1
|
Determinants of IGF-II influencing stability, receptor binding and activation. Sci Rep 2022; 12:4695. [PMID: 35304516 PMCID: PMC8933565 DOI: 10.1038/s41598-022-08467-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/28/2022] [Indexed: 11/28/2022] Open
Abstract
Insulin like growth factor II (IGF-II) is involved in metabolic and mitogenic signalling in mammalian cells and plays important roles in normal fetal development and postnatal growth. It is structurally similar to insulin and binds not only with high affinity to the type 1 insulin-like growth factor receptor (IGF-1R) but also to the insulin receptor isoform A (IR-A). As IGF-II expression is commonly upregulated in cancer and its signalling promotes cancer cell survival, an antagonist that blocks IGF-II action without perturbing insulin signalling would be invaluable. The high degree of structural homology between the IR and IGF-1R makes selectively targeting either receptor in the treatment of IGF-II-dependent cancers very challenging. However, there are sequence differences between insulin and IGF-II that convey receptor selectivity and influence binding affinity and signalling outcome. Insulin residue YB16 is a key residue involved in maintaining insulin stability, dimer formation and IR binding. Mutation of this residue to glutamine (as found in IGF-II) results in reduced binding affinity. In this study we sought to determine if the equivalent residue Q18 in IGF-II plays a similar role. We show through site-directed mutagenesis of Q18 that this residue contributes to IGF-II structural integrity, selectivity of IGF-1R/IR binding, but surprisingly does not influence IR-A signalling activation. These findings provide insights into a unique IGF-II residue that can influence receptor binding specificity whilst having little influence on signalling outcome.
Collapse
|
2
|
Dhayalan B, Glidden MD, Zaykov AN, Chen YS, Yang Y, Phillips NB, Ismail-Beigi F, Jarosinski MA, DiMarchi RD, Weiss MA. Peptide Model of the Mutant Proinsulin Syndrome. I. Design and Clinical Correlation. Front Endocrinol (Lausanne) 2022; 13:821069. [PMID: 35299972 PMCID: PMC8922534 DOI: 10.3389/fendo.2022.821069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/17/2022] [Indexed: 12/16/2022] Open
Abstract
The mutant proinsulin syndrome is a monogenic cause of diabetes mellitus due to toxic misfolding of insulin's biosynthetic precursor. Also designated mutant INS-gene induced diabetes of the young (MIDY), this syndrome defines molecular determinants of foldability in the endoplasmic reticulum (ER) of β-cells. Here, we describe a peptide model of a key proinsulin folding intermediate and variants containing representative clinical mutations; the latter perturb invariant core sites in native proinsulin (LeuB15→Pro, LeuA16→Pro, and PheB24→Ser). The studies exploited a 49-residue single-chain synthetic precursor (designated DesDi), previously shown to optimize in vitro efficiency of disulfide pairing. Parent and variant peptides contain a single disulfide bridge (cystine B19-A20) to provide a model of proinsulin's first oxidative folding intermediate. The peptides were characterized by circular dichroism and redox stability in relation to effects of the mutations on (a) in vitro foldability of the corresponding insulin analogs and (b) ER stress induced in cell culture on expression of the corresponding variant proinsulins. Striking correlations were observed between peptide biophysical properties, degree of ER stress and age of diabetes onset (neonatal or adolescent). Our findings suggest that age of onset reflects the extent to which nascent structure is destabilized in proinsulin's putative folding nucleus. We envisage that such peptide models will enable high-resolution structural studies of key folding determinants and in turn permit molecular dissection of phenotype-genotype relationships in this monogenic diabetes syndrome. Our companion study (next article in this issue) employs two-dimensional heteronuclear NMR spectroscopy to define site-specific perturbations in the variant peptides.
Collapse
Affiliation(s)
- Balamurugan Dhayalan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Michael D. Glidden
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | | | - Yen-Shan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yanwu Yang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Nelson B. Phillips
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Faramarz Ismail-Beigi
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Mark A. Jarosinski
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | | | - Michael A. Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
3
|
Yu LT, Hartgerink JD. Selective covalent capture of collagen triple helices with a minimal protecting group strategy. Chem Sci 2022; 13:2789-2796. [PMID: 35356674 PMCID: PMC8890135 DOI: 10.1039/d1sc06361h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/14/2022] [Indexed: 11/21/2022] Open
Abstract
A minimal protecting group strategy is developed to allow selective covalent capture of collagen-like triple helices. This allows stabilization of this critical fold while preserving charge–pair interactions critical for biological applications.
Collapse
Affiliation(s)
- Le Tracy Yu
- Rice University, Department of Chemistry and Department of Bioengineering, Houston, TX 77005, USA
| | - Jeffrey D. Hartgerink
- Rice University, Department of Chemistry and Department of Bioengineering, Houston, TX 77005, USA
| |
Collapse
|
4
|
Abstract
BACKGROUND Insulin's discovery 100 years ago and its ongoing use since that time to treat diabetes belies the molecular complexity of its structure and that of its receptor. Advances in single-particle cryo-electron microscopy have over the past three years revolutionized our understanding of the atomic detail of insulin-receptor interactions. SCOPE OF REVIEW This review describes the three-dimensional structure of insulin and its receptor and details on how they interact. This review also highlights the current gaps in our structural understanding of the system. MAJOR CONCLUSIONS A near-complete picture has been obtained of the hormone receptor interactions, providing new insights into the kinetics of the interactions and necessitating a revision of the extant two-site cross-linking model of hormone receptor engagement. How insulin initially engages the receptor and the receptor's traversed trajectory as it undergoes conformational changes associated with activation remain areas for future investigation.
