showed that a binding site for the Sp1/KLF family of zinc-finger proteins is required for PRE activity. Here, we report that the Sp1/KLF family member Spps binds specifically to Ubx and engrailed PREs, and that Spps binds to polytene chromosomes in a pattern virtually identical to that of the PcG protein, Psc. A deletion of the Spps gene causes lethality late in development and a loss in pairing-sensitive silencing, an activity associated with PREs. Finally, the Spps mutation enhances the phenotype of pho mutants. We suggest that Spps may work with, or in parallel to, Pho to recruit PcG protein complexes to PREs.
Collapse
Affiliation(s)
- J Lesley Brown
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892, USA
| | | |
Collapse
|
35
|
Transcription factor YY1 interacts with retroviral integrases and facilitates integration of moloney murine leukemia virus cDNA into the host chromosomes. J Virol 2010; 84:8250-61. [PMID: 20519390 DOI: 10.1128/jvi.02681-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroviral integrases associate during the early viral life cycle with preintegration complexes that catalyze the integration of reverse-transcribed viral cDNA into the host chromosomes. Several cellular and viral proteins have been reported to be incorporated in the preintegration complex. This study demonstrates that transcription factor Yin Yang 1 binds to Moloney murine leukemia virus, human immunodeficiency virus type 1, and avian sarcoma virus integrases. The results of coimmunoprecipitation and in vitro pulldown assays revealed that Yin Yang 1 interacted with the catalytic core and C-terminal domains of Moloney murine leukemia virus and human immunodeficiency virus type 1 integrases, while the transcriptional repression and DNA-binding domains of the Yin Yang 1 molecule interacted with Moloney murine leukemia virus integrase. Immunoprecipitation of the cytoplasmic fraction of virus-infected cells followed by Southern blotting and chromatin immunoprecipitation demonstrated that Yin Yang 1 associated with Moloney murine leukemia virus cDNA in virus-infected cells. Yin Yang 1 enhanced the in vitro integrase activity of Moloney murine leukemia virus, human immunodeficiency virus type 1, and avian sarcoma virus integrases. Furthermore, knockdown of Yin Yang 1 in host cells by small interfering RNA reduced Moloney murine leukemia virus cDNA integration in vivo, although viral cDNA synthesis was increased, suggesting that Yin Yang 1 facilitates integration events in vivo. Taking these results together, Yin Yang 1 appears to be involved in integration events during the early viral life cycle, possibly as an enhancer of integration.
Collapse
|
36
|
Cole LK, Vance DE. A role for Sp1 in transcriptional regulation of phosphatidylethanolamine N-methyltransferase in liver and 3T3-L1 adipocytes. J Biol Chem 2010; 285:11880-91. [PMID: 20150657 DOI: 10.1074/jbc.m110.109843] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylcholine is made in all nucleated mammalian cells via the CDP-choline pathway. Another major pathway for phosphatidylcholine biosynthesis in liver is catalyzed by phosphatidylethanolamine N-methyltransferase (PEMT). We have now identified 3T3-L1 adipocytes as a cell culture model that expresses PEMT endogenously. We have found that PEMT mRNA and protein levels increased dramatically in 3T3-L1 cells upon differentiation to adipocytes. 5'-Deletion analysis of the PEMT promoter-luciferase constructs stably expressed in 3T3-L1 adipocytes identified a regulatory region between -471 and -371 bp (relative to the transcriptional start site). Competitive and supershift assays demonstrated binding sites for transcription factors Sp1, Sp3 (-408 to -413), and YY1 (-417 to -420). During differentiation of 3T3-L1 cells to adipocytes, the amount of Sp1 protein decreased by approximately 50% just prior to activation of PEMT. Transduction of 3T3-L1 adipocytes with retrovirus containing Sp1 cDNA demonstrated that Sp1 inhibited PEMT transcriptional activity. Similarly, short hairpin RNA directed against Sp1 in 3T3-L1 adipocytes enhanced PEMT transcriptional activation. Chromatin immunoprecipitation assays confirmed that Sp1 binds to the PEMT promoter, and this interaction decreases upon differentiation to adipocytes. These experiments directly link increased PEMT expression in adipocytes to decreased transcriptional expression of Sp1. In addition, our data established that Sp1 binding was required for tamoxifen-mediated inhibition of Pemt promoter activity.
