1
|
Montoliu L. Transgenesis and Genome Engineering: A Historical Review. Methods Mol Biol 2023; 2631:1-32. [PMID: 36995662 DOI: 10.1007/978-1-0716-2990-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Our ability to modify DNA molecules and to introduce them into mammalian cells or embryos almost appears in parallel, starting from the 1970s of the last century. Genetic engineering techniques rapidly developed between 1970 and 1980. In contrast, robust procedures to microinject or introduce DNA constructs into individuals did not take off until 1980 and evolved during the following two decades. For some years, it was only possible to add transgenes, de novo, of different formats, including artificial chromosomes, in a variety of vertebrate species or to introduce specific mutations essentially in mice, thanks to the gene-targeting methods by homologous recombination approaches using mouse embryonic stem (ES) cells. Eventually, genome-editing tools brought the possibility to add or inactivate DNA sequences, at specific sites, at will, irrespective of the animal species involved. Together with a variety of additional techniques, this chapter will summarize the milestones in the transgenesis and genome engineering fields from the 1970s to date.
Collapse
Affiliation(s)
- Lluis Montoliu
- National Centre for Biotechnology (CNB-CSIC) and Center for Biomedical Network Research on Rare Diseases (CIBERER-ISCIII), Madrid, Spain.
- National Centre for Biotechnology (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
2
|
Woodard KJ, Doerfler PA, Mayberry KD, Sharma A, Levine R, Yen J, Valentine V, Palmer LE, Valentine M, Weiss MJ. Limitations of mouse models for sickle cell disease conferred by their human globin transgene configurations. Dis Model Mech 2022; 15:275817. [PMID: 35793591 PMCID: PMC9277148 DOI: 10.1242/dmm.049463] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/25/2022] [Indexed: 12/22/2022] Open
Abstract
We characterized the human β-like globin transgenes in two mouse models of sickle cell disease (SCD) and tested a genome-editing strategy to induce red blood cell fetal hemoglobin (HbF; α2γ2). Berkeley SCD mice contain four to 22 randomly arranged, fragmented copies of three human transgenes (HBA1, HBG2-HBG1-HBD-HBBS and a mini-locus control region) integrated into a single site of mouse chromosome 1. Cas9 disruption of the BCL11A repressor binding motif in the γ-globin gene (HBG1 and HBG2; HBG) promoters of Berkeley mouse hematopoietic stem cells (HSCs) caused extensive death from multiple double-strand DNA breaks. Long-range sequencing of Townes SCD mice verified that the endogenous Hbb genes were replaced by single-copy segments of human HBG1 and HBBS including proximal but not some distal gene-regulatory elements. Townes mouse HSCs were viable after Cas9 disruption of the HBG1 BCL11A binding motif but failed to induce HbF to therapeutic levels, contrasting with human HSCs. Our findings provide practical information on the genomic structures of two common mouse SCD models, illustrate their limitations for analyzing therapies to induce HbF and confirm the importance of distal DNA elements in human globin regulation. This article has an associated First Person interview with the first author of the paper. Editor's choice: This study describes the genomic structures of two common sickle cell disease mouse models, illustrates their limitations for analyzing some genetic therapies and confirms the importance of distal DNA elements in human globin gene regulation.
Collapse
Affiliation(s)
- Kaitly J Woodard
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.,Integrated Biomedical Sciences Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Phillip A Doerfler
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kalin D Mayberry
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Rachel Levine
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jonathan Yen
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Virginia Valentine
- Cytogenetics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Lance E Palmer
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Marc Valentine
- Cytogenetics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
3
|
ZNF410 represses fetal globin by singular control of CHD4. Nat Genet 2021; 53:719-728. [PMID: 33859416 PMCID: PMC8180380 DOI: 10.1038/s41588-021-00843-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/10/2021] [Indexed: 02/02/2023]
Abstract
Known fetal hemoglobin (HbF) silencers have potential on-target liabilities for rational β-hemoglobinopathy therapeutic inhibition. Here, through transcription factor (TF) CRISPR screening, we identify zinc-finger protein (ZNF) 410 as an HbF repressor. ZNF410 does not bind directly to the genes encoding γ-globins, but rather its chromatin occupancy is concentrated solely at CHD4, encoding the NuRD nucleosome remodeler, which is itself required for HbF repression. CHD4 has two ZNF410-bound regulatory elements with 27 combined ZNF410 binding motifs constituting unparalleled genomic clusters. These elements completely account for the effects of ZNF410 on fetal globin repression. Knockout of ZNF410 or its mouse homolog Zfp410 reduces CHD4 levels by 60%, enough to substantially de-repress HbF while eluding cellular or organismal toxicity. These studies suggest a potential target for HbF induction for β-hemoglobin disorders with a wide therapeutic index. More broadly, ZNF410 represents a special class of gene regulator, a conserved TF with singular devotion to regulation of a chromatin subcomplex.
Collapse
|
4
|
Iarovaia OV, Kovina AP, Petrova NV, Razin SV, Ioudinkova ES, Vassetzky YS, Ulianov SV. Genetic and Epigenetic Mechanisms of β-Globin Gene Switching. BIOCHEMISTRY (MOSCOW) 2018; 83:381-392. [PMID: 29626925 DOI: 10.1134/s0006297918040090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Vertebrates have multiple forms of hemoglobin that differ in the composition of their polypeptide chains. During ontogenesis, the composition of these subunits changes. Genes encoding different α- and β-polypeptide chains are located in two multigene clusters on different chromosomes. Each cluster contains several genes that are expressed at different stages of ontogenesis. The phenomenon of stage-specific transcription of globin genes is referred to as globin gene switching. Mechanisms of expression switching, stage-specific activation, and repression of transcription of α- and β-globin genes are of interest from both theoretical and practical points of view. Alteration of balanced expression of globin genes, which usually occurs due to damage to adult β-globin genes, leads to development of severe diseases - hemoglobinopathies. In most cases, reactivation of the fetal hemoglobin gene in patients with β-thalassemia and sickle cell disease can reduce negative consequences of irreversible alterations of expression of the β-globin genes. This review focuses on the current state of research on genetic and epigenetic mechanisms underlying stage-specific switching of β-globin genes.
Collapse
Affiliation(s)
- O V Iarovaia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Animal models of erythropoiesis have been, and will continue to be, important tools for understanding molecular mechanisms underlying the development of this cell lineage and the pathophysiology associated with various human erythropoietic diseases. In this regard, the mouse is probably the most valuable animal model available to investigators. The physiology and short gestational period of mice make them ideal for studying developmental processes and modeling human diseases. These attributes, coupled with cutting-edge genetic tools such as transgenesis, gene knockouts, conditional gene knockouts, and genome editing, provide a significant resource to the research community to test a plethora of hypotheses. This review summarizes the mouse models available for studying a wide variety of erythroid-related questions, as well as the properties inherent in each one.
Collapse
|
6
|
Vinjamur DS, Bauer DE, Orkin SH. Recent progress in understanding and manipulating haemoglobin switching for the haemoglobinopathies. Br J Haematol 2017; 180:630-643. [PMID: 29193029 DOI: 10.1111/bjh.15038] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The major β-haemoglobinopathies, sickle cell disease and β-thalassaemia, represent the most common monogenic disorders worldwide and a steadily increasing global disease burden. Allogeneic haematopoietic stem cell transplantation, the only curative therapy, is only applied to a small minority of patients. Common clinical management strategies act mainly downstream of the root causes of disease. The observation that elevated fetal haemoglobin expression ameliorates these disorders has motivated longstanding investigations into the mechanisms of haemoglobin switching. Landmark studies over the last decade have led to the identification of two potent transcriptional repressors of γ-globin, BCL11A and ZBTB7A. These regulators act with additional trans-acting epigenetic repressive complexes, lineage-defining factors and developmental programs to silence fetal haemoglobin by working on cis-acting sequences at the globin gene loci. Rapidly advancing genetic technology is enabling researchers to probe deeply the interplay between the molecular players required for γ-globin (HBG1/HBG2) silencing. Gene therapies may enable permanent cures with autologous modified haematopoietic stem cells that generate persistent fetal haemoglobin expression. Ultimately rational small molecule pharmacotherapies to reactivate HbF could extend benefits widely to patients.