Collapse
Affiliation(s)
- Michael C Lawrence
- WEHI, Parkville, Victoria, 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, 3050, Australia.
| |
Collapse
|
5
|
Liu M, Weiss MA, Arunagiri A, Yong J, Rege N, Sun J, Haataja L, Kaufman RJ, Arvan P. Biosynthesis, structure, and folding of the insulin precursor protein. Diabetes Obes Metab 2018; 20 Suppl 2:28-50. [PMID: 30230185 PMCID: PMC6463291 DOI: 10.1111/dom.13378] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/04/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023]
Abstract
Insulin synthesis in pancreatic β-cells is initiated as preproinsulin. Prevailing glucose concentrations, which oscillate pre- and postprandially, exert major dynamic variation in preproinsulin biosynthesis. Accompanying upregulated translation of the insulin precursor includes elements of the endoplasmic reticulum (ER) translocation apparatus linked to successful orientation of the signal peptide, translocation and signal peptide cleavage of preproinsulin-all of which are necessary to initiate the pathway of proper proinsulin folding. Evolutionary pressures on the primary structure of proinsulin itself have preserved the efficiency of folding ("foldability"), and remarkably, these evolutionary pressures are distinct from those protecting the ultimate biological activity of insulin. Proinsulin foldability is manifest in the ER, in which the local environment is designed to assist in the overall load of proinsulin folding and to favour its disulphide bond formation (while limiting misfolding), all of which is closely tuned to ER stress response pathways that have complex (beneficial, as well as potentially damaging) effects on pancreatic β-cells. Proinsulin misfolding may occur as a consequence of exuberant proinsulin biosynthetic load in the ER, proinsulin coding sequence mutations, or genetic predispositions that lead to an altered ER folding environment. Proinsulin misfolding is a phenotype that is very much linked to deficient insulin production and diabetes, as is seen in a variety of contexts: rodent models bearing proinsulin-misfolding mutants, human patients with Mutant INS-gene-induced Diabetes of Youth (MIDY), animal models and human patients bearing mutations in critical ER resident proteins, and, quite possibly, in more common variety type 2 diabetes.
Collapse
Affiliation(s)
- Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China 300052
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| | - Michael A. Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202 IN USA
- Department of Biochemistry, Case-Western Reserve University, Cleveland 44016 OH USA
| | - Anoop Arunagiri
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| | - Jing Yong
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92307 USA
| | - Nischay Rege
- Department of Biochemistry, Case-Western Reserve University, Cleveland 44016 OH USA
| | - Jinhong Sun
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China 300052
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| | - Leena Haataja
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| | - Randal J. Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92307 USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| |
Collapse
|
6
|
Liu M, Sun J, Cui J, Chen W, Guo H, Barbetti F, Arvan P. INS-gene mutations: from genetics and beta cell biology to clinical disease. Mol Aspects Med 2014; 42:3-18. [PMID: 25542748 DOI: 10.1016/j.mam.2014.12.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 02/06/2023]
Abstract
A growing list of insulin gene mutations causing a new form of monogenic diabetes has drawn increasing attention over the past seven years. The mutations have been identified in the untranslated regions of the insulin gene as well as the coding sequence of preproinsulin including within the signal peptide, insulin B-chain, C-peptide, insulin A-chain, and the proteolytic cleavage sites both for signal peptidase and the prohormone convertases. These mutations affect a variety of different steps of insulin biosynthesis in pancreatic beta cells. Importantly, although many of these mutations cause proinsulin misfolding with early onset autosomal dominant diabetes, some of the mutant alleles appear to engage different cellular and molecular mechanisms that underlie beta cell failure and diabetes. In this article, we review the most recent advances in the field and discuss challenges as well as potential strategies to prevent/delay the development and progression of autosomal dominant diabetes caused by INS-gene mutations. It is worth noting that although diabetes caused by INS gene mutations is rare, increasing evidence suggests that defects in the pathway of insulin biosynthesis may also be involved in the progression of more common types of diabetes. Collectively, the (pre)proinsulin mutants provide insightful molecular models to better understand the pathogenesis of all forms of diabetes in which preproinsulin processing defects, proinsulin misfolding, and ER stress are involved.
