1
|
Mendonsa G, Dobrowolska J, Lin A, Vijairania P, Jong YJI, Baenziger NL. Molecular profiling reveals diversity of stress signal transduction cascades in highly penetrant Alzheimer's disease human skin fibroblasts. PLoS One 2009; 4:e4655. [PMID: 19247475 PMCID: PMC2644820 DOI: 10.1371/journal.pone.0004655] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 01/26/2009] [Indexed: 11/18/2022] Open
Abstract
The serious and growing impact of the neurodegenerative disorder Alzheimer's disease (AD) as an individual and societal burden raises a number of key questions: Can a blanket test for Alzheimer's disease be devised forecasting long-term risk for acquiring this disorder? Can a unified therapy be devised to forestall the development of AD as well as improve the lot of present sufferers? Inflammatory and oxidative stresses are associated with enhanced risk for AD. Can an AD molecular signature be identified in signaling pathways for communication within and among cells during inflammatory and oxidative stress, suggesting possible biomarkers and therapeutic avenues? We postulated a unique molecular signature of dysfunctional activity profiles in AD-relevant signaling pathways in peripheral tissues, based on a gain of function in G-protein-coupled bradykinin B2 receptor (BKB2R) inflammatory stress signaling in skin fibroblasts from AD patients that results in tau protein Ser hyperphosphorylation. Such a signaling profile, routed through both phosphorylation and proteolytic cascades activated by inflammatory and oxidative stresses in highly penetrant familial monogenic forms of AD, could be informative for pathogenesis of the complex multigenic sporadic form of AD. Comparing stimulus-specific cascades of signal transduction revealed a striking diversity of molecular signaling profiles in AD human skin fibroblasts that express endogenous levels of mutant presenilins PS-1 or PS-2 or the Trisomy 21 proteome. AD fibroblasts bearing the PS-1 M146L mutation associated with highly aggressive AD displayed persistent BKB2R signaling plus decreased ERK activation by BK, correctible by gamma-secretase inhibitor Compound E. Lack of these effects in the homologous PS-2 mutant cells indicates specificity of presenilin gamma-secretase catalytic components in BK signaling biology directed toward MAPK activation. Oxidative stress revealed a JNK-dependent survival pathway in normal fibroblasts lost in PS-1 M146L fibroblasts. Complex molecular profiles of signaling dysfunction in the most putatively straightforward human cellular models of AD suggest that risk ascertainment and therapeutic interventions in AD as a whole will likely demand complex solutions.
Collapse
Affiliation(s)
- Graziella Mendonsa
- Department of Anatomy and Neurobiology, Program in Molecular Cell Biology, Division of Biology and Biomedical Sciences, Washington University, St.Louis, Missouri, United States of America
| | - Justyna Dobrowolska
- Department of Anatomy and Neurobiology, Program in Molecular Cell Biology, Division of Biology and Biomedical Sciences, Washington University, St.Louis, Missouri, United States of America
| | - Angela Lin
- Department of Anatomy and Neurobiology, Program in Molecular Cell Biology, Division of Biology and Biomedical Sciences, Washington University, St.Louis, Missouri, United States of America
| | - Pooja Vijairania
- Department of Anatomy and Neurobiology, Program in Molecular Cell Biology, Division of Biology and Biomedical Sciences, Washington University, St.Louis, Missouri, United States of America
| | - Y.-J. I. Jong
- Department of Anatomy and Neurobiology, Program in Molecular Cell Biology, Division of Biology and Biomedical Sciences, Washington University, St.Louis, Missouri, United States of America
| | - Nancy L. Baenziger
- Department of Anatomy and Neurobiology, Program in Molecular Cell Biology, Division of Biology and Biomedical Sciences, Washington University, St.Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
2
|
Leeb-Lundberg LMF, Marceau F, Müller-Esterl W, Pettibone DJ, Zuraw BL. International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol Rev 2005; 57:27-77. [PMID: 15734727 DOI: 10.1124/pr.57.1.2] [Citation(s) in RCA: 744] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Kinins are proinflammatory peptides that mediate numerous vascular and pain responses to tissue injury. Two pharmacologically distinct kinin receptor subtypes have been identified and characterized for these peptides, which are named B1 and B2 and belong to the rhodopsin family of G protein-coupled receptors. The B2 receptor mediates the action of bradykinin (BK) and lysyl-bradykinin (Lys-BK), the first set of bioactive kinins formed in response to injury from kininogen precursors through the actions of plasma and tissue kallikreins, whereas the B(1) receptor mediates the action of des-Arg9-BK and Lys-des-Arg9-BK, the second set of bioactive kinins formed through the actions of carboxypeptidases on BK and Lys-BK, respectively. The B2 receptor is ubiquitous and constitutively expressed, whereas the B1 receptor is expressed at a very low level in healthy tissues but induced following injury by various proinflammatory cytokines such as interleukin-1beta. Both receptors act through G alpha(q) to stimulate phospholipase C beta followed by phosphoinositide hydrolysis and intracellular free Ca2+ mobilization and through G alpha(i) to inhibit adenylate cyclase and stimulate the mitogen-activated protein kinase pathways. The use of mice lacking each receptor gene and various specific peptidic and nonpeptidic antagonists have implicated both B1 and B2 receptors as potential therapeutic targets in several pathophysiological events related to inflammation such as pain, sepsis, allergic asthma, rhinitis, and edema, as well as diabetes and cancer. This review is a comprehensive presentation of our current understanding of these receptors in terms of molecular and cell biology, physiology, pharmacology, and involvement in human disease and drug development.