Collapse
Affiliation(s)
- Divya S Vinjamur
- Boston Children's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Daniel E Bauer
- Boston Children's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Stuart H Orkin
- Boston Children's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA.,Howard Hughes Medical Institute, Boston, MA, USA
| |
Collapse
|
7
|
Lee WS, McColl B, Maksimovic J, Vadolas J. Epigenetic interplay at the β-globin locus. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:393-404. [DOI: 10.1016/j.bbagrm.2017.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/28/2017] [Accepted: 01/30/2017] [Indexed: 02/02/2023]
|
8
|
Abstract
The structural and functional conservation of hemoglobin throughout mammals has made the laboratory mouse an exceptionally useful organism in which to study both the protein and the individual globin genes. Early researchers looked to the globin genes as an excellent model in which to examine gene regulation – bountifully expressed and displaying a remarkably consistent pattern of developmental activation and silencing. In parallel with the growth of research into expression of the globin genes, mutations within the β-globin gene were identified as the cause of the β-hemoglobinopathies such as sickle cell disease and β-thalassemia. These lines of enquiry stimulated the development of transgenic mouse models, first carrying individual human globin genes and then substantial human genomic fragments incorporating the multigenic human β-globin locus and regulatory elements. Finally, mice were devised carrying mutant human β-globin loci on genetic backgrounds deficient in the native mouse globins, resulting in phenotypes of sickle cell disease or β-thalassemia. These years of work have generated a group of model animals that display many features of the β-hemoglobinopathies and provided enormous insight into the mechanisms of gene regulation. Substantive differences in the expression of human and mouse globins during development have also come to light, revealing the limitations of the mouse model, but also providing opportunities to further explore the mechanisms of globin gene regulation. In addition, animal models of β-hemoglobinopathies have demonstrated the feasibility of gene therapy for these conditions, now showing success in human clinical trials. Such models remain in use to dissect the molecular events of globin gene regulation and to identify novel treatments based upon the reactivation of developmentally silenced γ-globin. Here, we describe the development of animal models to investigate globin switching and the β-hemoglobinopathies, a field that has paralleled the emergence of modern molecular biology and clinical genetics.
Collapse
Affiliation(s)
- Bradley McColl
- Cell and Gene Therapy Laboratory, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Jim Vadolas
- Cell and Gene Therapy Laboratory, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| |
Collapse
|
9
|
Nitric Oxide-cGMP Signaling Stimulates Erythropoiesis through Multiple Lineage-Specific Transcription Factors: Clinical Implications and a Novel Target for Erythropoiesis. PLoS One 2016; 11:e0144561. [PMID: 26727002 PMCID: PMC4699757 DOI: 10.1371/journal.pone.0144561] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/19/2015] [Indexed: 11/19/2022] Open
Abstract
Much attention has been directed to the physiological effects of nitric oxide (NO)-cGMP signaling, but virtually nothing is known about its hematologic effects. We reported for the first time that cGMP signaling induces human γ-globin gene expression. Aiming at developing novel therapeutics for anemia, we examined here the hematologic effects of NO-cGMP signaling in vivo and in vitro. We treated wild-type mice with NO to activate soluble guanylate cyclase (sGC), a key enzyme of cGMP signaling. Compared to untreated mice, NO-treated mice had higher red blood cell counts and total hemoglobin but reduced leukocyte counts, demonstrating that when activated, NO-cGMP signaling exerts hematopoietic effects on multiple types of blood cells in vivo. We next generated mice which overexpressed rat sGC in erythroid and myeloid cells. The forced expression of sGCs activated cGMP signaling in both lineage cells. Compared with non-transgenic littermates, sGC mice exhibited hematologic changes similar to those of NO-treated mice. Consistently, a membrane-permeable cGMP enhanced the differentiation of hematopoietic progenitors toward erythroid-lineage cells but inhibited them toward myeloid-lineage cells by controlling multiple lineage-specific transcription factors. Human γ-globin gene expression was induced at low but appreciable levels in sGC mice carrying the human β-globin locus. Together, these results demonstrate that NO-cGMP signaling is capable of stimulating erythropoiesis in both in vitro and vivo settings by controlling the expression of multiple lineage-specific transcription factors, suggesting that cGMP signaling upregulates erythropoiesis at the level of gene transcription. The NO-cGMP signaling axis may constitute a novel target to stimulate erythropoiesis in vivo.
Collapse
|
10
|
McColl B, Kao BR, Lourthai P, Chan K, Wardan H, Roosjen M, Delagneau O, Gearing LJ, Blewitt ME, Svasti S, Fucharoen S, Vadolas J. An in vivo model for analysis of developmental erythropoiesis and globin gene regulation. FASEB J 2014; 28:2306-17. [PMID: 24443374 DOI: 10.1096/fj.13-246637] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Expression of fetal γ-globin in adulthood ameliorates symptoms of β-hemoglobinopathies by compensating for the mutant β-globin. Reactivation of the silenced γ-globin gene is therefore of substantial clinical interest. To study the regulation of γ-globin expression, we created the GG mice, which carry an intact 183-kb human β-globin locus modified to express enhanced green fluorescent protein (eGFP) from the Gγ-globin promoter. GG embryos express eGFP first in the yolk sac blood islands and then in the aorta-gonad mesonephros and the fetal liver, the sites of normal embryonic hematopoiesis. eGFP expression in erythroid cells peaks at E9.5 and then is rapidly silenced (>95%) and maintained at low levels into adulthood, demonstrating appropriate developmental regulation of the human β-globin locus. In vitro knockdown of the epigenetic regulator DNA methyltransferase-1 in GG primary erythroid cells increases the proportion of eGFP(+) cells in culture from 41.9 to 74.1%. Furthermore, eGFP fluorescence is induced >3-fold after treatment of erythroid precursors with epigenetic drugs known to induce γ-globin expression, demonstrating the suitability of the Gγ-globin eGFP reporter for evaluation of γ-globin inducers. The GG mouse model is therefore a valuable model system for genetic and pharmacologic studies of the regulation of the β-globin locus and for discovery of novel therapies for the β-hemoglobinopathies.
Collapse
Affiliation(s)
- Bradley McColl
- 2Cell and Gene Therapy Group, Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Xu J, Peng C, Sankaran VG, Shao Z, Esrick EB, Chong BG, Ippolito GC, Fujiwara Y, Ebert BL, Tucker PW, Orkin SH. Correction of sickle cell disease in adult mice by interference with fetal hemoglobin silencing. Science 2011; 334:993-6. [PMID: 21998251 DOI: 10.1126/science.1211053] [Citation(s) in RCA: 259] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Persistence of human fetal hemoglobin (HbF, α(2)γ(2)) in adults lessens the severity of sickle cell disease (SCD) and the β-thalassemias. Here, we show that the repressor BCL11A is required in vivo for silencing of γ-globin expression in adult animals, yet dispensable for red cell production. BCL11A serves as a barrier to HbF reactivation by known HbF inducing agents. In a proof-of-principle test of BCL11A as a potential therapeutic target, we demonstrate that inactivation of BCL11A in SCD transgenic mice corrects the hematologic and pathologic defects associated with SCD through high-level pancellular HbF induction. Thus, interference with HbF silencing by manipulation of a single target protein is sufficient to reverse SCD.
Collapse
Affiliation(s)
- Jian Xu
- Division of Hematology/Oncology, Children's Hospital Boston and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Alhashem YN, Vinjamur DS, Basu M, Klingmüller U, Gaensler KML, Lloyd JA. Transcription factors KLF1 and KLF2 positively regulate embryonic and fetal beta-globin genes through direct promoter binding. J Biol Chem 2011; 286:24819-27. [PMID: 21610079 DOI: 10.1074/jbc.m111.247536] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Krüppel-like factors (KLFs) control cell differentiation and embryonic development. KLF1 (erythroid Krüppel-like factor) plays essential roles in embryonic and adult erythropoiesis. KLF2 is a positive regulator of the mouse and human embryonic β-globin genes. KLF1 and KLF2 have highly homologous zinc finger DNA-binding domains. They have overlapping roles in embryonic erythropoiesis, as demonstrated using single and double KO mouse models. Ablation of the KLF1 or KLF2 gene causes embryonic lethality, but double KO embryos are more anemic and die sooner than either single KO. In this work, a dual human β-globin locus transgenic and KLF knockout mouse model was used. The results demonstrate that the human ε- (embryonic) and γ-globin (fetal) genes are positively regulated by KLF1 and KLF2 in embryos. Conditional KO mouse experiments indicate that the effect of KLF2 on embryonic globin gene regulation is at least partly erythroid cell-autonomous. KLF1 and KLF2 bind directly to the promoters of the human ε- and γ-globin genes, the mouse embryonic Ey- and βh1-globin genes, and also to the β-globin locus control region, as demonstrated by ChIP assays with mouse embryonic blood cells. H3K9Ac and H3K4me3 marks indicate open chromatin and active transcription, respectively. These marks are diminished at the Ey-, βh1-, ε- and γ-globin genes and locus control region in KLF1(-/-) embryos, correlating with reduced gene expression. Therefore, KLF1 and KLF2 positively regulate the embryonic and fetal β-globin genes through direct promoter binding. KLF1 is required for normal histone modifications in the β-globin locus in mouse embryos.
Collapse
Affiliation(s)
- Yousef N Alhashem
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298-0035, USA
| | | | | | | | | | | |
Collapse
|
13
|
Transcriptional regulation of fetal to adult hemoglobin switching: new therapeutic opportunities. Blood 2011; 117:3945-53. [PMID: 21321359 DOI: 10.1182/blood-2010-11-316893] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In humans, embryonic, fetal, and adult hemoglobins are sequentially expressed in developing erythroblasts during ontogeny. For the past 40 years, this process has been the subject of intensive study because of its value to enlighten the biology of developmental gene regulation and because fetal hemoglobin can significantly ameliorate the clinical manifestations of both sickle cell disease and β-thalassemia. Understanding the normal process of loss of fetal globin expression and activation of adult globin expression could potentially lead to new therapeutic approaches for these hemoglobin disorders. Herein, we briefly review the history of the study of hemoglobin switching and then focus on recent discoveries in the field that now make new therapeutic approaches seem feasible in the future. Erythroid-specific knockdown of fetal gene repressors or enforced expression of fetal gene activators may provide clinically applicable approaches for genetic treatment of hemoglobin disorders that would benefit from increased fetal hemoglobin levels.