Collapse
Affiliation(s)
- Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, 300052, China; Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI, 48105, USA.
| | - Jinhong Sun
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Jinqiu Cui
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Wei Chen
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Huan Guo
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Fabrizio Barbetti
- Department of Experimental Medicine, University of Tor Vergata, Rome and Bambino Gesù Children's Hospital, Rome, Italy
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
7
|
Abstract
Insulin provides a classical model of a globular protein, yet how the hormone changes conformation to engage its receptor has long been enigmatic. Interest has focused on the C-terminal B-chain segment, critical for protective self-assembly in β cells and receptor binding at target tissues. Insight may be obtained from truncated "microreceptors" that reconstitute the primary hormone-binding site (α-subunit domains L1 and αCT). We demonstrate that, on microreceptor binding, this segment undergoes concerted hinge-like rotation at its B20-B23 β-turn, coupling reorientation of Phe(B24) to a 60° rotation of the B25-B28 β-strand away from the hormone core to lie antiparallel to the receptor's L1-β2 sheet. Opening of this hinge enables conserved nonpolar side chains (Ile(A2), Val(A3), Val(B12), Phe(B24), and Phe(B25)) to engage the receptor. Restraining the hinge by nonstandard mutagenesis preserves native folding but blocks receptor binding, whereas its engineered opening maintains activity at the price of protein instability and nonnative aggregation. Our findings rationalize properties of clinical mutations in the insulin family and provide a previously unidentified foundation for designing therapeutic analogs. We envisage that a switch between free and receptor-bound conformations of insulin evolved as a solution to conflicting structural determinants of biosynthesis and function.
Collapse
|
8
|
Liu M, Haataja L, Wright J, Wickramasinghe NP, Hua QX, Phillips NF, Barbetti F, Weiss MA, Arvan P. Mutant INS-gene induced diabetes of youth: proinsulin cysteine residues impose dominant-negative inhibition on wild-type proinsulin transport. PLoS One 2010; 5:e13333. [PMID: 20948967 PMCID: PMC2952628 DOI: 10.1371/journal.pone.0013333] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 09/13/2010] [Indexed: 02/06/2023] Open
Abstract
Recently, a syndrome of Mutant INS-gene-induced Diabetes of Youth (MIDY, derived from one of 26 distinct mutations) has been identified as a cause of insulin-deficient diabetes, resulting from expression of a misfolded mutant proinsulin protein in the endoplasmic reticulum (ER) of insulin-producing pancreatic beta cells. Genetic deletion of one, two, or even three alleles encoding insulin in mice does not necessarily lead to diabetes. Yet MIDY patients are INS-gene heterozygotes; inheritance of even one MIDY allele, causes diabetes. Although a favored explanation for the onset of diabetes is that insurmountable ER stress and ER stress response from the mutant proinsulin causes a net loss of beta cells, in this report we present three surprising and interlinked discoveries. First, in the presence of MIDY mutants, an increased fraction of wild-type proinsulin becomes recruited into nonnative disulfide-linked protein complexes. Second, regardless of whether MIDY mutations result in the loss, or creation, of an extra unpaired cysteine within proinsulin, Cys residues in the mutant protein are nevertheless essential in causing intracellular entrapment of co-expressed wild-type proinsulin, blocking insulin production. Third, while each of the MIDY mutants induces ER stress and ER stress response; ER stress and ER stress response alone appear insufficient to account for blockade of wild-type proinsulin. While there is general agreement that ultimately, as diabetes progresses, a significant loss of beta cell mass occurs, the early events described herein precede cell death and loss of beta cell mass. We conclude that the molecular pathogenesis of MIDY is initiated by perturbation of the disulfide-coupled folding pathway of wild-type proinsulin.
Collapse
Affiliation(s)
- Ming Liu
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Leena Haataja
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Jordan Wright
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Nalinda P. Wickramasinghe
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Qing-Xin Hua
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Nelson F. Phillips
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Fabrizio Barbetti
- Laboratory of Molecular Endocrinology and Metabolism, Bambino Gesù Children's Hospital, Scientific Institute (IRCCS), Rome, Italy
- Department of Internal Medicine, University of Tor Vergata, Rome, Italy
| | - Michael A. Weiss
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail: (PA); (MAW)
| | - Peter Arvan
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
- * E-mail: (PA); (MAW)
| |
Collapse
|
9
|
Hua QX, Xu B, Huang K, Hu SQ, Nakagawa S, Jia W, Wang S, Whittaker J, Katsoyannis PG, Weiss MA. Enhancing the activity of a protein by stereospecific unfolding: conformational life cycle of insulin and its evolutionary origins. J Biol Chem 2009; 284:14586-96. [PMID: 19321436 DOI: 10.1074/jbc.m900085200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A central tenet of molecular biology holds that the function of a protein is mediated by its structure. An inactive ground-state conformation may nonetheless be enjoined by the interplay of competing biological constraints. A model is provided by insulin, well characterized at atomic resolution by x-ray crystallography. Here, we demonstrate that the activity of the hormone is enhanced by stereospecific unfolding of a conserved structural element. A bifunctional beta-strand mediates both self-assembly (within beta-cell storage vesicles) and receptor binding (in the bloodstream). This strand is anchored by an invariant side chain (Phe(B24)); its substitution by Ala leads to an unstable but native-like analog of low activity. Substitution by d-Ala is equally destabilizing, and yet the protein diastereomer exhibits enhanced activity with segmental unfolding of the beta-strand. Corresponding photoactivable derivatives (containing l- or d-para-azido-Phe) cross-link to the insulin receptor with higher d-specific efficiency. Aberrant exposure of hydrophobic surfaces in the analogs is associated with accelerated fibrillation, a form of aggregation-coupled misfolding associated with cellular toxicity. Conservation of Phe(B24), enforced by its dual role in native self-assembly and induced fit, thus highlights the implicit role of misfolding as an evolutionary constraint. Whereas classical crystal structures of insulin depict its storage form, signaling requires engagement of a detachable arm at an extended receptor interface. Because this active conformation resembles an amyloidogenic intermediate, we envisage that induced fit and self-assembly represent complementary molecular adaptations to potential proteotoxicity. The cryptic threat of misfolding poses a universal constraint in the evolution of polypeptide sequences.
