1
|
Wang L, Li R, Li K, Qu Z, Zhou R, Lu G, Li P, Li G. Genome-wide identification of the grapevine β-1,3-glucanase gene (VviBG) family and expression analysis under different stresses. BMC PLANT BIOLOGY 2024; 24:911. [PMID: 39350008 PMCID: PMC11443686 DOI: 10.1186/s12870-024-05597-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND The β-1,3-glucanase gene is widely involved in plant development and stress defense. However, an identification and expression analysis of the grape β-1,3-glucanase gene (VviBG) family had not been conducted prior to this study. RESULTS Here, 42 VviBGs were identified in grapevine, all of which contain a GH-17 domain and a variable C-terminal domain. VviBGs were divided into three clades α, β and γ, and six subgroups A-F, with relatively conserved motifs/domains and intron/exon structures within each subgroup. The VviBG gene family contained four tandem repeat gene clusters. There were intra-species synteny relationships between two pairs of VviBGs and inter-species synteny relationships between 20 pairs of VviBGs and AtBGs. The VviBG promoter contained many cis-acting elements related to stress and hormone responses. Tissue-specific analysis showed that VviBGs exhibited distinct spatial and temporal expression patterns. Transcriptome analysis indicated that many VviBGs were induced by wounds, UV, downy mildew, cold, salt and drought, especially eight VviBGs in subgroup A of the γ clade. RT-qPCR analysis showed that these eight VviBGs were induced under abiotic stress (except for VviBG41 under cold stress), and most of them were induced at higher expression levels by PEG6000 and NaCl than under cold treatment. CONCLUSIONS The chromosome localization, synteny and phylogenetic analysis of the VviBG members were first conducted. The cis-acting elements, transcriptome data and RT-qPCR analysis showed that VviBG genes play a crucial role in grape growth and stress (hormone, biotic and abiotic) responses. Our study laid a foundation for understanding their functions in grape resistance to different stresses.
Collapse
Affiliation(s)
- Ling Wang
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China.
- Henan Province Engineering Research Centers of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China.
| | - Ruilong Li
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Henan Province Engineering Research Centers of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Kaiwei Li
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Henan Province Engineering Research Centers of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Ziyang Qu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruijin Zhou
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Henan Province Engineering Research Centers of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Guilong Lu
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Henan Province Engineering Research Centers of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Peng Li
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Henan Province Engineering Research Centers of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Guirong Li
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China.
- Henan Province Engineering Research Centers of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China.
| |
Collapse
|
2
|
Miao X, Ma J, Miu X, Zhang H, Geng Y, Hu W, Deng Y, Li N. Integrated transcriptome and proteome analysis the molecular mechanisms of nutritional quality in 'Chenggu-32' and 'Koroneiki' olives fruits (Olea europaea L.). JOURNAL OF PLANT PHYSIOLOGY 2023; 288:154072. [PMID: 37634413 DOI: 10.1016/j.jplph.2023.154072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023]
Abstract
In this work, integrated transcriptome and proteome to offer a new insight of the molecular mechanisms linked to the nutritional quality of Koroneiki and Chenggu-32 by RNA sequencing and 4D Label-free quantitative proteomics technology. Physical and chemical properties studies showed that the main nutrient content of Koroneiki was significantly higher than Chenggu-32, proved the quality of Koroneiki was better. Compared to Koroneiki, there were differences in expression levels of 10,115 genes and 723 proteins in Chenggu-32, mainly related to enzymes in lipid metabolism and lipid biosynthesis. Through the joint analysis of transcriptome and proteome, it was found that the differentially expressed genes and differentially expressed proteins on the association were mainly enriched in starch and sucrose metabolism and α-linolenic acid metabolism pathways, indicated that the nutritional quality of olive fruits was related to the two metabolic pathways. The results of this study identified key genes and proteins related to nutrient metabolism and accumulation in olive fruits, provided transcriptomic and proteomic information for the molecular mechanism of nutritional changes in olive fruit, it helps to develop higher quality olive trees.
Collapse
Affiliation(s)
- Xin Miao
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Junyi Ma
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China.
| | - Xin Miu
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Hongjie Zhang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Yinxin Geng
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Wei Hu
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Yu Deng
- Institute of Olive, Longnan Academy of Economic Forestry, Wudu, 746000, China
| | - Na Li
- Wudu Olive Industry Development Office of Longnan, Wudu, 746000, China.
| |
Collapse
|
3
|
Gao W, She F, Sun Y, Han B, Wang X, Xu G. Transcriptome Analysis Reveals the Genes Related to Water-Melon Fruit Expansion under Low-Light Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:935. [PMID: 36840282 PMCID: PMC9958833 DOI: 10.3390/plants12040935] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Watermelon is one of people's favorite fruits globally. Fruit size is one of the important characteristics of fruit quality. Low light can seriously affect fruit development, but there have been no reports concerning molecular mechanism analysis in watermelons involved in fruit expansion under low-light stress. To understand this mechanism, the comparative transcriptomic file of watermelon fruit flesh at four different developmental stages under different light levels was studied. The results showed that the fruit size and content of soluble sugar and amino acids at low-light stress significantly decreased compared to the control. In addition, 0-15 DAP was the rapid expansion period of watermelon fruit affected by shading. In total, 8837 differentially expressed genes (DEGs) were identified and 55 DEGs were found to play a role in the four different early fruit development stages. We also found that genes related to oxidation-reduction, secondary metabolites, carbohydrate and amino acid metabolism and transcriptional regulation played a key role in watermelon fruit expansion under low-light stress. This study provides a foundation to investigate the functions of low-light stress-responsive genes and the molecular mechanism of the effects of low-light stress on watermelon fruit expansion.
Collapse
Affiliation(s)
- Wenrui Gao
- Institute of Vegetable Crop, Jiangsu Province Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Fuchun She
- Institute of Vegetable Crop, Jiangsu Province Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Yanjun Sun
- Institute of Vegetable Crop, Jiangsu Province Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Bing Han
- Institute of Vegetable Crop, Jiangsu Province Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Xiansheng Wang
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Nanjing Station for DUS Testing Center of New Varieties of Plants of MARA, Nanjing 210014, China
| | - Gang Xu
- Institute of Vegetable Crop, Jiangsu Province Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| |
Collapse
|
4
|
Hegedűs G, Kutasy B, Kiniczky M, Decsi K, Juhász Á, Nagy Á, Pallos JP, Virág E. Liposomal Formulation of Botanical Extracts may Enhance Yield Triggering PR Genes and Phenylpropanoid Pathway in Barley ( Hordeum vulgare). PLANTS (BASEL, SWITZERLAND) 2022; 11:2969. [PMID: 36365426 PMCID: PMC9658110 DOI: 10.3390/plants11212969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
This work aimed to study the plant conditioning effect and mode of action of a plant-based biostimulant used in organic farming. This new generation plant biostimulant, named ELICE16INDURES®, is rich in plant bio-active ingredients containing eleven supercritical botanical extracts encapsulated in nano-scale liposomes. The dose-response (10 to 240 g ha-1) relationship was tested in a field population of autumn barley (Hordeum vulgare) test crop, and underlying molecular mechanisms were studied. Applying nanotechnology, cell-identical nanoparticles may help the better uptake and delivery of active ingredients increasing resilience, vitality, and crop yield. The amount of harvested crops showed a significant increase of 27.5% and 39.9% interconnected to higher normalized difference vegetation index (NDVI) of 20% and 25% after the treatment of low and high dosages (20 and 240 g ha-1), respectively. Illumina NextSeq 550 sequencing, gene expression profiling, and KEGG-pathway analysis of outstanding dosages indicated the upregulation of pathogenesis-related (PR) and other genes-associated with induced resistance-which showed dose dependency as well.
Collapse
Affiliation(s)
- Géza Hegedűs
- Research Institute for Medicinal Plants and Herbs Ltd., Luppaszigeti Str. 4, 2011 Budakalász, Hungary
- EduCoMat Ltd., Iskola Str. 12A, 8360 Keszthely, Hungary
- Department of Information Technology and its Applications, Faculty of Information Technology, University of Pannonia, Gasparich Márk u. 18/A., 8900 Zalaegerszeg, Hungary
- Institute of Metagenomics, University of Debrecen, Egyetem Square 1, 4032 Debrecen, Hungary
| | - Barbara Kutasy
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences Georgikon, 7 Festetics Str., 8360 Keszthely, Hungary
| | - Márta Kiniczky
- Research Institute for Medicinal Plants and Herbs Ltd., Luppaszigeti Str. 4, 2011 Budakalász, Hungary
| | - Kincső Decsi
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences Georgikon, 7 Festetics Str., 8360 Keszthely, Hungary
| | - Ákos Juhász
- Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Páter Károly Str. 1, 2100 Gödöllő, Hungary
| | - Ágnes Nagy
- Research Institute for Medicinal Plants and Herbs Ltd., Luppaszigeti Str. 4, 2011 Budakalász, Hungary
| | - József Péter Pallos
- Research Institute for Medicinal Plants and Herbs Ltd., Luppaszigeti Str. 4, 2011 Budakalász, Hungary
| | - Eszter Virág
- Research Institute for Medicinal Plants and Herbs Ltd., Luppaszigeti Str. 4, 2011 Budakalász, Hungary
- EduCoMat Ltd., Iskola Str. 12A, 8360 Keszthely, Hungary
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Egyetem Square 1, 4032 Debrecen, Hungary
| |
Collapse
|
5
|
Wang X, Zhang X, Fan D, Gong J, Li S, Gao Y, Liu A, Liu L, Deng X, Shi Y, Shang H, Zhang Y, Yuan Y. AAQSP increases mapping resolution of stable QTLs through applying NGS-BSA in multiple genetic backgrounds. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3223-3235. [PMID: 35904626 DOI: 10.1007/s00122-022-04181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
In this study, we present AAQSP as an extension of existing NGS-BSA applications for identifying stable QTLs at high resolution. GhPAP16 and GhIQD14 fine mapped on chromosome D09 of upland cotton are identified as important candidate genes for lint percentage (LP). Bulked segregant analysis combined with next generation sequencing (NGS-BSA) allows rapid identification of genome sequence differences responsible for phenotypic variation. The NGS-BSA approach applied to crops mainly depends on comparing two bulked DNA samples of individuals from an F2 population. Since some F2 individuals still maintain high heterozygosity, heterosis will exert complications in pursuing NGS-BSA in such populations. In addition, the genetic background influences the stability of gene expression in crops, so some QTLs mapped in one segregating population may not be widely applied in crop improvement. The AAQSP (Association Analysis of QTL-seq on Semi-homologous Populations) reported in our study combines the optimized scheme of constructing BSA bulks with NGS-BSA analysis in two (or more) different parental genetic backgrounds for isolating the stable QTLs. With application of AAQSP strategy and construction of a high-density linkage map, we have successfully identified a QTL significantly related to lint percentage (LP) in cultivated upland cotton, followed by map-based cloning to dissect two candidate genes, GhPAP16 and GhIQD14. This study demonstrated that AAQSP can efficiently identify stable QTLs for complex traits of interest, and thus accelerate the genetic improvement of upland cotton and other crop plants.
Collapse
Affiliation(s)
- Xiaoyu Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
- Institute of Millet Research, Shanxi Agricultural University, Changzhi, China
| | - Xiaowei Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Daoran Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Juwu Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shaoqi Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yujie Gao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Aiying Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Linjie Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaoying Deng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuanming Zhang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China.