Collapse
Affiliation(s)
- Laura K Cole
- Department of Biochemistry, University of Alberta, Edmonton, Alberta TG6 2S2, Canada
| | | |
Collapse
|
37
|
Lace MJ, Yamakawa Y, Ushikai M, Anson JR, Haugen TH, Turek LP. Cellular factor YY1 downregulates the human papillomavirus 16 E6/E7 promoter, P97, in vivo and in vitro from a negative element overlapping the transcription-initiation site. J Gen Virol 2009; 90:2402-2412. [PMID: 19553391 DOI: 10.1099/vir.0.012708-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cellular factors that bind to cis sequences in the human papillomavirus 16 (HPV-16) upstream regulatory region (URR) positively and negatively regulate the viral E6 and E7 oncogene promoter, P97. DNase I footprinting has revealed the binding of cellular proteins to two previously undetected cis elements overlapping and 3′ of the transcription-initiation site of the P97 promoter. Mutations within homologous motifs found in both of these cis elements abolished their negative function in vivo and the binding of the same cellular complex in vitro. This factor was identified as YY1 by complex mobility and binding specificity in comparison with vaccinia virus-expressed, purified recombinant YY1 protein and by antigenic reactivity with YY1 antisera. Cis mutations in the ‘initiator’ YY1 site activated the P97 promoter in vivo and in vitro. P97 was also activated threefold in vitro by depletion of endogenous YY1 with wild-type, but not mutant, YY1 oligonucleotides from the IgH kappa E3′ enhancer. Furthermore, increasing concentrations of exogenous, purified recombinant YY1 repressed wild-type P97 transcript levels by up to threefold, but did not influence the P97 promoter mutated in the ‘initiator’ YY1 site. Thus, the promoter-proximal YY1 site was not necessary for correct transcription initiation at the P97 promoter, but was found to be required for downregulation of P97 transcription in vivo and in vitro. In contrast to other viral and cellular promoters, where YY1 is thought to function as a positive transcription-‘initiator’ factor, HPV-16 P97 transcription is downregulated by YY1 from a critical motif overlapping the transcription start site.
Collapse
Affiliation(s)
- Michael J. Lace
- Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
- Veterans Affairs Medical Center, 601 Highway 6 West, Iowa City, IA 52246, USA
| | - Yasushi Yamakawa
- Veterans Affairs Medical Center, 601 Highway 6 West, Iowa City, IA 52246, USA
| | - Masato Ushikai
- Veterans Affairs Medical Center, 601 Highway 6 West, Iowa City, IA 52246, USA
| | - James R. Anson
- Veterans Affairs Medical Center, 601 Highway 6 West, Iowa City, IA 52246, USA
| | - Thomas H. Haugen
- Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
- Veterans Affairs Medical Center, 601 Highway 6 West, Iowa City, IA 52246, USA
| | - Lubomir P. Turek
- Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
- Veterans Affairs Medical Center, 601 Highway 6 West, Iowa City, IA 52246, USA
| |
Collapse
|
38
|
Beuten J, Gelfond JAL, Franke JL, Weldon KS, Crandall AC, Johnson-Pais TL, Thompson IM, Leach RJ. Single and multigenic analysis of the association between variants in 12 steroid hormone metabolism genes and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 2009; 18:1869-80. [PMID: 19505920 DOI: 10.1158/1055-9965.epi-09-0076] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To estimate the prostate cancer risk conferred by individual single nucleotide polymorphisms (SNPs), SNP-SNP interactions, and/or cumulative SNP effects, we evaluated the association between prostate cancer risk and the genetic variants of 12 key genes within the steroid hormone pathway (CYP17, HSD17B3, ESR1, SRD5A2, HSD3B1, HSD3B2, CYP19, CYP1A1, CYP1B1, CYP3A4, CYP27B1, and CYP24A1). A total of 116 tagged SNPs covering the group of genes were analyzed in 2,452 samples (886 cases and 1,566 controls) in three ethnic/racial groups. Several SNPs within CYP19 were significantly associated with prostate cancer in all three ethnicities (P = 0.001-0.009). Genetic variants within HSD3B2 and CYP24A1 conferred increased risk of prostate cancer in non-Hispanic or Hispanic Caucasians. A significant gene-dosage effect for increasing numbers of potential high-risk genotypes was found in non-Hispanic and Hispanic Caucasians. Higher-order interactions showed a seven-SNP interaction involving HSD17B3, CYP19, and CYP24A1 in Hispanic Caucasians (P = 0.001). In African Americans, a 10-locus model, with SNPs located within SRD5A2, HSD17B3, CYP17, CYP27B1, CYP19, and CYP24A1, showed a significant interaction (P = 0.014). In non-Hispanic Caucasians, an interaction of four SNPs in HSD3B2, HSD17B3, and CYP19 was found (P < 0.001). These data are consistent with a polygenic model of prostate cancer, indicating that multiple interacting genes of the steroid hormone pathway confer increased risk of prostate cancer.
