1
|
Li J, Li A, Li Y, Zhu S, Song L, Liu S, Xing R, Li K. Preparation of Chitooligosaccharides with Specific Sequence Arrangement and Their Effect on Inducing Salt Resistance in Wheat Seedlings. Polymers (Basel) 2025; 17:1194. [PMID: 40362979 PMCID: PMC12074182 DOI: 10.3390/polym17091194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/18/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Chitooligosaccharides (COS) exhibits good activity of inducing plant resistance, but the structure-activity relationship is still unclear. In this study, chitin oligosaccharides (CHOS) with a degree of polymerization (DP) of 2~6 were used as raw materials. Three deacetylases (NodB, VcCOD, and ArCE4A) were employed to prepare three different sequence-arranged COSs, namely N-COS, C-COS, and A-COS, and their structures were characterized by infrared spectroscopy, high-performance liquid chromatography, and mass spectrometry. Further studies were conducted on inducing the plant salt resistance of the three different sequence-arranged COSs on wheat seedlings. The results showed a sequence-dependent effect of COS inducing plant salt resistance. Among them, A-COS exhibited the best activity. When sprayed at a concentration of 10 mg/L on wheat seedlings under salt stress for 3 days, the leaf length of the wheat seedlings sprayed with A-COS was recovered, and the wet mass and dry mass were recovered by 20.40% and 6.64%, respectively. Following the enhancement of proline accumulation, the malondialdehyde content decreased by 34.75%, and the Na+/K+ ratio also exhibited a significant reduction, thereby alleviating salt stress-induced damage. This study was the first to demonstrate the effect of COS with specific sequences on inducing plant salt resistance, providing a theoretical basis for the development of a new generation of efficient COS plant biostimulator.
Collapse
Affiliation(s)
- Jingwen Li
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China;
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (A.L.); (Y.L.); (S.Z.); (S.L.); (R.X.)
| | - Anbang Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (A.L.); (Y.L.); (S.Z.); (S.L.); (R.X.)
| | - Yupeng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (A.L.); (Y.L.); (S.Z.); (S.L.); (R.X.)
| | - Siqi Zhu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (A.L.); (Y.L.); (S.Z.); (S.L.); (R.X.)
| | - Lin Song
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China;
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (A.L.); (Y.L.); (S.Z.); (S.L.); (R.X.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (A.L.); (Y.L.); (S.Z.); (S.L.); (R.X.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Kecheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (A.L.); (Y.L.); (S.Z.); (S.L.); (R.X.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
2
|
Lindner S, Bonin M, Hellmann MJ, Moerschbacher BM. Three intertwining effects guide the mode of action of chitin deacetylase de- and N-acetylation reactions. Carbohydr Polym 2025; 347:122725. [PMID: 39486955 DOI: 10.1016/j.carbpol.2024.122725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 11/04/2024]
Abstract
Chitosans are promising multi-functional biomolecules for various applications whose performance is dependent on three key structural parameters, including the pattern of acetylation (PA). To date, chitin deacetylases (CDAs) are the only tool to control the PA of chitosan polymers via their specific mode of action during de- or N-acetylation. For a start, this review summarizes the current state of research on the classification of carbohydrate esterase 4 enzymes, the features in sequence and structure of CDAs, and the different PAs produced by different CDAs during de- or N-acetylation. In the main part, we introduce three effects that guide the mode of action of these enzymes: the already established subsite capping effect, the subsite occupation effect, and the subsite preference effect. We show how their interplay controls the PA of CDA products and describe their molecular basis. For one thing, this review aims to equip the reader with the knowledge to understand and analyze CDAs - including a guide for in silico and in vitro analyses. But more importantly, we intend to reform and extend the model explaining their mode of action on chitosans to facilitate a deeper understanding of these important enzymes for biology and biotechnology.
Collapse
Affiliation(s)
- Sandra Lindner
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Martin Bonin
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Margareta J Hellmann
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Bruno M Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| |
Collapse
|
3
|
Giraldo JD, García Y, Vera M, Garrido-Miranda KA, Andrade-Acuña D, Marrugo KP, Rivas BL, Schoebitz M. Alternative processes to produce chitin, chitosan, and their oligomers. Carbohydr Polym 2024; 332:121924. [PMID: 38431399 DOI: 10.1016/j.carbpol.2024.121924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/20/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
Sustainable recovery of chitin and its derivatives from shellfish waste will be achieved when the industrial production of these polymers is achieved with a high control of their molecular structure, low costs, and acceptable levels of pollution. Therefore, the conventional chemical method for obtaining these biopolymers needs to be replaced or optimized. The goal of the present review is to ascertain what alternative methods are viable for the industrial-scale production of chitin, chitosan, and their oligomers. Therefore, a detailed review of recent literature was undertaken, focusing on the advantages and disadvantages of each method. The analysis of the existing data allows suggesting that combining conventional, biological, and alternative methods is the most efficient strategy to achieve sustainable production, preventing negative impacts and allowing for the recovery of high added-value compounds from shellfish waste. In conclusion, a new process for obtaining chitinous materials is suggested, with the potential of reducing the consumption of reagents, energy, and water by at least 1/10, 1/4, and 1/3 part with respect to the conventional process, respectively.
Collapse
Affiliation(s)
- Juan D Giraldo
- Escuela de Ingeniería Ambiental, Instituto de Acuicultura, Universidad Austral de Chile, Sede Puerto Montt, Balneario Pelluco, Los Pinos s/n, Chile.
| | - Yadiris García
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano 7100, Talcahuano, Chile
| | - Myleidi Vera
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Karla A Garrido-Miranda
- Center of Waste Management and Bioenergy, Scientific and Technological Bioresource Nucleus, BIOREN-UFRO, Universidad de la Frontera, Temuco 4811230, Chile; Agriaquaculture Nutritional Genomic Center (CGNA), Temuco 4780000, Chile
| | - Daniela Andrade-Acuña
- Centro de Docencia Superior en Ciencias Básicas, Universidad Austral de Chile, Sede Puerto Montt, Los Pinos s/n. Balneario Pelluco, Puerto Montt, Chile
| | - Kelly P Marrugo
- Departamento de Química Orgánica, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; Centro de Investigaciones en Nanotecnología y Materiales Avanzados, CIEN-UC, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Bernabé L Rivas
- Universidad San Sebastián, Sede Concepción 4080871, Concepción, Chile
| | - Mauricio Schoebitz
- Departamento de Suelos y Recursos Naturales, Facultad de Agronomía, Campus Concepción, Casilla 160-C, Universidad de Concepción, Chile; Laboratory of Biofilms and Environmental Microbiology, Center of Biotechnology, Universidad de Concepción, Barrio Universitario s/n, Concepción, Chile
| |
Collapse
|
4
|
Zhang X, Wen M, Li G, Wang S. Chitin Deacetylase Homologous Gene cda Contributes to Development and Aflatoxin Synthesis in Aspergillus flavus. Toxins (Basel) 2024; 16:217. [PMID: 38787069 PMCID: PMC11125919 DOI: 10.3390/toxins16050217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
The fungal cell wall serves as the primary interface between fungi and their external environment, providing protection and facilitating interactions with the surroundings. Chitin is a vital structural element in fungal cell wall. Chitin deacetylase (CDA) can transform chitin into chitosan through deacetylation, providing various biological functions across fungal species. Although this modification is widespread in fungi, the biological functions of CDA enzymes in Aspergillus flavus remain largely unexplored. In this study, we aimed to investigate the biofunctions of the CDA family in A. flavus. The A. flavus genome contains six annotated putative chitin deacetylases. We constructed knockout strains targeting each member of the CDA family, including Δcda1, Δcda2, Δcda3, Δcda4, Δcda5, and Δcda6. Functional analyses revealed that the deletion of CDA family members neither significantly affects the chitin content nor exhibits the expected chitin deacetylation function in A. flavus. However, the Δcda6 strain displayed distinct phenotypic characteristics compared to the wild-type (WT), including an increased conidia count, decreased mycelium production, heightened aflatoxin production, and impaired seed colonization. Subcellular localization experiments indicated the cellular localization of CDA6 protein within the cell wall of A. flavus filaments. Moreover, our findings highlight the significance of the CBD1 and CBD2 structural domains in mediating the functional role of the CDA6 protein. Overall, we analyzed the gene functions of CDA family in A. flavus, which contribute to a deeper understanding of the mechanisms underlying aflatoxin contamination and lay the groundwork for potential biocontrol strategies targeting A. flavus.
Collapse
Affiliation(s)
| | | | | | - Shihua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic, Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Z.); (M.W.); (G.L.)
| |
Collapse
|
5
|
Li K, Liang Y, Fang J, Peng J, Tan M. Chitin Deacetylase from Bacillus aryabhattai TCI-16: Heterologous Expression, Characterization, and Deacetylation Performance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38597933 DOI: 10.1021/acs.jafc.4c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Chitin deacetylase (CDA) removes the acetyl group from the chitin molecule to generate chitosan in a uniform, high-quality deacetylation pattern. Herein, BaCDA was a novel CDA discovered from our previously isolated Bacillus aryabhattai strain TCI-16, which was excavated from mangrove soil. The gene BaCDA was cloned and overexpressed in Escherichia coli BL21 (DE3) to facilitate its subsequent purification. The purified recombinant protein BaCDA was obtained at a concentration of about 1.2 mg/mL after Ni2+ affinity chromatography. The molecular weight of BaCDA was around 28 kDa according to the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis. In addition, BaCDA exhibited a significant deacetylation effect on colloidal chitin, and the deacetylation degree was measured from the initial 25.69 to 69.23% by Fourier transform infrared (FT-IR) spectroscopy. Scanning electron microscopy (SEM) observation showed that the surface of colloidal chitin after enzymatic digestion was rough, the crystal fibers disappeared, and the chitin structure was loose and porous with grooves. The results of electrospray ionization mass spectrometry (ESI-MS) showed that BaCDA had full-deacetylation activity against (GlcNAc)4. Molecular docking revealed that BaCDA had an open active pocket capable of binding to the GlcNAc unit. This study not only provides a novel enzymatic resource for the green and efficient application of chitin but also helps to deepen the understanding of the catalytic mechanism of CDA.