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.
| |
Collapse
|
6
|
Guo DJ, Li DP, Singh RK, Singh P, Sharma A, Verma KK, Qin Y, Khan Q, Lu Z, Malviya MK, Song XP, Xing YX, Li YR. Differential Protein Expression Analysis of Two Sugarcane Varieties in Response to Diazotrophic Plant Growth-Promoting Endophyte Enterobacter roggenkampii ED5. FRONTIERS IN PLANT SCIENCE 2021; 12:727741. [PMID: 34887881 PMCID: PMC8649694 DOI: 10.3389/fpls.2021.727741] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/18/2021] [Indexed: 05/24/2023]
Abstract
Plant endophytic bacteria have many vital roles in plant growth promotion (PGP), such as nitrogen (N) fixation and resistance to biotic and abiotic stresses. In this study, the seedlings of sugarcane varieties B8 (requires a low concentration of nitrogen for growth) and GT11 (requires a high concentration of nitrogen for growth) were inoculated with endophytic diazotroph Enterobacter roggenkampii ED5, which exhibits multiple PGP traits, isolated from sugarcane roots. The results showed that the inoculation with E. roggenkampii ED5 promoted the growth of plant significantly in both sugarcane varieties. 15N detection at 60 days post-inoculation proved that the inoculation with strain ED5 increased the total nitrogen concentration in the leaf and root than control in both sugarcane varieties, which was higher in B8. Biochemical parameters and phytohormones in leaf were analyzed at 30 and 60 days after the inoculation. The results showed that the inoculation with E. roggenkampii ED5 improved the activities of superoxide dismutase (SOD), catalase (CAT), NADH-glutamate dehydrogenase (NADH-GDH), glutamine synthetase (GS), and endo-β-1,4-glucanase, and the contents of proline and indole acetic acid (IAA) in leaf, and it was generally more significant in B8 than in GT11. Tandem Mass Tags (TMT) labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to perform comparative proteomic analysis in the sugarcane leaves at 30 days after inoculation with strain ED5. A total of 27,508 proteins were detected, and 378 differentially expressed proteins (DEPs) were found in the treated sugarcane variety B8 (BE) as compared to control (BC), of which 244 were upregulated and 134 were downregulated. In contrast, a total of 177 DEPs were identified in the treated sugarcane variety GT11 (GE) as compared to control (GC), of which 103 were upregulated and 74 were downregulated. The DEPs were associated with nitrogen metabolism, photosynthesis, starch, sucrose metabolism, response to oxidative stress, hydrolase activity, oxidative phosphorylation, glutathione metabolism, phenylpropanoid metabolic process, and response to stresses in Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database. To the best of our knowledge, this is the first proteomic approach to investigate the molecular basis of the interaction between N-fixing endophytic strain E. roggenkampii ED5 and sugarcane.
Collapse
Affiliation(s)
- Dao-Jun Guo
- College of Agriculture, Guangxi University, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Dong-Ping Li
- Microbiology Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Rajesh Kumar Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Pratiksha Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Anjney Sharma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Ying Qin
- College of Agriculture, Guangxi University, Nanning, China
| | - Qaisar Khan
- College of Agriculture, Guangxi University, Nanning, China
| | - Zhen Lu
- College of Agriculture, Guangxi University, Nanning, China
| | - Mukesh K. Malviya
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Xiu-Peng Song
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yong-Xiu Xing
- College of Agriculture, Guangxi University, Nanning, China
| | - Yang-Rui Li
- College of Agriculture, Guangxi University, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| |
Collapse
|
7
|
Wei C, Zhao W, Fan R, Meng Y, Yang Y, Wang X, Foroud NA, Liu D, Yu X. Genome-wide survey of the F-box/Kelch (FBK) members and molecular identification of a novel FBK gene TaAFR in wheat. PLoS One 2021; 16:e0250479. [PMID: 34293801 PMCID: PMC8298115 DOI: 10.1371/journal.pone.0250479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/01/2021] [Indexed: 11/28/2022] Open
Abstract
F-box proteins play critical roles in plant responses to biotic/abiotic stresses. In the present study, a total of 68 wheat F-box/Kelch (TaFBK) genes, unevenly distributed across 21 chromosomes and encoding 74 proteins, were identified in EnsemblPlants. Protein sequences were compared with those of Arabidopsis and three cereal species by phylogenetic and domain analyses, where the wheat sequences were resolved into 6 clades. In silico analysis of a digital PCR dataset revealed that TaFBKs were expressed at multiple developmental stages and tissues, and in response to drought and/or heat stresses. The TaFBK19 gene, a homolog of the Attenuated Far-Red Response (AFR) genes in other plant species, and hence named TaAFR, was selected for further analysis. Reverse-transcription quantitative real-time PCR (RT-qPCR) was carried out to determine tissue-specific, hormone and stress (abiotic/biotic) responsive expression patterns. Of interest, TaAFR was expressed most abundantly in the leaves, and its expression in response to leaf rust variants suggests a potential role in compatible vs incompatible rust responses. The protein was predicted to localize in cytosol, but it was shown experimentally to localize in both the cytosol and the nucleus of tobacco. A series of protein interaction studies, starting with a yeast-2-hybrid (Y2H) library screen (wheat leaf infected with incompatible leaf rust pathogens), led to the identification of three TaAFR interacting proteins. Skp1/ASK1-like protein (Skp1) was found to interact with the F-box domain of TaAFR, while ADP-ribosylation factor 2-like isoform X1 (ARL2) and phenylalanine ammonia-lyase (PAL) were shown to interact with its Kelch domain. The data presented herein provides a solid foundation from which the function and metabolic network of TaAFR and other wheat FBKs can be further explored.
Collapse
Affiliation(s)
- Chunru Wei
- College of Life Sciences/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Weiquan Zhao
- Technological Innovation Centre for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, Hebei, China
| | - Runqiao Fan
- College of Life Sciences/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Yuyu Meng
- College of Life Sciences/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Yiming Yang
- College of Life Sciences/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiaodong Wang
- Technological Innovation Centre for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, Hebei, China
| | - Nora A. Foroud
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Daqun Liu
- Technological Innovation Centre for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiumei Yu
- College of Life Sciences/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, Hebei, China
- Technological Innovation Centre for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, Hebei, China
- * E-mail:
| |
Collapse
|
8
|
Chen M, Bruisson S, Bapaume L, Darbon G, Glauser G, Schorderet M, Reinhardt D. VAPYRIN attenuates defence by repressing PR gene induction and localized lignin accumulation during arbuscular mycorrhizal symbiosis of Petunia hybrida. THE NEW PHYTOLOGIST 2021; 229:3481-3496. [PMID: 33231304 PMCID: PMC7986166 DOI: 10.1111/nph.17109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/16/2020] [Indexed: 05/08/2023]
Abstract
The intimate association of host and fungus in arbuscular mycorrhizal (AM) symbiosis can potentially trigger induction of host defence mechanisms against the fungus, implying that successful symbiosis requires suppression of defence. We addressed this phenomenon by using AM-defective vapyrin (vpy) mutants in Petunia hybrida, including a new allele (vpy-3) with a transposon insertion close to the ATG start codon. We explore whether abortion of fungal infection in vpy mutants is associated with the induction of defence markers, such as cell wall alterations, accumulation of reactive oxygen species (ROS), defence hormones and induction of pathogenesis-related (PR) genes. We show that vpy mutants exhibit a strong resistance against intracellular colonization, which is associated with the generation of cell wall appositions (papillae) with lignin impregnation at fungal entry sites, while no accumulation of defence hormones, ROS or callose was observed. Systematic analysis of PR gene expression revealed that several PR genes are induced in mycorrhizal roots of the wild-type, and even more in vpy plants. Some PR genes are induced exclusively in vpy mutants. Our results suggest that VPY is involved in avoiding or suppressing the induction of a cellular defence syndrome that involves localized lignin deposition and PR gene induction.
Collapse
Affiliation(s)
- Min Chen
- Department of BiologyUniversity of FribourgFribourgCH‐1700Switzerland
| | | | - Laure Bapaume
- Department of BiologyUniversity of FribourgFribourgCH‐1700Switzerland
| | - Geoffrey Darbon
- Department of BiologyUniversity of FribourgFribourgCH‐1700Switzerland
| | - Gaëtan Glauser
- Neuchâtel Platform of Analytical ChemistryUniversity of NeuchâtelNeuchâtel2000Switzerland
| | | | - Didier Reinhardt
- Department of BiologyUniversity of FribourgFribourgCH‐1700Switzerland
| |
Collapse
|
9
|
Szajko K, Ciekot J, Wasilewicz-Flis I, Marczewski W, Sołtys-Kalina D. Transcriptional and proteomic insights into phytotoxic activity of interspecific potato hybrids with low glycoalkaloid contents. BMC PLANT BIOLOGY 2021; 21:60. [PMID: 33482727 PMCID: PMC7825178 DOI: 10.1186/s12870-021-02825-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Glycoalkaloids are bioactive compounds that contribute to the defence response of plants against herbivore attack and during pathogenesis. Solanaceous plants, including cultivated and wild potato species, are sources of steroidal glycoalkaloids. Solanum plants differ in the content and composition of glycoalkaloids in organs. In wild and cultivated potato species, more than 50 steroidal glycoalkaloids were recognized. Steroidal glycoalkaloids are recognized as potential allelopathic/phytotoxic compounds that may modify the growth of target plants. There are limited data on the impact of the composition of glycoalkaloids on their phytotoxic potential. RESULTS The presence of α-solasonine and α-solamargine in potato leaf extracts corresponded to the high phytotoxic potential of the extracts. Among the differentially expressed genes between potato leaf bulks with high and low phytotoxic potential, the most upregulated transcripts in sample of high phytotoxic potential were anthocyanin 5-aromatic acyltransferase-like and subtilisin-like protease SBT1.7-transcript variant X2. The most downregulated genes were carbonic anhydrase chloroplastic-like and miraculin-like. An analysis of differentially expressed proteins revealed that the most abundant group of proteins were those related to stress and defence, including glucan endo-1,3-beta-glucosidase acidic isoform, whose expression level was 47.96× higher in potato leaf extract with low phytotoxic. CONCLUSIONS The phytotoxic potential of potato leaf extract possessing low glycoalkaloid content is determined by the specific composition of these compounds in leaf extract, where α-solasonine and α-solamargine may play significant roles. Differentially expressed gene and protein profiles did not correspond to the glycoalkaloid biosynthesis pathway in the expression of phytotoxic potential. We cannot exclude the possibility that the phytotoxic potential is influenced by other compounds that act antagonistically or may diminish the glycoalkaloids effect.
Collapse
Affiliation(s)
- Katarzyna Szajko
- Plant Breeding and Acclimatization Institute, Młochów Research Centre, Platanowa 19 st, 05-831, Młochów, Poland
| | - Jarosław Ciekot
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Laboratory of Biomedical Chemistry, Rudolfa Weigla 12 st, 53-114, Wrocław, Poland
| | - Iwona Wasilewicz-Flis
- Plant Breeding and Acclimatization Institute, Młochów Research Centre, Platanowa 19 st, 05-831, Młochów, Poland
| | - Waldemar Marczewski
- Plant Breeding and Acclimatization Institute, Młochów Research Centre, Platanowa 19 st, 05-831, Młochów, Poland
| | - Dorota Sołtys-Kalina
- Plant Breeding and Acclimatization Institute, Młochów Research Centre, Platanowa 19 st, 05-831, Młochów, Poland.
| |
Collapse
|
10
|
Gétaz M, Puławska J, Smits TH, Pothier JF. Host-Pathogen Interactions between Xanthomonas fragariae and Its Host Fragaria × ananassa Investigated with a Dual RNA-Seq Analysis. Microorganisms 2020; 8:E1253. [PMID: 32824783 PMCID: PMC7465820 DOI: 10.3390/microorganisms8081253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 12/31/2022] Open
Abstract
Strawberry is economically important and widely grown, but susceptible to a large variety of phytopathogenic organisms. Among them, Xanthomonas fragariae is a quarantine bacterial pathogen threatening strawberry productions by causing angular leaf spots. Using whole transcriptome sequencing, the gene expression of both plant and bacteria in planta was analyzed at two time points, 12 and 29 days post inoculation, in order to compare the pathogen and host response between the stages of early visible and of well-developed symptoms. Among 28,588 known genes in strawberry and 4046 known genes in X. fragariae expressed at both time points, a total of 361 plant and 144 bacterial genes were significantly differentially expressed, respectively. The identified higher expressed genes in the plants were pathogen-associated molecular pattern receptors and pathogenesis-related thaumatin encoding genes, whereas the more expressed early genes were related to chloroplast metabolism as well as photosynthesis related coding genes. Most X. fragariae genes involved in host interaction, recognition, and pathogenesis were lower expressed at late-phase infection. This study gives a first insight into the interaction of X. fragariae with its host. The strawberry plant changed gene expression in order to consistently adapt its metabolism with the progression of infection.