Collapse
Affiliation(s)
- Joke Beuten
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Cellular transcription factors Sp1 and Sp3 suppress varicella-zoster virus origin-dependent DNA replication. J Virol 2008; 82:11723-33. [PMID: 18815296 DOI: 10.1128/jvi.01322-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The varicella-zoster virus (VZV) origin of DNA replication (oriS) contains a 46-bp AT-rich palindrome and three consensus binding sites for the VZV origin binding protein (OBP) encoded by VZV ORF51. All three OBP binding sites are upstream of the palindrome in contrast to the sequence of the herpes simplex virus oriS, which has required OBP binding sites upstream and downstream of the AT-rich region. We are investigating the roles that sequences downstream of the palindrome play in VZV oriS-dependent DNA replication. Computer analysis identified two GC boxes, GC box 1 and GC box 2, in the downstream region which were predicted to be binding sites for the cellular transcription factor Sp1. Electrophoretic mobility shift assay and supershift assays showed that two members of the Sp family (Sp1 and Sp3) stably bind to GC box 1, but not to GC box 2. A predicted binding site for the cellular factor Yin Yang 1 (YY1) that overlaps with GC box 2 was also identified. Supershift and mutational analyses confirmed the binding of YY1 to this site. Mutation of GC box 1 resulted in loss of Sp1 and Sp3 binding and an increase in origin-dependent replication efficiency in DpnI replication assays. In contrast, mutation of the YY1 site had a statistically insignificant effect. These results suggest a model where origin-dependent DNA replication and viral transcription are coupled by the binding of Sp1 and Sp3 to the downstream region of the VZV replication origin during lytic infection. They may also have implications regarding establishment or reactivation of viral latency.
Collapse
|
40
|
Bheda A, Creek KE, Pirisi L. Loss of p53 induces epidermal growth factor receptor promoter activity in normal human keratinocytes. Oncogene 2008; 27:4315-23. [PMID: 18391986 PMCID: PMC2572188 DOI: 10.1038/onc.2008.65] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 01/08/2008] [Accepted: 02/01/2008] [Indexed: 12/11/2022]
Abstract
Overexpression of the epidermal growth factor receptor (EGFR) in human papillomavirus type 16-immortalized human keratinocytes (HKc) is caused by the viral oncoprotein E6, which targets p53 for degradation. We have previously observed that expression of p53 RNAi in normal HKc is associated with an increase in EGFR mRNA and protein. We now report that p53 RNAi induces EGFR promoter activity up to approximately 10-fold in normal HKc, and this effect does not require intact p53 binding sites on the EGFR promoter. Exogenous wild-type p53 inhibits the EGFR promoter at low levels, and activates it at higher concentrations. Yin Yang 1 (YY1), which negatively regulates p53, induces EGFR promoter activity, and this effect is augmented by p53 RNAi. Intact p53 binding sites on the EGFR promoter are not required for activation by YY1. In addition, Sp1 and YY1 synergistically induce the EGFR promoter in normal HKc, indicating that Sp1 may recruit YY1 as a co-activator. Wild-type p53 suppressed Sp1- and YY1-mediated induction of the EGFR promoter. We conclude that acute loss of p53 in normal HKc induces EGFR expression by a mechanism that involves YY1 and Sp1 and does not require p53 binding to the EGFR promoter.