Collapse
Affiliation(s)
- L M Fredrik Leeb-Lundberg
- Division of Cellular and Molecular Pharmacology, Department of Experimental Medical Science, Lund University, BMC, A12, SE-22184 Lund, Sweden.
| | | | | | | | | |
Collapse
|
3
|
Jong YJI, Ford SR, Seehra K, Malave VB, Baenziger NL. Alzheimer's disease skin fibroblasts selectively express a bradykinin signaling pathway mediatingtauprotein Ser phosphorylation. FASEB J 2003; 17:2319-21. [PMID: 14563691 DOI: 10.1096/fj.02-1147fje] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Increased Ser phosphorylation of tau microtubule-associated protein in the brain is an early feature of Alzheimer's disease (AD) that precedes progression of the disease to frank neuronal disruption. We demonstrate that bradykinin (BK) B2 receptor activation leads to selective Ser phosphorylation of tau in skin fibroblasts from persons who have or will develop AD due to Presenilin 1 mutations or Trisomy 21, but not in skin fibroblasts from normal individuals at any age. The increased signal transduction in AD fibroblasts that culminates in tau Ser phosphorylation reflects modification of the G protein-coupled BK B2 receptors themselves. Both the BK B2 receptor modification and BK-mediated tau Ser phosphorylation are dependent on activation of protein kinase C and can be detected in fibroblasts from persons with Trisomy 21 two decades before the characteristic onset of AD. This dysregulated signaling cascade in AD may thus be expressed throughout life as an aberrant pathway in peripheral tissues more accessible than brain for molecular analysis. The sites of greatest BK B2 receptor expression in brain overlap with those areas displaying the earliest pathology in the course of AD, suggesting that BK receptor pathway dysfunction may be a molecular signature yielding information about the pathogenesis of AD.
Collapse
Affiliation(s)
- Yuh-Jiin I Jong
- Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 S. Euclid Ave., Campus Box 8108, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
4
|
Stocker JW, De Franceschi L, McNaughton-Smith GA, Corrocher R, Beuzard Y, Brugnara C. ICA-17043, a novel Gardos channel blocker, prevents sickled red blood cell dehydration in vitro and in vivo in SAD mice. Blood 2003; 101:2412-8. [PMID: 12433690 DOI: 10.1182/blood-2002-05-1433] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A prominent feature of sickle cell anemia is the presence of dehydrated red blood cells (RBCs) in circulation. Loss of potassium (K(+)), chloride (Cl(-)), and water from RBCs is thought to contribute to the production of these dehydrated cells. One main route of K(+) loss in the RBC is the Gardos channel, a calcium (Ca(2+))-activated K(+) channel. Clotrimazole (CLT), an inhibitor of the Gardos channel, has been shown to reduce RBC dehydration in vitro and in vivo. We have developed a chemically novel compound, ICA-17043, that has greater potency and selectivity than CLT in inhibiting the Gardos channel. ICA-17043 blocked Ca(2+)-induced rubidium flux from human RBCs with an IC(50) value of 11 +/- 2 nM (CLT IC(50) = 100 +/- 12 nM) and inhibited RBC dehydration with an IC(50) of 30 +/- 20 nM. In a transgenic mouse model of sickle cell disease (SAD), treatment with ICA-17043 (10 mg/kg orally, twice a day) for 21 days showed a marked and constant inhibition of the Gardos channel activity (with an average inhibition of 90% +/- 27%, P <.005), an increase in RBC K(+) content (from 392 +/- 19.9 to 479.2 +/- 40 mmol/kg hemoglobin [Hb], P <.005), a significant increase in hematocrit (Hct) (from 0.435 +/- 0.007 to 0.509 +/- 0.022 [43.5% +/- 0.7% to 50.9% +/- 2.2%], P <.005), a decrease in mean corpuscular hemoglobin concentration (MCHC) (from 340 +/- 9.0 to 300 +/- 15 g/L [34.0 +/- 0.9 to 30 +/- 1.5 g/dL], P <.05), and a left-shift in RBC density curves. These data indicate that ICA-17043 is a potent inhibitor of the Gardos channel and ameliorates RBC dehydration in the SAD mouse.
Collapse
Affiliation(s)
- Jonathan W Stocker
- Department of Clinical and Experimental Medicine, University of Verona, Verona, Italy.
| | | | | | | | | | | |
Collapse
|
5
|
Jong YJI, Dalemar LR, Seehra K, Baenziger NL. Bradykinin receptor modulation in cellular models of aging and Alzheimer's disease. Int Immunopharmacol 2002; 2:1833-40. [PMID: 12489797 DOI: 10.1016/s1567-5769(02)00168-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Human fibroblast cell culture systems have been used to model both molecular events associated with the aging process and the biochemical anomalies found in the aging-associated neurodegenerative disorder Alzheimer's disease (AD). We demonstrate modulation of bradykinin (BK) B2 receptors that results in Intermediate (I, Kd 2.5-5 nM) and Low (L, Kd 44 nM) receptor affinity states in two cellular model systems that target aging and aging-associated disorders: the human lung fibroblast cell line WI-38 model for cellular aging and a skin fibroblast cell line from a patient with early onset familial Alzheimer's disease. In both cellular models the generation of I and L BK B2 receptors is extremely rapid, occurring within 1 min of activation of protein kinase C (PKC) by phorbol ester. Blocking phosphoprotein phosphatase activity further augments the cellular content of I and L receptors in the Alzheimer's skin fibroblast cell line. These two lines of evidence suggest that a phosphorylation cascade modifying the receptors is responsible for the I and L states. The I and L receptors remain biologically active and enhance cellular responsiveness to elevated levels of BK that are found in tissue injury, one of the major risk factors for development of Alzheimer's disease. The Alzheimer's disease skin fibroblast cell line presents a cellular environment highly enriched in the amyloid Abeta1-42 peptide that is the hallmark of Alzheimer's plaque lesions in the brain. This Abeta-rich environment may serve to foster the signal transduction mechanism that generates I and L BK B2 receptors.
Collapse
Affiliation(s)
- Y J I Jong
- Department of Anatomy and Neurology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8108, St Louis, MO 63110, USA
| | | | | | | |
Collapse
|
6
|
Mio T, Liu X, Toews ML, Adachi Y, Romberger DJ, Spurzem JR, Rennard SI. Bradykinin augments fibroblast-mediated contraction of released collagen gels. Am J Physiol Lung Cell Mol Physiol 2001; 281:L164-71. [PMID: 11404259 DOI: 10.1152/ajplung.2001.281.1.l164] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bradykinin is a multifunctional mediator of inflammation believed to have a role in asthma, a disorder associated with remodeling of extracellular connective tissue. Using contraction of collagen gels as an in vitro model of wound contraction, we assessed the effects of bradykinin tissue on remodeling. Human fetal lung fibroblasts were embedded in type I collagen gels and cultured for 5 days. After release, the floating gels were cultured in the presence of bradykinin. Bradykinin significantly stimulated contraction in a concentration- and time-dependent manner. Coincubation with phosphoramidon augmented the effect of 10(-9) and 10(-8) M bradykinin. A B2 receptor antagonist attenuated the effect of bradykinin, whereas a B1 receptor antagonist had no effect, suggesting that the effect is mediated by the B2 receptor. An inhibitor of intracellular Ca2+ mobilization abolished the response; addition of EGTA to the culture medium attenuated the contraction of control gels but did not modulate the response to bradykinin. In contrast, the phospholipase C inhibitor U-73122 and the protein kinase C inhibitors staurosporine and GF-109203X attenuated the responses. These data suggest that by augmenting the contractility of fibroblasts, bradykinin may have an important role in remodeling of extracellular matrix that may result in tissue dysfunction in chronic inflammatory diseases, such as asthma.