Collapse
Affiliation(s)
- Michael Gétaz
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), CH-8820 Wädenswil, Switzerland; (M.G.); (T.H.S.)
| | - Joanna Puławska
- Department of Phytopathology, Research Institute of Horticulture, 96-100 Skierniewice, Poland;
| | - Theo H.M. Smits
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), CH-8820 Wädenswil, Switzerland; (M.G.); (T.H.S.)
| | - Joël F. Pothier
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), CH-8820 Wädenswil, Switzerland; (M.G.); (T.H.S.)
| |
Collapse
|
11
|
An M, Zhou T, Guo Y, Zhao X, Wu Y. Molecular Regulation of Host Defense Responses Mediated by Biological Anti-TMV Agent Ningnanmycin. Viruses 2019; 11:E815. [PMID: 31484426 PMCID: PMC6784071 DOI: 10.3390/v11090815] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/30/2019] [Accepted: 08/31/2019] [Indexed: 12/28/2022] Open
Abstract
Ningnanmycin (NNM) belongs to microbial pesticides that display comprehensive antiviral activity against plant viruses. NNM treatment has been shown to efficiently delay or suppress the disease symptoms caused by tobacco mosaic virus (TMV) infection in local-inoculated or systemic-uninoculated tobacco leaves, respectively. However, the underlying molecular mechanism of NNM-mediated antiviral activity remains to be further elucidated. In this study, 414 differentially expressed genes (DEGs), including 383 which were up-regulated and 31 down-regulated, caused by NNM treatment in TMV-infected BY-2 protoplasts, were discovered by RNA-seq. In addition, KEGG analysis indicated significant enrichment of DEGs in the plant-pathogen interaction and MAPK signaling pathway. The up-regulated expression of crucial DEGs, including defense-responsive genes, such as the receptor-like kinase FLS2, RLK1, and the mitogen-activated protein kinase kinase kinase MAPKKK, calcium signaling genes, such as the calcium-binding protein CML19, as well as phytohormone responsive genes, such as the WRKY transcription factors WRKY40 and WRKY70, were confirmed by RT-qPCR. These findings provided valuable insights into the antiviral mechanisms of NNM, which indicated that the agent induces tobacco systemic resistance against TMV via activating multiple plant defense signaling pathways.
Collapse
Affiliation(s)
- Mengnan An
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Tao Zhou
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Yi Guo
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Xiuxiang Zhao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China.
| | - Yuanhua Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China.
| |
Collapse
|
12
|
Gao S, Zheng Z, Powell J, Habib A, Stiller J, Zhou M, Liu C. Validation and delineation of a locus conferring Fusarium crown rot resistance on 1HL in barley by analysing transcriptomes from multiple pairs of near isogenic lines. BMC Genomics 2019; 20:650. [PMID: 31412765 PMCID: PMC6694680 DOI: 10.1186/s12864-019-6011-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 07/31/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Fusarium crown rot (FCR) is a chronic and severe disease in cereal production in semi-arid regions worldwide. A putative quantitative trait locus conferring FCR resistance, Qcrs.cpi-1H, had previously been mapped on the long arm of chromosome 1H in barley. RESULTS In this study, five pairs of near-isogenic lines (NILs) targeting the 1HL locus were developed. Analysing the NILs found that the resistant allele at Qcrs.cpi-1H significantly reduced FCR severity. Transcriptomic analysis was then conducted against three of the NIL pairs, which placed the Qcrs.cpi-1H locus in an interval spanning about 11 Mbp. A total of 56 expressed genes bearing single nucleotide polymorphisms (SNPs) were detected in this interval. Five of them contain non-synonymous SNPs. These results would facilitate detailed mapping as well as cloning gene(s) underlying the resistance locus. CONCLUSION NILs developed in this study and the transcriptomic sequences obtained from them did not only allow the validation of the resistance locus Qcrs.cpi-1H and the identification of candidate genes underlying its resistance, they also allowed the delineation of the resistance locus and the development of SNPs markers which formed a solid base for detailed mapping as well as cloning gene(s) underlying the locus.
Collapse
Affiliation(s)
- Shang Gao
- CSIRO Agriculture and Food, St Lucia, Queensland 4067 Australia
- School of Land and Food and Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Zhi Zheng
- CSIRO Agriculture and Food, St Lucia, Queensland 4067 Australia
| | - Jonathan Powell
- CSIRO Agriculture and Food, St Lucia, Queensland 4067 Australia
| | - Ahsan Habib
- CSIRO Agriculture and Food, St Lucia, Queensland 4067 Australia
- School of Land and Food and Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, 9208 Bangladesh
| | - Jiri Stiller
- CSIRO Agriculture and Food, St Lucia, Queensland 4067 Australia
| | - Meixue Zhou
- School of Land and Food and Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Chunji Liu
- CSIRO Agriculture and Food, St Lucia, Queensland 4067 Australia
| |
Collapse
|
13
|
Cobo N, Wanjugi H, Lagudah E, Dubcovsky J. A High-Resolution Map of Wheat QYr.ucw-1BL, an Adult Plant Stripe Rust Resistance Locus in the Same Chromosomal Region as Yr29. THE PLANT GENOME 2019; 12:180055. [PMID: 30951084 DOI: 10.3835/plantgenome2018.08.0055] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The appearance of highly virulent and more aggressive races of f. sp. () during the last two decades has led to stripe rust epidemics worldwide and to the rapid erosion of effective resistance genes. In this study, we mapped an adult-plant resistance locus from the Argentinean wheat ( L.) cultivar Klein Chajá, which is effective against these new races. By using wheat exome capture data and a large population of 2480 segregating plants (4960 gametes), we mapped within a 0.24-cM region [332 kb in International Wheat Genome Sequencing Consortium (IWGSC) RefSeq version 1.0] on chromosome arm 1BL. This region overlaps with current maps of the adult-plant resistance gene , which has remained effective for more than 60 yr. An allelism test failed to find recombination between and and yielded similar resistance phenotypes for the two loci. These results, together with similar haplotypes in the candidate region, suggested that and might represent the same gene. However, we cannot rule out the possibility of tightly linked but different genes because most of the 13 genes in the candidate region are annotated with functions associated with disease resistance. To evaluate their potential as candidate genes, we characterized their polymorphisms between resistant and susceptible haplotypes. Finally, we used these polymorphisms to develop high-throughput markers to accelerate the deployment of these resistance loci in wheat breeding programs.
Collapse
|
14
|
Ganusova EE, Burch-Smith TM. Review: Plant-pathogen interactions through the plasmodesma prism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:70-80. [PMID: 30709495 DOI: 10.1016/j.plantsci.2018.05.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/18/2018] [Accepted: 05/23/2018] [Indexed: 06/09/2023]
Abstract
Plasmodesmata (PD) allow membrane and cytoplasmic continuity between plant cells, and they are essential for intercellular communication and signaling in addition to metabolite partitioning. Plant pathogens have evolved a variety of mechanisms to subvert PD to facilitate their infection of plant hosts. PD are implicated not only in local spread around infection sites but also in the systemic spread of pathogens and pathogen-derived molecules. In turn, plants have developed strategies to limit pathogen spread via PD, and there is increasing evidence that PD may also be active players in plant defense responses. The last few years have seen important advances in understanding the roles of PD in plant-pathogen infection. Nonetheless, several critical areas remain to be addressed. Here we highlight some of these, focusing on the need to consider the effects of pathogen-PD interaction on the trafficking of endogenous molecules, and the involvement of chloroplasts in regulating PD during pathogen defense. By their very nature, PD are recalcitrant to most currently used investigative techniques, therefore answering these questions will require creative imaging and novel quantification approaches.
Collapse
Affiliation(s)
- Elena E Ganusova
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, United States
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, United States.
| |
Collapse
|
15
|
Regulation of Long Noncoding RNAs Responsive to Phytoplasma Infection in Paulownia tomentosa. Int J Genomics 2018; 2018:3174352. [PMID: 29675420 PMCID: PMC5841072 DOI: 10.1155/2018/3174352] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/06/2017] [Accepted: 11/27/2017] [Indexed: 11/18/2022] Open
Abstract
Paulownia witches' broom caused by phytoplasma infection affects the production of Paulownia trees worldwide. Emerging evidence showed that long noncoding RNAs (lncRNA) play a protagonist role in regulating the expression of genes in plants. So far, the identification of lncRNAs has been limited to a few model plant species, and their roles in mediating responses to Paulownia tomentosa that free of phytoplasma infection are yet to be characterized. Here, whole-genome identification of lncRNAs, based on strand-specific RNA sequencing, from four Paulownia tomentosa samples, was performed and identified 3689 lncRNAs. These lncRNAs showed low conservation among plant species and some of them were miRNA precursors. Further analysis revealed that the 112 identified lncRNAs were related to phytoplasma infection. We predicted the target genes of these phytoplasma-responsive lncRNAs, and our analysis showed that 51 of the predicted target genes were alternatively spliced. Moreover, we found the expression of the lncRNAs plays vital roles in regulating the genes involved in the reactive oxygen species induced hypersensitive response and effector-triggered immunity in phytoplasma-infected Paulownia. This study indicated that diverse sets of lncRNAs were responsive to Paulownia witches' broom, and the results will provide a starting point to understand the functions and regulatory mechanisms of Paulownia lncRNAs in the future.
Collapse
|
16
|
Klink VP, Sharma K, Pant SR, McNeece B, Niraula P, Lawrence GW. Components of the SNARE-containing regulon are co-regulated in root cells undergoing defense. PLANT SIGNALING & BEHAVIOR 2017; 12:e1274481. [PMID: 28010187 PMCID: PMC5351740 DOI: 10.1080/15592324.2016.1274481] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 05/23/2023]
Abstract
The term regulon has been coined in the genetic model plant Arabidopsis thaliana, denoting a structural and physiological defense apparatus defined genetically through the identification of the penetration (pen) mutants. The regulon is composed partially by the soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) syntaxin PEN1. PEN1 has homology to a Saccharomyces cerevisae gene that regulates a Secretion (Sec) protein, Suppressor of Sec 1 (Sso1p). The regulon is also composed of the β-glucosidase (PEN2) and an ATP binding cassette (ABC) transporter (PEN3). While important in inhibiting pathogen infection, limited observations have been made regarding the transcriptional regulation of regulon genes until now. Experiments made using the model agricultural Glycine max (soybean) have identified co-regulated gene expression of regulon components. The results explain the observation of hundreds of genes expressed specifically in the root cells undergoing the natural process of defense. Data regarding additional G. max genes functioning within the context of the regulon are presented here, including Sec 14, Sec 4 and Sec 23. Other examined G. max homologs of membrane fusion genes include an endosomal bromo domain-containing protein1 (Bro1), syntaxin6 (SYP6), SYP131, SYP71, SYP8, Bet1, coatomer epsilon (ϵ-COP), a coatomer zeta (ζ-COP) paralog and an ER to Golgi component (ERGIC) protein. Furthermore, the effectiveness of biochemical pathways that would function within the context of the regulon ave been examined, including xyloglucan xylosyltransferase (XXT), reticuline oxidase (RO) and galactinol synthase (GS). The experiments have unveiled the importance of the regulon during defense in the root and show how the deposition of callose relates to the process.