Collapse
Affiliation(s)
- Kuntai Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yingyin Liang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Jianhao Fang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Jieying Peng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Minghui Tan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
6
|
Lau NS, Furusawa G. Polysaccharide degradation in Cellvibrionaceae: Genomic insights of the novel chitin-degrading marine bacterium, strain KSP-S5-2, and its chitinolytic activity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169134. [PMID: 38070563 DOI: 10.1016/j.scitotenv.2023.169134] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 01/18/2024]
Abstract
In this study, we present the genome characterization of a novel chitin-degrading strain, KSP-S5-2, and comparative genomics of 33 strains of Cellvibrionaceae. Strain KSP-S5-2 was isolated from mangrove sediment collected in Balik Pulau, Penang, Malaysia, and its 16S rRNA gene sequence showed the highest similarity (95.09%) to Teredinibacter franksiae. Genome-wide analyses including 16S rRNA gene sequence similarity, average nucleotide identity, digital DNA-DNA hybridization, and phylogenomics, suggested that KSP-S5-2 represents a novel species in the family Cellvibrionaceae. The Cellvibrionaceae pan-genome exhibited high genomic variability, with only 1.7% representing the core genome, while the flexible genome showed a notable enrichment of genes related to carbohydrate metabolism and transport pathway. This observation sheds light on the genetic plasticity of the Cellvibrionaceae family and the gene pools that form the basis for the evolution of polysaccharide-degrading capabilities. Comparative analysis of the carbohydrate-active enzymes across Cellvibrionaceae strains revealed that the chitinolytic system is not universally present within the family, as only 18 of the 33 genomes encoded chitinases. Strain KSP-S5-2 displayed an expanded repertoire of chitinolytic enzymes (25 GH18, two GH19 chitinases, and five GH20 β-N-acetylhexosaminidases) but lacked genes for agar, xylan, and pectin degradation, indicating specialized enzymatic machinery focused primarily on chitin degradation. Further, the strain degraded 90% of chitin after 10 days of incubation. In summary, our findings provided insights into strain KSP-S5-2's genomic potential, the genetics of its chitinolytic system, genomic diversity within the Cellvibrionaceae family in terms of polysaccharide degradation, and its application for chitin degradation.
Collapse
Affiliation(s)
- Nyok-Sean Lau
- Centre for Chemical Biology, Universiti Sains Malaysia, Penang, Malaysia
| | - Go Furusawa
- Centre for Chemical Biology, Universiti Sains Malaysia, Penang, Malaysia.
| |
Collapse
|
7
|
Liang B, Song W, Xing R, Liu S, Yu H, Li P. The source, activity influencing factors and biological activities for future development of chitin deacetylase. Carbohydr Polym 2023; 321:121335. [PMID: 37739548 DOI: 10.1016/j.carbpol.2023.121335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/24/2023]
Abstract
Chitin deacetylase (CDA), a prominent member of the carbohydrate esterase enzyme family 4 (CE4), is found ubiquitously in bacteria, fungi, insects, and crustaceans. This metalloenzyme plays a pivotal role in recognizing and selectively removing acetyl groups from chitin, thus offering an environmentally friendly and biologically-driven preparation method for chitosan with immense industrial potential. Due to its diverse origins, CDAs sourced from different organisms exhibit unique functions, optimal pH ranges, and temperature preferences. Furthermore, certain organic reagents can induce structural changes in CDAs, influencing their catalytic activity. Leveraging CDA's capabilities extends beyond chitosan biocatalysis, as it demonstrates promising application value in agricultural pest control. In this paper, the source, reaction mechanism, influencing factors, the fermentation methods and applications of CDA are reviewed, which provides theoretical help for the research and application of CDA.
Collapse
Affiliation(s)
- Bicheng Liang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Wen Song
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 7 Nanhai Road, Qingdao 266000, China.
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 7 Nanhai Road, Qingdao 266000, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 7 Nanhai Road, Qingdao 266000, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 7 Nanhai Road, Qingdao 266000, China
| |
Collapse
|
8
|
Boamah D, Gilmore M, Bourget S, Ghosh A, Hossain M, Vogel J, Cava F, O’Connor T. Peptidoglycan deacetylation controls type IV secretion and the intracellular survival of the bacterial pathogen Legionella pneumophila. Proc Natl Acad Sci U S A 2023; 120:e2119658120. [PMID: 37252954 PMCID: PMC10266036 DOI: 10.1073/pnas.2119658120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/18/2023] [Indexed: 06/01/2023] Open
Abstract
Peptidoglycan is a critical component of the bacteria cell envelope. Remodeling of the peptidoglycan is required for numerous essential cellular processes and has been linked to bacterial pathogenesis. Peptidoglycan deacetylases that remove the acetyl group of the N-acetylglucosamine (NAG) subunit protect bacterial pathogens from immune recognition and digestive enzymes secreted at the site of infection. However, the full extent of this modification on bacterial physiology and pathogenesis is not known. Here, we identify a polysaccharide deacetylase of the intracellular bacterial pathogen Legionella pneumophila and define a two-tiered role for this enzyme in Legionella pathogenesis. First, NAG deacetylation is important for the proper localization and function of the Type IVb secretion system, linking peptidoglycan editing to the modulation of host cellular processes through the action of secreted virulence factors. As a consequence, the Legionella vacuole mis-traffics along the endocytic pathway to the lysosome, preventing the formation of a replication permissive compartment. Second, within the lysosome, the inability to deacetylate the peptidoglycan renders the bacteria more sensitive to lysozyme-mediated degradation, resulting in increased bacterial death. Thus, the ability to deacetylate NAG is important for bacteria to persist within host cells and in turn, Legionella virulence. Collectively, these results expand the function of peptidoglycan deacetylases in bacteria, linking peptidoglycan editing, Type IV secretion, and the intracellular fate of a bacterial pathogen.
Collapse
Affiliation(s)
- David Boamah
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Michael C. Gilmore
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Umeå90187, Sweden
| | - Sarah Bourget
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Anushka Ghosh
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Mohammad J. Hossain
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Joseph P. Vogel
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
| | - Felipe Cava
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Umeå90187, Sweden
| | - Tamara J. O’Connor
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD21205
| |
Collapse
|
9
|
Yin L, Wang Q, Sun J, Mao X. Expression and Molecular Modification of Chitin Deacetylase from Streptomyces bacillaris. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010113. [PMID: 36615307 PMCID: PMC9822392 DOI: 10.3390/molecules28010113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Chitin deacetylase can be used in the green and efficient preparation of chitosan from chitin. Herein, a novel chitin deacetylase SbCDA from Streptomyces bacillaris was heterologously expressed and comprehensively characterized. SbDNA exhibits its highest deacetylation activity at 35 °C and pH 8.0. The enzyme activity is enhanced by Mn2+ and prominently inhibited by Zn2+, SDS, and EDTA. SbCDA showed better deacetylation activity on colloidal chitin, (GlcNAc)5, and (GlcNAc)6 than other forms of the substrate. Molecular modification of SbCDA was conducted based on sequence alignment and homology modeling. A mutant SbCDA63G with higher activity and better temperature stability was obtained. The deacetylation activity of SbCDA63G was increased by 133% compared with the original enzyme, and the optimal reaction temperature increased from 35 to 40 °C. The half-life of SbCDA63G at 40 °C is 15 h, which was 5 h longer than that of the original enzyme. The improved characteristics of the chitin deacetylase SbCDA63G make it a potential candidate to industrially produce chitosan from chitin.
Collapse
Affiliation(s)
- Lili Yin
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Qi Wang
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Jianan Sun
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
- Correspondence: (J.S.); (X.M.); Tel.: +86-532-82031360 (J.S.); +86-532-82032660 (X.M.)
| | - Xiangzhao Mao
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: (J.S.); (X.M.); Tel.: +86-532-82031360 (J.S.); +86-532-82032660 (X.M.)
| |
Collapse
|
10
|
Crystal structure of ChbG from Klebsiella pneumoniae reveals the molecular basis of diacetylchitobiose deacetylation. Commun Biol 2022; 5:862. [PMID: 36002585 PMCID: PMC9402603 DOI: 10.1038/s42003-022-03824-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 08/09/2022] [Indexed: 11/26/2022] Open
Abstract
The chitobiose (chb) operon is involved in the synthesis of chitooligosaccharide and is comprised of a BCARFG gene cluster. ChbG encodes a chitooligosaccharide deacetylase (CDA) which catalyzes the removal of one acetyl group from N,N’-diacetylchitobiose. It is considered a novel type of CDA due to its lack of sequence homology. Although there are various structural studies of CDAs linked to the kinetic properties of the enzyme, the structural information of ChbG is unavailable. In this study, the crystal structure of ChbG from Klebsiella pneumoniae is provided. The molecular basis of deacetylation of diacetylchitobiose by ChbG is determined based on structural analysis, mutagenesis, biophysical analysis, and in silico docking of the substrate, diacetylchitobiose. This study contributes towards a deeper understanding of chitin and chitosan biology, as well as provides a platform to engineer CDA biocatalysts. Structural and functional characterization of Klebsiella pneumonia ChbG (which lacks sequence homology) reveals the mechanism of chitooligosaccharide processing by ChbG.
Collapse
|
11
|
Chakraborty S, Harris JM. At the Crossroads of Salinity and Rhizobium-Legume Symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:540-553. [PMID: 35297650 DOI: 10.1094/mpmi-09-21-0231-fi] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Legume roots interact with soil bacteria rhizobia to develop nodules, de novo symbiotic root organs that host these rhizobia and are mini factories of atmospheric nitrogen fixation. Nodulation is a sophisticated developmental process and is sensitive to several abiotic factors, salinity being one of them. While salinity influences both the free-living partners, symbiosis is more vulnerable than other aspects of plant and microbe physiology, and the symbiotic interaction is strongly impaired even under moderate salinity. In this review, we tease apart the various known components of rhizobium-legume symbiosis and how they interact with salt stress. We focus primarily on the initial stages of symbiosis since we have a greater mechanistic understanding of the interaction at these stages.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Sanhita Chakraborty
- Department of Plant Biology, University of Vermont, Burlington, VT 05405, U.S.A
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, U.S.A
| | - Jeanne M Harris
- Department of Plant Biology, University of Vermont, Burlington, VT 05405, U.S.A
| |
Collapse
|
12
|
Qiu S, Zhou S, Tan Y, Feng J, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. Biodegradation and Prospect of Polysaccharide from Crustaceans. Mar Drugs 2022; 20:310. [PMID: 35621961 PMCID: PMC9146327 DOI: 10.3390/md20050310] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 01/27/2023] Open
Abstract
Marine crustacean waste has not been fully utilized and is a rich source of chitin. Enzymatic degradation has attracted the wide attention of researchers due to its unique biocatalytic ability to protect the environment. Chitosan (CTS) and its derivative chitosan oligosaccharides (COSs) with various biological activities can be obtained by the enzymatic degradation of chitin. Many studies have shown that chitosan and its derivatives, chitosan oligosaccharides (COSs), have beneficial properties, including lipid-lowering, anti-inflammatory and antitumor activities, and have important application value in the medical treatment field, the food industry and agriculture. In this review, we describe the classification, biochemical characteristics and catalytic mechanisms of the major degrading enzymes: chitinases, chitin deacetylases (CDAs) and chitosanases. We also introduced the technology for enzymatic design and modification and proposed the current problems and development trends of enzymatic degradation of chitin polysaccharides. The discussion on the characteristics and catalytic mechanism of chitosan-degrading enzymes will help to develop new types of hydrolases by various biotechnology methods and promote their application in chitosan.