Collapse
|
14
|
Rupon JW, Wang SZ, Gnanapragasam M, Labropoulos S, Ginder GD. MBD2 contributes to developmental silencing of the human ε-globin gene. Blood Cells Mol Dis 2011; 46:212-9. [PMID: 21296012 DOI: 10.1016/j.bcmd.2011.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/21/2010] [Accepted: 12/30/2010] [Indexed: 11/17/2022]
Abstract
During erythroid development, the embryonic ε-globin gene becomes silenced as erythropoiesis shifts from the yolk sac to the fetal liver where γ-globin gene expression predominates. Previous studies have shown that the ε-globin gene is autonomously silenced through promoter proximal cis-acting sequences in adult erythroid cells. We have shown a role for the methylcytosine binding domain protein 2 (MBD2) in the developmental silencing of the avian embryonic ρ-globin and human fetal γ-globin genes. To determine the roles of MBD2 and DNA methylation in human ε-globin gene silencing, transgenic mice containing all sequences extending from the 5' hypersensitive site 5 (HS5) of the β-globin locus LCR to the human γ-globin gene promoter were generated. These mice show correct developmental expression and autonomous silencing of the transgene. Either the absence of MBD2 or treatment with the DNA methyltransferase inhibitor 5-azacytidine increases ε-globin transgene expression by 15-20 fold in adult mice. Adult mice containing the entire human β-globin locus also show an increase in expression of both the ε-globin gene transgene and endogenous ε(Y) and β(H1) genes in the absence of MBD2. These results indicate that the human ε-globin gene is subject to multilayered silencing mediated in part by MBD2.
Collapse
Affiliation(s)
- Jeremy W Rupon
- Massey Cancer Center, Virginia Commonwealth University, Richmond, USA.
| | | | | | | | | |
Collapse
|
15
|
Human globin knock-in mice complete fetal-to-adult hemoglobin switching in postnatal development. Mol Cell Biol 2010; 31:876-83. [PMID: 21173165 DOI: 10.1128/mcb.00725-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Elevated levels of fetal γ-globin can cure disorders caused by mutations in the adult β-globin gene. This clinical finding has motivated studies to improve our understanding of hemoglobin switching. Unlike humans, mice do not express a distinct fetal globin. Transgenic mice that contain the human β-globin locus complete their fetal-to-adult hemoglobin switch prior to birth, with human γ-globin predominantly restricted to primitive erythroid cells. We established humanized (100% human hemoglobin) knock-in mice that demonstrate a distinct fetal hemoglobin (HbF) stage, where γ-globin is the dominant globin chain produced during mid- to late gestation. Human γ- and β-globin gene competition is evident around the time of birth, and γ-globin chain production diminishes in postnatal life, with transient production of HbF reticulocytes. Following completion of the γ- to-β-globin switch, adult erythroid cells synthesize low levels of HbF. We conclude that the knock-in globin genes are expressed in a pattern strikingly similar to that in human development, most notably with postnatal resolution of the fetal-to-adult hemoglobin switch. Our findings are consistent with the importance of BCL11A in hemoglobin switching, since removal of intergenic binding sites for BCL11A results in human γ-globin expression in mouse definitive erythroid cells.
Collapse
|
16
|
Huo Y, McConnell SC, Liu S, Zhang T, Yang R, Ren J, Ryan TM. Humanized mouse models of Cooley's anemia: correct fetal-to-adult hemoglobin switching, disease onset, and disease pathology. Ann N Y Acad Sci 2010; 1202:45-51. [PMID: 20712771 PMCID: PMC7791968 DOI: 10.1111/j.1749-6632.2010.05547.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
beta thalassemia major or Cooley's Anemia (CA) has been difficult to model in mice due to their lack of a fetal hemoglobin gene equivalent. This summary describes novel preclinical humanized mouse models of CA that survive on human fetal hemoglobin at birth and are blood-transfusion dependent for life upon completion of their human fetal-to-adult hemoglobin switch after birth. These CA models are the first to recapitulate the temporal onset of the disease in human patients. These novel humanized CA disease models are useful for the study of the regulation of globin gene expression, synthesis, and switching; examining the onset of disease pathology; development of transfusion and iron chelation therapies; induction of fetal hemoglobin synthesis; and the testing of novel genetic and cell-based therapies for the correction of thalassemia.
Collapse
Affiliation(s)
- Yongliang Huo
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Role of the GATA-1/FOG-1/NuRD pathway in the expression of human beta-like globin genes. Mol Cell Biol 2010; 30:3460-70. [PMID: 20439494 DOI: 10.1128/mcb.00001-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The human beta-globin genes are expressed in a developmentally controlled fashion. Studies on the molecular mechanisms underlying the stage-specific regulation of globin genes have been fueled by the clinical benefit of elevated fetal gamma-globin expression in patients with sickle cell anemia and thalassemia. Recent reports suggested a role of the hematopoietic transcription factor GATA-1, its cofactor FOG-1, and the associated chromatin remodeling complex NuRD in the developmental silencing of HBG1 and HBG2 gene expression. To examine whether FOG-1 via NuRD controls HBG1 and HBG2 silencing in vivo, we created mice in which the FOG-1/NuRD complex is disrupted (A. Miccio et al., EMBO J. 29:442-456, 2010) and crossed these with animals carrying the entire human beta-globin gene locus as a transgene. We found that the FOG-1/NuRD interaction is dispensable for the silencing of human HBG1 and HBG2 expression. In addition, mutant animals displayed normal silencing of the endogenous embryonic globin genes. In contrast, a significant reduction of adult-type human and murine globin gene expression was found in adult bone marrows of mutant animals. These results suggest that, unexpectedly, NuRD is required for FOG-1-dependent activation of adult-type globin gene expression but is dispensable for human gamma-globin silencing in vivo.
Collapse
|
18
|
Xu J, Sankaran VG, Ni M, Menne TF, Puram RV, Kim W, Orkin SH. Transcriptional silencing of {gamma}-globin by BCL11A involves long-range interactions and cooperation with SOX6. Genes Dev 2010; 24:783-98. [PMID: 20395365 DOI: 10.1101/gad.1897310] [Citation(s) in RCA: 292] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The developmental switch from human fetal (gamma) to adult (beta) hemoglobin represents a clinically important example of developmental gene regulation. The transcription factor BCL11A is a central mediator of gamma-globin silencing and hemoglobin switching. Here we determine chromatin occupancy of BCL11A at the human beta-globin locus and other genomic regions in vivo by high-resolution chromatin immunoprecipitation (ChIP)-chip analysis. BCL11A binds the upstream locus control region (LCR), epsilon-globin, and the intergenic regions between gamma-globin and delta-globin genes. A chromosome conformation capture (3C) assay shows that BCL11A reconfigures the beta-globin cluster by modulating chromosomal loop formation. We also show that BCL11A and the HMG-box-containing transcription factor SOX6 interact physically and functionally during erythroid maturation. BCL11A and SOX6 co-occupy the human beta-globin cluster along with GATA1, and cooperate in silencing gamma-globin transcription in adult human erythroid progenitors. These findings collectively demonstrate that transcriptional silencing of gamma-globin genes by BCL11A involves long-range interactions and cooperation with SOX6. Our findings provide insight into the mechanism of BCL11A action and new clues for the developmental gene regulatory programs that function at the beta-globin locus.
Collapse
Affiliation(s)
- Jian Xu
- Children's Hospital Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Shimotsuma M, Okamura E, Matsuzaki H, Fukamizu A, Tanimoto K. DNase I hypersensitivity and epsilon-globin transcriptional enhancement are separable in locus control region (LCR) HS1 mutant human beta-globin YAC transgenic mice. J Biol Chem 2010; 285:14495-503. [PMID: 20231293 DOI: 10.1074/jbc.m110.116525] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the five beta-like globin genes (epsilon, Ggamma, Agamma, delta, beta) in the human beta-globin locus depends on enhancement by the locus control region, which consists of five DNase I hypersensitive sites (5'HS1 through 5'HS5). We report here a novel enhancer activity in 5'HS1 that appears to be potent in transfected K562 cells. Deletion analyses identified a core activating element that bound to GATA-1, and a two-nucleotide mutation that disrupted GATA-1 binding in vitro abrogated 5'HS1 enhancer activity in transfection experiments. To determine the in vivo role of this GATA site, we generated multiple lines of human beta-globin YAC transgenic mice bearing the same two-nucleotide mutation. In the mutant mice, epsilon-, but not gamma-globin, gene expression in primitive erythroid cells was severely attenuated, while adult beta-globin gene expression in definitive erythroid cells was unaffected. Interestingly, DNaseI hypersensitivity near the 5'HS1 mutant sequence was eliminated in definitive erythroid cells, whereas it was only mildly affected in primitive erythroid cells. We therefore conclude that, although the GATA site in 5'HS1 is critical for efficient epsilon-globin gene expression, hypersensitive site formation per se is independent of 5'HS1 function, if any, in definitive erythroid cells.