Collapse
Affiliation(s)
- Vincent P. Klink
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Keshav Sharma
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Shankar R. Pant
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Brant McNeece
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Prakash Niraula
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Gary W. Lawrence
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, USA
| |
Collapse
|
17
|
Liu B, Gómez LD, Hua C, Sun L, Ali I, Huang L, Yu C, Simister R, Steele-King C, Gan Y, McQueen-Mason SJ. Linkage Mapping of Stem Saccharification Digestibility in Rice. PLoS One 2016; 11:e0159117. [PMID: 27415441 PMCID: PMC4944936 DOI: 10.1371/journal.pone.0159117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/27/2016] [Indexed: 12/19/2022] Open
Abstract
Rice is the staple food of almost half of the world population, and in excess 90% of it is grown and consumed in Asia, but the disposal of rice straw poses a problem for farmers, who often burn it in the fields, causing health and environmental problems. However, with increased focus on the development of sustainable biofuel production, rice straw has been recognized as a potential feedstock for non-food derived biofuel production. Currently, the commercial realization of rice as a biofuel feedstock is constrained by the high cost of industrial saccharification processes needed to release sugar for fermentation. This study is focused on the alteration of lignin content, and cell wall chemotypes and structures, and their effects on the saccharification potential of rice lignocellulosic biomass. A recombinant inbred lines (RILs) population derived from a cross between the lowland rice variety IR1552 and the upland rice variety Azucena with 271 molecular markers for quantitative trait SNP (QTS) analyses was used. After association analysis of 271 markers for saccharification potential, 1 locus and 4 pairs of epistatic loci were found to contribute to the enzymatic digestibility phenotype, and an inverse relationship between reducing sugar and lignin content in these recombinant inbred lines was identified. As a result of QTS analyses, several cell-wall associated candidate genes are proposed that may be useful for marker-assisted breeding and may aid breeders to produce potential high saccharification rice varieties.
Collapse
Affiliation(s)
- Bohan Liu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Leonardo D. Gómez
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Cangmei Hua
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Lili Sun
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Imran Ali
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Linli Huang
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Chunyan Yu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Rachael Simister
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Clare Steele-King
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Yinbo Gan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Simon J. McQueen-Mason
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
18
|
Zhu C, Ai L, Wang L, Yin P, Liu C, Li S, Zeng H. De novo Transcriptome Analysis of Rhizoctonia solani AG1 IA Strain Early Invasion in Zoysia japonica Root. Front Microbiol 2016; 7:708. [PMID: 27242730 PMCID: PMC4870862 DOI: 10.3389/fmicb.2016.00708] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/28/2016] [Indexed: 12/28/2022] Open
Abstract
Zoysia japonica brown spot was caused by necrotrophic fungus Rhizoctonia solani invasion, which led to severe financial loss in city lawn and golf ground maintenance. However, little was known about the molecular mechanism of R. solani pathogenicity in Z. japonica. In this study we examined early stage interaction between R. solani AG1 IA strain and Z. japonica cultivar “Zenith” root by cell ultra-structure analysis, pathogenesis-related proteins assay and transcriptome analysis to explore molecular clues for AG1 IA strain pathogenicity in Z. japonica. No obvious cell structure damage was found in infected roots and most pathogenesis-related protein activities showedg a downward trend especially in 36 h post inoculation, which exhibits AG1 IA strain stealthy invasion characteristic. According to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database classification, most DEGs in infected “Zenith” roots dynamically changed especially in three aspects, signal transduction, gene translation, and protein synthesis. Total 3422 unigenes of “Zenith” root were predicted into 14 kinds of resistance (R) gene class. Potential fungal resistance related unigenes of “Zenith” root were involved in ligin biosynthesis, phytoalexin synthesis, oxidative burst, wax biosynthesis, while two down-regulated unigenes encoding leucine-rich repeat receptor protein kinase and subtilisin-like protease might be important for host-derived signal perception to AG1 IA strain invasion. According to Pathogen Host Interaction (PHI) database annotation, 1508 unigenes of AG1 IA strain were predicted and classified into 37 known pathogen species, in addition, unigenes encoding virulence, signaling, host stress tolerance, and potential effector were also predicted. This research uncovered transcriptional profiling during the early phase interaction between R. solani AG1 IA strain and Z. japonica, and will greatly help identify key pathogenicity of AG1 IA strain.
Collapse
Affiliation(s)
- Chen Zhu
- Biochemistry and Molecular Biology Department, College of Biological Sciences and Technology, Beijing Forestry University Beijing, China
| | - Lin Ai
- Ecology Department, College of Forestry, Beijing Forestry University Beijing, China
| | - Li Wang
- Silviculture Forestry Department, College of Forestry, Beijing Forestry University Beijing, China
| | - Pingping Yin
- Turfgrass Management Department, College of Forestry, Beijing Forestry University Beijing, China
| | - Chenglan Liu
- Turfgrass Management Department, College of Forestry, Beijing Forestry University Beijing, China
| | - Shanshan Li
- Turfgrass Management Department, College of Forestry, Beijing Forestry University Beijing, China
| | - Huiming Zeng
- Turfgrass Management Department, College of Forestry, Beijing Forestry University Beijing, China
| |
Collapse
|
19
|
Zhu XX, Li QY, Shen CC, Duan ZB, Yu DY, Niu JS, Ni YJ, Jiang YM. Transcriptome Analysis for Abnormal Spike Development of the Wheat Mutant dms. PLoS One 2016; 11:e0149287. [PMID: 26982202 PMCID: PMC4794226 DOI: 10.1371/journal.pone.0149287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 12/26/2015] [Indexed: 12/31/2022] Open
Abstract
Background Wheat (Triticum aestivum L.) spike development is the foundation for grain yield. We obtained a novel wheat mutant, dms, characterized as dwarf, multi-pistil and sterility. Although the genetic changes are not clear, the heredity of traits suggests that a recessive gene locus controls the two traits of multi-pistil and sterility in self-pollinating populations of the medium plants (M), such that the dwarf genotype (D) and tall genotype (T) in the progeny of the mutant are ideal lines for studies regarding wheat spike development. The objective of this study was to explore the molecular basis for spike abnormalities of dwarf genotype. Results Four unigene libraries were assembled by sequencing the mRNAs of the super-bulked differentiating spikes and stem tips of the D and T plants. Using integrative analysis, we identified 419 genes highly expressed in spikes, including nine typical homeotic genes of the MADS-box family and the genes TaAP2, TaFL and TaDL. We also identified 143 genes that were significantly different between young spikes of T and D, and 26 genes that were putatively involved in spike differentiation. The result showed that the expression levels of TaAP1-2, TaAP2, and other genes involved in the majority of biological processes such as transcription, translation, cell division, photosynthesis, carbohydrate transport and metabolism, and energy production and conversion were significantly lower in D than in T. Conclusions We identified a set of genes related to wheat floral organ differentiation, including typical homeotic genes. Our results showed that the major causal factors resulting in the spike abnormalities of dms were the lower expression homeotic genes, hormonal imbalance, repressed biological processes, and deficiency of construction materials and energy. We performed a series of studies on the homeotic genes, however the other three causal factors for spike abnormal phenotype of dms need further study.
Collapse
Affiliation(s)
- Xin-Xin Zhu
- National Centre of Engineering and Technological Research for Wheat, Henan Agricultural University / Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Zhengzhou, Henan, China
| | - Qiao-Yun Li
- National Centre of Engineering and Technological Research for Wheat, Henan Agricultural University / Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Zhengzhou, Henan, China
| | - Chun-Cai Shen
- National Centre of Engineering and Technological Research for Wheat, Henan Agricultural University / Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Zhengzhou, Henan, China
| | - Zong-Biao Duan
- National Centre of Engineering and Technological Research for Wheat, Henan Agricultural University / Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Zhengzhou, Henan, China
| | - Dong-Yan Yu
- National Centre of Engineering and Technological Research for Wheat, Henan Agricultural University / Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Zhengzhou, Henan, China
| | - Ji-Shan Niu
- National Centre of Engineering and Technological Research for Wheat, Henan Agricultural University / Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Zhengzhou, Henan, China
- * E-mail:
| | - Yong-Jing Ni
- National Centre of Engineering and Technological Research for Wheat, Henan Agricultural University / Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Zhengzhou, Henan, China
- Shangqiu Academy of Agricultural and Forestry Sciences, Shangqiu, Henan, China
| | - Yu-Mei Jiang
- National Centre of Engineering and Technological Research for Wheat, Henan Agricultural University / Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Zhengzhou, Henan, China
| |
Collapse
|
20
|
Thirugnanasambantham K, Saravanan S, Karikalan K, Bharanidharan R, Lalitha P, Ilango S, HairulIslam VI. Identification of evolutionarily conserved Momordica charantia microRNAs using computational approach and its utility in phylogeny analysis. Comput Biol Chem 2015; 58:25-39. [DOI: 10.1016/j.compbiolchem.2015.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/04/2015] [Accepted: 04/24/2015] [Indexed: 11/25/2022]
|
21
|
Zuluaga AP, Solé M, Lu H, Góngora-Castillo E, Vaillancourt B, Coll N, Buell CR, Valls M. Transcriptome responses to Ralstonia solanacearum infection in the roots of the wild potato Solanum commersonii. BMC Genomics 2015; 16:246. [PMID: 25880642 PMCID: PMC4391584 DOI: 10.1186/s12864-015-1460-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 03/09/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Solanum commersonii is a wild potato species that exhibits high tolerance to both biotic and abiotic stresses and has been used as a source of genes for introgression into cultivated potato. Among the interesting features of S. commersonii is resistance to the bacterial wilt caused by Ralstonia solanacearum, one of the most devastating bacterial diseases of crops. RESULTS In this study, we used deep sequencing of S. commersonii RNA (RNA-seq) to analyze the below-ground plant transcriptional responses to R. solanacearum. While a majority of S. commersonii RNA-seq reads could be aligned to the Solanum tuberosum Group Phureja DM reference genome sequence, we identified 2,978 S. commersonii novel transcripts through assembly of unaligned S. commersonii RNA-seq reads. We also used RNA-seq to study gene expression in pathogen-challenged roots of S. commersonii accessions resistant (F118) and susceptible (F97) to the pathogen. Expression profiles obtained from read mapping to the S. tuberosum reference genome and the S. commersonii novel transcripts revealed a differential response to the pathogen in the two accessions, with 221 (F118) and 644 (F97) differentially expressed genes including S. commersonii novel transcripts in the resistant and susceptible genotypes. Interestingly, 22.6% of the F118 and 12.8% of the F97 differentially expressed genes had been previously identified as responsive to biotic stresses and half of those up-regulated in both accessions had been involved in plant pathogen responses. Finally, we compared two different methods to eliminate ribosomal RNA from the plant RNA samples in order to allow dual mapping of RNAseq reads to the host and pathogen genomes and provide insights on the advantages and limitations of each technique. CONCLUSIONS Our work catalogues the S. commersonii transcriptome and strengthens the notion that this species encodes specific genes that are differentially expressed to respond to bacterial wilt. In addition, a high proportion of S. commersonii-specific transcripts were altered by R. solanacearum only in F118 accession, while phythormone-related genes were highly induced in F97, suggesting a markedly different response to the pathogen in the two plant accessions studied.