Collapse
Affiliation(s)
- Qing-xin Hua
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Budi A, Legge FS, Treutlein H, Yarovsky I. Comparative Study of Insulin Chain-B in Isolated and Monomeric Environments under External Stress. J Phys Chem B 2008; 112:7916-24. [DOI: 10.1021/jp800350v] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Akin Budi
- Applied Physics, School of Applied Sciences, RMIT University, GPO Box 2476V, Melbourne, Victoria, 3001, Australia, and Cytopia Research Pty. Ltd., PO Box 6492, St. Kilda Road Central, Melbourne, Victoria, 8008, Australia
| | - F. Sue Legge
- Applied Physics, School of Applied Sciences, RMIT University, GPO Box 2476V, Melbourne, Victoria, 3001, Australia, and Cytopia Research Pty. Ltd., PO Box 6492, St. Kilda Road Central, Melbourne, Victoria, 8008, Australia
| | - Herbert Treutlein
- Applied Physics, School of Applied Sciences, RMIT University, GPO Box 2476V, Melbourne, Victoria, 3001, Australia, and Cytopia Research Pty. Ltd., PO Box 6492, St. Kilda Road Central, Melbourne, Victoria, 8008, Australia
| | - Irene Yarovsky
- Applied Physics, School of Applied Sciences, RMIT University, GPO Box 2476V, Melbourne, Victoria, 3001, Australia, and Cytopia Research Pty. Ltd., PO Box 6492, St. Kilda Road Central, Melbourne, Victoria, 8008, Australia
| |
Collapse
|
11
|
Medina-Navarro R, Guzmán-Grenfell AM, Díaz-Flores M, Duran-Reyes G, Ortega-Camarillo C, Olivares-Corichi IM, Hicks JJ. Formation of an adduct between insulin and the toxic lipoperoxidation product acrolein decreases both the hypoglycemic effect of the hormone in rat and glucose uptake in 3T3 adipocytes. Chem Res Toxicol 2007; 20:1477-81. [PMID: 17803267 DOI: 10.1021/tx7001355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lipid peroxidation induced by reactive oxygen species might modify circulating biomolecules because of the formation of alpha,beta-unsaturated or dicarbonylic aldehydes. In order to investigate the interaction between a lipoperoxidation product, acrolein, and a circulating protein, insulin, the acrolein-insulin adduct was obtained. To characterize the adduct, gel filtration chromatography, sodium dodecylsulfate-polyacrylamide gel electrophoresis and carbonyl determination were performed. Induction of hypoglycemia in the rat and stimulation of glucose uptake by 3T3 adipocytes were used to evaluate the biological efficiency of the adduct compared with that of native insulin (Mackness, B., Quarck, R., Verte, W., Mackness, M., and Holvoet, P. (2006) Arterioscler., Thromb. Vasc. Biol. 26, 1545-1550). Formation of the acrolein-insulin complex in vitro increased the carbonyl group concentration from 2.5 to 22.5 nmol/mg of protein, and it formed without intermolecular aggregates (Halliwell, B., and Whiteman, M. (2004) Br. J. Pharmacol. 142, 231-255. The hypoglycaemic effect 18 min after administration to the rat is decreased by 25% (Robertson, R. P. (2004) J. Biol. Chem. 279, 42351-42354. An adduct concentration of 94 nM, compared to 10 nM for native insulin, was required to obtain the A 50% (concentration needed to obtain 50% of maximum transport of glucose uptake by 3T3 adipocytes). In conclusion, formation of the acrolein-insulin adduct modifies the structure of insulin and decreases its hypoglycemic effect in rat and glucose uptake by 3T3 adipocytes. These results help explain how a toxic aldehyde prone to be produced in vivo can structurally modify insulin and change its biological action.
Collapse
Affiliation(s)
- Rafael Medina-Navarro
- Laboratorio de Metabolismo Experimental, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico
| | | | | | | | | | | | | |
Collapse
|
12
|
Trajkovski M, Mziaut H, Schwarz PE, Solimena M. Genes of type 2 diabetes in beta cells. Endocrinol Metab Clin North Am 2006; 35:357-69, x. [PMID: 16632098 DOI: 10.1016/j.ecl.2006.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Type 2 diabetes is a complex polygenic metabolic disorder of epidemic proportions. This review provides a brief overview of the susceptibility genes in type 2 diabetes that primarily affect pancreatic 3 cells, with emphasis on their function and most relevant polymorphisms. We focus on calpain 10, the only susceptibility gene identified thus far through a positional cloning approach in subjects with diabetes.