Collapse
Affiliation(s)
- Motoshi Shimotsuma
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | | | | | | | | |
Collapse
|
20
|
A zinc-finger transcriptional activator designed to interact with the gamma-globin gene promoters enhances fetal hemoglobin production in primary human adult erythroblasts. Blood 2010; 115:3033-41. [PMID: 20190190 DOI: 10.1182/blood-2009-08-240556] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Fetal hemoglobin (HbF) is a potent genetic modifier of the severity of beta-thalassemia and sickle cell anemia. We used an in vitro culture model of human erythropoiesis in which late-stage erythroblasts are derived directly from human CD34(+) hematopoietic cells to evaluate HbF production. This system recapitulates expression of globin genes according to the developmental stage of the originating cell source. When cytokine-mobilized peripheral blood CD34(+) cells from adults were cultured, background levels of HbF were 2% or less. Cultured cells were readily transduced with lentiviral vectors when exposed to vector particles between 48 and 72 hours. Among the genetic elements that may enhance fetal hemoglobin production is an artificial zinc-finger transcription factor, GG1-VP64, designed to interact with the proximal gamma-globin gene promoters. Our data show that lentiviral-mediated, enforced expression of GG1-VP64 under the control of relatively weak erythroid-specific promoters induced significant amounts of HbF (up to 20%) in erythroblasts derived from adult CD34(+) cells without altering their capacity for erythroid maturation and only modestly reducing the total numbers of cells that accumulate in culture after transduction. These observations demonstrate the potential for sequence-specific enhancement of HbF in patients with beta-thalassemia or sickle cell anemia.
Collapse
|
21
|
Takahashi RI, Ueda M. Generation of transgenic rats using YAC and BAC DNA constructs. Methods Mol Biol 2010; 597:93-108. [PMID: 20013228 DOI: 10.1007/978-1-60327-389-3_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Transgenic rats with a simple plasmid vector smaller than 20 Kb show insufficient expression and tissue specificity of the introduced transgene. Vectors derived from yeast artificial chromosome (YAC) and bacterial artificial chromosome (BAC), consisting of DNA fragments up to approximately 1 Mb (YAC) and approximately 200 Kb (BAC), respectively, and containing various endogenous regulatory sequences, were expected to work well and showed expression profiles comparable to their endogenous counterparts in transgenic animals. While attempting to make transgenic rats using YAC and BAC vectors, we faced two problems: how to prepare sufficiently concentrated intact DNA and how to reliably microinject a large DNA fragment into the fragile pronuclear ova of the rat. After solving these problems, we were able to make transgenic rats by introducing YAC/BAC gene constructs (YACs/BACs) into the pronuclear ova. And then we examined the relative transcription rates of these genes in the transgenic rats. In this chapter, we focus on this injection process.
Collapse
|
22
|
Suzuki N, Itou T, Hasegawa Y, Okazaki T, Ikeno M. Cell to cell transfer of the chromatin-packaged human beta-globin gene cluster. Nucleic Acids Res 2009; 38:e33. [PMID: 20007595 PMCID: PMC2836578 DOI: 10.1093/nar/gkp1168] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cell type-specific gene expression is regulated by chromatin structure and the transcription factors provided by the cells. In the present study, we introduced genes packaged into chromatin into target cells using a human artificial chromosome (HAC) and analyzed regulation of gene expression. The human β-globin gene cluster was built into an HAC (globin-HAC) and introduced into mouse embryonic stem (ES) cells using microcell-mediated chromosome transfer (MMCT); the adult-type human β-globin gene was expressed in bone marrow and spleen cells of the transgenic mice. In vitro differentiation of ES cells into mouse erythrocytes indicated that the natural sequential expression of ε, γ and β-globin genes was reproduced on the globin-HAC. Combination of MMCT and a novel chromosome transfection technique allowed transfer of globin-HAC from HT1080 cells into the human leukemia cell line K562, and from K562 cells back into HT1080 cells. Expression of the γ-globin gene, repressed in HT1080 cells, was activated in K562 cells without any processes of differentiation into adult erythroid cells, and was completely repressed again in HT1080 cells when transferred back from K562 cells. Thus, transfer of target genes packaged into chromatin using a HAC was useful for functional analyses of gene regulation.
Collapse
Affiliation(s)
- Nobutaka Suzuki
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | | | | | | | | |
Collapse
|
23
|
Miccio A, Wang Y, Hong W, Gregory GD, Wang H, Yu X, Choi JK, Shelat S, Tong W, Poncz M, Blobel GA. NuRD mediates activating and repressive functions of GATA-1 and FOG-1 during blood development. EMBO J 2009; 29:442-56. [PMID: 19927129 DOI: 10.1038/emboj.2009.336] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 10/22/2009] [Indexed: 02/02/2023] Open
Abstract
GATA transcription factors interact with FOG proteins to regulate tissue development by activating and repressing transcription. FOG-1 (ZFPM1), a co-factor for the haematopoietic factor GATA-1, binds to the NuRD co-repressor complex through a conserved N-terminal motif. Surprisingly, we detected NuRD components at both repressed and active GATA-1/FOG-1 target genes in vivo. In addition, while NuRD is required for transcriptional repression in certain contexts, we show a direct requirement of NuRD also for FOG-1-dependent transcriptional activation. Mice in which the FOG-1/NuRD interaction is disrupted display defects similar to germline mutations in the Gata1 and Fog1 genes, including anaemia and macrothrombocytopaenia. Gene expression analysis in primary mutant erythroid cells and megakaryocytes (MKs) revealed an essential function for NuRD during both the repression and activation of select GATA-1/FOG-1 target genes. These results show that NuRD is a critical co-factor for FOG-1 and underscore the versatile use of NuRD by lineage-specific transcription factors to activate and repress gene transcription in the appropriate cellular and genetic context.
Collapse
Affiliation(s)
- Annarita Miccio
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Brouwer J, Willemsen R, Oostra B. The FMR1 gene and fragile X-associated tremor/ataxia syndrome. Am J Med Genet B Neuropsychiatr Genet 2009; 150B:782-98. [PMID: 19105204 PMCID: PMC4320942 DOI: 10.1002/ajmg.b.30910] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The CGG-repeat present in the 5'UTR of the FMR1 gene is unstable upon transmission to the next generation. The repeat is up to 55 CGGs long in the normal population. In fragile X patients, a repeat length exceeding 200 CGGs (full mutation: FM) generally leads to methylation of the repeat and the promoter region, which is accompanied by silencing of the FMR1 gene. The gene product FMRP is involved in regulation of transport and translation of certain mRNA in the dendrite, thereby affecting synaptic plasticity. This is central to learning and memory processes. The absence of FMRP seen in FM is the cause of the mental retardation seen in fragile X patients. The premutation (PM) is defined as 55-200 CGGs. Female PM carriers are at risk of developing primary ovarian insufficiency. Recently it was discovered that elderly PM carriers might develop a progressive neurodegenerative disorder called fragile X-associated tremor/ataxia syndrome. Although arising from the mutations in the same gene, distinct mechanisms lead to fragile X syndrome (absence of FMRP) and FXTAS (toxic RNA gain of function). The pathogenic mechanisms thought to underlie these disorders are discussed, with a specific emphasis on FXTAS. This review gives insight on the implications of all possible repeat length categories seen in fragile X families.
Collapse
Affiliation(s)
- J.R. Brouwer
- Department of Clinical Genetics, ErasmusMC, Rotterdam, The Netherlands
| | - R. Willemsen
- Department of Clinical Genetics, ErasmusMC, Rotterdam, The Netherlands
| | - B.A. Oostra
- Department of Clinical Genetics, ErasmusMC, Rotterdam, The Netherlands
| |
Collapse
|
25
|
Okamura E, Matsuzaki H, Campbell AD, Engel JD, Fukamizu A, Tanimoto K. All of the human beta-type globin genes compete for LCR enhancer activity in embryonic erythroid cells of yeast artificial chromosome transgenic mice. FASEB J 2009; 23:4335-43. [PMID: 19690216 DOI: 10.1096/fj.09-137778] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In primitive erythroid cells of human beta-globin locus transgenic mice (TgM), the locus control region (LCR)-proximal epsilon- and gamma-globin genes are transcribed, whereas the distal delta- and beta-globin genes are silent. It is generally accepted that the beta-globin gene is competitively suppressed by gamma-globin gene expression at this developmental stage. Previously, however, we observed that epsilon-globin gene expression was severely attenuated when its distance from the LCR was extended, implying that beta-globin gene might also be silenced because of its great distance from the LCR. Here, to clarify the beta-globin gene silencing mechanism, we established TgM lines carrying either gamma- or epsilon- plus gamma-globin promoter deletions, without significantly altering the distance between the beta-globin gene and the LCR. Precocious expression of delta- and beta-globin genes was observed in primitive erythroid cells of mutant, but not wild-type TgM, which was most evident when both the epsilon and gamma promoters were deleted. Thus, we clearly demonstrated that the repression of the delta- and beta-globin genes in primitive erythroid cells is dominated by competitive silencing by the epsilon- and gamma-globin gene promoters, and that epsilon- and the other beta-like globin genes might be activated by two distinct mechanisms by the LCR.