Collapse
Affiliation(s)
- A Paola Zuluaga
- Genetics Department, Universitat de Barcelona and Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB) Edifici CRAG, Campus UAB, Bellaterra, 08193, Catalonia, Spain.
| | - Montserrat Solé
- Genetics Department, Universitat de Barcelona and Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB) Edifici CRAG, Campus UAB, Bellaterra, 08193, Catalonia, Spain.
| | - Haibin Lu
- Genetics Department, Universitat de Barcelona and Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB) Edifici CRAG, Campus UAB, Bellaterra, 08193, Catalonia, Spain.
| | - Elsa Góngora-Castillo
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
| | - Brieanne Vaillancourt
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
| | - Nuria Coll
- Genetics Department, Universitat de Barcelona and Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB) Edifici CRAG, Campus UAB, Bellaterra, 08193, Catalonia, Spain.
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
| | - Marc Valls
- Genetics Department, Universitat de Barcelona and Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB) Edifici CRAG, Campus UAB, Bellaterra, 08193, Catalonia, Spain.
| |
Collapse
|
22
|
De Storme N, Geelen D. Callose homeostasis at plasmodesmata: molecular regulators and developmental relevance. FRONTIERS IN PLANT SCIENCE 2014; 5:138. [PMID: 24795733 PMCID: PMC4001042 DOI: 10.3389/fpls.2014.00138] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 03/23/2014] [Indexed: 05/18/2023]
Abstract
Plasmodesmata are membrane-lined channels that are located in the plant cell wall and that physically interconnect the cytoplasm and the endoplasmic reticulum (ER) of adjacent cells. Operating as controllable gates, plasmodesmata regulate the symplastic trafficking of micro- and macromolecules, such as endogenous proteins [transcription factors (TFs)] and RNA-based signals (mRNA, siRNA, etc.), hence mediating direct cell-to-cell communication and long distance signaling. Besides this physiological role, plasmodesmata also form gateways through which viral genomes can pass, largely facilitating the pernicious spread of viral infections. Plasmodesmatal trafficking is either passive (e.g., diffusion) or active and responses both to developmental and environmental stimuli. In general, plasmodesmatal conductivity is regulated by the controlled build-up of callose at the plasmodesmatal neck, largely mediated by the antagonistic action of callose synthases (CalSs) and β-1,3-glucanases. Here, in this theory and hypothesis paper, we outline the importance of callose metabolism in PD SEL control, and highlight the main molecular factors involved. In addition, we also review other proteins that regulate symplastic PD transport, both in a developmental and stress-responsive framework, and discuss on their putative role in the modulation of PD callose turn-over. Finally, we hypothesize on the role of structural sterols in the regulation of (PD) callose deposition and outline putative mechanisms by which this regulation may occur.
Collapse
Affiliation(s)
| | - Danny Geelen
- *Correspondence: Danny Geelen, Laboratory for In Vitro Biology and Horticulture, Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, Coupure Links 653, 9000 Ghent, Belgium e-mail:
| |
Collapse
|
23
|
Wu J, Zhang Y, Zhang H, Huang H, Folta KM, Lu J. Whole genome wide expression profiles of Vitis amurensis grape responding to downy mildew by using Solexa sequencing technology. BMC PLANT BIOLOGY 2010; 10:234. [PMID: 21029438 PMCID: PMC3017854 DOI: 10.1186/1471-2229-10-234] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 10/28/2010] [Indexed: 05/19/2023]
Abstract
BACKGROUND Downy mildew (DM), caused by pathogen Plasmopara viticola (PV) is the single most damaging disease of grapes (Vitis L.) worldwide. However, the mechanisms of the disease development in grapes are poorly understood. A method for estimating gene expression levels using Solexa sequencing of Type I restriction-endonuclease-generated cDNA fragments was used for deep sequencing the transcriptomes resulting from PV infected leaves of Vitis amurensis Rupr. cv. Zuoshan-1. Our goal is to identify genes that are involved in resistance to grape DM disease. RESULTS Approximately 8.5 million (M) 21-nt cDNA tags were sequenced in the cDNA library derived from PV pathogen-infected leaves, and about 7.5 M were sequenced from the cDNA library constructed from the control leaves. When annotated, a total of 15,249 putative genes were identified from the Solexa sequencing tags for the infection (INF) library and 14,549 for the control (CON) library. Comparative analysis between these two cDNA libraries showed about 0.9% of the unique tags increased by at least five-fold, and about 0.6% of the unique tags decreased more than five-fold in infected leaves, while 98.5% of the unique tags showed less than five-fold difference between the two samples. The expression levels of 12 differentially expressed genes were confirmed by Real-time RT-PCR and the trends observed agreed well with the Solexa expression profiles, although the degree of change was lower in amplitude. After pathway enrichment analysis, a set of significantly enriched pathways were identified for the differentially expressed genes (DEGs), which associated with ribosome structure, photosynthesis, amino acid and sugar metabolism. CONCLUSIONS This study presented a series of candidate genes and pathways that may contribute to DM resistance in grapes, and illustrated that the Solexa-based tag-sequencing approach was a powerful tool for gene expression comparison between control and treated samples.
Collapse
Affiliation(s)
- Jiao Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Horticultural Sciences Department and the Graduate Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Yali Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Huiqin Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hong Huang
- School of Information, University of South Florida Tampa, FL, 33620, USA
| | - Kevin M Folta
- Horticultural Sciences Department and the Graduate Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Jiang Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Center for Viticulture and Small Fruit Research, Florida A&M University, Tallahassee, FL, 32317, USA
| |
Collapse
|
24
|
Minic Z. Physiological roles of plant glycoside hydrolases. PLANTA 2008; 227:723-40. [PMID: 18046575 DOI: 10.1007/s00425-007-0668-y] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 11/01/2007] [Indexed: 05/20/2023]
Abstract
The functions of plant glycoside hydrolases and transglycosidases have been studied using different biochemical and molecular genetic approaches. These enzymes are involved in the metabolism of various carbohydrates containing compounds present in the plant tissues. The structural and functional diversity of the carbohydrates implies a vast spectrum of enzymes involved in their metabolism. Complete genome sequence of Arabidopsis and rice has allowed the classification of glycoside hydrolases in different families based on amino acid sequence data. The genomes of these plants contain 29 families of glycoside hydrolases. This review summarizes the current research on plant glycoside hydrolases concerning their principal functional roles, which were attributed to different families. The majority of these plant glycoside hydrolases are involved in cell wall polysaccharide metabolism. Other functions include their participation in the biosynthesis and remodulation of glycans, mobilization of energy, defence, symbiosis, signalling, secondary plant metabolism and metabolism of glycolipids.
Collapse
Affiliation(s)
- Zoran Minic
- Department of Chemistry, University of Saskatchewan, 110 Science Place, S7N 5C9 Saskatoon, SK, Canada.
| |
Collapse
|
25
|
Agarwal S, Kapoor A, Lakshmi OS, Grover A. Production and phenotypic analysis of rice transgenics with altered levels of pyruvate decarboxylase and alcohol dehydrogenase proteins. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2007; 45:637-46. [PMID: 17761427 DOI: 10.1016/j.plaphy.2007.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 07/17/2007] [Indexed: 05/17/2023]
Abstract
Pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (Adh) enzymes are responsible for the operation of ethanolic fermentation pathway that appears to correlate to an extent with anoxia tolerance in plants. This study was undertaken with the objective of (a) analysing the rice pdc gene family and (b) altering the efficacy of the ethanolic fermentation process, through production of transgenic rice plants over- and under-expressing pyruvate decarboxylase (employing Ospdc1 gene from rice) as well as over-expressing alcohol dehydrogenase (employing Ghadh2 gene from cotton) proteins. Correlations noted in this study between the pattern of expression of the Pdc alpha-subunit and Ospdc2 transcript as well as between the Pdc beta-subunit and Ospdc1 transcript suggest the possibility that alpha-subunit is encoded by Ospdc2 and that beta-subunit is encoded by Ospdc1. The fact that levels of Pdc beta-subunit were particularly high in pUH-sPdc1 (plasmid construct designed for over-expression of Ospdc1) seedlings while levels of beta-subunit levels were negligible or lower in pUH-asPdc1 (plasmid construct designed for under-expression of Ospdc1) seedlings also support these observations. Transgenics raised for over-expression of Pdc and Adh and under-expression of Pdc were confirmed for the transgene presence and effects by PCR, Southern blotting, Northern blotting, Western blotting and isozyme assays. Pdc and Adh over-expressing rice transgenics at early seedling stage under unstressed control growth conditions showed slight, consistent advantage in root vigour as compared to that of wild-type seedlings.
Collapse
Affiliation(s)
- Sangeeta Agarwal
- Department of Plant Molecular Biology, University of Delhi, South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | | | | | | |
Collapse
|
26
|
Ferrari S, Galletti R, Vairo D, Cervone F, De Lorenzo G. Antisense expression of the Arabidopsis thaliana AtPGIP1 gene reduces polygalacturonase-inhibiting protein accumulation and enhances susceptibility to Botrytis cinerea. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:931-6. [PMID: 16903359 DOI: 10.1094/mpmi-19-0931] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Polygalacturonases (PGs) hydrolyze the homogalacturonan of plant cell-wall pectin and are important virulence factors of several phytopathogenic fungi. In response to abiotic and biotic stress, plants accumulate PG-inhibiting proteins (PGIPs) that reduce the activity of fungal PGs. In Arabidopsis thaliana, PGIPs with comparable activity against BcPG1, an important pathogenicity factor of the necrotrophic fungus Botrytis cinerea, are encoded by two genes, AtPGIP1 and AtPGIP2. Both genes are induced by fungal infection through different signaling pathways. We show here that transgenic Arabidopsis plants expressing an antisense AtPGIP1 gene have reduced AtPGIP1 inhibitory activity and are more susceptible to B. cinerea infection. These results indicate that PGIP contributes to basal resistance to this pathogen and strongly support the vision that this protein plays a role in Arabidopsis innate immunity.
Collapse
Affiliation(s)
- Simone Ferrari
- Università degli Studi "La Sapienza", Dipartimento di Biologia Vegetale, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | | | | | | | | |
Collapse
|
27
|
Leubner-Metzger G. beta-1,3-Glucanase gene expression in low-hydrated seeds as a mechanism for dormancy release during tobacco after-ripening. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 41:133-45. [PMID: 15610356 DOI: 10.1111/j.1365-313x.2004.02284.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
An air-dry developmental state with low-hydrated tissues is a characteristic of most plant seeds. Seed dormancy is an intrinsic block of germination and can be released during after-ripening, that is air-dry storage of mature seeds. Both seed-covering layers, testa and endosperm, cause the coat-imposed dormancy of tobacco (Nicotiana tabacum). After-ripening and over-expression of class I beta-1,3-glucanase (betaGlu I) confer maternal effects on testa rupture and dormancy release. Very little is known about the molecular mechanisms of after-ripening and whether gene expression is possible in low-hydrated seeds. Transient, low-level betaGlu I transcription and translation was detected during tobacco seed after-ripening. (1)H NMR 2D micro-imaging showed uneven distribution of proton mobility in seeds. betaGlu I gene expression is associated spatially with the inner testa and temporally with the promotion of testa rupture. Local elevation in moisture content seems to permit local, low-level betaGlu I gene transcription and translation in the maternal tissues of air-dry, low-hydrated seeds. De novo gene expression is therefore proposed to be a novel molecular mechanism for the release of coat-imposed dormancy during oilseed after-ripening.