Collapse
Affiliation(s)
- T Mio
- Pulmonary and Critical Care Medicine Section, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198-5125, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Reyes-Cruz G, V�zquez-Prado J, M�ller-Esterl W, Vaca L. Regulation of the human bradykinin B2 receptor expressed in sf21 insect cells: A possible role for tyrosine kinases. J Cell Biochem 2000. [DOI: 10.1002/(sici)1097-4644(20000315)76:4<658::aid-jcb14>3.0.co;2-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Larrea F, Sánchez-González S, Méndez I, García-Becerra R, Cabrera V, Ulloa-Aguirre A. G protein-coupled receptors as targets for prolactin actions. Arch Med Res 1999; 30:532-543. [PMID: 10714368 DOI: 10.1016/s0188-0128(99)00056-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Prolactin (PRL) is known to be involved in a wide range of biological functions including osmoregulation, lactation, reproduction, and immunomodulation. The first step in PRL action involves its interaction with a specific membrane receptor that belongs to the cytokine receptor superfamily. In spite of the lack of a kinase domain, receptors of the cytokine superfamily induce tyrosine phosphorylation of cellular substrates including the receptors. The role of PRL in female reproductive functions is well known and a direct effect on ovarian and testicular steroidogenesis has been established. In the ovary, PRL binds to a specific membrane receptor and exerts an inhibitory effect on follicular steroidogenesis. This effect is the result of an impairment involving FSH stimulation of G protein-coupled receptors (GPCR) and cyclic AMP-mediated activation of aromatase cytochrome P450 gene expression. This observation may indicate a direct connection between tyrosine phosphorylation and follicle-stimulating hormone (FSH) receptor (FSHR) transduction pathways, as is the case for growth factor receptors with intrinsic tyrosine kinase activity, which share several downstream signaling elements with GPCRs. Some studies leading to our understanding of these pathways are reviewed.
Collapse
Affiliation(s)
- F Larrea
- Departamento de Biología de la Reproducción, Instituto Nacional de la Nutrición Salvador Zubirán, México, D.F., Mexico.
| | | | | | | | | | | |
Collapse
|
9
|
Praddaude F, Marchetti J, Alhenc-Gelas F, Ader J. Dissimilar mechanisms of Ca(2+) response to bradykinin in different types of juxtamedullary glomerular arterioles. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:F697-705. [PMID: 10564232 DOI: 10.1152/ajprenal.1999.277.5.f697] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bradykinin (BK)-induced changes in intracellular calcium level ([Ca(2+)](i)) were studied on fura 2-loaded afferent (AA) and efferent glomerular arterioles (EA) microdissected from juxtamedullary renal cortex. A distinction was made between thin and muscular EA. In AA and both types of EA, BK increased [Ca(2+)](i) through activation of B(2) receptors located only on the endothelium. The responses were not affected by nifedipine (10(-6) M) and were smaller in a Ca(2+)-free medium, providing evidence that BK opens voltage-independent Ca(2+) channels and mobilizes intracellular Ca(2+). Thin EA differed from AA and muscular EA by a lower sensitivity to BK (EC(50) = 6.95 +/- 3.81 vs. 0.21 +/- 0.08 and 0.18 +/- 0.13 nM, respectively; P < 0.05), a higher maximal response (89 +/- 5 vs. 57 +/- 5 and 44 +/- 7 nM; P < 0.001), and a spontaneous return to basal Ca(2+) level, even in the presence of BK. Genistein (10(-4) M) and herbimycin A (25 x 10(-6) M), specific inhibitors of tyrosine kinases, inhibited the [Ca(2+)](i) responses exclusively in AA. Genistein reduced the peak and plateau phases of responses by 69 +/- 9 and 82 +/- 6%, respectively, in a medium with Ca(2+) and the peak by 48 +/- 9% in a Ca(2+)-free medium. Similar reductions were observed with herbimycin A. These results show that dissimilar signal transduction pathways are involved in BK effects on juxtamedullary arterioles and that a tyrosine kinase activity could participate in the regulation of BK effect on AA but not on EA.
Collapse
Affiliation(s)
- F Praddaude
- Physiology Laboratory, School of Medicine, 31062 Toulouse Cedex 4, France
| | | | | | | |
Collapse
|
10
|
Marrero MB, Venema VJ, Ju H, He H, Liang H, Caldwell RB, Venema RC. Endothelial nitric oxide synthase interactions with G-protein-coupled receptors. Biochem J 1999; 343 Pt 2:335-40. [PMID: 10510297 PMCID: PMC1220558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
The endothelial nitric oxide synthase (eNOS) is activated in response to stimulation of endothelial cells by a number of vasoactive substances including, bradykinin (BK), angiotensin II (Ang II), endothelin-1 (ET-1) and ATP. In the present study we have used in vitro activity assays of purified eNOS and in vitro binding assays with glutathione S-transferase fusion proteins to show that the capacity to bind and inhibit eNOS is a common feature of membrane-proximal regions of intracellular domain 4 of the BK B2, the Ang II AT1 and the ET-1 ETB receptors, but not of the ATP P2Y2 receptor. Phosphorylation of serine or tyrosine residues in the eNOS-interacting region of the B2 receptor results in a loss of eNOS inhibition due to a decrease in the binding affinity of the receptor domain for the eNOS enzyme. Furthermore, the B2 receptor is transiently phosphorylated on tyrosine residues in cultured endothelial cells in response to BK stimulation. Phosphorylation occurs during the time in which eNOS transiently dissociates from the receptor accompanied by a transient increase in nitric oxide production. Taken together, these data support the hypotheses that eNOS is regulated in endothelial cells by reversible and inhibitory interactions with G-protein-coupled receptors and that these interactions can be modulated by receptor phosphorylation.