Collapse
Affiliation(s)
- Shuting Qiu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shipeng Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yue Tan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiayao Feng
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China; (Y.B.); (J.H.)
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China; (Y.B.); (J.H.)
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China;
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Science City, Guangzhou 510663, China;
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
13
|
Khokhani D, Carrera Carriel C, Vayla S, Irving TB, Stonoha-Arther C, Keller NP, Ané JM. Deciphering the Chitin Code in Plant Symbiosis, Defense, and Microbial Networks. Annu Rev Microbiol 2021; 75:583-607. [PMID: 34623896 DOI: 10.1146/annurev-micro-051921-114809] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chitin is a structural polymer in many eukaryotes. Many organisms can degrade chitin to defend against chitinous pathogens or use chitin oligomers as food. Beneficial microorganisms like nitrogen-fixing symbiotic rhizobia and mycorrhizal fungi produce chitin-based signal molecules called lipo-chitooligosaccharides (LCOs) and short chitin oligomers to initiate a symbiotic relationship with their compatible hosts and exchange nutrients. A recent study revealed that a broad range of fungi produce LCOs and chitooligosaccharides (COs), suggesting that these signaling molecules are not limited to beneficial microbes. The fungal LCOs also affect fungal growth and development, indicating that the roles of LCOs beyond symbiosis and LCO production may predate mycorrhizal symbiosis. This review describes the diverse structures of chitin; their perception by eukaryotes and prokaryotes; and their roles in symbiotic interactions, defense, and microbe-microbe interactions. We also discuss potential strategies of fungi to synthesize LCOs and their roles in fungi with different lifestyles.
Collapse
Affiliation(s)
- Devanshi Khokhani
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , , .,Current affiliation: Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota 55108, USA;
| | - Cristobal Carrera Carriel
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Shivangi Vayla
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Thomas B Irving
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Christina Stonoha-Arther
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Nancy P Keller
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , , .,Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , , .,Department of Agronomy, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
14
|
Planas A. Peptidoglycan Deacetylases in Bacterial Cell Wall Remodeling and Pathogenesis. Curr Med Chem 2021; 29:1293-1312. [PMID: 34525907 DOI: 10.2174/0929867328666210915113723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 11/22/2022]
Abstract
The bacterial cell wall peptidoglycan (PG) is a dynamic structure that is constantly synthesized, re-modeled and degraded during bacterial division and growth. Post-synthetic modifications modulate the action of endogenous autolysis during PG lysis and remodeling for growth and sporulation, but also they are a mechanism used by pathogenic bacteria to evade the host innate immune system. Modifica-tions of the glycan backbone are limited to the C-2 amine and the C-6 hydroxyl moieties of either Glc-NAc or MurNAc residues. This paper reviews the functional roles and properties of peptidoglycan de-N-acetylases (distinct PG GlcNAc and MurNAc deacetylases) and recent progress through genetic stud-ies and biochemical characterization to elucidate their mechanism of action, 3D structures, substrate specificities and biological functions. Since they are virulence factors in pathogenic bacteria, peptidogly-can deacetylases are potential targets for the design of novel antimicrobial agents.
Collapse
Affiliation(s)
- Antoni Planas
- Laboratory of Biochemistry, Institut Químic de Sarrià. University Ramon Llull, 08017 Barcelona. Spain
| |
Collapse
|
15
|
Hao W, Li K, Ma Y, Li R, Xing R, Yu H, Li P. Preparation and Antioxidant Activity of Chitosan Dimers with Different Sequences. Mar Drugs 2021; 19:md19070366. [PMID: 34201994 PMCID: PMC8305433 DOI: 10.3390/md19070366] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 01/09/2023] Open
Abstract
As a popular marine saccharide, chitooligosaccharides (COS) has been proven to have good antioxidant activity. Its antioxidant effect is closely related to its degree of polymerization, degree of acetylation and sequence. However, the specific structure-activity relationship remains unclear. In this study, three chitosan dimers with different sequences were obtained by the separation and enzymatic method, and the antioxidant activity of all four chitosan dimers were studied. The effect of COS sequence on its antioxidant activity was revealed for the first time. The amino group at the reducing end plays a vital role in scavenging superoxide radicals and in the reducing power of the chitosan dimer. At the same time, we found that the fully deacetylated chitosan dimer DD showed the strongest DPPH scavenging activity. When the amino groups of the chitosan dimer were acetylated, it showed better activity in scavenging hydroxyl radicals. Research on COS sequences opens up a new path for the study of COS, and is more conducive to the investigation of its mechanism.
Collapse
Affiliation(s)
- Wentong Hao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (W.H.); (Y.M.); (R.L.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kecheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (W.H.); (Y.M.); (R.L.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
- Correspondence: (K.L.); (R.X.); Tel.: +86-0532-82898512 (K.L.); +86-0532-82898780 (R.X.)
| | - Yuzhen Ma
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (W.H.); (Y.M.); (R.L.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Rongfeng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (W.H.); (Y.M.); (R.L.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (W.H.); (Y.M.); (R.L.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
- Correspondence: (K.L.); (R.X.); Tel.: +86-0532-82898512 (K.L.); +86-0532-82898780 (R.X.)
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (W.H.); (Y.M.); (R.L.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (W.H.); (Y.M.); (R.L.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
16
|
Rahimlou S, Bahram M, Tedersoo L. Phylogenomics reveals the evolution of root nodulating alpha- and beta-Proteobacteria (rhizobia). Microbiol Res 2021; 250:126788. [PMID: 34051611 DOI: 10.1016/j.micres.2021.126788] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/05/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
The symbiosis between legumes and nodulating Proteobacteria (so-called rhizobia) contributes greatly to nitrogen fixation in terrestrial ecosystems. Root nodulating Proteobacteria produce nodulation (Nod) factors during the initiation of rhizobial nodule organogenesis on the roots of legumes. Here, we screened the Nod factor production capacity of the previously reported nodule inducing Proteobacteria genera using their genome sequences and assessed the evolutionary history of symbiosis based on phylogenomics. Our analysis revealed 12 genera as potentially Nod factor producing taxa exclusively from alpha- and beta-Proteobacteria. Based on molecular clock analysis, we estimate that rhizobial nitrogen-fixing symbiosis appeared for the first time about 51 Mya (Eocene epoch) in Rhizobiaceae, and it was laterally transferred to multiple symbiotic taxa in alpha- and beta-Proteobacteria. Coevolutionary tests conducted for measuring the phylogenetic congruence between hosts and symbionts revealed only weak topological similarity between legumes and their bacterial symbionts. We conclude that frequent lateral transfer of symbiotic genes, facultative symbiotic nature of rhizobia, differential evolutionary processes of chromosome versus plasmids, and complex multispecies coevolutionary processes have shaped the rhizobia-host associations.
Collapse
Affiliation(s)
- Saleh Rahimlou
- Institute of Ecology and Earth Sciences, University of Tartu, 14A Ravila, 50411, Tartu, Estonia.
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls Väg 16, 756 51, Uppsala, Sweden
| | - Leho Tedersoo
- Institute of Ecology and Earth Sciences, University of Tartu, 14A Ravila, 50411, Tartu, Estonia; Natural History Museum, University of Tartu, 46 Vanemuise, 51003 Tartu, Estonia
| |
Collapse
|
17
|
Li Y, Liu L, Yang J, Yang Q. An overall look at insect chitin deacetylases: Promising molecular targets for developing green pesticides. JOURNAL OF PESTICIDE SCIENCE 2021; 46:43-52. [PMID: 33746545 PMCID: PMC7953033 DOI: 10.1584/jpestics.d20-085] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Chitin deacetylase (CDA) is a key enzyme involved in the modification of chitin and plays critical roles in molting and pupation, which catalyzes the removal of acetyl groups from N-acetyl-D-glucosamine residues in chitin to form chitosan and release acetic acid. Defects in the CDA genes or their expression may lead to stunted insect development and even death. Therefore, CDA can be used as a potential pest control target. However, there are no effective pesticides known to target CDA. Although there has been some exciting research progress on bacterial or fungal CDAs, insect CDA characteristics are less understood. This review summarizes the current understanding of insect CDAs, especially very recent advances in our understanding of crystal structures and the catalytic mechanism. Progress in developing small-molecule CDA inhibitors is also summarized. We hope the information included in this review will help facilitate new pesticide development through a novel action mode, such as targeting CDA.
Collapse
Affiliation(s)
- Yingchen Li
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Lin Liu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Jun Yang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Qing Yang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
18
|
Higdon SM, Huang BC, Bennett AB, Weimer BC. Identification of Nitrogen Fixation Genes in Lactococcus Isolated from Maize Using Population Genomics and Machine Learning. Microorganisms 2020; 8:microorganisms8122043. [PMID: 33419343 PMCID: PMC7768417 DOI: 10.3390/microorganisms8122043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Sierra Mixe maize is a landrace variety from Oaxaca, Mexico, that utilizes nitrogen derived from the atmosphere via an undefined nitrogen fixation mechanism. The diazotrophic microbiota associated with the plant’s mucilaginous aerial root exudate composed of complex carbohydrates was previously identified and characterized by our group where we found 23 lactococci capable of biological nitrogen fixation (BNF) without containing any of the proposed essential genes for this trait (nifHDKENB). To determine the genes in Lactococcus associated with this phenotype, we selected 70 lactococci from the dairy industry that are not known to be diazotrophic to conduct a comparative population genomic analysis. This showed that the diazotrophic lactococcal genomes were distinctly different from the dairy isolates. Examining the pangenome followed by genome-wide association study and machine learning identified genes with the functions needed for BNF in the maize isolates that were absent from the dairy isolates. Many of the putative genes received an ‘unknown’ annotation, which led to the domain analysis of the 135 homologs. This revealed genes with molecular functions needed for BNF, including mucilage carbohydrate catabolism, glycan-mediated host adhesion, iron/siderophore utilization, and oxidation/reduction control. This is the first report of this pathway in this organism to underpin BNF. Consequently, we proposed a model needed for BNF in lactococci that plausibly accounts for BNF in the absence of the nif operon in this organism.