Collapse
Affiliation(s)
- Eiichi Okamura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Sankaran VG, Xu J, Ragoczy T, Ippolito GC, Walkley CR, Maika SD, Fujiwara Y, Ito M, Groudine M, Bender MA, Tucker PW, Orkin SH. Developmental and species-divergent globin switching are driven by BCL11A. Nature 2009; 460:1093-7. [PMID: 19657335 DOI: 10.1038/nature08243] [Citation(s) in RCA: 318] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Accepted: 06/30/2009] [Indexed: 11/09/2022]
Abstract
The contribution of changes in cis-regulatory elements or trans-acting factors to interspecies differences in gene expression is not well understood. The mammalian beta-globin loci have served as a model for gene regulation during development. Transgenic mice containing the human beta-globin locus, consisting of the linked embryonic (epsilon), fetal (gamma) and adult (beta) genes, have been used as a system to investigate the temporal switch from fetal to adult haemoglobin, as occurs in humans. Here we show that the human gamma-globin (HBG) genes in these mice behave as murine embryonic globin genes, revealing a limitation of the model and demonstrating that critical differences in the trans-acting milieu have arisen during mammalian evolution. We show that the expression of BCL11A, a repressor of human gamma-globin expression identified by genome-wide association studies, differs between mouse and human. Developmental silencing of the mouse embryonic globin and human gamma-globin genes fails to occur in mice in the absence of BCL11A. Thus, BCL11A is a critical mediator of species-divergent globin switching. By comparing the ontogeny of beta-globin gene regulation in mice and humans, we have shown that alterations in the expression of a trans-acting factor constitute a critical driver of gene expression changes during evolution.
Collapse
Affiliation(s)
- Vijay G Sankaran
- Division of Hematology/Oncology, Children's Hospital Boston and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
A randomly integrated transgenic H19 imprinting control region acquires methylation imprinting independently of its establishment in germ cells. Mol Cell Biol 2009; 29:4595-603. [PMID: 19546235 DOI: 10.1128/mcb.00275-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The imprinted expression of the mouse Igf2/H19 locus is governed by the differential methylation of the imprinting control region (ICR), which is established initially in germ cells and subsequently maintained in somatic cells, depending on its parental origin. By grafting a 2.9-kbp H19 ICR fragment into a human beta-globin yeast artificial chromosome in transgenic mice, we previously showed that the ICR could recapitulate imprinted methylation and expression at a heterologous locus, suggesting that the H19 ICR in the beta-globin locus contained sufficient information to maintain the methylation mark (K. Tanimoto, M. Shimotsuma, H. Matsuzaki, A. Omori, J. Bungert, J. D. Engel, and A. Fukamizu, Proc. Natl. Acad. Sci. USA 102:10250-10255, 2005). Curiously, however, the transgenic H19 ICR was not methylated in sperm, which was distinct from that seen in the endogenous locus. Here, we reevaluated the ability of the H19 ICR to mark the parental origin using more rigid criteria. In the testis, the methylation levels of the solitary 2.9-kbp transgenic ICR fragment varied significantly between six transgenic mouse lines. However, in somatic cells, the paternally inherited ICR fragment exhibited consistently higher methylation levels at five out of six randomly integrated sites in the mouse genome. These results clearly demonstrated that the H19 ICR could acquire parent-of-origin-dependent methylation after fertilization independently of the chromosomal integration site or the prerequisite methylation acquisition in male germ cells.
Collapse
|
28
|
Short-chain fatty acid-mediated effects on erythropoiesis in primary definitive erythroid cells. Blood 2009; 113:6440-8. [PMID: 19380871 DOI: 10.1182/blood-2008-09-171728] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Short-chain fatty acids (SCFAs; butyrate and propionate) up-regulate embryonic/fetal globin gene expression through unclear mechanisms. In a murine model of definitive erythropoiesis, SCFAs increased embryonic beta-type globin gene expression in primary erythroid fetal liver cells (eFLCs) after 72 hours in culture, from 1.7% (+/- 1.2%) of total beta-globin gene expression at day 0 to 4.9% (+/- 2.2%) in propionate and 5.4% (+/- 3.4%) in butyrate; this effect was greater in butyrate plus insulin/erythropoietin (BIE), at 19.5% (+/- 8.3%) compared with 0.1% (+/- 0.1%) in ins/EPO alone (P < .05). Fetal gamma-globin gene expression was increased in human transgene-containing eFLCs, to 35.9% (+/- 7.0%) in BIE compared with 4.4% (+/- 4.2%) in ins/EPO only (P < .05). Embryonic globin gene expression was detectable in 11 of 15 single eFLCs treated with BIE, but in0 of 15 ins/EPO-only treated cells. Butyrate-treated [65.5% (+/- 9.9%)] and 77.5% (+/- 4.0%) propionate-treated eFLCs were highly differentiated in culture, compared with 21.5% (+/- 3.5%) in ins/EPO (P < .005). Importantly, signaling intermediaries, previously implicated in induced embryonic/fetal globin gene expression (STAT5, p42/44, and p38), were not differentially activated by SCFAs in eFLCs; but increased bulk histone (H3) acetylation was seen in SCFA-treated eFLCs. SCFAs induce embryonic globin gene expression in eFLCS, which are a useful short-term and physiologic primary cell model of embryonic/fetal globin gene induction during definitive erythropoiesis.
Collapse
|
29
|
Abstract
A preclinical humanized mouse model of beta thalassemia major or Cooley anemia (CA) was generated by targeted gene replacement of the mouse adult globin genes in embryonic stem cells. The mouse adult alpha and beta globin genes were replaced with adult human alpha globin genes (alpha2alpha1) and a human fetal to adult hemoglobin (Hb)-switching cassette (gamma(HPFH)deltabeta(0)), respectively. Similar to human infants with CA, fully humanized mice survived postnatally by synthesizing predominantly human fetal Hb, HbF (alpha(2)gamma(2)), with a small amount of human minor adult Hb, HbA2 (alpha(2)delta(2)). Completion of the human fetal to adult Hb switch after birth resulted in severe anemia marked by erythroid hyperplasia, ineffective erythropoiesis, hemolysis, and death. Similar to human patients, CA mice were rescued from lethal anemia by regular blood transfusion. Transfusion corrected the anemia and effectively suppressed the ineffective erythropoiesis, but led to iron overload. This preclinical humanized animal model of CA will be useful for the development of new transfusion and iron chelation regimens, the study of iron homeostasis in disease, and testing of cellular and genetic therapies for the correction of thalassemia.
Collapse
|
30
|
Huo Y, McConnell SC, Liu SR, Yang R, Zhang TT, Sun CW, Wu LC, Ryan TM. Humanized Mouse Model of Cooley's Anemia. J Biol Chem 2008; 284:4889-96. [PMID: 19098001 DOI: 10.1074/jbc.m805681200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A novel humanized mouse model of Cooley's Anemia (CA) was generated by targeted gene replacement in embryonic stem (ES) cells. Because the mouse does not have a true fetal hemoglobin, a delayed switching human gamma to beta(0) globin gene cassette (gammabeta(0)) was inserted directly into the murine beta globin locus replacing both adult mouse beta globin genes. The inserted human beta(0) globin allele has a mutation in the splice donor site that produces the same aberrant transcripts in mice as described in human cells. No functional human beta globin polypeptide chains are produced. Heterozygous gammabeta(0) mice suffer from microcytic anemia. Unlike previously described animal models of beta thalassemia major, homozygous gammabeta(0) mice switch from mouse embryonic globin chains to human fetal gamma globin during fetal life. When bred with human alpha globin knockin mice, homozygous CA mice survive solely upon human fetal hemoglobin at birth. This preclinical animal model of CA can be utilized to study the regulation of globin gene expression, synthesis, and switching; the reactivation of human fetal globin gene expression; and the testing of genetic and cell-based therapies for the correction of thalassemia.
Collapse
Affiliation(s)
- Yongliang Huo
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Dean A, Fiering S. Epigenetic Gene Regulation—Lessons from Globin. Epigenomics 2008. [DOI: 10.1007/978-1-4020-9187-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
32
|
Kiefer CM, Hou C, Little JA, Dean A. Epigenetics of beta-globin gene regulation. Mutat Res 2008; 647:68-76. [PMID: 18760288 DOI: 10.1016/j.mrfmmm.2008.07.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 07/15/2008] [Accepted: 07/23/2008] [Indexed: 01/22/2023]
Abstract
It is widely recognized that the next great challenge in the post-genomic period is to understand how the genome establishes the cell and tissue specific patterns of gene expression that underlie development. The beta-globin genes are among the most extensively studied tissue specific and developmentally regulated genes. The onset of erythropoiesis in precursor cells and the progressive expression of different members of the beta-globin family during development are accompanied by dramatic epigenetic changes in the locus. In this review, we will consider the relationship between histone and DNA modifications and the transcriptional activity of the beta-globin genes, the dynamic changes in epigenetic modifications observed during erythroid development, and the potential these changes hold as new targets for therapy in human disease.