Collapse
Affiliation(s)
- A Bheda
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, The South Carolina Cancer Center, Columbia, SC 29203, USA
| | | | | |
Collapse
|
41
|
Brayer KJ, Kulshreshtha S, Segal DJ. The protein-binding potential of C2H2 zinc finger domains. Cell Biochem Biophys 2008; 51:9-19. [PMID: 18286240 DOI: 10.1007/s12013-008-9007-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 12/28/2007] [Indexed: 12/22/2022]
Abstract
There are over 10,000 C2H2-type zinc finger (ZF) domains distributed among more than 1,000 ZF proteins in the human genome. These domains are frequently observed to be involved in sequence-specific DNA binding, and uncharacterized domains are typically assumed to facilitate DNA interactions. However, some ZFs also facilitate binding to proteins or RNA. Over 100 Cys2-His2 (C2H2) ZF-protein interactions have been described. We initially attempted a bioinformatics analysis to identify sequence features that would predict a DNA- or protein-binding function. These efforts were complicated by several issues, including uncertainties about the full functional capabilities of the ZFs. We therefore applied an unbiased approach to directly examine the potential for ZFs to facilitate DNA or protein interactions. The human OLF-1/EBF associated zinc finger (OAZ) protein was used as a model. The human O/E-1-associated zinc finger protein (hOAZ) contains 30 ZFs in 6 clusters, some of which have been previously indicated in DNA or protein interactions. DNA binding was assessed using a target site selection (CAST) assay, and protein binding was assessed using a yeast two-hybrid assay. We observed that clusters known to bind DNA could facilitate specific protein interactions, but clusters known to bind protein did not facilitate specific DNA interactions. Our primary conclusion is that DNA binding is a more restricted function of ZFs, and that their potential for mediating protein interactions is likely greater. These results suggest that the role of C2H2 ZF domains in protein interactions has probably been underestimated. The implication of these findings for the prediction of ZF function is discussed.
Collapse
Affiliation(s)
- Kathryn J Brayer
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | | | | |
Collapse
|
42
|
Franchina M, Woo AJ, Dods J, Karimi M, Ho D, Watanabe T, Spagnolo DV, Abraham LJ. The CD30 gene promoter microsatellite binds transcription factor Yin Yang 1 (YY1) and shows genetic instability in anaplastic large cell lymphoma. J Pathol 2008; 214:65-74. [PMID: 17973241 DOI: 10.1002/path.2258] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CD30 is a member of the TNF receptor family. Our interest lies in understanding the control of CD30 expression, particularly as its over-expression provides a diagnostic marker for a subset of non-Hodgkin's lymphomas, particularly anaplastic large cell lymphoma (ALCL), and because anti-CD30 treatment has been shown to be efficacious. We have identified a number of regulatory regions, including an Sp1 element in the minimal promoter, and a downstream promoter element that is required for start site selection. The discovery of both an activating AP1 site and an upstream microsatellite that represses transcriptional activity of CD30 suggests that this region is involved in dysregulation of CD30 expression. We have now identified the major microsatellite binding activity as transcription factor Yin Yang 1 by both one-hybrid cDNA library screening and peptide mass fingerprinting. Due to the strong repressive effect of the microsatellite, we also investigated whether microsatellite instability may induce changes in CD30 expression and hence explain the over-expression of CD30 in ALCL. Laser capture microdissection of ALCL biopsies and CD30 microsatellite typing indicated that the neoplastic cells show a high degree of variation, but this does not correlate with high CD30 expression seen in ALCL.
Collapse
Affiliation(s)
- M Franchina
- Western Australian Institute for Medical Research & Centre for Medical Research, The University of Western Australia, Crawley, Western Australia
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Brayer KJ, Segal DJ. Keep your fingers off my DNA: protein-protein interactions mediated by C2H2 zinc finger domains. Cell Biochem Biophys 2008; 50:111-31. [PMID: 18253864 DOI: 10.1007/s12013-008-9008-5] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 12/28/2007] [Indexed: 11/28/2022]
Abstract
Cys2-His2 (C2H2) zinc finger domains (ZFs) were originally identified as DNA-binding domains, and uncharacterized domains are typically assumed to function in DNA binding. However, a growing body of evidence suggests an important and widespread role for these domains in protein binding. There are even examples of zinc fingers that support both DNA and protein interactions, which can be found in well-known DNA-binding proteins such as Sp1, Zif268, and Ying Yang 1 (YY1). C2H2 protein-protein interactions (PPIs) are proving to be more abundant than previously appreciated, more plastic than their DNA-binding counterparts, and more variable and complex in their interactions surfaces. Here we review the current knowledge of over 100 C2H2 zinc finger-mediated PPIs, focusing on what is known about the binding surface, contributions of individual fingers to the interaction, and function. An accurate understanding of zinc finger biology will likely require greater insights into the potential protein interaction capabilities of C2H2 ZFs.