Collapse
MESH Headings
- Animals
- Bradykinin/pharmacology
- Calmodulin/metabolism
- Cells, Cultured
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/metabolism
- Enzyme Activation/drug effects
- GTP-Binding Proteins/metabolism
- Humans
- Ligands
- Nitric Oxide/metabolism
- Nitric Oxide Synthase/antagonists & inhibitors
- Nitric Oxide Synthase/metabolism
- Nitric Oxide Synthase Type III
- Peptide Fragments/chemistry
- Peptide Fragments/metabolism
- Peptide Fragments/pharmacology
- Phosphorylation/drug effects
- Phosphotyrosine/metabolism
- Protein Binding/drug effects
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptor, Bradykinin B2
- Receptor, Endothelin B
- Receptors, Angiotensin/chemistry
- Receptors, Angiotensin/metabolism
- Receptors, Bradykinin/chemistry
- Receptors, Bradykinin/metabolism
- Receptors, Endothelin/chemistry
- Receptors, Endothelin/metabolism
- Receptors, Purinergic P2/chemistry
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2Y2
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/metabolism
Collapse
Affiliation(s)
- M B Marrero
- Vascular Biology Center, Medical College of Georgia, Augusta, GA 30912-2500, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Nie M, Selbie LA. Neuropeptide Y Y1 and Y2 receptor-mediated stimulation of mitogen-activated protein kinase activity. REGULATORY PEPTIDES 1998; 75-76:207-13. [PMID: 9802411 DOI: 10.1016/s0167-0115(98)00070-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neuropeptide Y (NPY) regulates cardiovascular function, smooth muscle contraction and smooth muscle cell proliferation. Stimulation of NPY Y1 and Y2 receptor subtypes has been shown to result in increases in second messengers, such as cytosolic calcium concentrations, which precede physiological events such as cell contraction. To assess whether NPY receptors also stimulate second messengers which may precede mitogenic effects, we measured the mitogen-activated protein kinase (MAPK) activity in NPY receptor-expressing cell lines in response to NPY. CHO K1 cells stably expressing either NPY Y1 or Y2 receptors were shown to specifically bind radiolabelled Peptide YY (PYY), and MAPK activity in these cells was assessed using a peptide kinase assay. NPY stimulated dose-dependent increases in MAPK activity in both NPY Y1 and Y2 receptor-expressing cell lines. The NPY-stimulated MAPK activity was sensitive to pretreatment with pertussis toxin, the MAPK specific inhibitor PD098059 or wortmannin, an inhibitor of phosphatidylinositol-3-kinase (PI-3-K). These results indicate that both NPY Y1 and Y2 receptors stimulate wortmannin-sensitive increases in MAPK activity via Gi proteins and suggest a role for NPY Y1 and Y2 receptors in the regulation of smooth muscle cell growth involved in hypertrophy.
Collapse
Affiliation(s)
- M Nie
- Neurosciences and Molecular Pharmacology, School of Biomedical Sciences, Medical School, Nottingham, UK
| | | |
Collapse
|
12
|
Shih M, Malbon CC. Serum and insulin induce a Grb2-dependent shift in agonist affinity of beta-adrenergic receptors. Cell Signal 1998; 10:575-82. [PMID: 9794256 DOI: 10.1016/s0898-6568(97)00195-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Beta-adrenergic receptors transduce catecholamine binding to activation of adenylylcyclase, a response counter-regulated by insulin. Insulin stimulates tyrosine phosphorylation of Tyr 350/354, which abolishes the catecholamine response. Phosphorylation of Try 350/354 creates a Src homology 2 (SH2) domain on the beta2-adrenergic receptor and the binding of adaptor protein Grb2 to this SH2 domain of the beta-adrenergic receptor takes place in an insulin-dependent manner. In membranes from serum-deprived S49 mouse lymphoma cells, GTPgammaS yields the well-known agonist-specific shift in agonist affinity for beta2-adrenergic receptors. The agonist-specific shift is observed in cell membranes either in the absence or in the presence of exogenously added purified Grb2. In membranes for serum-fed cells, in contrast, the addition of Grb2 induces an agonist-specific shift in receptor affinity that mimics addition of GTPgammaS to the membranes. The ability of the Grb2 to induce an agonist-specific shift in the membranes from serum-fed cells was abolished equally effectively either by competition with phosphopeptide harbouring the (p)YVNV motif or by disruption of the SH2 domain of added Grb2. Challenging Chinese hamster ovary cells with insulin (100 nM) for 30 min enabled Grb2 to induce an agonist-specific shift in agonist affinity for beta2-adrenergic receptors, suggestive of uncoupling of the receptors from G proteins. The insulin-dependent Grb2 effect on receptor-G-protein coupling was sensitive to competition by the pYVNY phosphopeptide and to disruption of the SH2 domain of Grb2. These data provide a biochemical link between the ability of insulin to counter-regulate catecholamine stimulation of cyclic AMP accumulation and the phosphorylation of the beta-adrenergic receptor, consequent biding of the adaptor molecule Grb2 and disruption of receptor-G-protein coupling.
Collapse
Affiliation(s)
- M Shih
- Department of Molecular Pharmacology, Diabetes and Metabolic Diseases Research Program, University Medical Center, State University of New York, Stony Brook 11794-8651, USA
| | | |
Collapse
|
13
|
Malbon CC, Karoor V. G-protein-linked receptors as tyrosine kinase substrates: new paradigms in signal integration. Cell Signal 1998; 10:523-7. [PMID: 9794250 DOI: 10.1016/s0898-6568(97)00194-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Understanding how cells integrate signals from a variety of chemically diverse information-containing molecules into complex, orchestrated responses such as cell proliferation, differentiation and apoptosis is an overarching goal of cell biology. The ligand molecules that act upon cell surface receptors include those mediating proximal aspects of signal transduction through two major pathways: those that are G protein linked and those that are tyrosine kinase linked. G-protein receptors in the hundreds operate by means of less populous groups of heterotrimeric G proteins and the effectors regulated by G proteins. Growth factor receptors with intrinsic tyrosine kinase activity constitute a relatively large group of receptors, which share several downstream signalling elements with the G-protein-linked receptors. Integration between these two dominant pathways has been observed at several levels. The most proximal and intimate interaction possible--that between G-protein-linked receptors and tyrosine kinase receptors--has been discovered. Emerging data reveal new paradigms in which phosphorylation of G-protein-linked receptors on specific tyrosyl residues by tyrosine kinases enable G-protein-linked receptors to interact with adaptor molecules and enzymes previously thought to be restricted only to the signalling derivative of tyrosine kinase receptors.