Collapse
Affiliation(s)
- Christine M Kiefer
- Laboratory of Cellular and Developmental Biology, NIDDK, NIH, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
33
|
Keys JR, Tallack MR, Zhan Y, Papathanasiou P, Goodnow CC, Gaensler KM, Crossley M, Dekker J, Perkins AC. A mechanism for Ikaros regulation of human globin gene switching. Br J Haematol 2008; 141:398-406. [PMID: 18318763 DOI: 10.1111/j.1365-2141.2008.07065.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The human beta globin locus consists of an upstream LCR and functional genes arranged sequentially in the order of their expression during development: 5'-HBE1, HBG2, HBG1, HBD, HBB-3'. Haemoglobin switching entails the successive recruitment of these genes into an active chromatin hub (ACH). Here we show that the transcription factor Ikaros plays a major role in the formation of the beta-globin ACH, and in haemoglobin switching. In Plastic mice, where the DNA-binding region of Ikaros is disrupted by a point mutation, there is concomitant marked down-regulation of HBB, and up-regulation of HBG expression. We show for the first time Ikaros and its family member Eos, bind to critical cis elements implicated in haemoglobin switching and deletional hereditary persistence of fetal haemoglobin (HPFH). Chromatin conformation capture (3C) data demonstrated that Ikaros facilitates long-distance DNA looping between the LCR and a region upstream of HBD. This study provides new insights into the mechanism of stage-specific assembly of the beta-globin ACH, and HPFH.
Collapse
Affiliation(s)
- Janelle R Keys
- Institute for Molecular Bioscience, Queensland Bioscience Precinct, University of Queensland, Queensland, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Red cell development. Preface. Curr Top Dev Biol 2008. [PMID: 18282514 DOI: 10.1016/s0070-2153(07)00010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
35
|
Peterson KR. Preparation of intact yeast artificial chromosome DNA for transgenesis of mice. Nat Protoc 2008; 2:3009-15. [PMID: 18007637 DOI: 10.1038/nprot.2007.449] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transgenesis with large DNA molecules such as yeast artificial chromosomes (YACs) has an advantage over smaller constructs in that an entire locus and all its flanking cis-regulatory elements are included. The key to obtaining animals bearing full-length transgenes is to avoid physical shearing of the DNA during purification and microinjection. This protocol details how to prepare intact YAC DNA for transgenesis of mice and involves separation of YAC DNA from yeast chromosomal DNA by pulsed field gel electrophoresis, concentration to a range suitable for microinjection by second dimension electrophoresis and enzymatic digestion of matrix-embedded YAC DNA to produce a solution that can be injected. The YAC is maintained in an agarose gel matrix to avoid damage until the final steps before microinjection. Special precautions are also taken during the microinjection protocol. Transgenesis efficiency is approximately 15%; most animals carry 1-5 copies of the desired locus. This method takes 6 d for completion.
Collapse
Affiliation(s)
- Kenneth R Peterson
- Department of Biochemistry and Molecular Biology, Mail Stop 3030, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA.
| |
Collapse
|
36
|
Ye L, Chang JC, Lu R, Kan YW. High oxygen environment during pregnancy rescues sickle cell anemia mice from prenatal death. Blood Cells Mol Dis 2008; 41:67-72. [PMID: 18207438 DOI: 10.1016/j.bcmd.2007.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Accepted: 12/16/2007] [Indexed: 10/22/2022]
Abstract
Several mouse models of sickle cell disease have been developed for the study of the pathophysiology of sickle cell disease and the investigation of drug and gene therapies. In previous years, we produced a sickle cell anemia mouse model in which the endogenous mouse alpha- and beta-globin genes were knocked out and replaced by the human alpha- and beta(s)-globin transgenes. The beta(s)-globin gene was contained in a 240 kb YAC that preserved the entire native genomic context of the beta-globin locus. These mice have hemolytic anemia, reticulocytosis and irreversible sickle cells in the peripheral blood, as well as other pathological features of sickle cell disease. However, in the embryo, the gamma-globin, like the mouse embryonic globin, declined quickly, and was replaced by beta(s)-globin expression from 12 days of gestation. The low level of fetal hemoglobin expression in utero led to intrauterine sickling and fetal death so that very few live-born sickle cell anemia mice could be obtained. To rescue these mice from intrauterine death, we investigated the effect of placing the pregnant mothers in a high O(2) environment. From the tenth day of gestation onwards, we placed the mothers into a chamber containing 50% O(2) and kept them with the newborn pups in it for another 10 days after birth. The frequency of sickle cell anemia mice we obtained was increased from less than 2% to 35%. The survived sickle cell anemia mice develop congestion, atrophy, and infarcts in multiple organs similar to those found in patients with sickle cell disease. We conclude that a high oxygen environment can be used to obtain more sickle cell anemia mice in those models that have a high perinatal mortality. The higher yield of these mice has facilitated physiological and therapeutic studies of sickle cell anemia.
Collapse
Affiliation(s)
- Lin Ye
- Department of Medicine, Cardiovascular Research Institute, Institute for Human Genetics, University of California, San Francisco, CA 94143-0793, USA
| | | | | | | |
Collapse
|
37
|
Townes TM. Gene replacement therapy for sickle cell disease and other blood disorders. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2008; 2008:193-196. [PMID: 19074080 DOI: 10.1182/asheducation-2008.1.193] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Previous studies have demonstrated that sickle cell disease (SCD) can be corrected in mouse models by transduction of hematopoietic stem cells with lentiviral vectors containing anti-sickling globin genes followed by transplantation of these cells into syngeneic recipients. Although self-inactivating (SIN) lentiviral vectors with or without insulator elements should provide a safe and effective treatment in humans, some concerns about insertional mutagenesis persist. An ideal correction would involve replacement of the sickle globin gene (betaS) with a normal copy of the gene (betaA). We recently derived embryonic stem (ES) cells from a novel knockin mouse model of SCD and tested a protocol for correcting the sickle mutation by homologous recombination. Animals derived after gene replacement produced high levels of normal human hemoglobin (HbA), and the pathology associated with SCD was corrected. These experiments provided a foundation for similar studies in which our group collaborated with Rudolf Jaenisch's laboratory to correct SCD by gene replacement in iPS (induced pluripotent stem) cells derived by direct reprogramming of sickle skin fibroblasts. Corrected iPS cells were differentiated into hematopoeitic progenitors that were transplanted into irradiated sickle recipients. The transplanted animals produced high levels of normal human HbA, and the pathology of SCD was corrected. These proof-of-principle studies provide a foundation for the development of gene replacement therapy for human patients with SCD and other blood disorders.
Collapse
Affiliation(s)
- Tim M Townes
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, School of Medicine, Birmingham, AL 35294, USA.
| |
Collapse
|
38
|
Goren A, Simchen G, Fibach E, Szabo PE, Tanimoto K, Chakalova L, Pfeifer GP, Fraser PJ, Engel JD, Cedar H. Fine tuning of globin gene expression by DNA methylation. PLoS One 2006; 1:e46. [PMID: 17183675 PMCID: PMC1762317 DOI: 10.1371/journal.pone.0000046] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Accepted: 10/13/2006] [Indexed: 11/18/2022] Open
Abstract
Expression patterns in the globin gene cluster are subject to developmental regulation in vivo. While the γA and γG genes are expressed in fetal liver, both are silenced in adult erythrocytes. In order to decipher the role of DNA methylation in this process, we generated a YAC transgenic mouse system that allowed us to control γA methylation during development. DNA methylation causes a 20-fold repression of γA both in non-erythroid and adult erythroid cells. In erythroid cells this modification works as a dominant mechanism to repress γ gene expression, probably through changes in histone acetylation that prevent the binding of erythroid transcription factors to the promoter. These studies demonstrate that DNA methylation serves as an elegant in vivo fine-tuning device for selecting appropriate genes in the globin locus. In addition, our findings provide a mechanism for understanding the high levels of γ-globin transcription seen in patients with Hereditary Persistence of Fetal Hemoglobin, and help explain why 5azaC and butyrate compounds stimulate γ-globin expression in patients with β-hemoglobinopathies.