Collapse
Affiliation(s)
- Shawn M. Higdon
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (S.M.H.); (A.B.B.)
| | - Bihua C. Huang
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
- 100 K Pathogen Genome Project, University of California, Davis, CA 95616, USA
| | - Alan B. Bennett
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (S.M.H.); (A.B.B.)
| | - Bart C. Weimer
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
- 100 K Pathogen Genome Project, University of California, Davis, CA 95616, USA
- Correspondence:
| |
Collapse
|
19
|
Preparation of Defined Chitosan Oligosaccharides Using Chitin Deacetylases. Int J Mol Sci 2020; 21:ijms21217835. [PMID: 33105791 PMCID: PMC7660110 DOI: 10.3390/ijms21217835] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
During the past decade, detailed studies using well-defined 'second generation' chitosans have amply proved that both their material properties and their biological activities are dependent on their molecular structure, in particular on their degree of polymerisation (DP) and their fraction of acetylation (FA). Recent evidence suggests that the pattern of acetylation (PA), i.e., the sequence of acetylated and non-acetylated residues along the linear polymer, is equally important, but chitosan polymers with defined, non-random PA are not yet available. One way in which the PA will influence the bioactivities of chitosan polymers is their enzymatic degradation by sequence-dependent chitosan hydrolases present in the target tissues. The PA of the polymer substrates in conjunction with the subsite preferences of the hydrolases determine the type of oligomeric products and the kinetics of their production and further degradation. Thus, the bioactivities of chitosan polymers will at least in part be carried by the chitosan oligomers produced from them, possibly through their interaction with pattern recognition receptors in target cells. In contrast to polymers, partially acetylated chitosan oligosaccharides (paCOS) can be fully characterised concerning their DP, FA, and PA, and chitin deacetylases (CDAs) with different and known regio-selectivities are currently emerging as efficient tools to produce fully defined paCOS in quantities sufficient to probe their bioactivities. In this review, we describe the current state of the art on how CDAs can be used in forward and reverse mode to produce all of the possible paCOS dimers, trimers, and tetramers, most of the pentamers and many of the hexamers. In addition, we describe the biotechnological production of the required fully acetylated and fully deacetylated oligomer substrates, as well as the purification and characterisation of the paCOS products.
Collapse
|
20
|
Pascual S, Planas A. Carbohydrate de-N-acetylases acting on structural polysaccharides and glycoconjugates. Curr Opin Chem Biol 2020; 61:9-18. [PMID: 33075728 DOI: 10.1016/j.cbpa.2020.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022]
Abstract
Deacetylation of N-acetylhexosamine residues in structural polysaccharides and glycoconjugates is catalyzed by different families of carbohydrate esterases that, despite different structural folds, share a common metal-assisted acid/base mechanism with the metal cation coordinated with a conserved Asp-His-His triad. These enzymes serve diverse biological functions in the modification of cell-surface polysaccharides in bacteria and fungi as well as in the metabolism of hexosamines in the biosynthesis of cellular glycoconjugates. Focusing on carbohydrate de-N-acetylases, this article summarizes the background of the different families from a structural and functional viewpoint and covers advances in the characterization of novel enzymes over the last 2-3 years. Current research is addressed to the identification of new deacetylases and unravel their biological functions as they are candidate targets for the design of antimicrobials against pathogenic bacteria and fungi. Likewise, some families are also used as biocatalysts for the production of defined glycostructures with diverse applications.
Collapse
Affiliation(s)
- Sergi Pascual
- Laboratory of Biochemistry, Institut Químic de Sarrià, University Ramon Llull, 08017, Barcelona, Spain
| | - Antoni Planas
- Laboratory of Biochemistry, Institut Químic de Sarrià, University Ramon Llull, 08017, Barcelona, Spain.
| |
Collapse
|
21
|
Review: Advances in preparation of chitooligosaccharides with heterogeneous sequences and their bioactivity. Carbohydr Polym 2020; 252:117206. [PMID: 33183640 DOI: 10.1016/j.carbpol.2020.117206] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/18/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
Chitooligosaccharides has attracted increasing attention due to their diverse bioactivities and potential application. Previous studies on the bioactivity of chitooligosaccharides were mostly carried out using a mixture. The structure-function relationship of chitooligosaccharides is not clear. Recently, it is confirmed that chitooligosaccharides with different degrees of polymerization play different roles in many bioactivities. However, heterogeneous chitooligosaccharides with a single degree of polymerization is still a mixture of many uncertain sequences and it is difficult to determine which structure is responsible for biological effects. Therefore, an interesting and challenging field of studying chitooligosaccharides with heterogeneous sequences has emerged. Herein, we reviewed the current methods for preparing heterogeneous chitooligosaccharides, including chemical synthesis, separation techniques and enzymatic methods. Advances in the bioactivities of chitooligosaccharides with heterogeneous sequences are also reviewed.
Collapse
|
22
|
Cord-Landwehr S, Richter C, Wattjes J, Sreekumar S, Singh R, Basa S, El Gueddari NE, Moerschbacher BM. Patterns matter part 2: Chitosan oligomers with defined patterns of acetylation. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104577] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Ma Q, Gao X, Bi X, Tu L, Xia M, Shen Y, Wang M. Isolation, characterisation, and genome sequencing of Rhodococcus equi: a novel strain producing chitin deacetylase. Sci Rep 2020; 10:4329. [PMID: 32152368 PMCID: PMC7062688 DOI: 10.1038/s41598-020-61349-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/24/2020] [Indexed: 11/19/2022] Open
Abstract
Chitin deacetylase (CDA) can hydrolyse the acetamido group of chitin polymers to produce chitosans, which are used in various fields including the biomedical and pharmaceutical industries, food production, agriculture, and water treatment. CDA represents a more environmentally-friendly and easier to control alternative to the chemical methods currently utilised to produce chitosans from chitin; however, the majority of identified CDAs display activity toward low-molecular-weight oligomers and are essentially inactive toward polymeric chitin or chitosans. Therefore, it is important to identify novel CDAs with activity toward polymeric chitin and chitosans. In this study, we isolated the bacterium Rhodococcus equi F6 from a soil sample and showed that it expresses a novel CDA (ReCDA), whose activity toward 4-nitroacetanilide reached 19.20 U/mL/h during fermentation and was able to deacetylate polymeric chitin, colloidal chitin, glycol-chitin, and chitosan. Whole genome sequencing revealed that ReCDA is unique to the R. equi F6 genome, while phylogenetic analysis indicated that ReCDA is evolutionarily distant from other CDAs. In conclusion, ReCDA isolated from the R. equi F6 strain expands the known repertoire of CDAs and could be used to deacetylate polymeric chitosans and chitin in industrial applications.
Collapse
Affiliation(s)
- Qinyuan Ma
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
| | - Xiuzhen Gao
- School of Life Science, Shandong University of Technology, Zibo, 255049, China
| | - Xinyu Bi
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
| | - Linna Tu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
| | - Menglei Xia
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
| | - Yanbing Shen
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China.
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China.
| |
Collapse
|
24
|
Hembach L, Bonin M, Gorzelanny C, Moerschbacher BM. Unique subsite specificity and potential natural function of a chitosan deacetylase from the human pathogen Cryptococcus neoformans. Proc Natl Acad Sci U S A 2020; 117:3551-3559. [PMID: 32015121 PMCID: PMC7035615 DOI: 10.1073/pnas.1915798117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that infects ∼280,000 people every year, causing >180,000 deaths. The human immune system recognizes chitin as one of the major cell-wall components of invading fungi, but C. neoformans can circumvent this immunosurveillance mechanism by instead exposing chitosan, the partly or fully deacetylated form of chitin. The natural production of chitosans involves the sequential action of chitin synthases (CHSs) and chitin deacetylases (CDAs). C. neoformans expresses four putative CDAs, three of which have been confirmed as functional enzymes that act on chitin in the cell wall. The fourth (CnCda4/Fpd1) is a secreted enzyme with exceptional specificity for d-glucosamine at its -1 subsite, thus preferring chitosan over chitin as a substrate. We used site-specific mutagenesis to reduce the subsite specificity of CnCda4 by converting an atypical isoleucine residue in a flexible loop region to the bulkier or charged residues tyrosine, histidine, and glutamic acid. We also investigated the effect of CnCda4 deacetylation products on human peripheral blood-derived macrophages, leading to a model explaining the function of CnCda4 during infection. We propose that CnCda4 is used for the further deacetylation of chitosans already exposed on the C. neoformans cell wall (originally produced by CnChs3 and CnCda1 to 3) or released from the cell wall as elicitors by human chitinases, thus making the fungus less susceptible to host immunosurveillance. The absence of CnCda4 during infection could therefore promote the faster recognition and elimination of this pathogen.
Collapse
Affiliation(s)
- Lea Hembach
- Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany
| | - Martin Bonin
- Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany
| | - Christian Gorzelanny
- Experimental Dermatology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Bruno M Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany;
| |
Collapse
|
25
|
Adaikpoh BI, Akbar S, Albataineh H, Misra SK, Sharp JS, Stevens DC. Myxobacterial Response to Methyljasmonate Exposure Indicates Contribution to Plant Recruitment of Micropredators. Front Microbiol 2020; 11:34. [PMID: 32047489 PMCID: PMC6997564 DOI: 10.3389/fmicb.2020.00034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/09/2020] [Indexed: 11/25/2022] Open
Abstract
Chemical exchanges between plants and microbes within rhizobiomes are critical to the development of community structure. Volatile root exudates such as the phytohormone methyljasmonate (MeJA) contribute to various plant stress responses and have been implicated to play a role in the maintenance of microbial communities. Myxobacteria are competent predators of plant pathogens and are generally considered beneficial to rhizobiomes. While plant recruitment of myxobacteria to stave off pathogens has been suggested, no involved chemical signaling processes are known. Herein we expose predatory myxobacteria to MeJA and employ untargeted mass spectrometry, motility assays, and RNA sequencing to monitor changes in features associated with predation such as specialized metabolism, swarm expansion, and production of lytic enzymes. From a panel of four myxobacteria, we observe the most robust metabolic response from plant-associated Archangium sp. strain Cb G35 with 10 μM MeJA impacting the production of at least 300 metabolites and inducing a ≥ fourfold change in transcription for 56 genes. We also observe that MeJA induces A. sp. motility supporting plant recruitment of a subset of the investigated micropredators. Provided the varying responses to MeJA exposure, our observations indicate that MeJA contributes to the recruitment of select predatory myxobacteria suggesting further efforts are required to explore the microbial impact of plant exudates associated with biotic stress.