Collapse
Affiliation(s)
- Mirko Trajkovski
- Experimental Diabetology, Carl Gustav Carus Medical School, Dresden University of Technology, Fetscherstrasse 74, 01307 Dresden, Germany
| | | | | | | |
Collapse
|
13
|
Legge FS, Budi A, Treutlein H, Yarovsky I. Protein flexibility: multiple molecular dynamics simulations of insulin chain B. Biophys Chem 2005; 119:146-57. [PMID: 16129550 DOI: 10.1016/j.bpc.2005.08.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 08/03/2005] [Accepted: 08/03/2005] [Indexed: 11/15/2022]
Abstract
Multiple molecular dynamics simulations totaling more than 100 ns were performed on chain B of insulin in explicit solvent at 300 K and 400 K. Despite some individual variations, a comparison of the protein dynamics of each simulation showed similar trends and most structures were consistent with NMR experimental values, even at the elevated temperature. The importance of packing interactions in determining the conformational transitions of the protein was observed, sometimes resulting in conformations induced by localized hydrophobic interactions. The high temperature simulation generated a more diverse range of structures with similar elements of secondary structure and populated conformations to the simulations at room temperature. A broad sampling of the conformational space of insulin chain B illustrated a wide range of conformational states with many transitions at room temperature in addition to the conformational states observed experimentally. The T-state conformation associated with insulin activity was consistently present and a possible mechanism of behavior was suggested.
Collapse
Affiliation(s)
- F S Legge
- Applied Physics, School of Applied Sciences, RMIT University, GPO Box 2476V, Melbourne, Victoria 3001, Australia
| | | | | | | |
Collapse
|
14
|
Zeng ZH, Liu YS, Jin L, Zhang Y, Havelund S, Markussen J, Wang DC. Conformational correlation and coupled motion between residue A21 and B25 side chain observed in crystal structures of insulin mutants at position A21. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1479:225-36. [PMID: 11004541 DOI: 10.1016/s0167-4838(00)00020-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The C-terminal residue of the insulin A chain is invariant and kept as asparagine in all known insulin molecules from hagfish through birds to mammals. To get information on the role of this conserved residue, which is still unclear, the three-dimensional structures of four human insulin mutants, A21 Asn-->Gly, A21 Asn-->Asp, A21 Asn-->Ala, and A21 Asn-->Gln DesB30, were determined by X-ray crystallography. The four mutants crystallize separately into two kinds (rhombohedral and cubic) of crystals. In the refined structures, conformational correlation and coupled motion between the A chain C-terminal residue A21 and the B25 side chain was observed, in contrast to the nearly unchanged general structures as compared with the native insulin structures in their respective crystals. A detailed analysis suggests that residue A21 can affect insulin receptor binding by interaction with the B25 side chain and the B chain C-terminal segment to assist the B25 side chain rearranging into the 'active' conformation.
Collapse
Affiliation(s)
- Z H Zeng
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Kurapkat G, Siedentop M, Gattner HG, Hagelstein M, Brandenburg D, Grötzinger J, Wollmer A. The solution structure of a superpotent B-chain-shortened single-replacement insulin analogue. Protein Sci 1999; 8:499-508. [PMID: 10091652 PMCID: PMC2144277 DOI: 10.1110/ps.8.3.499] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This paper reports on an insulin analogue with 12.5-fold receptor affinity, the highest increase observed for a single replacement, and on its solution structure, determined by NMR spectroscopy. The analogue is [D-AlaB26]des-(B27-B30)-tetrapeptide-insulin-B26-amide. C-terminal truncation of the B-chain by four (or five) residues is known not to affect the functional properties of insulin, provided the new carboxylate charge is neutralized. As opposed to the dramatic increase in receptor affinity caused by the substitution of D-Ala for the wild-type residue TyrB26 in the truncated molecule, this very substitution reduces it to only 18% of that of the wild-type hormone when the B-chain is present in full length. The insulin molecule in solution is visualized as an ensemble of conformers interrelated by a dynamic equilibrium. The question is whether the "active" conformation of the hormone, sought after in innumerable structure/function studies, is or is not included in the accessible conformational space, so that it could be adopted also in the absence of the receptor. If there were any chance for the active conformation, or at least a predisposed state to be populated to a detectable extent, this chance should be best in the case of a superpotent analogue. This was the motivation for the determination of the three-dimensional structure of [D-AlaB26]des-(B27-B30)-tetrapeptide-insulin-B26-amide. However, neither the NMR data nor CD spectroscopic comparison of a number of related analogues provided a clue concerning structural features predisposing insulin to high receptor affinity. After the present study it seems more likely than before that insulin will adopt its active conformation only when exposed to the force field of the receptor surface.