Collapse
Affiliation(s)
- C C Malbon
- Department of Molecular Pharmacology, Diabetes and Metabolic Diseases Research Center, School of Medicine, State University of New York, Stony Brook 11794-8651, USA.
| | | |
Collapse
|
14
|
Rajasekariah P, Warlow RS, Campbell ME, Ozsarac N, Dao PL, Swanton MK, Walls RS. Purification and characterization of a human bradykinin binding protein from inflammatory cells. Int J Biochem Cell Biol 1998; 30:353-67. [PMID: 9611777 DOI: 10.1016/s1357-2725(97)00110-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bradykinin (BK) is a potent mediator with a broad spectrum of pharmacological and inflammatory actions which are exerted through cell surface receptors. We report here the affinity chromatographic purification of a novel 14 kDa BK binding protein from human blood neutrophils and also peripheral blood mononuclear cells (PBMC), 80% of which are lymphocytes. Radioreceptor crosslinking experiments using bifunctional crosslinkers and radiolabelled BK identified a 14 kDa protein in these cell types both on the cell surface, in glycerol purified plasma membranes and in detergent solubilized cell extracts. Purification by BK affinity chromatography from a variety of BK responsive human cell types i.e. CCD-16Lu lung fibroblasts, HL60 promyelocytes, U937 myelomonocytes and Jurkat T lymphocytes also demonstrated a 14 kDa protein. Purified material obtained from three different BK affinity columns all demonstrated three major proteins at 190, 50 and 14 kDa when eluted with either excess BK or mild acid. Neutrophil fractions from detergent solubilized cell extracts contained an additional 150 kDa protein when eluted with mild acid. Neutrophil and PBMC crude plasma membrane BK affinity column purifications yielded only a single 14 kDa protein. Radioreceptor dot assays of the purified neutrophil eluates containing the 14 kDa protein revealed specific binding to [125I]-BK with a 160 fold excess signal ratio over the original membrane extract. Our data indicates that we have successfully isolated a 14 kDa novel human BK specific binding protein expressed on the surface of inflammatory cells.
Collapse
Affiliation(s)
- P Rajasekariah
- Department of Immunology, Repatriation General Hospital Concord, University of Sydney, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
15
|
Selbie LA, Hill SJ. G protein-coupled-receptor cross-talk: the fine-tuning of multiple receptor-signalling pathways. Trends Pharmacol Sci 1998; 19:87-93. [PMID: 9584624 DOI: 10.1016/s0165-6147(97)01166-8] [Citation(s) in RCA: 228] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Signalling via the large family of G protein-coupled receptors (GPCRs) can lead to many cellular responses, ranging from regulation of intracellular levels of cAMP to stimulation of gene transcription. Members of this receptor family have been grouped into different categories dependent on the particular G protein subtypes that they predominantly interact with. Thus, receptors that couple to GS proteins will stimulate adenylate cyclase in many cells, while Gq/11-coupled receptors can mobilize intracellular Ca2+ via activation of phospholipase C. There is accumulating evidence, however, that activation of one particular signalling pathway by a GPCR can amplify intracellular signalling within a parallel but separate pathway. In this article Lisa Selbie and Stephen Hill review some of the evidence for these synergistic interactions and suggest that they may have an important role in finetuning signals from multiple receptor signalling pathways.
Collapse
Affiliation(s)
- L A Selbie
- Institute of Cell Signalling, University of Nottingham, Queen's Medical Centre, Medical School, UK
| | | |
Collapse
|
16
|
Abstract
Rapid developments are expected in the molecular pharmacology of both B1, and B2 types of kinin receptors, since the underlying genetic structures are now known and widely studied. The consequences of kinin receptor duality and physiopathological regulation have not yet been fully appreciated. Medicinal chemistry is also an active front of research in kinin pharmacology, as more effective drugs targeted at kinin receptors are regularly reported. Various complementary molecular approaches (the receptor binding, cloning, immunoreacting, mutagenesis, inactivation, the study of regulation, allelic polymorphisms, and so forth) are expanding our knowledge of the role of kinins in allergy, inflammation, and singularly, renal medicine.
Collapse
Affiliation(s)
- F Marceau
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Pavillon l'Hôtel-Dieu de Québec, Canada.
| | | |
Collapse
|
17
|
Minshall RD, Tan F, Nakamura F, Rabito SF, Becker RP, Marcic B, Erdös EG. Potentiation of the actions of bradykinin by angiotensin I-converting enzyme inhibitors. The role of expressed human bradykinin B2 receptors and angiotensin I-converting enzyme in CHO cells. Circ Res 1997; 81:848-56. [PMID: 9351459 DOI: 10.1161/01.res.81.5.848] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Part of the beneficial effects of angiotensin I-converting enzyme (ACE) inhibitors are due to augmenting the actions of bradykinin (BK). We studied this effect of enalaprilat on the binding of [3H]BK to Chinese hamster ovary (CHO) cells stably transfected to express the human BK B2 receptor alone (CHO-3B) or in combination with ACE (CHO-15AB). In CHO-15AB cells, enalaprilat (1 mumol/L) increased the total number of low-affinity [3H]BK binding sites on the cells at 37 degrees C, but not at 4 degrees C, from 18.4 +/- 4.3 to 40.3 +/- 11.9 fmol/10(6) cells (P < .05; Kd, 2.3 +/- 0.8 and 5.9 +/- 1.3 nmol/L; n = 4). Enalaprilat preserved a portion of the receptors in high-affinity conformation (Kd, 0.17 +/- 0.08 nmol/L; 8.1 +/- 0.9 fmol/10(6) cells). Enalaprilat decreased the IC50 of [Hyp3-Tyr(Me)8]BK, the BK analogue more resistant to ACE, from 3.2 +/- 0.8 to 0.41 +/- 0.16 nmol/L (P < .05, n = 3). The biphasic displacement curve of the binding of [3H]BK also suggested the presence of high-affinity BK binding sites. Enalaprilat (5 nmol to 1 mumol/L) potentiated the release of [3H]arachidonic acid and the liberation of inositol 1,4,5-trisphosphate (IP3) induced by BK and [Hyp3-Tyr(Me)8]BK. Moreover, enalaprilat (1 mumol/L) completely and immediately restored the response of the B2 receptor, desensitized by the agonist (1 mumol/L [Hyp3-Tyr(Me)8]BK); this effect was blocked by the antagonist, HOE 140. Finally, enalaprilat, but not the prodrug enalapril, decreased internalization of the receptor from 70 +/- 9% to 45 +/- 9% (P < .05, n = 7). In CHO-3B cells, enalaprilat was ineffective. ACE inhibitors in the presence of both the B2 receptor and ACE enhance BK binding, protect high-affinity receptors, block receptor desensitization, and decrease internalization, thereby potentiating BK beyond blocking its hydrolysis.