Collapse
Affiliation(s)
| | | | | | | | | | - D. Cole Stevens
- Department of BioMolecular Sciences, The University of Mississippi, Oxford, MS, United States
| |
Collapse
|
26
|
Basa S, Nampally M, Honorato T, Das SN, Podile AR, El Gueddari NE, Moerschbacher BM. The Pattern of Acetylation Defines the Priming Activity of Chitosan Tetramers. J Am Chem Soc 2020; 142:1975-1986. [PMID: 31895979 DOI: 10.1021/jacs.9b11466] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The biological activity of chitosans depends on their degree of polymerization (DP) and degree of acetylation (DA). However, information could also be carried by the pattern of acetylation (PA): the sequence of β-1,4-linked glucosamine (deacetylated/D) and N-acetylglucosamine (acetylated/A) units. To address this hypothesis, we prepared partially acetylated chitosan oligosaccharides from a chitosan polymer (DA = 35%, DPw = 905) using recombinant chitosan hydrolases with distinct substrate and cleavage specificities. The mixtures were separated into fractions DP4-DP12, which were tested for elicitor and priming activities in rice cells. We confirmed that both activities were influenced by DP, but also observed apparent DA-dependent priming activity, with the ADDD+DADD fraction proving remarkably effective. We then compared all four monoacetylated tetramers prepared using different chitin deacetylases and observed significant differences in priming activity. This demonstrates for the first time that PA influences the biological activity of chitosans, which can now be recognized as bona fide information-carrying molecules.
Collapse
Affiliation(s)
- Sven Basa
- University of Münster , Institute for Biology and Biotechnology of Plants , Schlossplatz 8 , 48143 Münster , Germany
| | - Malathi Nampally
- University of Münster , Institute for Biology and Biotechnology of Plants , Schlossplatz 8 , 48143 Münster , Germany
| | - Talita Honorato
- University of Münster , Institute for Biology and Biotechnology of Plants , Schlossplatz 8 , 48143 Münster , Germany
| | - Subha N Das
- University of Münster , Institute for Biology and Biotechnology of Plants , Schlossplatz 8 , 48143 Münster , Germany.,University of Hyderabad , Department of Plant Sciences, School of Life Sciences , Hyderabad , India
| | - Appa R Podile
- University of Hyderabad , Department of Plant Sciences, School of Life Sciences , Hyderabad , India
| | - Nour E El Gueddari
- University of Münster , Institute for Biology and Biotechnology of Plants , Schlossplatz 8 , 48143 Münster , Germany
| | - Bruno M Moerschbacher
- University of Münster , Institute for Biology and Biotechnology of Plants , Schlossplatz 8 , 48143 Münster , Germany
| |
Collapse
|
27
|
Grifoll-Romero L, Sainz-Polo MA, Albesa-Jové D, Guerin ME, Biarnés X, Planas A. Structure-function relationships underlying the dual N-acetylmuramic and N-acetylglucosamine specificities of the bacterial peptidoglycan deacetylase PdaC. J Biol Chem 2019; 294:19066-19080. [PMID: 31690626 DOI: 10.1074/jbc.ra119.009510] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 11/01/2019] [Indexed: 01/30/2023] Open
Abstract
Bacillus subtilis PdaC (BsPdaC) is a membrane-bound, multidomain peptidoglycan N-deacetylase acting on N-acetylmuramic acid (MurNAc) residues and conferring lysozyme resistance to modified cell wall peptidoglycans. BsPdaC contains a C-terminal family 4 carbohydrate esterase (CE4) catalytic domain, but unlike other MurNAc deacetylases, BsPdaC also has GlcNAc deacetylase activity on chitooligosaccharides (COSs), characteristic of chitin deacetylases. To uncover the molecular basis of this dual activity, here we determined the X-ray structure of the BsPdaC CE4 domain at 1.54 Å resolution and analyzed its mode of action on COS substrates. We found that the minimal substrate is GlcNAc3 and that activity increases with the degree of glycan polymerization. COS deacetylation kinetics revealed that BsPdaC operates by a multiple-chain mechanism starting at the internal GlcNAc units and leading to deacetylation of all but the reducing-end GlcNAc residues. Interestingly, BsPdaC shares higher sequence similarity with the peptidoglycan GlcNAc deacetylase SpPgdaA than with other MurNAc deacetylases. Therefore, we used ligand-docking simulations to analyze the dual GlcNAc- and MurNAc-binding specificities of BsPdaC and compared them with those of SpPgdA and BsPdaA, representing peptidoglycan deacetylases highly specific for GlcNAc or MurNAc residues, respectively. BsPdaC retains the conserved Asp-His-His metal-binding triad characteristic of CE4 enzymes acting on GlcNAc residues, differing from MurNAc deacetylases that lack the metal-coordinating Asp residue. BsPdaC contains short loops similar to those in SpPgdA, resulting in an open binding cleft that can accommodate polymeric substrates. We propose that PdaC is the first member of a new subclass of peptidoglycan MurNAc deacetylases.
Collapse
Affiliation(s)
- Laia Grifoll-Romero
- Laboratory of Biochemistry, Institut Químic de Sarrià, University Ramon Llull, 08017 Barcelona, Spain
| | - María Angela Sainz-Polo
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Technology Park, Ed. 801A, 48160 Derio, Spain
| | - David Albesa-Jové
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Technology Park, Ed. 801A, 48160 Derio, Spain.,Basque Foundation for Science (IKERBASQUE), 48011 Bilbao, Spain
| | - Marcelo E Guerin
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Technology Park, Ed. 801A, 48160 Derio, Spain.,Basque Foundation for Science (IKERBASQUE), 48011 Bilbao, Spain
| | - Xevi Biarnés
- Laboratory of Biochemistry, Institut Químic de Sarrià, University Ramon Llull, 08017 Barcelona, Spain
| | - Antoni Planas
- Laboratory of Biochemistry, Institut Químic de Sarrià, University Ramon Llull, 08017 Barcelona, Spain
| |
Collapse
|
28
|
Kaczmarek MB, Struszczyk-Swita K, Li X, Szczęsna-Antczak M, Daroch M. Enzymatic Modifications of Chitin, Chitosan, and Chitooligosaccharides. Front Bioeng Biotechnol 2019; 7:243. [PMID: 31612131 PMCID: PMC6776590 DOI: 10.3389/fbioe.2019.00243] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/12/2019] [Indexed: 12/31/2022] Open
Abstract
Chitin and its N-deacetylated derivative chitosan are two biological polymers that have found numerous applications in recent years, but their further deployment suffers from limitations in obtaining a defined structure of the polymers using traditional conversion methods. The disadvantages of the currently used industrial methods of chitosan manufacturing and the increasing demand for a broad range of novel chitosan oligosaccharides (COS) with a fully defined architecture increase interest in chitin and chitosan-modifying enzymes. Enzymes such as chitinases, chitosanases, chitin deacetylases, and recently discovered lytic polysaccharide monooxygenases had attracted considerable interest in recent years. These proteins are already useful tools toward the biotechnological transformation of chitin into chitosan and chitooligosaccharides, especially when a controlled non-degradative and well-defined process is required. This review describes traditional and novel enzymatic methods of modification of chitin and its derivatives. Recent advances in chitin processing, discovery of increasing number of new, well-characterized enzymes and development of genetic engineering methods result in rapid expansion of the field. Enzymatic modification of chitin and chitosan may soon become competitive to conventional conversion methods.
Collapse
Affiliation(s)
- Michal Benedykt Kaczmarek
- Institute of Technical Biochemistry, Lodz University of Technology, Łódź, Poland.,School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | | | - Xingkang Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | | | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
29
|
Schmitz C, Auza LG, Koberidze D, Rasche S, Fischer R, Bortesi L. Conversion of Chitin to Defined Chitosan Oligomers: Current Status and Future Prospects. Mar Drugs 2019; 17:E452. [PMID: 31374920 PMCID: PMC6723438 DOI: 10.3390/md17080452] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
Chitin is an abundant polysaccharide primarily produced as an industrial waste stream during the processing of crustaceans. Despite the limited applications of chitin, there is interest from the medical, agrochemical, food and cosmetic industries because it can be converted into chitosan and partially acetylated chitosan oligomers (COS). These molecules have various useful properties, including antimicrobial and anti-inflammatory activities. The chemical production of COS is environmentally hazardous and it is difficult to control the degree of polymerization and acetylation. These issues can be addressed by using specific enzymes, particularly chitinases, chitosanases and chitin deacetylases, which yield better-defined chitosan and COS mixtures. In this review, we summarize recent chemical and enzymatic approaches for the production of chitosan and COS. We also discuss a design-of-experiments approach for process optimization that could help to enhance enzymatic processes in terms of product yield and product characteristics. This may allow the production of novel COS structures with unique functional properties to further expand the applications of these diverse bioactive molecules.