Collapse
Affiliation(s)
- Kathryn J Brayer
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | | |
Collapse
|
44
|
Li H, Liu H, Wang Z, Liu X, Guo L, Huang L, Gao L, McNutt MA, Li G. The role of transcription factors Sp1 and YY1 in proximal promoter region in initiation of transcription of the mu opioid receptor gene in human lymphocytes. J Cell Biochem 2008; 104:237-50. [DOI: 10.1002/jcb.21616] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
Bellora N, Farré D, Albà MM. Positional bias of general and tissue-specific regulatory motifs in mouse gene promoters. BMC Genomics 2007; 8:459. [PMID: 18078513 PMCID: PMC2249607 DOI: 10.1186/1471-2164-8-459] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 12/13/2007] [Indexed: 01/20/2023] Open
Abstract
Background The arrangement of regulatory motifs in gene promoters, or promoter architecture, is the result of mutation and selection processes that have operated over many millions of years. In mammals, tissue-specific transcriptional regulation is related to the presence of specific protein-interacting DNA motifs in gene promoters. However, little is known about the relative location and spacing of these motifs. To fill this gap, we have performed a systematic search for motifs that show significant bias at specific promoter locations in a large collection of housekeeping and tissue-specific genes. Results We observe that promoters driving housekeeping gene expression are enriched in particular motifs with strong positional bias, such as YY1, which are of little relevance in promoters driving tissue-specific expression. We also identify a large number of motifs that show positional bias in genes expressed in a highly tissue-specific manner. They include well-known tissue-specific motifs, such as HNF1 and HNF4 motifs in liver, kidney and small intestine, or RFX motifs in testis, as well as many potentially novel regulatory motifs. Based on this analysis, we provide predictions for 559 tissue-specific motifs in mouse gene promoters. Conclusion The study shows that motif positional bias is an important feature of mammalian proximal promoters and that it affects both general and tissue-specific motifs. Motif positional constraints define very distinct promoter architectures depending on breadth of expression and type of tissue.
Collapse
Affiliation(s)
- Nicolás Bellora
- Research Unit on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Spain.
| | | | | |
Collapse
|
46
|
Baritaki S, Katsman A, Chatterjee D, Yeung KC, Spandidos DA, Bonavida B. Regulation of tumor cell sensitivity to TRAIL-induced apoptosis by the metastatic suppressor Raf kinase inhibitor protein via Yin Yang 1 inhibition and death receptor 5 up-regulation. THE JOURNAL OF IMMUNOLOGY 2007; 179:5441-53. [PMID: 17911631 DOI: 10.4049/jimmunol.179.8.5441] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Raf-1 kinase inhibitor protein (RKIP) has been implicated in the regulation of cell survival pathways and metastases, and is poorly expressed in tumors. We have reported that the NF-kappaB pathway regulates tumor resistance to apoptosis by the TNF-alpha family via inactivation of the transcription repressor Yin Yang 1 (YY1). We hypothesized that RKIP overexpression may regulate tumor sensitivity to death ligands via inhibition of YY1 and up-regulation of death receptors (DRs). The TRAIL-resistant prostate carcinoma PC-3 and melanoma M202 cell lines were examined. Transfection with CMV-RKIP, but not with control CMV-EV, sensitized the cells to TRAIL-mediated apoptosis. Treatment with RKIP small interfering RNA (siRNA) inhibited TRAIL-induced apoptosis. RKIP overexpression was paralleled with up-regulation of DR5 transcription and expression; no change in DR4, decoy receptor 1, and decoy receptor 2 expression; and inhibition of YY1 transcription and expression. Inhibition of YY1 by YY1 siRNA sensitized the cells to TRAIL apoptosis concomitantly with DR5 up-regulation. RKIP overexpression inhibited several antiapoptotic gene products such as X-linked inhibitor of apoptosis (XIAP), c-FLIP long, and Bcl-x(L) that were accompanied with mitochondrial membrane depolarization. RKIP overexpression in combination with TRAIL resulted in the potentiation of these above effects and activation of caspases 8, 9, and 3, resulting in apoptosis. These findings demonstrate that RKIP overexpression regulates tumor cell sensitivity to TRAIL via inhibition of YY1, up-regulation of DR5, and modulation of apoptotic pathways. We suggest that RKIP may serve as an immune surveillance cancer gene, and its low expression or absence in tumors allows the tumor to escape host immune cytotoxic effector cells.