Collapse
Affiliation(s)
- G Kurapkat
- Institut für Biochemie, Rheinisch-Westfälische Technische Hochschule Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Jansson M, Andersson G, Uhlén M, Nilsson B, Kördel J. The insulin-like growth factor (IGF)binding protein 1 binding epitope on IGF-I probed by heteronuclear NMR spectroscopy and mutational analysis. J Biol Chem 1998; 273:24701-7. [PMID: 9733769 DOI: 10.1074/jbc.273.38.24701] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NMR spectroscopy studies and biosensor interaction analysis of native and site-directed mutants of insulin-like growth factor I (IGF-I) was applied to identify the involvement of individual residues in IGF-I binding to IGF-binding protein 1 (IGFBP-1). Backbone NMR chemical shifts were found to be affected by IGFBP-1 binding in the following residues: Pro2, Glu3, Cys6, Gly7, Gly19, Pro28-Gly30, Gly32, Arg36, Arg37, Gln40-Gly42, Pro63, Lys65, Pro66, and Lys68-Ala70. Three IGF-I arginine side chains were identified by NMR to participate in IGFBP-1 binding. All IGF-I arginine residues were replaced by alanines, using site-directed mutagenesis, in four single substituted variants, IGF-I(R21A), IGF-I(R50A), IGF-I(R55A), and IGF-I(R56A), and one double replacement mutant, IGF-I(R36A/R37A). Biosensor interaction analysis binding studies demonstrate the involvement of Arg36-Arg37 and Arg50 in IGFBP-1 binding, while experiments with the IGF-I receptor implicate Arg21, Arg36-Arg37, and Arg56 as part of the receptor binding epitope. These overlapping binding surfaces explain why IGF-I receptor and IGFBP-1 binding to IGF-I is competitive. The C terminus of free, but not IGFBP-1-bound, IGF-I is found to exist in two distinct, NMR-detectable conformations at 30 degreesC. One possible explanation for this structural heterogeneity could be cis-trans isomerization of the Cys6-Cys48 disulfide bond.
Collapse
Affiliation(s)
- M Jansson
- Department of Structural Chemistry, Pharmacia & Upjohn, SE-11287 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
17
|
Ludvigsen S, Olsen HB, Kaarsholm NC. A structural switch in a mutant insulin exposes key residues for receptor binding. J Mol Biol 1998; 279:1-7. [PMID: 9636695 DOI: 10.1006/jmbi.1998.1801] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite years of effort to clarify the structural basis of insulin receptor binding no clear consensus has emerged. It is generally believed that insulin receptor binding is accompanied by some degree of conformational change in the carboxy-terminal of the insulin B-chain. In particular, while most substitutions for PheB24 lead to inactive species, glycine or D-amino acids are well tolerated in this position. Here we assess the conformation change by solving the solution structure of the biologically active (GluB16, GlyB24, desB30)-insulin mutant. The structure in aqueous solution at pH 8 reveals a subtle, albeit well-defined rearrangement of the C-terminal decapeptide involving a perturbation of the B20-23 turn, which allows the PheB25 residue to occupy the position normally taken up by PheB24 in native insulin. The new protein surface exposed rationalizes the receptor binding properties of a series of insulin analogs. We suggest that the structural switch is forced by the structure of the underlying core of species invariant residues and that an analogous rearrangement of the C-terminal of the B-chain occurs in native insulin on binding to its receptor.
Collapse
|
18
|
Hua QX, Hu SQ, Jia W, Chu YC, Burke GT, Wang SH, Wang RY, Katsoyannis PG, Weiss MA. Mini-proinsulin and mini-IGF-I: homologous protein sequences encoding non-homologous structures. J Mol Biol 1998; 277:103-18. [PMID: 9514738 DOI: 10.1006/jmbi.1997.1574] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein minimization highlights essential determinants of structure and function. Minimal models of proinsulin and insulin-like growth factor I contain homologous A and B domains as single-chain analogues. Such models (designated mini-proinsulin and mini-IGF-I) have attracted wide interest due to their native foldability but complete absence of biological activity. The crystal structure of mini-proinsulin, determined as a T3R3 hexamer, is similar to that of the native insulin hexamer. Here, we describe the solution structure of a monomeric mini-proinsulin under physiologic conditions and compare this structure to that of the corresponding two-chain analogue. The two proteins each contain substitutions in the B-chain (HisB10-->Asp and ProB28-->Asp) designed to destabilize self-association by electrostatic repulsion; the proteins differ by the presence or absence of a peptide bond between LysB29 and GlyA1. The structures are essentially identical, resembling in each case the T-state crystallographic protomer. Differences are observed near the site of cross-linking: the adjoining A1-A8 alpha-helix (variable among crystal structures) is less well-ordered in mini-proinsulin than in the two-chain variant. The single-chain analogue is not completely inactive: its affinity for the insulin receptor is 1500-fold lower than that of the two-chain analogue. Moreover, at saturating concentrations mini-proinsulin retains the ability to stimulate lipogenesis in adipocytes (native biological potency). These results suggest that a change in the conformation of insulin, as tethered by the B29-A1 peptide bond, optimizes affinity but is not integral to the mechanism of transmembrane signaling. Surprisingly, the tertiary structure of mini-proinsulin differs from that of mini-IGF-I (main-chain rms deviation 4.5 A) despite strict conservation of non-polar residues in their respective hydrophobic cores (side-chain rms deviation 4.9 A). Three-dimensional profile scores suggest that the two structures each provide acceptable templates for threading of insulin-like sequences. Mini-proinsulin and mini-IGF-I thus provide examples of homologous protein sequences encoding non-homologous structures.