Collapse
Affiliation(s)
- Christian Schmitz
- Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands.
| | - Lilian González Auza
- Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - David Koberidze
- Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Stefan Rasche
- Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
- Department Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074 Aachen, Germany
| | - Rainer Fischer
- Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
- Indiana Bioscience Research Institute, 1345 W 16th St #300, Indianapolis, IN 46202, USA
| | - Luisa Bortesi
- Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| |
Collapse
|
30
|
Wattjes J, Niehues A, Cord-Landwehr S, Hoßbach J, David L, Delair T, Moerschbacher BM. Enzymatic Production and Enzymatic-Mass Spectrometric Fingerprinting Analysis of Chitosan Polymers with Different Nonrandom Patterns of Acetylation. J Am Chem Soc 2019; 141:3137-3145. [DOI: 10.1021/jacs.8b12561] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jasper Wattjes
- Institute for Biology and Biotechnology of Plants, University of Muenster, Schlossplatz 8, 48143 Münster, Germany
| | - Anna Niehues
- Institute for Biology and Biotechnology of Plants, University of Muenster, Schlossplatz 8, 48143 Münster, Germany
| | - Stefan Cord-Landwehr
- Institute for Biology and Biotechnology of Plants, University of Muenster, Schlossplatz 8, 48143 Münster, Germany
| | - Janina Hoßbach
- Institute for Biology and Biotechnology of Plants, University of Muenster, Schlossplatz 8, 48143 Münster, Germany
| | - Laurent David
- Laboratoire Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223, Université Lyon, Université Claude Bernard Lyon 1, 15 bd A Latarjet, 69622 Villeurbanne, France
| | - Thierry Delair
- Laboratoire Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223, Université Lyon, Université Claude Bernard Lyon 1, 15 bd A Latarjet, 69622 Villeurbanne, France
| | - Bruno M. Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Muenster, Schlossplatz 8, 48143 Münster, Germany
| |
Collapse
|
31
|
Zhu XY, Zhao Y, Zhang HD, Wang WX, Cong HH, Yin H. Characterization of the Specific Mode of Action of a Chitin Deacetylase and Separation of the Partially Acetylated Chitosan Oligosaccharides. Mar Drugs 2019; 17:E74. [PMID: 30678277 PMCID: PMC6409515 DOI: 10.3390/md17020074] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 01/31/2023] Open
Abstract
Partially acetylated chitosan oligosaccharides (COS), which consists of N-acetylglucosamine (GlcNAc) and glucosamine (GlcN) residues, is a structurally complex biopolymer with a variety of biological activities. Therefore, it is challenging to elucidate acetylation patterns and the molecular structure-function relationship of COS. Herein, the detailed deacetylation pattern of chitin deacetylase from Saccharomyces cerevisiae, ScCDA₂, was studied. Which solves the randomization of acetylation patterns during COS produced by chemical. ScCDA₂ also exhibits about 8% and 20% deacetylation activity on crystalline chitin and colloid chitin, respectively. Besides, a method for separating and detecting partially acetylated chitosan oligosaccharides by high performance liquid chromatography and electrospray ionization mass spectrometry (HPLC-ESI-MS) system has been developed, which is fast and convenient, and can be monitored online. Mass spectrometry sequencing revealed that ScCDA₂ produced COS with specific acetylation patterns of DAAA, ADAA, AADA, DDAA, DADA, ADDA and DDDA, respectively. ScCDA₂ does not deacetylate the GlcNAc unit that is closest to the reducing end of the oligomer furthermore ScCDA₂ has a multiple-attack deacetylation mechanism on chitin oligosaccharides. This specific mode of action significantly enriches the existing limited library of chitin deacetylase deacetylation patterns. This fully defined COS may be used in the study of COS structure and function.
Collapse
Affiliation(s)
- Xian-Yu Zhu
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China.
| | - Yong Zhao
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Huai-Dong Zhang
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- Engineering Research Center of Industrial Microbiology, Ministry of Education; College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Wen-Xia Wang
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Hai-Hua Cong
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China.
| | - Heng Yin
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
32
|
Chitin Prevalence and Function in Bacteria, Fungi and Protists. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1142:19-59. [DOI: 10.1007/978-981-13-7318-3_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Chitin Deacetylases: Structures, Specificities, and Biotech Applications. Polymers (Basel) 2018; 10:polym10040352. [PMID: 30966387 PMCID: PMC6415152 DOI: 10.3390/polym10040352] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 12/20/2022] Open
Abstract
Depolymerization and de-N-acetylation of chitin by chitinases and deacetylases generates a series of derivatives including chitosans and chitooligosaccharides (COS), which are involved in molecular recognition events such as modulation of cell signaling and morphogenesis, immune responses, and host-pathogen interactions. Chitosans and COS are also attractive scaffolds for the development of bionanomaterials for drug/gene delivery and tissue engineering applications. Most of the biological activities associated with COS seem to be largely dependent not only on the degree of polymerization but also on the acetylation pattern, which defines the charge density and distribution of GlcNAc and GlcNH₂ moieties in chitosans and COS. Chitin de-N-acetylases (CDAs) catalyze the hydrolysis of the acetamido group in GlcNAc residues of chitin, chitosan, and COS. The deacetylation patterns are diverse, some CDAs being specific for single positions, others showing multiple attack, processivity or random actions. This review summarizes the current knowledge on substrate specificity of bacterial and fungal CDAs, focusing on the structural and molecular aspects of their modes of action. Understanding the structural determinants of specificity will not only contribute to unravelling structure-function relationships, but also to use and engineer CDAs as biocatalysts for the production of tailor-made chitosans and COS for a growing number of applications.
Collapse
|
34
|
Aranda-Martinez A, Grifoll-Romero L, Aragunde H, Sancho-Vaello E, Biarnés X, Lopez-Llorca LV, Planas A. Expression and specificity of a chitin deacetylase from the nematophagous fungus Pochonia chlamydosporia potentially involved in pathogenicity. Sci Rep 2018; 8:2170. [PMID: 29391415 PMCID: PMC5794925 DOI: 10.1038/s41598-018-19902-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/10/2018] [Indexed: 11/21/2022] Open
Abstract
Chitin deacetylases (CDAs) act on chitin polymers and low molecular weight oligomers producing chitosans and chitosan oligosaccharides. Structurally-defined, partially deacetylated chitooligosaccharides produced by enzymatic methods are of current interest as bioactive molecules for a variety of applications. Among Pochonia chlamydosporia (Pc) annotated CDAs, gene pc_2566 was predicted to encode for an extracellular CE4 deacetylase with two CBM18 chitin binding modules. Chitosan formation during nematode egg infection by this nematophagous fungus suggests a role for their CDAs in pathogenicity. The P. chlamydosporia CDA catalytic domain (PcCDA) was expressed in E. coli BL21, recovered from inclusion bodies, and purified by affinity chromatography. It displays deacetylase activity on chitooligosaccharides with a degree of polymerization (DP) larger than 3, generating mono- and di-deacetylated products with a pattern different from those of closely related fungal CDAs. This is the first report of a CDA from a nematophagous fungus. On a DP5 substrate, PcCDA gave a single mono-deacetylated product in the penultimate position from the non-reducing end (ADAAA) which was then transformed into a di-deacetylated product (ADDAA). This novel deacetylation pattern expands our toolbox of specific CDAs for biotechnological applications, and will provide further insights into the determinants of substrate specificity in this family of enzymes.
Collapse
Affiliation(s)
- Almudena Aranda-Martinez
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies Ramón Margalef, University of Alicante, PO box 99, 03080, Alicante, Spain
| | - Laia Grifoll-Romero
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| | - Hugo Aragunde
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| | - Enea Sancho-Vaello
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| | - Xevi Biarnés
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| | - Luis Vicente Lopez-Llorca
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies Ramón Margalef, University of Alicante, PO box 99, 03080, Alicante, Spain
| | - Antoni Planas
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain.
| |
Collapse
|
35
|
Substrate Recognition and Specificity of Chitin Deacetylases and Related Family 4 Carbohydrate Esterases. Int J Mol Sci 2018; 19:ijms19020412. [PMID: 29385775 PMCID: PMC5855634 DOI: 10.3390/ijms19020412] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 12/27/2022] Open
Abstract
Carbohydrate esterases family 4 (CE4 enzymes) includes chitin and peptidoglycan deacetylases, acetylxylan esterases, and poly-N-acetylglucosamine deacetylases that act on structural polysaccharides, altering their physicochemical properties, and participating in diverse biological functions. Chitin and peptidoglycan deacetylases are not only involved in cell wall morphogenesis and remodeling in fungi and bacteria, but they are also used by pathogenic microorganisms to evade host defense mechanisms. Likewise, biofilm formation in bacteria requires partial deacetylation of extracellular polysaccharides mediated by poly-N-acetylglucosamine deacetylases. Such biological functions make these enzymes attractive targets for drug design against pathogenic fungi and bacteria. On the other side, acetylxylan esterases deacetylate plant cell wall complex xylans to make them accessible to hydrolases, making them attractive biocatalysts for biomass utilization. CE4 family members are metal-dependent hydrolases. They are highly specific for their particular substrates, and show diverse modes of action, exhibiting either processive, multiple attack, or patterned deacetylation mechanisms. However, the determinants of substrate specificity remain poorly understood. Here, we review the current knowledge on the structure, activity, and specificity of CE4 enzymes, focusing on chitin deacetylases and related enzymes active on N-acetylglucosamine-containing oligo and polysaccharides.
Collapse
|
36
|
Hembach L, Cord-Landwehr S, Moerschbacher BM. Enzymatic production of all fourteen partially acetylated chitosan tetramers using different chitin deacetylases acting in forward or reverse mode. Sci Rep 2017; 7:17692. [PMID: 29255209 PMCID: PMC5735187 DOI: 10.1038/s41598-017-17950-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/30/2017] [Indexed: 11/16/2022] Open
Abstract
Some of the most abundant biomolecules on earth are the polysaccharides chitin and chitosan of which especially the oligomeric fractions have been extensively studied regarding their biological activities. However, most of these studies have not been able to assess the activity of a single, defined, partially acetylated chitosan oligosaccharide (paCOS). Instead, they have typically analyzed chemically produced, rather poorly characterized mixtures, at best with a single, defined degree of polymerization (DP) and a known average degree of acetylation (DA), as no pure and well-defined paCOS are currently available. We here present data on the enzymatic production of all 14 possible partially acetylated chitosan tetramers, out of which four were purified (>95%) regarding DP, DA, and pattern of acetylation (PA). We used bacterial, fungal, and viral chitin deacetylases (CDAs), either to partially deacetylate the chitin tetramer; or to partially re-N-acetylate the glucosamine tetramer. Both reactions proceeded with surprisingly strong and enzyme-specific regio-specificity. These pure and fully defined chitosans will allow to investigate the particular influence of DP, DA, and PA on the biological activities of chitosans, improving our basic understanding of their modes of action, e.g. their molecular perception by patter recognition receptors, but also increasing their usefulness in industrial applications.