Collapse
Affiliation(s)
- R D Minshall
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Prado GN, Taylor L, Polgar P. Effects of intracellular tyrosine residue mutation and carboxyl terminus truncation on signal transduction and internalization of the rat bradykinin B2 receptor. J Biol Chem 1997; 272:14638-42. [PMID: 9169425 DOI: 10.1074/jbc.272.23.14638] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Presently, little is known of the amino acid motif(s) participating in bradykinin B2 receptor-mediated signal transduction processes. In this report we investigate the potential role of the two existing tyrosine (Tyr) residues in the intracellular regions and the carboxyl terminus in the regulatory function of this receptor. Rat-1 cells, which do not contain detectable bradykinin B2 receptor, were transfected with wild type and mutant receptor cDNAs. Tyr-131 and Tyr-321 were each mutated to corresponding alanine-, serine-, and phenylalanine-containing sequences. The last 34 amino acid residues of the carboxyl terminus were truncated. Rat-1 cells transfected with the mutant forms of the receptor cDNA including the truncated COOH-terminal cDNA all bound [3H]bradykinin with essentially the same Kd of approximately 2.2 nM as cells transfected with the wild type bradykinin B2 receptor. However, mutating Tyr-131 resulted in important changes in bradykinin-stimulated phosphoinositide turnover and arachidonate release. For example, exchanging Tyr-131 for alanine led to an 80% decreased arachidonate release (p < 0.005), 90% decrease in inositol phosphate (IP) accumulation (p < 0.001), with receptor uptake at 15 min remaining essentially unchanged. Mutating the same Tyr to phenylalanine resulted in unchanged bradykinin-stimulated IP accumulation, only a slightly lowered arachidonate release, and unchanged receptor uptake at 15 min. Mutating Tyr-321 to alanine resulted in a very different pattern. There was a small but significant reduction in arachidonate release (p < 0.03) and IP accumulation (p < 0.008) with a large, 30%, increase in receptor uptake at 15 min (p < 0.010). Truncation of a portion of the carboxyl tail also proved meaningful, with a 60% decrease in arachidonate release and an 80% decrease in IP accumulation. The truncation also resulted in a large, 130%, decrease in receptor uptake at 15 min (p < 0.023). Taken together, these results point to Tyr-131 as an important element in determining bradykinin-stimulated arachidonate release and IP accumulation. Tyrosine phosphorylation at this site apparently does not play a major role. Tyr-131, Tyr-321, and the carboxyl tail appear to be important in determining receptor uptake.
Collapse
Affiliation(s)
- G N Prado
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
19
|
Asano M, Inamura N, Hatori C, Sawai H, Fujiwara T, Katayama A, Kayakiri H, Satoh S, Abe Y, Inoue T, Sawada Y, Nakahara K, Oku T, Okuhara M. The identification of an orally active, nonpeptide bradykinin B2 receptor antagonist, FR173657. Br J Pharmacol 1997; 120:617-24. [PMID: 9051299 PMCID: PMC1564513 DOI: 10.1038/sj.bjp.0700955] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. An orally active, nonpeptide bradykinin (BK) B2 receptor antagonist, FR173657 (E)-3-(6-acetamido-3-pyridyl)-N-[N-[2-4-dichloro-3-[(2-methyl-8-quinolin yl) oxymethyl]phenyl]-N-methylaminocarbonyl-methyl] acrylamide) has been identified. 2. This compound displaced [3H]-BK binding to B2 receptors present in guinea-pig ileum membranes with an IC50 of 5.6 x 10(-10) M and in rat uterus with an IC50 of 1.5 x 10(-9) M. It did not inhibit different specific radio-ligand binding to other receptor sites. 3. In human lung fibroblast IMR-90 cells, FR173657 displaced [3H]-BK binding to B2 receptors with an IC50 of 2.9 x 10(-9) M and a Ki of 3.6 x 10(-10) M, but did not reduce [3H]-des]Arg10-kallidin binding to B1 receptors. 4. In guinea-pig isolated preparations, FR173657 antagonized BK-induced contractions with an IC50 of 7.9 x 10(-9) M, but did not antagonize acetylcholine or histamine-induced contractions even at a concentration of 10(-6) M. FR173657 caused parallel rightward shifts of the concentration-response curves to BK at concentrations of 10(-9) M and 3.2 x 10(-9) M, and a little depression of the maximal response in addition to the parallel rightward shift of the concentration-response curve at a concentration of 10(-8) M. Analysis of the data yield a pA2 of 9.2 +/- 0.2 (n = 5) and a slope of 1.5 +/- 0.2 (n = 5). 5. In vivo, the oral administration of FR173657 inhibited BK-induced bronchoconstriction dose-dependently in guinea-pigs with an ED50 of 0.075 mg kg-1, but did not inhibit histamine-induced bronchoconstriction even at 1 mg kg-1. FR173657 also inhibited carrageenin-induced paw oedema with an ED50 of 6.8 mg kg-1 2 h after the carrageenin injection in rats. 6. These results show that FR173657 is a potent, selective, and orally active bradykinin B2 receptor antagonist.