Collapse
Affiliation(s)
- Alon Goren
- Department of Cellular Biochemistry and Human Genetics, Hebrew UniversityJerusalem, Israel
| | - Giora Simchen
- Department of Genetics, Hebrew UniversityJerusalem, Israel
| | - Eitan Fibach
- Department of Hematology, Hebrew UniversityJerusalem, Israel
| | - Piroska E. Szabo
- Division of Biology, Beckman Research Institute of the City of HopeDuarte, California, United States of America
| | - Keiji Tanimoto
- Graduate School of Life and Environmental Sciences, University of TsukubaTsukuba, Japan
| | - Lyubomira Chakalova
- Laboratory of Chromatin and Gene Expression, The Babraham InstituteCambridge, United Kingdom
| | - Gerd P. Pfeifer
- Division of Biology, Beckman Research Institute of the City of HopeDuarte, California, United States of America
| | - Peter J. Fraser
- Laboratory of Chromatin and Gene Expression, The Babraham InstituteCambridge, United Kingdom
| | - James D. Engel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann ArborMichigan, United States of America
| | - Howard Cedar
- Department of Cellular Biochemistry and Human Genetics, Hebrew UniversityJerusalem, Israel
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
39
|
Wu LC, Sun CW, Ryan TM, Pawlik KM, Ren J, Townes TM. Correction of sickle cell disease by homologous recombination in embryonic stem cells. Blood 2006; 108:1183-8. [PMID: 16638928 PMCID: PMC1895869 DOI: 10.1182/blood-2006-02-004812] [Citation(s) in RCA: 241] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Previous studies have demonstrated that sickle cell disease (SCD) can be corrected in mouse models by transduction of hematopoietic stem cells with lentiviral vectors containing antisickling globin genes followed by transplantation of these cells into syngeneic recipients. Although self-inactivating (SIN) lentiviral vectors with or without insulator elements should provide a safe and effective treatment in humans, some concerns about insertional mutagenesis persist. An ideal correction would involve replacement of the sickle globin gene (beta(S)) with a normal copy of the gene (beta(A)). We recently derived embryonic stem (ES) cells from a novel knock-in mouse model of SCD and tested a protocol for correcting the sickle mutation by homologous recombination. In this paper, we demonstrate the replacement of the human beta(S)-globin gene with a human beta(A)-globin gene and the derivation of mice from these cells. The animals produce high levels of normal human hemoglobin (HbA) and the pathology associated with SCD is corrected. Hematologic values are restored to normal levels and organ pathology is ameliorated. These experiments provide a foundation for similar studies in human ES cells derived from sickle cell patients. Although efficient methods for production of human ES cells by somatic nuclear transfer must be developed, the data in this paper demonstrate that sickle cell disease can be corrected without the risk of insertional mutagenesis.
Collapse
MESH Headings
- Anemia, Sickle Cell/genetics
- Anemia, Sickle Cell/metabolism
- Anemia, Sickle Cell/pathology
- Anemia, Sickle Cell/therapy
- Animals
- Cells, Cultured
- Disease Models, Animal
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Embryo, Mammalian/pathology
- Genetic Therapy
- Genetic Vectors
- Globins/biosynthesis
- Globins/genetics
- Humans
- Insulator Elements/genetics
- Lentivirus
- Mice
- Mice, Knockout
- Mutagenesis, Insertional
- Recombination, Genetic
- Stem Cells/cytology
- Stem Cells/metabolism
- Stem Cells/pathology
Collapse
Affiliation(s)
- Li-Chen Wu
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
40
|
Johnson RM, Prychitko T, Gumucio D, Wildman DE, Uddin M, Goodman M. Phylogenetic comparisons suggest that distance from the locus control region guides developmental expression of primate beta-type globin genes. Proc Natl Acad Sci U S A 2006; 103:3186-91. [PMID: 16488971 PMCID: PMC1413942 DOI: 10.1073/pnas.0511347103] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phylogenetic inferences drawn from comparative data on mammalian beta-globin gene clusters indicate that the ancestral primate cluster contained a locus control region (LCR) and five paralogously related beta-type globin loci (5'-LCR-epsilon-gamma-psieta-delta-beta-3'), with epsilon and gamma expressed solely during embryonic life. A gamma locus tandem duplication (5'-gamma(1)-gamma(2)-3') triggered gamma's evolution toward fetal expression but by a different trajectory in platyrrhines (New World monkeys) than in catarrhines (Old World monkeys and apes, including humans). In platyrrhine (e.g., Cebus) fetuses, gamma(1) at the ancestral distance from epsilon is down-regulated, whereas gamma(2) at increased distance is up-regulated. Catarrhine gamma(1) and gamma(2) acquired longer distances from epsilon (14 and 19 kb, respectively), and both are up-regulated throughout fetal life with gamma(1)'s expression predominating over gamma(2)'s. On enlarging the platyrrhine expression data, we find Aotus gamma is embryonic, Alouatta gamma is inactive at term, and in Callithrix, gamma(1) is down-regulated fetally, whereas gamma(2) is up-regulated. Of eight mammalian taxa now represented per taxon by embryonic, fetal, and postnatal beta-type globin gene expression data, four taxa are primates, and data for three of these primates are from this laboratory. Our results support a model in which a short distance (<10 kb) between epsilon and the adjacent gamma is a plesiomorphic character that allows the LCR to drive embryonic expression of both genes, whereas a longer distance (>10 kb) impedes embryonic activation of the downstream gene.
Collapse
Affiliation(s)
| | | | - Deborah Gumucio
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Derek E. Wildman
- Obstetrics and Gynecology, and
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201; and
| | - Monica Uddin
- Anatomy and Cell Biology, and
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201; and
| | - Morris Goodman
- Anatomy and Cell Biology, and
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201; and
| |
Collapse
|
41
|
Omori A, Tanabe O, Engel JD, Fukamizu A, Tanimoto K. Adult stage gamma-globin silencing is mediated by a promoter direct repeat element. Mol Cell Biol 2005; 25:3443-51. [PMID: 15831451 PMCID: PMC1084292 DOI: 10.1128/mcb.25.9.3443-3451.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The human beta-like globin genes (5'-epsilon-Ggamma-Agamma-delta-beta-3') are temporally expressed in sequential order from the 5' to 3' end of the locus, but the nonadult epsilon- and gamma-globin genes are autonomously silenced in adult erythroid cells. Two cis elements have been proposed to regulate definitive erythroid gamma-globin repression: the DR (direct repeat) and CCTTG elements. Since these two elements partially overlap, and since a well-characterized HPFH point mutation maps to an overlapping nucleotide, it is not clear if both or only one of the two participate in gamma-globin silencing. To evaluate the contribution of these hypothetical silencers to gamma-globin regulation, we generated point mutations that individually disrupted either the single DR or all four CCTTG elements. These two were separately incorporated into human beta-globin yeast artificial chromosomes, which were then used to generate gamma-globin mutant transgenic mice. While DR element mutation led to a dramatic increase in Agamma-globin expression only during definitive erythropoiesis, the CCTTG mutation did not affect adult stage transcription. These results demonstrate that the DR sequence element autonomously mediates definitive stage-specific gamma-globin gene silencing.
Collapse
MESH Headings
- Animals
- Base Sequence
- Chromosomes, Artificial, Yeast/genetics
- Erythroid Cells/metabolism
- Erythropoiesis/genetics
- Erythropoiesis/physiology
- Gene Expression Regulation, Developmental
- Gene Silencing
- Globins/genetics
- Humans
- Mice
- Mice, Transgenic
- Molecular Sequence Data
- Point Mutation/genetics
- Promoter Regions, Genetic/genetics
- Promoter Regions, Genetic/physiology
- Repetitive Sequences, Nucleic Acid/genetics
- Repetitive Sequences, Nucleic Acid/physiology
- Response Elements/genetics
- Response Elements/physiology
- Transcription, Genetic/genetics
- Transcription, Genetic/physiology
Collapse
Affiliation(s)
- Akane Omori
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan
| | | | | | | | | |
Collapse
|
42
|
Shimizu T, Oishi T, Omori A, Sugiura A, Hirota K, Aoyama H, Saito T, Sugaya T, Kon Y, Engel JD, Fukamizu A, Tanimoto K. Identification of cis-regulatory sequences in the human angiotensinogen gene by transgene coplacement and site-specific recombination. Mol Cell Biol 2005; 25:2938-45. [PMID: 15798183 PMCID: PMC1069595 DOI: 10.1128/mcb.25.8.2938-2945.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The function of putative regulatory sequences identified in cell transfection experiments can be elucidated only through in vivo experimentation. However, studies of gene regulation in transgenic mice (TgM) are often compromised by the position effects, in which independent transgene insertions differ in expression depending on their location in the genome. In order to overcome such a dilemma, a method called transgene coplacement has been developed in Drosophila melanogaster. In this method, any two sequences can be positioned at exactly the same genomic site by making use of Cre/loxP recombination. Here we applied this method to mouse genetics to characterize the function of direct repeat (DR) sequences in the promoter of the human angiotensinogen (hAGT) gene, the precursor of the vasoactive octapeptide angiotensin II. We modified a hAGT bacterial artificial chromosome to use Cre/loxP recombination in utero to generate TgM lines bearing a wild-type or a mutant promoter-driven hAGT locus integrated at a single chromosomal position. The expression analyses revealed that DR sequences contribute 50 or >95% to hAGT transcription in the liver and kidneys, respectively, whereas same sequences are not required in the heart and brain. This is the first in vivo dissection of DNA cis elements that are demonstrably indispensable for regulating both the level and cell type specificity of hAGT gene transcription.