Collapse
Affiliation(s)
- Stavroula Baritaki
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
47
|
Pearse I, Zhu Y, Murray E, Dudeja P, Ramaswamy K, Malakooti J. Sp1 and Sp3 control constitutive expression of the human NHE2 promoter by interactions with the proximal promoter and the transcription initiation site. Biochem J 2007; 407:101-11. [PMID: 17561809 PMCID: PMC2267401 DOI: 10.1042/bj20070364] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We have previously cloned the human Na+/H+ exchanger NHE2 gene and its promoter region. In the present study, the regulatory elements responsible for the constitutive expression of NHE2 were studied. Transient transfection assays revealed that the -40/+150 promoter region contains the core promoter responsible for the optimal promoter activity. A smaller fragment, -10/+40, containing the TIS (transcription initiation site) showed minimal activity. We identified a palindrome that overlaps the TIS and binds to the transcription factors Sp1 and Sp3. Mutations in the 5' flank of the palindrome abolished the Sp1/Sp3 interaction and reduced promoter activity by approx. 45%. In addition, a conserved GC-box centered at -25 was found to play a critical role in basal promoter activity and also interacted with Sp1 and Sp3. An internal deletion in the GC-box severely reduced the promoter activity. Sp1/Sp3 binding to these elements was established using gel-mobility shift assays, confirmed by chromatin immunoprecipitation and co-transfections in Drosophila SL2 cells. Furthermore, we identified two positive regulatory elements in the DNA region corresponding to the 5'-UTR (5'-untranslated region). The results in the present study indicate that Sp1 and Sp3 are required for constitutive NHE2 expression and that the positive regulatory elements of the 5'-UTR may co-operate with the 5'-flanking region to achieve the optimal promoter activity.
Collapse
Affiliation(s)
- Ian Pearse
- *Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, 840 South Wood Street, Chicago, IL 60612, U.S.A
| | - Ying X. Zhu
- *Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, 840 South Wood Street, Chicago, IL 60612, U.S.A
| | - Eleanor J. Murray
- *Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, 840 South Wood Street, Chicago, IL 60612, U.S.A
| | - Pradeep K. Dudeja
- *Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, 840 South Wood Street, Chicago, IL 60612, U.S.A
- †Jesse Brown VA Medical Center, 820 South Damen Avenue, Chicago, IL 60612, U.S.A
| | - Krishnamurthy Ramaswamy
- *Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, 840 South Wood Street, Chicago, IL 60612, U.S.A
- †Jesse Brown VA Medical Center, 820 South Damen Avenue, Chicago, IL 60612, U.S.A
| | - Jaleh Malakooti
- *Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, 840 South Wood Street, Chicago, IL 60612, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
48
|
He CQ, Ding NZ, Fan W. YY1 repressing peroxisome proliferator-activated receptor delta promoter. Mol Cell Biochem 2007; 308:247-52. [PMID: 17973082 DOI: 10.1007/s11010-007-9632-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 10/18/2007] [Indexed: 01/24/2023]
Abstract
Peroxisome proliferator-activated receptors delta (PPARdelta) is a nuclear hormone receptor belonging to the steroid receptor superfamily and is molecular targets for drugs to treat hypertriglyceridemia and type 2 diabetes. Yin Yang 1 (YY1) is a transcription factor that can repress or activate transcription of the genes with which it interacts. In this report, we show that YY1 specifically interacts with the PPARdelta promoter. Overexpression of YY1 in Hela and NIH 3T3 cells repressed the activity of the PPARdelta promoter, while the PPARdelta promoter activity was enhanced when YY1 was knocked down by siRNA YY1. We also show that YY1 in nuclear extracts was able to bind the PPARdelta promoter directly. These results suggest that YY1 might be a negative regulator of PPARdelta gene expression through its direct interaction with the PPARdelta promoter.