Collapse
Affiliation(s)
- Gerhard Leubner-Metzger
- Institut für Biologie II (Botanik/Pflanzenphysiologie), Albert-Ludwigs-Universität Freiburg, Schänzlestr. 1, D-79104 Freiburg i. Br., Germany.
| |
Collapse
|
28
|
Wirdnam C, Motoyama A, Arn-Bouldoires E, van Eeden S, Iglesias A, Meins F. Altered expression of an ankyrin-repeat protein results in leaf abnormalities, necrotic lesions, and the elaboration of a systemic signal. PLANT MOLECULAR BIOLOGY 2004; 56:717-30. [PMID: 15803410 DOI: 10.1007/s11103-004-4679-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Accepted: 10/12/2004] [Indexed: 05/24/2023]
Abstract
The PR-like proteins, class I beta-1,3-glucanase (GLU I) and chitinase (CHN I), are induced as part of a stereotypic response that can provide protection against viral, bacterial, and fungal pathogens. We have identified two Nicotiana plumbaginifolia ankyrin-repeat proteins, designated Glucanohydrolase Binding Proteins (GBP) 1 and 2, that bind GLU I and CHN I both in vitro and when expressed in yeast cells. Sense as well as antisense transformants of tobacco carrying the GBP1 gene elaborated graft-transmissible acropetally moving signals that induced the downward curling of young leaves. This phenotype was associated with reduced starch, sucrose, and fructose accumulation; the formation of necrotic lesions; and, the induction of markers for the hypersensitive response. GBP1/2 are members of a conserved Plant- Specific Ankyrin- repeat (PANK) family that includes proteins implicated in carbohydrate allocation, reactive oxygen metabolism, hypersensitive cell death, rapid elicitor responses, virus pathogenesis, and auxin signaling. The similarity in phenotype of PANK transformants and transformants altered in carbohydrate metabolism leads us to propose that PANK family members are multifunctional proteins involved in linking plant defense responses and carbohydrate metabolism.
Collapse
Affiliation(s)
- Corina Wirdnam
- The Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
29
|
Bartsev AV, Deakin WJ, Boukli NM, McAlvin CB, Stacey G, Malnoë P, Broughton WJ, Staehelin C. NopL, an effector protein of Rhizobium sp. NGR234, thwarts activation of plant defense reactions. PLANT PHYSIOLOGY 2004; 134:871-9. [PMID: 14966249 PMCID: PMC344561 DOI: 10.1104/pp.103.031740] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2003] [Revised: 09/15/2003] [Accepted: 11/20/2003] [Indexed: 05/18/2023]
Abstract
Bacterial effector proteins delivered into eukaryotic cells via bacterial type III secretion systems are important virulence factors in plant-pathogen interactions. Type III secretion systems have been found in Rhizobium species that form symbiotic, nitrogen-fixing associations with legumes. One such bacterium, Rhizobium sp. NGR234, secretes a number of type III effectors, including nodulation outer protein L (NopL, formerly y4xL). Here, we show that expression of nopL in tobacco (Nicotiana tabacum) prevents full induction of pathogenesis-related (PR) defense proteins. Transgenic tobacco plants that express nopL and were infected with potato virus Y (necrotic strain 605) exhibited only very low levels of chitinase (class I) and beta-1,3-glucanase (classes I and III) proteins. Northern-blot analysis indicated that expression of nopL in plant cells suppresses transcription of PR genes. Treatment with ethylene counteracted the effect of NopL on chitinase (class I). Transgenic Lotus japonicus plants that expressed nopL exhibited delayed development and low chitinase levels. In vitro experiments showed that NopL is a substrate for plant protein kinases. Together, these data suggest that NopL, when delivered into the plant cell, modulates the activity of signal transduction pathways that culminate in activation of PR proteins.
Collapse
Affiliation(s)
- Alexander V Bartsev
- Laboratoire de Biologie Moléculaire des Plantes Supérieures, Sciences III, Université de Genève, 1211 Genève 4, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Bucciaglia PA, Zimmermann E, Smith AG. Functional analysis of a beta-1,3-glucanase gene (Tag1) with anther-specific RNA and protein accumulation using antisense RNA inhibition. JOURNAL OF PLANT PHYSIOLOGY 2003; 160:1367-73. [PMID: 14658390 DOI: 10.1078/0176-1617-01207] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A critical stage in pollen development is the dissolution of tetrads into free microspores. Tetrads are surrounded by a wall composed primarily of beta-1,3-glucan. At the completion of meiosis, tetrads are released into the anther locule after hydrolysis of the callose by a beta-1,3-glucanase complex. The cDNA corresponding to a beta-1,3-glucanase cloned from tobacco (Tag 1) represents a gene that is highly similar to other beta-1,3-glucanases and is expressed exclusively in anthers from the tetrad to free microspore stage of pollen development. Tag 1 protein was overexpressed in E. coli, accumulating in insoluble inclusion bodies. Polyclonal antibodies against Tag 1 recombinant protein identify a single 33 kD protein accumulating only in anthers at tetrad and free microspore stages where beta-1,3-glucanase activity is present. Transgenic plants expressing Tag 1 antisense RNA were produced. Although Tag 1 RNA and protein levels were greatly reduced, tetrad dissolution and pollen development were normal. These data indicate that under the conditions these tobacco plants were grown, wild type levels of Tag 1 protein are not necessary for male fertility.
Collapse
Affiliation(s)
- Paul A Bucciaglia
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Av., St. Paul, MN 55113, USA
| | | | | |
Collapse
|
31
|
Veronese P, Ruiz MT, Coca MA, Hernandez-Lopez A, Lee H, Ibeas JI, Damsz B, Pardo JM, Hasegawa PM, Bressan RA, Narasimhan ML. In defense against pathogens. Both plant sentinels and foot soldiers need to know the enemy. PLANT PHYSIOLOGY 2003; 131:1580-90. [PMID: 12692317 PMCID: PMC1540302 DOI: 10.1104/pp.102.013417] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- Paola Veronese
- Center for Plant Environmental Stress Physiology, 1165 Horticulture Building, Purdue University, West Lafayette, Indiana 47907-1165, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tsang EWT, Yang J, Chang Q, Nowak G, Kolenovsky A, McGregor DI, Keller WA. Chlorophyll reduction in the seed of Brassica napus with a glutamate 1-semialdehyde aminotransferase antisense gene. PLANT MOLECULAR BIOLOGY 2003; 51:191-201. [PMID: 12602878 DOI: 10.1023/a:1021102118801] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Chlorophyll reduction in the seed of Brassica can be achieved by downregulating its synthesis. To reduce chlorophyll synthesis, we have used a cDNA clone of Brassica napus encoding glutamate 1-semialdehyde aminotransferase (GSA-AT) to make an antisense construct for gene manipulation. Antisense glutamate 1-semialdehyde aminotransferase gene (Gsa) expression, directed by a Brassica napin promoter, was targeted specifically to the embryo of the developing seed. Transformants expressing antisense Gsa showed varying degrees of inhibition resulting in a range of chlorophyll reduction in the seeds. Seed growth and development were not affected by reduction of chlorophyll. Seeds from selfed transgenic plants germinated with high efficiency and growth of seedlings was vigorous. Seedlings from T2 transgenic lines segregated into three distinctive phenotypes: dark green, light green and yellow, indicating the dominant inheritance of Gsa antisense gene. These transgenic lines have provided useful materials for the development of a low chlorophyll seed variety of B. napus.
Collapse
Affiliation(s)
- Edward W T Tsang
- Plant Biotechnology Institute, National Research Council of Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9 Canada.
| | | | | | | | | | | | | |
Collapse
|
33
|
Bucher GL, Tarina C, Heinlein M, Di Serio F, Meins F, Iglesias VA. Local expression of enzymatically active class I beta-1, 3-glucanase enhances symptoms of TMV infection in tobacco. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 28:361-9. [PMID: 11722778 DOI: 10.1046/j.1365-313x.2001.01181.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Mutant tobacco plants deficient for class I beta-1,3-glucanase (GLU I) are decreased in their susceptibility to virus infection. This is correlated with delayed virus spread, a reduction in the size exclusion limit of plasmodesmata and increased cell-wall deposition of the beta-1,3-glucan callose. To further investigate a role of GLU I during cell-to-cell movement of virus infection, we inserted the GLU I coding sequence into TMV for overexpression in infected cells. Compared with the size of local lesions produced on plants infected with virus expressing either an enzymatically inactive GLU I or a frameshift mutant of the gene, the size of local lesions caused by infection with virus expressing active GLU I was consistently increased. Viruses expressing antisense GLU I constructs led to lesions of decreased size. Similar effects were obtained for virus spread using plants grown at 32 degrees C to block the hypersensitive response. Together, these results indicate that enzymatically active GLU I expressed in cells containing replicating virus can increase cell-to-cell movement of virus. This supports the view that GLU I induced locally during infection helps to promote cell-to-cell movement of virus by hydrolyzing callose. Moreover, our results provide the first direct evidence that a biological function of a plant beta-1,3-glucanase depends on its catalytic activity.
Collapse
Affiliation(s)
- G L Bucher
- Friedrich Miescher Institute, Novartis Research Foundation, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
34
|
Leubner-Metzger G, Meins F. Antisense-transformation reveals novel roles for class I beta-1,3-glucanase in tobacco seed after-ripening and photodormancy. JOURNAL OF EXPERIMENTAL BOTANY 2001; 52:1753-9. [PMID: 11520863 DOI: 10.1093/jexbot/52.362.1753] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Little is known about the molecular basis for seed dormancy, after-ripening, and radicle emergence through the covering layers during germination. In tobacco, endosperm rupture occurs after testa rupture and is the limiting step in seed germination. Class I beta-1,3-glucanase (betaGLU I), which is induced in the micropylar endosperm just prior to its penetration by the radicle, is believed to help weaken the endosperm wall. Evidence is presented here for a second site of betaGLU I action during after-ripening. Tobacco plants were transformed with antisense betaGLU I constructs with promoters thought to direct endosperm-specific expression. Unexpectedly, these transformants were unaffected in endosperm rupture and did not exhibit reduced betaGLU I expression during germination. Nevertheless, antisense betaGLU I transformation delayed the onset of testa rupture in light-imbibed, after-ripened seeds and inhibited the after-ripening-mediated release of photodormancy. It is proposed that betaGLU I expression in the dry seed contributes to the after-ripening-mediated release of seed dormancy.
Collapse
Affiliation(s)
- G Leubner-Metzger
- Friedrich Miescher-Institute, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
| | | |
Collapse
|
35
|
Wu CT, Leubner-Metzger G, Meins F, Bradford KJ. Class I beta-1,3-glucanase and chitinase are expressed in the micropylar endosperm of tomato seeds prior to radicle emergence. PLANT PHYSIOLOGY 2001; 126:1299-313. [PMID: 11457981 PMCID: PMC116487 DOI: 10.1104/pp.126.3.1299] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2000] [Revised: 01/23/2001] [Accepted: 03/14/2001] [Indexed: 05/19/2023]
Abstract
beta-1,3-Glucanase (EC 3.2.1.39) and chitinase (EC 3.2.1.14) mRNAs, proteins, and enzyme activities were expressed specifically in the micropylar tissues of imbibed tomato (Lycopersicon esculentum Mill.) seeds prior to radicle emergence. RNA hybridization and immunoblotting demonstrated that both enzymes were class I basic isoforms. beta-1,3-Glucanase was expressed exclusively in the endosperm cap tissue, whereas chitinase localized to both endosperm cap and radicle tip tissues. beta-1,3-Glucanase and chitinase appeared in the micropylar tissues of gibberellin-deficient gib-1 tomato seeds only when supplied with gibberellin. Accumulation of beta-1,3-glucanase mRNA, protein and enzyme activity was reduced by 100 microM abscisic acid, which delayed or prevented radicle emergence but not endosperm cap weakening. In contrast, expression of chitinase mRNA, protein, and enzyme activity was not affected by abscisic acid. Neither of these enzymes significantly hydrolyzed isolated tomato endosperm cap cell walls. Although both beta-1,3-glucanase and chitinase were expressed in tomato endosperm cap tissue prior to radicle emergence, we found no evidence that they were directly involved in cell wall modification or tissue weakening. Possible functions of these hydrolases during tomato seed germination are discussed.