Collapse
Affiliation(s)
- Lea Hembach
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Stefan Cord-Landwehr
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Bruno M Moerschbacher
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143, Münster, Germany.
| |
Collapse
|
37
|
High yield production of Rhizobium NodB chitin deacetylase and its use for in vitro synthesis of lipo-chitinoligosaccharide precursors. Carbohydr Res 2017; 442:25-30. [PMID: 28284052 PMCID: PMC5380657 DOI: 10.1016/j.carres.2017.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/24/2017] [Accepted: 02/24/2017] [Indexed: 11/22/2022]
Abstract
Lipo-chitinoligosaccharides (LCOs) are key molecules for the establishment of plant-microorganisms symbiosis. Interactions of leguminous crops with nitrogen-fixing rhizobial bacteria involve Nod factors, while Myc-LCOs improve the association of most plants with arbuscular mycorrhizal fungi. Both Nod factors and Myc-LCOs are composed of a chitinoligosaccharide fatty acylated at the non-reducing end accompanied with various substituting groups. One straightforward way to access LCOs is starting from chitin hydrolysate, an abundant polysaccharide found in crustacean shells, followed by regioselective enzymatic cleavage of an acetyl group from the non-reducing end of chitin tetra- or pentaose, and subsequent chemical introduction of N-acyl group. In the present work, we describe the in vitro synthesis of LCO precursors on preparative scale. To this end, Sinorhizobium meliloti chitin deacetylase NodB was produced in high yield in E. coli as a thioredoxin fusion protein. The recombinant enzyme was expressed in soluble and catalytically active form and used as an efficient biocatalyst for N-deacetylation of chitin tetra- and pentaose. Rhizobium NodB deacetylase is expressed and purified in active form in E. coli. Yield optimization gives up to 100 mg of purified deacetylase from 1 L of culture medium. In vitro synthesis of lipo-chitinoligosaccharides precursors is performed on preparative scale.
Collapse
|
38
|
Plant nodulation inducers enhance horizontal gene transfer of Azorhizobium caulinodans symbiosis island. Proc Natl Acad Sci U S A 2016; 113:13875-13880. [PMID: 27849579 DOI: 10.1073/pnas.1615121113] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Horizontal gene transfer (HGT) of genomic islands is a driving force of bacterial evolution. Many pathogens and symbionts use this mechanism to spread mobile genetic elements that carry genes important for interaction with their eukaryotic hosts. However, the role of the host in this process remains unclear. Here, we show that plant compounds inducing the nodulation process in the rhizobium-legume mutualistic symbiosis also enhance the transfer of symbiosis islands. We demonstrate that the symbiosis island of the Sesbania rostrata symbiont, Azorhizobium caulinodans, is an 87.6-kb integrative and conjugative element (ICEAc) that is able to excise, form a circular DNA, and conjugatively transfer to a specific site of gly-tRNA gene of other rhizobial genera, expanding their host range. The HGT frequency was significantly increased in the rhizosphere. An ICEAc-located LysR-family transcriptional regulatory protein AhaR triggered the HGT process in response to plant flavonoids that induce the expression of nodulation genes through another LysR-type protein, NodD. Our study suggests that rhizobia may sense rhizosphere environments and transfer their symbiosis gene contents to other genera of rhizobia, thereby broadening rhizobial host-range specificity.
Collapse
|
39
|
A Recombinant Fungal Chitin Deacetylase Produces Fully Defined Chitosan Oligomers with Novel Patterns of Acetylation. Appl Environ Microbiol 2016; 82:6645-6655. [PMID: 27590819 DOI: 10.1128/aem.01961-16] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/27/2016] [Indexed: 11/20/2022] Open
Abstract
Partially acetylated chitosan oligosaccharides (paCOS) are potent biologics with many potential applications, and their bioactivities are believed to be dependent on their structure, i.e., their degrees of polymerization and acetylation, as well as their pattern of acetylation. However, paCOS generated via chemical N-acetylation or de-N-acetylation of GlcN or GlcNAc oligomers, respectively, typically display random patterns of acetylation, making it difficult to control and predict their bioactivities. In contrast, paCOS produced from chitin deacetylases (CDAs) acting on chitin oligomer substrates may have specific patterns of acetylation, as shown for some bacterial CDAs. However, compared to what we know about bacterial CDAs, we know little about the ability of fungal CDAs to produce defined paCOS with known patterns of acetylation. Therefore, we optimized the expression of a chitin deacetylase from the fungus Puccinia graminis f. sp. tritici in Escherichia coli The best yield of functional enzyme was obtained as a fusion protein with the maltose-binding protein (MBP) secreted into the periplasmic space of the bacterial host. We characterized the MBP fusion protein from P. graminis (PgtCDA) and tested its activity on different chitinous substrates. Mass spectrometric sequencing of the products obtained by enzymatic deacetylation of chitin oligomers, i.e., tetramers to hexamers, revealed that PgtCDA generated paCOS with specific acetylation patterns of A-A-D-D, A-A-D-D-D, and A-A-D-D-D-D, respectively (A, GlcNAc; D, GlcN), indicating that PgtCDA cannot deacetylate the two GlcNAc units closest to the oligomer's nonreducing end. This unique property of PgtCDA significantly expands the so far very limited library of well-defined paCOS available to test their bioactivities for a wide variety of potential applications. IMPORTANCE We successfully achieved heterologous expression of a fungal chitin deacetylase gene from the basidiomycete Puccinia graminis f. sp. tritici in the periplasm of E. coli as a fusion protein with the maltose-binding protein; this strategy allows the production of these difficult-to-express enzymes in sufficient quantities for them to be characterized and optimized through protein engineering. Here, the recombinant enzyme was used to produce partially acetylated chitosan oligosaccharides from chitin oligomers, whereby the pronounced regioselectivity of the enzyme led to the production of defined products with novel patterns of acetylation. This approach widens the scope for both the production and functional analysis of chitosan oligomers and thus will eventually allow the detailed molecular structure-function relationships of biologically active chitosans to be studied, which is essential for developing applications for these functional biopolymers for a circular bioeconomy, e.g., in agriculture, medicine, cosmetics, and food sciences.
Collapse
|
40
|
New insights into Nod factor biosynthesis: Analyses of chitooligomers and lipo-chitooligomers of Rhizobium sp. IRBG74 mutants. Carbohydr Res 2016; 434:83-93. [PMID: 27623438 PMCID: PMC5080398 DOI: 10.1016/j.carres.2016.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 07/30/2016] [Accepted: 08/01/2016] [Indexed: 11/30/2022]
Abstract
Soil-dwelling, nitrogen-fixing rhizobia signal their presence to legume hosts by secreting lipo-chitooligomers (LCOs) that are decorated with a variety of chemical substituents. It has long been assumed, but never empirically shown, that the LCO backbone is synthesized first by NodC, NodB, and NodA, followed by addition of one or more substituents by other Nod proteins. By analyzing a collection of in-frame deletion mutants of key nod genes in the bacterium Rhizobium sp. IRBG74 by mass spectrometry, we were able to shed light on the possible substitution order of LCO decorations, and we discovered that the prevailing view is probably erroneous. We found that most substituents could be transferred to a short chitin backbone prior to acylation by NodA, which is probably one of the last steps in LCO biosynthesis. The existence of substituted, short chitin oligomers offers new insights into symbiotic plant–microbe signaling. Rhizobia produce chemically substituted, short chitooligomers (COs). Deacetylation of the non-reducing GlcNAc is necessary for most substitutions. Acylation may be one of the last steps in the biosynthesis of rhizobial lipo-chitooligosaccharides (LCOs).
Collapse
|
41
|
Sarmiento KP, Panes VA, Santos MD. Molecular cloning and expression of chitin deacetylase 1 gene from the gills of Penaeus monodon (black tiger shrimp). FISH & SHELLFISH IMMUNOLOGY 2016; 55:484-489. [PMID: 27335260 DOI: 10.1016/j.fsi.2016.06.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/14/2016] [Accepted: 06/18/2016] [Indexed: 06/06/2023]
Abstract
Chitin deacetylases have been identified and studied in several fungi and insects but not in crustaceans. These glycoproteins function in catalyzing the conversion of chitin to chitosan by the hydrolysis of N-acetamido bonds of chitin. Here, for the first time, the full length cDNA of chitin deacetylase (CDA) gene from crustaceans was fully cloned using a partial fragment obtained from a transcriptome database of the gills of black tiger shrimp Penaeus monodon that survived White Spot Syndrome Virus (WSSV) infection employing Rapid Amplification of cDNA Ends (RACE) PCR. The shrimp CDA, named PmCDA1, was further characterized by in silico analysis, and its constitutive expression determined in apparently healthy shrimp through reverse transcription PCR (RT-PCR). Results revealed that the P. monodon chitin deacetylase (PmCDA1) is 2176 bp-long gene with an open reading frame (ORF) of 1596 bp encoding for 532 amino acids. Phylogenetic analysis revealed that PmCDA1 belongs to Group I CDAs together with CDA1 and CDA2 proteins found in insects. Moreover, PmCDA1 is composed of a conserved chitin-binding peritrophin-A domain (CBD), a low-density lipoprotein receptor class A domain (LDL-A) and a catalytic domain that is part of CE4 superfamily, all found in group I CDAs, which are known to serve critical immune function against WSSV. Finally, high expression of PmCDA1 gene in the gills of apparently healthy P. monodon was observed suggesting important basal function of the gene in this tissue. Taken together, this is a first report of the full chitin deacetylase 1 (CDA1) gene in crustaceans particularly in shrimp that exhibits putative immune function against WSSV and is distinctly highly expressed in the gills of shrimp.