Collapse
Affiliation(s)
- M Asano
- Department of Pharmacology, Fujisawa Pharmaceutical Co, Ltd., Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Blaukat A, Alla SA, Lohse MJ, Müller-Esterl W. Ligand-induced phosphorylation/dephosphorylation of the endogenous bradykinin B2 receptor from human fibroblasts. J Biol Chem 1996; 271:32366-74. [PMID: 8943300 DOI: 10.1074/jbc.271.50.32366] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have studied the ligand-induced phosphorylation/dephosphorylation of the bradykinin B2 receptor endogenously expressed in human HF-15 fibroblasts. An antiserum (AS346) to a synthetic peptide (CRS36), derived from the extreme carboxyl terminus of the human B2 receptor, precipitated the receptor from solubilized membranes of HF-15 cells that had been labeled with [32P]orthophosphate. A low basal level of B2 receptor phosphorylation was found in the absence of a ligand. Stimulation of the cells with the B2 receptor agonists bradykinin, [Lys0,Hyp3]bradykinin, kallidin, and T-kinin resulted in a rapid and efficient phosphorylation of the receptor. The B2 receptor antagonist HOE140 and the B1 receptor agonist des-Arg9-bradykinin failed to induce significant phosphorylation of the B2 receptor. Phosphoamino acid analysis revealed that the B2 receptor is phosphorylated on serine and threonine, but not on tyrosine residues. The ligand-induced phosphorylation of the receptor was concentration-dependent, with an apparent EC50 of 33 nM, and peaked at 1 min after challenge. The kinin-stimulated phosphorylation of the B2 receptor was rapid and transient and paralleled the kinetics of desensitization/resensitization of the receptor as followed by [Ca2+]i release and radioligand binding assay, respectively. The ligand-induced phosphorylation of the B2 receptor was independent of the protein kinase C pathway. In vitro experiments suggest betaARK1 (beta-adrenergic receptor kinase) as a candidate kinase that could mediate the homologous B2 receptor phosphorylation. Inhibitors of protein phosphatases 1 and 2A effectively blocked the dephosphorylation, but did not affect the internalization of the B2 receptor, whereas inhibitors of receptor internalization delayed its dephosphorylation. These finding point to a role of ligand-induced phosphorylation in the desensitization and redistribution of the bradykinin receptor in human fibroblasts.
Collapse
Affiliation(s)
- A Blaukat
- Institute of Physiological Chemistry and Pathobiochemistry, Johannes Gutenberg University at Mainz, Duesbergweg 6, D-55099 Mainz, Federal Republic of Germany.
| | | | | | | |
Collapse
|
21
|
Harvey JS, Burgess GM. Cyclic GMP regulates activation of phosphoinositidase C by bradykinin in sensory neurons. Biochem J 1996; 316 ( Pt 2):539-44. [PMID: 8687398 PMCID: PMC1217382 DOI: 10.1042/bj3160539] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Prior exposure of cultured neonatal rat dorsal root ganglion (DRG) neurons to bradykinin resulted in marked attenuation of bradykinin-induced activation of phosphoinositidase C (PIC). The (logconcentration)-response curve for bradykinin-induced [3H]inositol trisphosphate ([3H]IP3) formation was shifted to the right and the maximum response was reduced. Bradykinin increases cyclic GMP (cGMP) in DRG neurons [Burgess, Mullaney, McNeill, Coote, Minhas and Wood (1989) J. Neurochem. 53, 1212-1218] and treatment of the neurons with dibutyryl cGMP (dbcGMP) had a similar, inhibitory, effect on bradykinin-induced [3H]IP3 formation. NG-Nitro-L-arginine (LNNA) blocked bradykinin-induced formation of cGMP. It prevented the functional uncoupling induced by pretreatment with bradykinin, but not the inhibitory effect of dbcGMP on [3H]IP3 formation. The ability of LNNA to prevent desensitization was reversed by excess L-arginine, indicating that its actions were mediated through inhibition of nitric oxide synthase. In addition to functional desensitization, exposure to bradykinin reduced the number of cell-surface receptors detected with [3H]bradykinin, without affecting its KD value for the remaining sites. In contrast to bradykinin, pretreatment with dbcGMP had no effect on either the KD or B(max) for [3H]bradykinin binding. This implies that the inhibitory effect of dbcGMP was down-stream from the binding of bradykinin to its receptor and upstream of IP3 formation. The lack of effect of dbcGMP on [3H]bradykinin binding suggests that the decrease in receptor number induced by bradykinin was mediated by a different mechanism and was not a key factor in the rapid phase of desensitization in these cells.
Collapse
Affiliation(s)
- J S Harvey
- Sandoz Institute for Medical Research, London, U.K
| | | |
Collapse
|
22
|
Baltensperger K, Karoor V, Paul H, Ruoho A, Czech MP, Malbon CC. The beta-adrenergic receptor is a substrate for the insulin receptor tyrosine kinase. J Biol Chem 1996; 271:1061-4. [PMID: 8557631 DOI: 10.1074/jbc.271.2.1061] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
G-protein-linked receptors and intrinsic tyrosine-kinase growth receptors represent two prominent modalities in cell signaling. Cross-regulation among members of both receptor superfamilies has been reported, including the counter-regulatory effects of insulin on beta-adrenergic catecholamine action. Cells stimulated by insulin show loss of function and increased phosphotyrosine content of beta 2-adrenergic receptors. Phosphorylation of tyrosyl residues 350/354 of beta 2-adrenergic receptors is obligatory for counter-regulation by insulin (Karoor, V., Baltensperger, K., Paul, H., Czech, M., and Malbon, C. C. (1995) J. Biol. Chem. 270, 25305-25308), suggesting the hypothesis that G-protein-linked receptors themselves may act as substrates for the insulin receptor and other growth factor receptors. This hypothesis was evaluated directly using recombinant human insulin receptor, hamster beta 2-adrenergic receptor, and an vitro reconstitution and phosphorylation assay. Insulin is shown to stimulate insulin receptor-catalyzed phosphorylation of the beta 2-adrenergic receptor. Phosphoamino acid analysis establishes that insulin receptor-catalyzed phosphorylation of the beta 2-adrenergic receptor in vitro is confined to phosphotyrosine. High pressure liquid chromatography and two-dimensional mapping reveal insulin receptor-catalyzed phosphorylation of the beta 2-adrenergic receptor at residues Tyr132/Tyr141, Tyr350/Tyr354, and Tyr364, known sites of phosphorylation in response to insulin in vivo. Insulin-like growth factor-I receptor as well as the insulin receptor displays the capacity to phosphorylate the beta 2-adrenergic receptor in vitro, establishing a new paradigm, i.e. G-protein-linked receptors acting as substrates for intrinsic tyrosine kinase growth factor receptors.