Collapse
Affiliation(s)
- C T Wu
- Department of Vegetable Crops, One Shields Avenue, University of California, Davis, California 95616-8631, USA
| | | | | | | |
Collapse
|
36
|
Di Serio F, Schob H, Iglesias A, Tarina C, Bouldoires E, Meins F. Sense- and antisense-mediated gene silencing in tobacco is inhibited by the same viral suppressors and is associated with accumulation of small RNAs. Proc Natl Acad Sci U S A 2001; 98:6506-10. [PMID: 11353866 PMCID: PMC33498 DOI: 10.1073/pnas.111423098] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2000] [Indexed: 11/18/2022] Open
Abstract
Antisense-mediated gene silencing (ASGS) and posttranscriptional gene silencing (PTGS) with sense transgenes markedly reduce the steady-state mRNA levels of endogenous genes similar in transcribed sequence. RNase protection assays established that silencing in tobacco plants transformed with plant-defense-related class I sense and antisense chitinase (CHN) transgenes is at the posttranscriptional level. Infection of tobacco plants with cucumber mosaic virus strain FN and a necrotizing strain of potato virus Y, but not with potato virus X, effectively suppressed PTGS and ASGS of both the transgenes and homologous endogenes. This suggests that ASGS and PTGS share components associated with initiation and maintenance of the silent state. Small, ca. 25-nt RNAs (smRNA) of both polarities were associated with PTGS and ASGS in CHN transformants as reported for PTGS in other transgenic plants and for RNA interference in Drosophila. Similar results were obtained with an antisense class I beta-1,3-glucanase transformant showing that viral suppression and smRNAs are a more general feature of ASGS. Several current models hold that diverse signals lead to production of double-stranded RNAs, which are processed to smRNAs that then trigger PTGS. Our results provide direct evidence for mechanistic links between ASGS and PTGS and suggest that ASGS could join a common PTGS pathway at the double-stranded RNA step.
Collapse
Affiliation(s)
- F Di Serio
- Friedrich Miescher Institute, a branch of the Novartis Research Foundation, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
37
|
Carey AT, Smith DL, Harrison E, Bird CR, Gross KC, Seymour GB, Tucker GA. Down-regulation of a ripening-related beta-galactosidase gene (TBG1) in transgenic tomato fruits. JOURNAL OF EXPERIMENTAL BOTANY 2001; 52:663-668. [PMID: 11413202 DOI: 10.1093/jexbot/52.357.663] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Exo-galactanase/beta-galactosidase (EC 3.2.1.23) activity is thought to be responsible for the loss of galactosyl residues from the cell walls of ripening tomatoes. Transgenic tomato plants (Lycopersicon esculentum Mill cv. Ailsa Craig) with reduced exo-galactanase/beta-galactosidase mRNA were generated to test this hypothesis and to investigate the role of the enzyme in fruit softening. A previously identified tomato beta-galactosidase cDNA clone, TBG1, was used in the experiments. Heterologous expression of the clone in yeast demonstrated that TBG1 could release galactosyl residues from tomato cell wall galactans. Transgenic plants showed a reduction in TBG1 mRNA to 10% of normal levels in the ripening fruits. However, despite the reduction in message, total beta-galactosidase and exo-galactanase activities were unaffected. Furthermore, there was no apparent effect on levels of cell wall galactosyl residues when compared with the control. It was concluded that during the ripening of tomato fruits a family of beta-galactosidases capable of degrading cell wall galactans are active and down-regulation of TBG1 message to 10% was insufficient to alter the degree of galactan degradation.
Collapse
Affiliation(s)
- A T Carey
- Department of Plant Genetics and Biotechnology, Horticulture Research International, Wellesbourne, Warwick CV35 9EF, UK
| | | | | | | | | | | | | |
Collapse
|
38
|
Leubner-Metzger G, Meins F. Sense transformation reveals a novel role for class I beta-1, 3-glucanase in tobacco seed germination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 23:215-21. [PMID: 10929115 DOI: 10.1046/j.1365-313x.2000.00773.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
'Coat-enhanced' seed dormancy of many dicotyledonous species, including tobacco, is released during after-ripening. Rupture of the endosperm, which is the limiting step in tobacco seed germination, is preceded by induction of class I beta-1,3-glucanase (betaGLU I) in the micropylar endosperm where the radicle will penetrate. Treating after-ripened tobacco seeds with abscisic acid (ABA) delays endosperm rupture and inhibits betaGLU I induction. Sense transformation with a chimeric ABA-inducible betaGLU I transgene resulted in over-expression of betaGLU I in seeds and promoted endosperm rupture of mature seeds and of ABA-treated after-ripened seeds. Taken together, these results provide direct evidence that betaGLU I contributes to endosperm rupture. Over-expression of betaGLU I during germination also replaced the effects of after-ripening on endosperm rupture. This suggests that regulation of betaGLU I by ABA signalling pathways might have a key role in after-ripening.
Collapse
Affiliation(s)
- G Leubner-Metzger
- Friedrich Miescher-Institute, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
| | | |
Collapse
|
39
|
Iglesias VA, Meins F. Movement of plant viruses is delayed in a beta-1,3-glucanase-deficient mutant showing a reduced plasmodesmatal size exclusion limit and enhanced callose deposition. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 21:157-66. [PMID: 10743656 DOI: 10.1046/j.1365-313x.2000.00658.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Susceptibility to virus infection is decreased in a class I beta-1,3-glucanase (GLU I)-deficient mutant (TAG4.4) of tobacco generated by antisense transformation. TAG4.4 exhibited delayed intercellular trafficking via plasmodesmata of a tobamovirus (tobacco mosaic virus), of a potexvirus (recombinant potato virus X expressing GFP), and of the movement protein (MP) 3a of a cucumovirus (cucumber mosaic virus). Monitoring the cell-to-cell movement of dextrans and peptides by a novel biolistic method revealed that the plasmodesmatal size exclusion limit (SEL) of TAG4.4 was also reduced from 1.0 to 0.85 nm. Therefore, GLU I-deficiency has a broad effect on plasmodesmatal movement, which is not limited to a particular virus type. Deposition of callose, a substrate for beta-1,3-glucanases, was increased in TAG4.4 in response to 32 degrees C treatment, treatment with the fungal elicitor xylanase, and wounding, suggesting that GLU I has an important function in regulating callose metabolism. Callose turnover is thought to regulate plasmodesmatal SEL. We propose that GLU I induction in response to infection may help promote MP-driven virus spread by degrading callose.
Collapse
Affiliation(s)
- V A Iglesias
- Friedrich Miescher Institute, Basel, Switzerland
| | | |
Collapse
|
40
|
Leubner-Metzger G, Petruzzelli L, Waldvogel R, Vögeli-Lange R, Meins F. Ethylene-responsive element binding protein (EREBP) expression and the transcriptional regulation of class I beta-1,3-glucanase during tobacco seed germination. PLANT MOLECULAR BIOLOGY 1998; 38:785-95. [PMID: 9862496 DOI: 10.1023/a:1006040425383] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Class I beta-1,3-glucanase (betaGLU I) is transcriptionally induced in the micropylar endosperm just before its rupture prior to the germination (i.e. radicle emergence) of Nicotiana tabacum L. cv. 'Havana 425' seeds. Ethylene is involved in endosperm rupture and high-level betaGLU I expression; but, it does not affect the spatial and temporal pattern of betaGLU I expression. A promoter deletion analysis of the tobacco betaGLU I B gene suggests that (1) the distal - 1452 to - 1193 region, which contains the positively acting ethylene-responsive element (ERE), is required for high-level, ethylene-sensitive expression, (2) the regions - 1452 to - 1193 and -402 to 0 contribute to downregulation by abscisic acid (ABA), and (3) the region -402 to -211 is necessary and sufficient for low-level micropylar-endosperm-specific expression. Transcripts of the ERE-binding proteins (EREBPs) showed a novel pattern of expression during seed germination: light or gibberellin was required for EREBP-3 and EREBP-4 expression; EREBP-4 expression was constitutive and unaffected by ABA or ethylene; EREBP-3 showed transient induction just before endosperm rupture, which was earlier in ethylene-treated seeds and inhibited by ABA. No expression of EREBP- and EREBP-2 was detected. In contrast to betaGLU I, EREBP-3 and EREBP-4 were not expressed specifically in the micropylar endosperm. The results suggest that transcriptional regulation of betaGLU I could depend on: activation of ethylene signalling pathways acting via EREBP-3 with the ERE as the target, and ethylene-independent signalling pathways with targets in the proximal promoter region that are likely to determine spatial and temporal patterns of expression.
Collapse
|
41
|
Rezzonico E, Flury N, Meins F, Beffa R. Transcriptional down-regulation by abscisic acid of pathogenesis-related beta-1,3-glucanase genes in tobacco cell cultures. PLANT PHYSIOLOGY 1998; 117:585-92. [PMID: 9625711 PMCID: PMC34978 DOI: 10.1104/pp.117.2.585] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/1997] [Accepted: 03/08/1998] [Indexed: 05/18/2023]
Abstract
Class I isoforms of beta-1,3-glucanases (betaGLU I) and chitinases (CHN I) are antifungal, vacuolar proteins implicated in plant defense. Tobacco (Nicotiana tabacum L.) betaGLU I and CHN I usually exhibit tightly coordinated developmental, hormonal, and pathogenesis-related regulation. Both enzymes are induced in cultured cells and tissues of cultivar Havana 425 tobacco by ethylene and are down-regulated by combinations of the growth hormones auxin and cytokinin. We report a novel pattern of betaGLU I and CHN I regulation in cultivar Havana 425 tobacco pith-cell suspensions and cultured leaf explants. Abscisic acid (ABA) at a concentration of 10 micron markedly inhibited the induction of betaGLU I but not of CHN I. RNA-blot hybridization and immunoblot analysis showed that only class I isoforms of betaGLU and CHN are induced in cell culture and that ABA inhibits steady-state betaGLU I mRNA accumulation. Comparable inhibition of beta-glucuronidase expression by ABA was observed for cells transformed with a tobacco betaGLU I gene promoter/beta-glucuronidase reporter gene fusion. Taken together, the results strongly suggest that ABA down-regulates transcription of betaGLU I genes. This raises the possibility that some of the ABA effects on plant-defense responses might involve betaGLU I.
Collapse
Affiliation(s)
- E Rezzonico
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | | | |
Collapse
|
42
|
Robbins MP, Bavage AD, Strudwicke C, Morris P. Genetic manipulation of condensed tannins in higher plants. Ii. Analysis Of birdsfoot trefoil plants harboring antisense dihydroflavonol reductase constructs. PLANT PHYSIOLOGY 1998; 116:1133-44. [PMID: 9501146 PMCID: PMC35083 DOI: 10.1104/pp.116.3.1133] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We have produced and analyzed transgenic birdsfoot trefoil (Lotus corniculatus L.) plants harboring antisense dihydroflavonol reductase (AS-DFR) sequences. In initial experiments the effect of introducing three different antisense Antirrhinum majus L. DFR constructs into a single recipient genotype (S50) was assessed. There were no obvious effects on plant biomass, but levels of condensed tannins showed a statistical reduction in leaf, stem, and root tissues of some of the antisense lines. Transformation events were also found, which resulted in increased levels of condensed tannins. In subsequent experiments a detailed study of AS-DFR phenotypes was carried out in genotype S33 using pMAJ2 (an antisense construct comprising the 5' half of the A. majus cDNA). In this case, reduced tannin levels were found in leaf and stem tissues and in juvenile shoot tissues. Analysis of soluble flavonoids and isoflavonoids in tannin down-regulated shoot tissues indicated few obvious default products. When two S33 AS-DFR lines were outcrossed, there was an underrepresentation of transgene sequences in progeny plants and no examples of inheritance of an antisense phenotype were observed. To our knowledge, this is the first report of the genetic manipulation of condensed tannin biosynthesis in higher plants.