Collapse
Affiliation(s)
- Cheng-Qiang He
- College of Life Science, Shandong Normal University, Shandong Province 250014, China
| | | | | |
Collapse
|
49
|
Tone Y, Kojima Y, Furuuchi K, Brady M, Yashiro-Ohtani Y, Tykocinski ML, Tone M. OX40 gene expression is up-regulated by chromatin remodeling in its promoter region containing Sp1/Sp3, YY1, and NF-kappa B binding sites. THE JOURNAL OF IMMUNOLOGY 2007; 179:1760-7. [PMID: 17641042 DOI: 10.4049/jimmunol.179.3.1760] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OX40 is a member of the TNFR superfamily (CD134; TNFRSF4) that is expressed on activated T cells and regulates T cell-mediated immune responses. In this study, we have examined the regulation of OX40 gene expression in T cells. Low-level OX40 mRNA expression was detected in both resting T cells and the nonactivated EL4 T cell line, and was up-regulated in both types of T cells upon activation with anti-CD3 Ab. We have shown in this study that basal OX40 promoter activity is regulated by constitutively expressed Sp1/Sp3 and YY1 transcription factors. NF-kappaB (p50 and p65) also binds to the OX40 promoter region, but the level of direct enhancement of the OX40 promoter activity by this transcription factor is not sufficient to account for the observed up-regulation of OX40 mRNA expression associated with activation. We have detected by chromatin immunoprecipitation that histone H4 molecules in the OX40 promoter region are highly acetylated by activation and NF-kappaB binds to the OX40 promoter in vivo. These findings suggest that OX40 gene expression is regulated by chromatin remodeling, and that NF-kappaB might be involved in initiation of chromatin remodeling in the OX40 promoter region in activated T cells. CD4(+)CD25(+) regulatory T (Treg) cells also express OX40 at high levels, and signaling through this receptor can neutralize suppressive activity of this Treg cell. In CD4(+)CD25(+) Treg cells, histone H4 molecules in the OX40 promoter region are also highly acetylated, even in the absence of in vitro activation.
Collapse
Affiliation(s)
- Yukiko Tone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Santiago FS, Ishii H, Shafi S, Khurana R, Kanellakis P, Bhindi R, Ramirez MJ, Bobik A, Martin JF, Chesterman CN, Zachary IC, Khachigian LM. Yin Yang-1 inhibits vascular smooth muscle cell growth and intimal thickening by repressing p21WAF1/Cip1 transcription and p21WAF1/Cip1-Cdk4-cyclin D1 assembly. Circ Res 2007; 101:146-55. [PMID: 17556661 DOI: 10.1161/circresaha.106.145235] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vascular injury initiates a cascade of phenotype-altering molecular events. Transcription factor function in this process, particularly that of negative regulators, is poorly understood. We demonstrate here that the forced expression of the injury-inducible GLI-Krüppel zinc finger protein Yin Yang-1 (YY1) inhibits neointima formation in human, rabbit and rat blood vessels. YY1 inhibits p21(WAF1/Cip1) transcription, prevents assembly of a p21(WAF1/Cip1)-cdk4-cyclin D1 complex, and blocks downstream pRb(Ser249/Thr252) phosphorylation and expression of PCNA and TK-1. Conversely, suppression of endogenous YY1 elevates levels of p21(WAF1/Cip1), PCNA, pRb(Ser249/Thr252) and TK-1, and increases intimal thickening. YY1 binds Sp1 and prevents its occupancy of a distinct element in the p21(WAF1/Cip1) promoter without YY1 itself binding the promoter. Additionally, YY1 induces ubiquitination and proteasome-dependent degradation of p53, decreasing p53 immunoreactivity in the artery wall. These findings define a new role for YY1 as both an inducer of p53 instability in smooth muscle cells, and an indirect repressor of p21(WAF1/Cip1) transcription, p21(WAF1/Cip1)-cdk4-cyclin D1 assembly and intimal thickening.
Collapse
Affiliation(s)
- Fernando S Santiago
- Centre for Vascular Research, Department of Pathology, University of New South Wales, and Department of Haematology, The Prince of Wales Hospital, Sydney, NSW, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|