Collapse
Affiliation(s)
- Katreena P Sarmiento
- Genetic Fingerprinting Laboratory, National Fisheries Research and Development Institute, Mother Ignacia Ave., South Triangle, Quezon City, Metro Manila, 1103, Philippines; Ateneo de Manila University, Katipunan Ave., Loyola Heights, Quezon City, Metro Manila, 1108, Philippines
| | - Vivian A Panes
- Ateneo de Manila University, Katipunan Ave., Loyola Heights, Quezon City, Metro Manila, 1108, Philippines
| | - Mudjekeewis D Santos
- Genetic Fingerprinting Laboratory, National Fisheries Research and Development Institute, Mother Ignacia Ave., South Triangle, Quezon City, Metro Manila, 1103, Philippines.
| |
Collapse
|
42
|
Pérez-Montaño F, Del Cerro P, Jiménez-Guerrero I, López-Baena FJ, Cubo MT, Hungria M, Megías M, Ollero FJ. RNA-seq analysis of the Rhizobium tropici CIAT 899 transcriptome shows similarities in the activation patterns of symbiotic genes in the presence of apigenin and salt. BMC Genomics 2016; 17:198. [PMID: 26951045 PMCID: PMC4782375 DOI: 10.1186/s12864-016-2543-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/25/2016] [Indexed: 11/21/2022] Open
Abstract
Background Rhizobium tropici strain CIAT 899 establishes effective symbioses with several legume species, including Phaseolus vulgaris and Leucaena leucocephala. This bacterium synthesizes a large variety of nodulation factors in response to nod-gene inducing flavonoids and, surprisingly, also under salt stress conditions. The aim of this study was to identify differentially expressed genes in the presence of both inducer molecules, and analyze the promoter regions located upstream of these genes. Results Results obtained by RNA-seq analyses of CIAT 899 induced with apigenin, a nod gene-inducing flavonoid for this strain, or salt allowed the identification of 19 and 790 differentially expressed genes, respectively. Fifteen of these genes were up-regulated in both conditions and were involved in the synthesis of both Nod factors and indole-3-acetic acid. Transcription of these genes was presumably activated through binding of at least one of the five NodD proteins present in this strain to specific nod box promoter sequences when the bacterium was induced by both apigenin and salt. Finally, under saline conditions, many other transcriptional responses were detected, including an increase in the transcription of genes involved in trehalose catabolism, chemotaxis and protein secretion, as well as ribosomal genes, and a decrease in the transcription of genes involved in transmembrane transport. Conclusions To our knowledge this is the first time that a transcriptomic study shows that salt stress induces the expression of nodulation genes in the absence of flavonoids. Thus, in the presence of both nodulation inducer molecules, apigenin and salt, R. tropici CIAT 899 up-regulated the same set of symbiotic genes. It could be possible that the increases in the transcription levels of several genes related to nodulation under saline conditions could represent a strategy to establish symbiosis under abiotic stressing conditions. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2543-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francisco Pérez-Montaño
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes n° 6, 41012, Sevilla, Spain.
| | - Pablo Del Cerro
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes n° 6, 41012, Sevilla, Spain.
| | - Irene Jiménez-Guerrero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes n° 6, 41012, Sevilla, Spain.
| | - Francisco Javier López-Baena
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes n° 6, 41012, Sevilla, Spain.
| | - Maria Teresa Cubo
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes n° 6, 41012, Sevilla, Spain.
| | | | - Manuel Megías
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes n° 6, 41012, Sevilla, Spain.
| | - Francisco Javier Ollero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes n° 6, 41012, Sevilla, Spain.
| |
Collapse
|
43
|
Geddes BA, Oresnik IJ. The Mechanism of Symbiotic Nitrogen Fixation. ADVANCES IN ENVIRONMENTAL MICROBIOLOGY 2016. [DOI: 10.1007/978-3-319-28068-4_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Naqvi S, Moerschbacher BM. The cell factory approach toward biotechnological production of high-value chitosan oligomers and their derivatives: an update. Crit Rev Biotechnol 2015; 37:11-25. [DOI: 10.3109/07388551.2015.1104289] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
45
|
Enzymatic production of defined chitosan oligomers with a specific pattern of acetylation using a combination of chitin oligosaccharide deacetylases. Sci Rep 2015; 5:8716. [PMID: 25732514 PMCID: PMC4346795 DOI: 10.1038/srep08716] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/23/2015] [Indexed: 11/08/2022] Open
Abstract
Chitin and chitosan oligomers have diverse biological activities with potentially valuable applications in fields like medicine, cosmetics, or agriculture. These properties may depend not only on the degrees of polymerization and acetylation, but also on a specific pattern of acetylation (PA) that cannot be controlled when the oligomers are produced by chemical hydrolysis. To determine the influence of the PA on the biological activities, defined chitosan oligomers in sufficient amounts are needed. Chitosan oligomers with specific PA can be produced by enzymatic deacetylation of chitin oligomers, but the diversity is limited by the low number of chitin deacetylases available. We have produced specific chitosan oligomers which are deacetylated at the first two units starting from the non-reducing end by the combined use of two different chitin deacetylases, namely NodB from Rhizobium sp. GRH2 that deacetylates the first unit and COD from Vibrio cholerae that deacetylates the second unit starting from the non-reducing end. Both chitin deacetylases accept the product of each other resulting in production of chitosan oligomers with a novel and defined PA. When extended to further chitin deacetylases, this approach has the potential to yield a large range of novel chitosan oligomers with a fully defined architecture.
Collapse
|
46
|
Kim K, Ryu BH, Kim SS, An DR, Ngo TD, Pandian R, Kim KK, Kim TD. Structural and biochemical characterization of a carbohydrate acetylesterase from Sinorhizobium meliloti 1021. FEBS Lett 2015; 589:117-122. [PMID: 25436419 DOI: 10.1016/j.febslet.2014.11.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 12/29/2022]
Abstract
In many microorganisms, carbohydrate acetylesterases remove the acetyl groups from various types of carbohydrates. Sm23 from Sinorhizobium meliloti is a putative member of carbohydrate esterase family 3 (CE3) in the CAZy classification system. Here, we determined the crystal structure of Sm23 at 1.75 Å resolution and investigated functional properties using biochemical methods. Furthermore, immobilized Sm23 exhibited improved stability compared with soluble Sm23, which can be used for the design of plant cell wall degrading-systems.
Collapse
Affiliation(s)
- Kyungmin Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Bum Han Ryu
- Department of Applied Chemistry and Biological Engineering, College of Engineering, Ajou University, Suwon 443-741, Republic of Korea
| | - Sung Soo Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Deu Rae An
- Department of Applied Chemistry and Biological Engineering, College of Engineering, Ajou University, Suwon 443-741, Republic of Korea
| | - Tri Duc Ngo
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Ramesh Pandian
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea.
| | - T Doohun Kim
- Department of Applied Chemistry and Biological Engineering, College of Engineering, Ajou University, Suwon 443-741, Republic of Korea.
| |
Collapse
|
47
|
Miyata K, Kozaki T, Kouzai Y, Ozawa K, Ishii K, Asamizu E, Okabe Y, Umehara Y, Miyamoto A, Kobae Y, Akiyama K, Kaku H, Nishizawa Y, Shibuya N, Nakagawa T. The bifunctional plant receptor, OsCERK1, regulates both chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice. PLANT & CELL PHYSIOLOGY 2014; 55:1864-72. [PMID: 25231970 DOI: 10.1093/pcp/pcu129] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plants are constantly exposed to threats from pathogenic microbes and thus developed an innate immune system to protect themselves. On the other hand, many plants also have the ability to establish endosymbiosis with beneficial microbes such as arbuscular mycorrhizal (AM) fungi or rhizobial bacteria, which improves the growth of host plants. How plants evolved these systems managing such opposite plant-microbe interactions is unclear. We show here that knockout (KO) mutants of OsCERK1, a rice receptor kinase essential for chitin signaling, were impaired not only for chitin-triggered defense responses but also for AM symbiosis, indicating the bifunctionality of OsCERK1 in defense and symbiosis. On the other hand, a KO mutant of OsCEBiP, which forms a receptor complex with OsCERK1 and is essential for chitin-triggered immunity, established mycorrhizal symbiosis normally. Therefore, OsCERK1 but not chitin-triggered immunity is required for AM symbiosis. Furthermore, experiments with chimeric receptors showed that the kinase domains of OsCERK1 and homologs from non-leguminous, mycorrhizal plants could trigger nodulation signaling in legume-rhizobium interactions as the kinase domain of Nod factor receptor1 (NFR1), which is essential for triggering the nodulation program in leguminous plants, did. Because leguminous plants are believed to have developed the rhizobial symbiosis on the basis of AM symbiosis, our results suggest that the symbiotic function of ancestral CERK1 in AM symbiosis enabled the molecular evolution to leguminous NFR1 and resulted in the establishment of legume-rhizobia symbiosis. These results also suggest that OsCERK1 and homologs serve as a molecular switch that activates defense or symbiotic responses depending on the infecting microbes.
Collapse
Affiliation(s)
- Kana Miyata
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571 Japan These authors contributed equally to this work
| | - Toshinori Kozaki
- Tokyo University of Agriculture & Technology, Fuchu, Tokyo, 183-8509 Japan These authors contributed equally to this work
| | - Yusuke Kouzai
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602 Japan
| | - Kenjirou Ozawa
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602 Japan
| | - Kazuo Ishii
- Tokyo University of Agriculture & Technology, Fuchu, Tokyo, 183-8509 Japan
| | - Erika Asamizu
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572 Japan
| | - Yoshihiro Okabe
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572 Japan
| | - Yosuke Umehara
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602 Japan
| | - Ayano Miyamoto
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571 Japan
| | - Yoshihiro Kobae
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Kohki Akiyama
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531 Japan
| | - Hanae Kaku
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571 Japan
| | - Yoko Nishizawa
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602 Japan
| | - Naoto Shibuya
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571 Japan
| | - Tomomi Nakagawa
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571 Japan
| |
Collapse
|
48
|
Saeki K, Ronson CW. Genome Sequence and Gene Functions in Mesorhizobium loti and Relatives. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/978-3-662-44270-8_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Andrés E, Albesa-Jové D, Biarnés X, Moerschbacher BM, Guerin ME, Planas A. Structural Basis of Chitin Oligosaccharide Deacetylation. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201400220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
50
|
Andrés E, Albesa-Jové D, Biarnés X, Moerschbacher BM, Guerin ME, Planas A. Structural basis of chitin oligosaccharide deacetylation. Angew Chem Int Ed Engl 2014; 53:6882-7. [PMID: 24810719 DOI: 10.1002/anie.201400220] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/02/2014] [Indexed: 01/28/2023]
Abstract
Cell signaling and other biological activities of chitooligosaccharides (COSs) seem to be dependent not only on the degree of polymerization, but markedly on the specific de-N-acetylation pattern. Chitin de-N-acetylases (CDAs) catalyze the hydrolysis of the acetamido group in GlcNAc residues of chitin, chitosan, and COS. A major challenge is to understand how CDAs specifically define the distribution of GlcNAc and GlcNH2 moieties in the oligomeric chain. We report the crystal structure of the Vibrio cholerae CDA in four relevant states of its catalytic cycle. The two enzyme complexes with chitobiose and chitotriose represent the first 3D structures of a CDA with its natural substrates in a productive mode for catalysis, thereby unraveling an induced-fit mechanism with a significant conformational change of a loop closing the active site. We propose that the deacetylation pattern exhibited by different CDAs is governed by critical loops that shape and differentially block accessible subsites in the binding cleft of CE4 enzymes.
Collapse
Affiliation(s)
- Eduardo Andrés
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona (Spain)
| | | | | | | | | | | |
Collapse
|