Collapse
Affiliation(s)
- Q X Hua
- Center for Molecular Oncology and Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tikhomirov OY, Thomas JW. Preference for IgG mAb binding insulin in solution or on surfaces is related to immunoglobulin variable region structures. J Autoimmun 1997; 10:541-9. [PMID: 9451593 DOI: 10.1006/jaut.1997.0161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Studies on insulin autoantibodies often show a lack of correlation between enzyme-linked immunosorbent assays (ELISAs) and fluid phase radioimmunoassays (RIAs). Similarly, a set of IgG anti-insulin monoclonal antibodies (mAb) from BALB/c mice are found to differ in their binding in ELISAs and RIAs. To understand the structural basis for differential insulin binding, soluble and complexed biotinylated insulin is used to confirm binding properties independent of insulin-coated plastic and radioiodination. The binding properties of intact mAb are also present in Fab fragments, indicating ligand preference is not related to valence or to the Fc portion of Ig. Analysis of binding to soluble or bound ligand in relationship to antibody variable (V) region structures indicates that differential binding in the two assays is a property of heavy chain variable region structure. Studies also show that limited amino acid replacements arising during maturation of the immune response may change the binding preference for an individual mAb. These findings indicate that differences in detection of insulin binding in solid phase and fluid phase are not artefactual but reflect intrinsic structural features of immunoglobulin interaction with insulin.
Collapse
Affiliation(s)
- O Y Tikhomirov
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
20
|
Kurapkat G, De Wolf E, Grötzinger J, Wollmer A. Inactive conformation of an insulin despite its wild-type sequence. Protein Sci 1997; 6:580-7. [PMID: 9070440 PMCID: PMC2143665 DOI: 10.1002/pro.5560060307] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The peptide group between residues B24 and B25 of insulin was replaced by an ester bond. This modification only in the backbone was meant to eliminate a structurally important H-bond between the amide proton of B25 and the carbonyl oxygen of A19, and consequently to enhance detachment of the C-terminal B-chain from the body of the molecule, exposing the underlying A-chain. According to a model derived from the effects of side-chain substitutions, main-chain shortening, and crosslinking, this conformational change is prerequisite for receptor binding. Contrary to the expectation that increased flexibility would increase receptor binding and activity, depsi-insulin ([B24-B25 CO-O]insulin) has turned out be only 3-4% potent. In search of an explanation for this observation, the solution structure of depsi-insulin was determined by two-dimensional 1H-NMR spectroscopy. It was found that the loss of the B25-A19 H-bond does not entail detachment of the C-terminal B-chain. On the contrary, it is overcompensated by a gain in hydrophobic interaction achieved by insertion of the Phe B25 side chain into the molecule's core. This is possible because of increased rotational freedom in the backbone owing to the ester bond. Distortion of the B20-B23 turn and an altered direction of the distal B-chain are consequences that also affect self-association. The exceptional position of the B25 side chain is thus the key feature of the depsi-insulin structure. Being buried in the interior, it is not available for guiding the interaction with the receptor, a crucial role attributed to it by the model. This seems to be the main reason why the structure of depsi-insulin represents an inactive conformation.
Collapse
Affiliation(s)
- G Kurapkat
- Institut für Biochemie, Rheinisch-Westfälische Technische Hochschule Aachen, Germany
| | | | | | | |
Collapse
|
21
|
Hawkins B, Cross K, Craik D. Solution structure of the B-chain of insulin as determined by 1H NMR spectroscopy. Comparison with the crystal structure of the insulin hexamer and with the solution structure of the insulin monomer. INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH 1995; 46:424-33. [PMID: 8567187 DOI: 10.1111/j.1399-3011.1995.tb01077.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The solution structure of the isolated B-chain of bovine insulin has been determined by 1H NMR spectroscopy combined with simulated annealing calculations. Complete sequence-specific assignments for the proton resonances are reported together with a set of 309 NOEs used in the structure calculations. Chemical-shift variations from random coil values provide support for the existence of helical regions in the polypeptide chain, as do a characteristic series of d alpha beta(i, i + 3) NOEs from residues B8 to B17. While there is some evidence for a limited degree of conformational averaging over the helical region, in general the helix is relatively well defined and corresponds closely to the helical region seen in the X-ray crystal structure of the insulin hexamer. Other similarities with the crystal structure include turn-like conformations at the carboxy terminal end of the helix and extended strands at both the amino and carboxy termini of the peptide. These similarities between the crystal structure and the isolated B-chain suggest that this peptide has intrinsic folding properties, which allow it to adopt its characteristic structure in intact insulin without the need for extensive cooperative interactions with the A-chain. Despite these general similarities, an important difference between the isolated B-chain and the intact protein occurs in the carboxy terminal region. This region appears significantly more mobile in the isolated B-chain. As a conformational change involving the carboxy terminus has been implicated in receptor binding, the current study of the isolated B-chain provides valuable information on the extent of this region's intrinsic mobility.