Collapse
Affiliation(s)
- K Baltensperger
- Program in Molecular Medicine and the Department of Biochemistry and Molecular Biology, University of Massachusetts Medical Center, Worcester, 01605, USA
| | | | | | | | | | | |
Collapse
|
23
|
Karoor V, Baltensperger K, Paul H, Czech MP, Malbon CC. Phosphorylation of tyrosyl residues 350/354 of the beta-adrenergic receptor is obligatory for counterregulatory effects of insulin. J Biol Chem 1995; 270:25305-8. [PMID: 7592686 DOI: 10.1074/jbc.270.43.25305] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Insulin stimulates a loss of function and increased phosphotyrosine content of the beta 2-adrenergic receptor in intact cells, raising the possibility that the beta 2-receptor itself is a substrate for the insulin receptor tyrosine kinase. Phosphorylation of synthetic peptides corresponding to cytoplasmic domains of the beta 2-adrenergic receptor by the insulin receptor in vitro and peptide mapping of the beta 2-adrenergic receptor phosphorylated in vivo in cells stimulated by insulin reveal tyrosyl residues 350/354 and 364 in the cytoplasmic, C-terminal region of the beta 2-adrenergic receptor as primary targets. Mutation of tyrosyl residues 350, 354 (double mutation) to phenylalanine abolishes the ability of insulin to counterregulate beta-agonist stimulation of cyclic AMP accumulation. Phenylalanine substitution of tyrosyl reside 364, in contrast, abolishes beta-adrenergic stimulation itself.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cricetinae
- Electrophoresis, Gel, Two-Dimensional
- Insulin/pharmacology
- Models, Molecular
- Molecular Sequence Data
- Peptide Fragments/metabolism
- Peptide Mapping
- Phosphopeptides/analysis
- Phosphorylation
- Receptor, Insulin/metabolism
- Receptors, Adrenergic, beta-2/drug effects
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- V Karoor
- Department of Molecular Pharmacology, State University of New York, Stony Brook 11794-8651, USA
| | | | | | | | | |
Collapse
|
24
|
Fleming I, Fisslthaler B, Busse R. Calcium signaling in endothelial cells involves activation of tyrosine kinases and leads to activation of mitogen-activated protein kinases. Circ Res 1995; 76:522-9. [PMID: 7895328 DOI: 10.1161/01.res.76.4.522] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The activation of endothelial cells following exposure to a variety of receptor-dependent and -independent stimuli is associated with the release of Ca2+ from intracellular stores as well as the influx of Ca2+ from the extracellular space. In the present study, we investigated the interaction between Ca2+ signaling in cultured human umbilical vein endothelial cells and tyrosine phosphorylation. Stimulation of endothelial cells with either bradykinin (100 nmol/L), histamine (1 mumol/L), or the Ca(2+)-ATPase inhibitor thapsigargin (30 nmol/L) resulted in a slightly delayed but prolonged tyrosine phosphorylation of two low molecular weight proteins (approximately 42 and approximately 44 kD). These proteins were identified by immunoprecipitation as the 42- and 44-kD isoforms of mitogen-activated protein kinase (MAP kinase). The agonist-induced tyrosine phosphorylation of the 42-/44-kD doublet was sensitive to the tyrosine kinase inhibitors genistein (100 mumol/L) and piceatannol (10 mumol/L) and was inhibited by the removal of Ca2+ from the extracellular medium. In fura 2-loaded endothelial cells, inhibition of tyrosine kinases attenuated Ca2+ signaling after stimulation with either bradykinin (30 nmol/L) or thapsigargin (30 nmol/L). Since inhibition of tyrosine kinases specifically attenuates the plateau phase of the Ca2+ response after stimulation, the effect of tyrosine kinase inhibition appeared to be mostly associated with the influx of Ca2+ from the extracellular space.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- I Fleming
- Zentrum der Physiologie, Klinikum der JWG-Universität, Frankfurt/Main, Germany
| | | | | |
Collapse
|
25
|
Afink GB, Van Alewijk DC, De Roos AD, Van Zoelen EJ. Lysophosphatidic acid and bradykinin have opposite effects on phenotypic transformation of normal rat kidney cells. J Cell Biochem 1994; 56:480-9. [PMID: 7890806 DOI: 10.1002/jcb.240560408] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The bioactive lipid lysophosphatidic acid is besides a strong mitogen for quiescent fibroblasts, a potent inducer of phenotypic transformation of normal rat kidney cells. The lysophosphatidic acid induced loss of density-arrest is strongly inhibited by bradykinin. Although their effects on normal rat kidney cell proliferation are opposite, bradykinin mimics many of the intracellular effects induced upon lysophosphatidic acid receptor activation, including phosphoinositide turnover, Ca(2+)-mobilization and arachidonic acid release. Bradykinin does not counteract the lysophosphatidic acid induced reduction of cAMP levels in normal rat kidney cells. However, bradykinin inhibits the lysophosphatidic acid and other growth factor induced phenotypic transformation through the induction of a so far uncharacterized prostaglandin G/H synthase product. The growth inhibitory effect of bradykinin is limited to density-arrested cells, while upon prolonged treatment bradykinin itself is capable to induce the loss of density-dependent growth control. It is concluded that bradykinin is a bifunctional regulator of normal rat kidney cell proliferation and that its inhibitory effects are mediated via the induction of a prostaglandin derivative.
Collapse
Affiliation(s)
- G B Afink
- Department of Cell Biology, University of Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
26
|
Hasan AA, Cines DB, Zhang J, Schmaier AH. The carboxyl terminus of bradykinin and amino terminus of the light chain of kininogens comprise an endothelial cell binding domain. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)31769-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
27
|
Baenziger N, Mack P, Jong Y, Dalemar L, Perez N, Lindberg C, Wilhelm B, Haddock R. An environmentally regulated receptor for diamine oxidase modulates human endothelial cell/fibroblast histamine degradative uptake. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36549-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|