Collapse
Affiliation(s)
- MP Robbins
- Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, United Kingdom
| | | | | | | |
Collapse
|
43
|
Colliver SP, Morris P, Robbins MP. Differential modification of flavonoid and isoflavonoid biosynthesis with an antisense chalcone synthase construct in transgenic Lotus corniculatus. PLANT MOLECULAR BIOLOGY 1997; 35:509-522. [PMID: 9349273 DOI: 10.1023/a:1005821801228] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Three clonal genotypes of Lotus corniculatus L. (bird's foot trefoil) were transformed with an antisense chalcone synthase (CHS) gene construct made using a stress induced CHS17 cDNA from Phaseolus vulgaris under the control of the constitutive CaMV 35S promoter and Nos terminator via Agrobacterium rhizogenes. After initial screening, ten antisense and five control co-transformation events from each recipient clonal genotype were analysed. After elicitation with glutathione, the level of tannin accumulation was found to be increased in a number of antisense root cultures derived from the low (S33) and moderate (S50) tannin recipient genotypes. Six antisense and four control transformed lines from genotype S50 were selected for more detailed study. The antisense CHS construct was found to be integrated into the genome, with a copy number ranging from 1 to 5 and antisense orientation was confirmed by PCR. In transformed root cultures, increased CHS transcript levels were noted in a number of antisense lines. Biochemical analyses of glutathione-elicited-root cultures indicated a significant increase in tannin accumulation in antisense CHS lines and mean vestitol levels were reduced. These results show that the introduction of a heterologous antisense chalcone synthase construct into L. corniculatus resulted in an unpredicted molecular and biochemical phenotype. Such findings are discussed in relation to manipulation of this complex multigene family.
Collapse
Affiliation(s)
- S P Colliver
- Cell Manipulation Group, Institute of Grassland and Environmental Research, Aberystwyth, Dyfed, UK
| | | | | |
Collapse
|
44
|
Hincha DK, Meins F, Schmitt JM. [beta]-1,3-Glucanase Is Cryoprotective in Vitro and Is Accumulated in Leaves during Cold Acclimation. PLANT PHYSIOLOGY 1997; 114:1077-1083. [PMID: 12223761 PMCID: PMC158397 DOI: 10.1104/pp.114.3.1077] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We have used isolated spinach (Spinacea oleracea L.) thylakoid membranes to investigate the possible cryoprotective properties of class I [beta]-1,3-glucanase (1,3-[beta]-D-glucan 3-glucanohydrolase; EC 3.2.1.39) and chitinase. Class I [beta]-1,3-glucanase that was purified from tobacco (Nicotiana tabacum L.) protected thylakoids against freeze-thaw injury in our in vitro assays, whereas class I chitinase from tobacco had no effect under the same conditions. The [beta]-1,3-glucanase acted by reducing the influx of solutes into the membrane vesicles during freezing and thereby reduced osmotic stress and vesicle rupture during thawing. Western blots probed with antibodies directed against tobacco class I [beta]-1,3-glucanase showed that in spinach and cabbage (Brassica oleracea L.) leaves an isoform of 41 kD was accumulated during frost hardening under natural conditions.
Collapse
Affiliation(s)
- D K Hincha
- Institut fur Pflanzenphysiologie und Mikrobiologie, Freie Universitat, Konigin Luise-Strasse 12-16, D-14195 Berlin, Germany (D.K.H., J.M.S.)
| | | | | |
Collapse
|
45
|
Balandin T, Castresana C. Silencing of a beta-1,3-glucanase transgene is overcome during seed formation. PLANT MOLECULAR BIOLOGY 1997; 34:125-37. [PMID: 9177319 DOI: 10.1023/a:1005882106266] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Expression of a beta-1,3-glucanase transgene (gn1) driven by the CaMV 35S promoter is silenced in the T17 homozygous tobacco transgenic line. This silencing process is post-transcriptionally regulated and subject to developmental control. We have examined this phenomenon to investigate the developmental pathways involved in suppression and reactivation of gn1 expression as well as to identify the plant tissues where these processes occur. Analysis of beta-1,3-glucanase activity and gene expression have allowed us to determine that suppression of gn1 is a very efficient process reducing the steady-state gn1 mRNA level, simultaneously, in all leaves of the plant. Gene silencing occurs a few weeks after seed germination, and is maintained throughout vegetative growth and floral development. Expression of gn1 is restored in the maturing fruit some time after fertilization. In situ hybridization analyses show that expression of gn1 is restored within the developing seeds in tissues derived from meiotically divided cells. In contrast to the high level of expression found in seedlings obtained from germinated T17 homozygous seeds, the expression of gn1 is not reactivated in plantlets regenerated in vitro from leaf explants of suppressed T17 homozygous plants that is, in plant tissues obtained by mitotic division. Thus, reactivation of gn1 expression specifically occurs along the developmental programme controlling sexual reproduction and likely throughout epigenetic modifications affecting the state of gene expression during meiosis.
Collapse
Affiliation(s)
- T Balandin
- Centro Nacional de Biotecnología, C.S.I.C., Campus Universidad Autónoma, Cantoblanco, Madrid, Spain
| | | |
Collapse
|
46
|
Constitutive expression of an inducible β-1,3-glucanase in alfalfa reduces disease severity caused by the oomycete pathogenPhytophthora megasperma f. spmedicaginis, but does not reduce disease severity of chitin-containing fungi. Transgenic Res 1996. [DOI: 10.1007/bf01968941] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
47
|
Beffa RS, Hofer RM, Thomas M, Meins F. Decreased Susceptibility to Viral Disease of [beta]-1,3-Glucanase-Deficient Plants Generated by Antisense Transformation. THE PLANT CELL 1996; 8:1001-1011. [PMID: 12239410 PMCID: PMC161154 DOI: 10.1105/tpc.8.6.1001] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Antifungal class I [beta]-1,3-glucanases are believed to be part of the constitutive and induced defenses of plants against fungal infection. Unexpectedly, mutants deficient in these enzymes generated by antisense transformation showed markedly reduced lesion size, lesion number, and virus yield in the local-lesion response of Havana 425 tobacco to tobacco mosaic virus (TMV) and of Nicotiana sylvestris to tobacco necrosis virus. These mutants also showed decreased severity of mosaic disease symptoms, delayed spread of symptoms, and reduced yield of virus in the susceptible response of N. sylvestris to TMV. The symptoms of disease in the responses of both plant species were positively correlated with [beta]-1,3-glucanase content in a series of independent transformants. Taken together, these results provide direct evidence that [beta]-1,3-glucanases function in viral pathogenesis. Callose, a substrate for [beta]-1,3-glucanase, acts as a physical barrier to the spread of virus. Callose deposition in and surrounding TMV-induced lesions was increased in the [beta]-1,3-glucanase-deficient, local-lesion Havana 425 host, suggesting as a working hypothesis that decreased susceptibility to virus resulted from increased deposition of callose in response to infection. Our results suggest novel means, based on antisense transformation with host genes, for protecting plants against viral infection. These observations also raise the intriguing possibility that viruses can use a defense response of the host against fungal infection[mdash]production of [beta]-1,3-glucanases[mdash]to promote their own replication and spread.
Collapse
Affiliation(s)
- R. S. Beffa
- The Friedrich Miescher Institute, P.O. Box 2543, CH-4002 Basel, Switzerland
| | | | | | | |
Collapse
|
48
|
Beffa RS, Hofer RM, Thomas M, Meins F. Decreased Susceptibility to Viral Disease of [beta]-1,3-Glucanase-Deficient Plants Generated by Antisense Transformation. THE PLANT CELL 1996; 8:1001-1011. [PMID: 12239410 DOI: 10.2307/3870211] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Antifungal class I [beta]-1,3-glucanases are believed to be part of the constitutive and induced defenses of plants against fungal infection. Unexpectedly, mutants deficient in these enzymes generated by antisense transformation showed markedly reduced lesion size, lesion number, and virus yield in the local-lesion response of Havana 425 tobacco to tobacco mosaic virus (TMV) and of Nicotiana sylvestris to tobacco necrosis virus. These mutants also showed decreased severity of mosaic disease symptoms, delayed spread of symptoms, and reduced yield of virus in the susceptible response of N. sylvestris to TMV. The symptoms of disease in the responses of both plant species were positively correlated with [beta]-1,3-glucanase content in a series of independent transformants. Taken together, these results provide direct evidence that [beta]-1,3-glucanases function in viral pathogenesis. Callose, a substrate for [beta]-1,3-glucanase, acts as a physical barrier to the spread of virus. Callose deposition in and surrounding TMV-induced lesions was increased in the [beta]-1,3-glucanase-deficient, local-lesion Havana 425 host, suggesting as a working hypothesis that decreased susceptibility to virus resulted from increased deposition of callose in response to infection. Our results suggest novel means, based on antisense transformation with host genes, for protecting plants against viral infection. These observations also raise the intriguing possibility that viruses can use a defense response of the host against fungal infection[mdash]production of [beta]-1,3-glucanases[mdash]to promote their own replication and spread.
Collapse
Affiliation(s)
- R. S. Beffa
- The Friedrich Miescher Institute, P.O. Box 2543, CH-4002 Basel, Switzerland
| | | | | | | |
Collapse
|
49
|
DIXON RICHARDA, LAMB CHRISJ, PAIVA NANCYL, MASOUD SAMEER. Improvement of Natural Defense Responses. Ann N Y Acad Sci 1996. [DOI: 10.1111/j.1749-6632.1996.tb32499.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Beffa R, Szell M, Meuwly P, Pay A, Vögeli-Lange R, Métraux JP, Neuhaus G, Meins F, Nagy F. Cholera toxin elevates pathogen resistance and induces pathogenesis-related gene expression in tobacco. EMBO J 1995; 14:5753-61. [PMID: 8846769 PMCID: PMC394694 DOI: 10.1002/j.1460-2075.1995.tb00264.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In animals, plants and fungi, cholera toxin (CTX) can activate signalling pathways dependent on heterotrimeric GTP binding proteins (G-proteins). We transformed tobacco plants with a chimeric gene encoding the A1 subunit of CTX regulated by a light-inducible wheat Cab-1 promoter. Tissues of transgenic plants expressing CTX showed greatly reduced susceptibility to the bacterial pathogen Pseudomonas tabaci, accumulated high levels of salicylic acid (SA) and constitutively expressed pathogenesis-related (PR) protein genes encoding PR-1 and the class II isoforms of PR-2 and PR-3. In contrast, the class I isoforms of PR-2 and PR-3 known to be induced in tobacco by stress, by ethylene treatment and as part of the hypersensitive response to infection, were not induced and displayed normal regulation. In good agreement with these results, microinjection experiments demonstrated that CTX or GTP-gamma-S induced the expression of a PR1-GUS reporter gene but not that of a GLB-GUS reporter gene containing the promoter region of a gene encoding the class I isoform of PR-2. Microinjection and grafting experiments strongly suggest that CTX-sensitive G-proteins are important in inducing the expression of a subset of PR genes and that these G-proteins act locally rather than systemically upstream of SA induction.
Collapse
Affiliation(s)
- R Beffa
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|