Collapse
Affiliation(s)
- B Hawkins
- Department of Medicinal Chemistry, Victorian College of Pharmacy, Monash University, Parkville, Victoria, Australia
| | | | | |
Collapse
|
22
|
Ludvigsen S, Roy M, Thøgersen H, Kaarsholm NC. High-resolution structure of an engineered biologically potent insulin monomer, B16 Tyr-->His, as determined by nuclear magnetic resonance spectroscopy. Biochemistry 1994; 33:7998-8006. [PMID: 8025104 DOI: 10.1021/bi00192a003] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Site-directed mutagenesis is used in conjunction with 1H nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopy in order to find an insulin species amenable for structure determination in aqueous solution by NMR spectroscopy. A successful candidate in this respect, i.e., B16 Tyr-->His mutant insulin, is identified and selected for detailed characterization by two-dimensional 1H NMR. This mutant species retains 43% biological potency and native folding stability, but in contrast to human insulin it remains monomeric at millimolar concentration in aqueous solution at pH 2.4. The resulting homogeneous sample allows high-quality 2D NMR spectra to be recorded. The NMR studies result in an almost complete assignment of the 1H resonance signals as well as identification of NOE cross peaks. NOE-derived distance restraints in conjunction with torsion restraints based on measured coupling constants, 3JHNH alpha, are used for structure calculations using the hybrid method of distance geometry and simulated annealing. The calculated structures show that the major part of the insulin monomer is structurally well-defined with an average rms deviation between the 20 calculated structures and the mean coordinates of 0.89 A for all backbone atoms, 0.46 A for backbone atoms (A2-A19 and B4-B28), and 1.30 A for all heavy atoms. The structure of the A-chain is composed of two helices from A2 to A7 and from A12 to A19 connected by a short extended strand. The B-chain consists of a loop, B1-B8, an alpha-helix, B9-B19, a beta-turn, B20-B23, and an extended strand from B24 to B30.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S Ludvigsen
- Novo Research Institute, Novo Nordisk A/S, Bagsvaerd, Denmark
| | | | | | | |
Collapse
|
23
|
Schepky AG, Schmidt AM, Schmidt T, Schulz-Knappe P, Forssmann WG. Determination of sulfated peptides by differential iodination. BIOLOGICAL CHEMISTRY HOPPE-SEYLER 1994; 375:201-3. [PMID: 8011176 DOI: 10.1515/bchm3.1994.375.3.201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A sequential approach was developed to label tyrosine sulfate and peptides containing tyrosine sulfate selectively. Amino acids and peptides containing tyrosine and tyrosine sulfate were first iodinated using chloramine-T-method. Reaction products were determined by RP-HPLC. Mono- and biiodination of tyrosine and several model peptides was achieved within 120 s incubation time. Iodination of free tyrosine sulfate and sulfated cholecystokinin26-33 was less than 5%. After desulfation of the reaction products with 1 N HCl successful radioiodination of desulfated tyrosine was carried out whereas tyrosine did incorporate radioactive iodine only 10%. As shown by RP-HPLC specific labeling of tyrosine sulfate containing peptides with 125iodine was achieved.
Collapse
Affiliation(s)
- A G Schepky
- Niedersächsisches Institut für Peptid-Forschung GmbH, Hannover, Germany
| | | | | | | | | |
Collapse
|
24
|
Bach LA, Hsieh S, Sakano K, Fujiwara H, Perdue JF, Rechler MM. Towards identification of a binding site on insulin-like growth factor-II for IGF-binding proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1994; 343:55-61. [PMID: 7514352 DOI: 10.1007/978-1-4615-2988-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- L A Bach
- Growth and Development Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | | |
Collapse
|
25
|
Krüger P, Hahnen J, Wollmer A. Comparative studies on the dynamics of crosslinked insulin. EUROPEAN BIOPHYSICS JOURNAL : EBJ 1994; 23:177-87. [PMID: 7956978 DOI: 10.1007/bf01007609] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Molecular dynamics simulations were carried out on an insulin crosslinked between the N-terminal A chain and the C-terminal B chain to form a so-called mini-proinsulin: N alpha-A1-N epsilon-B29-diaminosuberoyl insulin (DASI). To investigate the influence of crosslinking on the dynamics of the insulin moiety, the bridge was removed from a transient DASI structure and simulation was carried on independently with the then unlinked (ULKI) as well as with the crosslinked species. The effects of crystal packing and quaternary interactions were checked by simulating both types of monomers and dimers known from the hexamer structure. All simulations were compared to previous ones of native insulin. DASI shows general similarity to the native simulations in most parts of the structure. Deviations are visible in the segments to which the bridge is directly connected, i.e. their flexibility is reduced. Upon removal of the bridge the ULKI simulations reapproach those of native insulin. The influence of the bridge spreads over the whole molecule, but all of its main structural features remain intact. The simulations suggest that the displacement of the C-terminal B chain of native insulin, considered important for receptor interaction, is prevented by the bridge, which also partially shields some binding residues. This is in accordance with the poor biological potency of A1-B29-crosslinked insulins.
Collapse
Affiliation(s)
- P Krüger
- Institut für Biochemie, Rheinisch-Westfälische Technische Hochschule Aachen, Germany
| | | | | |
Collapse
|