Collapse
Affiliation(s)
- Taku Shimizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Jamsai D, Zaibak F, Khongnium W, Vadolas J, Voullaire L, Fowler KJ, Gazeas S, Fucharoen S, Williamson R, Ioannou PA. A humanized mouse model for a common β0-thalassemia mutation. Genomics 2005; 85:453-61. [PMID: 15780748 DOI: 10.1016/j.ygeno.2004.11.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2004] [Accepted: 11/29/2004] [Indexed: 10/25/2022]
Abstract
Accurate animal models that recapitulate the phenotype and genotype of patients with beta-thalassemia would enable the development of a range of possible therapeutic approaches. Here we report the generation of a mouse model carrying the codons 41-42 (-TTCT) beta-thalassemia mutation in the intact human beta-globin locus. This mutation accounts for approximately 40% of beta-thalassemia mutations in southern China and Thailand. We demonstrate a low level of production of gamma-globins from the mutant locus in day 18 embryos, as well as production of mutant human beta-globin mRNA. However, in contrast to transgenic mice carrying the normal human beta-globin locus, 4-bp deletion mice fail to show any phenotypic complementation of the knockout mutation of both murine beta-globin genes. Our studies suggest that this is a valuable model for gene correction in hemopoietic stem cells and for studying the effects of HbF inducers in vivo in a "humanized" thalassemic environment.
Collapse
Affiliation(s)
- Duangporn Jamsai
- CAGT Research Group, The Murdoch Children's Research Institute, Department of Paediatrics, The University of Melbourne, Royal Children's Hospital, Flemington Road, Melbourne, VIC 3052, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Vadolas J, Wardan H, Bosmans M, Zaibak F, Jamsai D, Voullaire L, Williamson R, Ioannou PA. Transgene copy number-dependent rescue of murine beta-globin knockout mice carrying a 183 kb human beta-globin BAC genomic fragment. ACTA ACUST UNITED AC 2005; 1728:150-62. [PMID: 15820143 DOI: 10.1016/j.bbaexp.2005.02.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 02/20/2005] [Accepted: 02/24/2005] [Indexed: 11/21/2022]
Abstract
We report the generation and characterisation of the first transgenic mice exclusively expressing normal human beta-globin ((hu)beta-globin) from a 183 kb genomic fragment. Four independent lines were generated, each containing 2-6 copies of the (hu)beta-globin locus at a single integration site. Steady state levels of (hu)beta-globin protein were dependent on transgene copy number, but independent of the site of integration. Hemizygosity for the transgene on a heterozygous knockout background ((hu)beta(+/0), (mu)beta(th-3/+)) complemented fully the hematological abnormalities associated with the heterozygous knockout mutation in all four lines. Importantly, the rescue of the embryonic lethal phenotype that is characteristic of homozygosity for the knockout mutation was also demonstrated in two transgenic lines that were homozygous for two copies of the (hu)beta-globin locus, and in one transgenic line, which was hemizygous for six copies of the (hu)beta-globin locus. Our results illustrate the importance of transgene copy number determination and of the hemizygosity/homozygosity status in phenotypic complementation studies of transgenic mice containing large heterologous transgenes. Transgenic mouse colonies with 100% (hu)beta-globin production from the intact (hu)beta-globin locus have been established and will be invaluable in comparative and gene therapy studies with mouse models containing specific beta-thalassemia mutations in the (hu)beta-globin locus.
Collapse
Affiliation(s)
- Jim Vadolas
- Cell and Gene Therapy Research Group, The Murdoch Childrens Research Institute, The University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, 3052 Melbourne, Australia
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Katsantoni EZ, de Krom M, Kong-a-San J, Imam AMA, Grosveld F, Anagnou NP, Strouboulis J. Mucormycosis in hematologic patients. Haematologica 2004; 32:224-33. [PMID: 15102485 DOI: 10.1016/j.exphem.2003.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Accepted: 11/10/2003] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND OBJECTIVES To evaluate the clinical characteristics of patients affected by hematologic malignancies who developed mucormycosis and to ascertain the factors which influenced the outcome following mycotic infection. DESIGN AND METHODS This was a retrospective study conducted over a 15-year period (1987-2001). The study included 59 patients with hematologic malignancies with a proven or probable mucormycosis admitted in 18 Hematology Divisions in tertiary care or university hospitals. RESULTS The most frequent sites of infection were lung (64%) and orbito-sinus-facial (24%); cerebral involvement observed in 19% of cases was always associated with other sites of infection. Antifungal treatment was empirically administered in 49 patients (83%); 7 patients underwent radical surgical debridement (12%). Therapy was successful for only 18 patients (37%). Forty-seven patients died within 3 months of the diagnosis of fungal infection: the cause of death was mucormycosis in 41 patients (87%) and progression of hematologic disease in 6 patients (13%). At univariate analysis, the factors that correlated with a positive outcome from infection were the following: male sex, amphotericin B treatment, neutrophil recovery from post-chemotherapy aplasia. At multivariate analysis, the only factor that significantly correlated with recovery from infection was the liposomal amphotericin B treatment. INTERPRETATION AND CONCLUSIONS Mucormycosis is a rare filamentous fungal infection that occurs most frequently in neutropenic patients with acute leukemia. It does not seem to have increased in recent years. Although a reduction of mortality has been observed recently, the mortality rate still remains high. Extensive and aggressive diagnostic and therapeutic procedures are essential in order to improve the prognosis in these patients.
Collapse
Affiliation(s)
- Eleni Z Katsantoni
- Department of Basic Sciences, University of Crete School of Medicine, Heraklion, Greece
| | | | | | | | | | | | | |
Collapse
|
46
|
Zhou W, Zhao Q, Sutton R, Cumming H, Wang X, Cerruti L, Hall M, Wu R, Cunningham JM, Jane SM. The Role of p22 NF-E4 in Human Globin Gene Switching. J Biol Chem 2004; 279:26227-32. [PMID: 15084587 DOI: 10.1074/jbc.m402191200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human stage selector protein, a complex containing the ubiquitous transcription factor CP2 and the erythroid-specific factor p22 NF-E4, facilitates the interaction of the gamma-globin genes with the locus control region in fetal erythroid cells. Enforced expression of p22 NF-E4 in K562 cells and human cord blood progenitors increases fetal globin gene expression, and in progenitors, reduces beta-globin expression. To examine the role of NF-E4 in an in vivo model of hemoglobin switching, we enforced the expression of p22 NF-E4 in transgenic mice carrying the human beta-globin locus yeast artificial chromosome. Although murine erythropoiesis and globin gene expression is unaffected in these mice, the expression profile of the human globin genes is altered. All three transgenic lines displayed an increased gamma:beta-globin ratio in E12.5-14.5 fetal liver, resulting in a delay in the fetal/adult switch. At E12.5, this is primarily due to a reduction of beta-gene expression, whereas at E14.5, the increased gamma:beta ratio is due to enhanced gamma-gene expression. Despite this, the switch in globin subtype is fully completed in the adult bone marrow. These findings indicate that p22 NF-E4 is capable of influencing human globin gene expression in vivo but is incapable of overriding the intrinsic mechanisms governing gamma-gene silencing in this context.
Collapse
Affiliation(s)
- Wenlai Zhou
- Rotary Bone Marrow Research Laboratory, Royal Melbourne Hospital, Parkville VIC, 3050 Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Razin SV, Farrell CM, Recillas-Targa F. Genomic domains and regulatory elements operating at the domain level. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 226:63-125. [PMID: 12921236 DOI: 10.1016/s0074-7696(03)01002-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The sequencing of the complete genomes of several organisms, including humans, has so far not contributed much to our understanding of the mechanisms regulating gene expression in the course of realization of developmental programs. In this so-called "postgenomic" era, we still do not understand how (if at all) the long-range organization of the genome is related to its function. The domain hypothesis of the eukaryotic genome organization postulates that the genome is subdivided into a number of semiindependent functional units (domains) that may include one or several functionally related genes, with these domains having well-defined borders, and operate under the control of special (domain-level) regulatory systems. This hypothesis was extensively discussed in the literature over the past 15 years. Yet it is still unclear whether the hypothesis is valid or not. There is evidence both supporting and questioning this hypothesis. The most conclusive data supporting the domain hypothesis come from studies of avian and mammalian beta-globin domains. In this review we will critically discuss the present state of the studies on these and other genomic domains, paying special attention to the domain-level regulatory systems known as locus control regions (LCRs). Based on this discussion, we will try to reevaluate the domain hypothesis of the organization of the eukaryotic genome.
Collapse
Affiliation(s)
- Sergey V Razin
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology of the Russian Academy of Sciences, 117334 Moscow, Russia
| | | | | |
Collapse
|
48
|
Katsantoni EZ, Langeveld A, Wai AWK, Drabek D, Grosveld F, Anagnou NP, Strouboulis J. Persistent gamma-globin expression in adult transgenic mice is mediated by HPFH-2, HPFH-3, and HPFH-6 breakpoint sequences. Blood 2003; 102:3412-9. [PMID: 12855570 DOI: 10.1182/blood-2003-05-1681] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deletions at the 3' end of the human beta-globin locus are associated with the hereditary persistence of fetal hemoglobin (HPFH) in adults, potentially through the juxtaposition of enhancer elements in the vicinity of the fetal gamma-globin genes. We have tested how sequences at the HPFH-2, HPFH-3, and HPFH-6 breakpoints, which act as enhancers in vitro, affect the silencing of a locus control region A gamma (LCRA gamma) transgene in the adult stage of mice. We found persistent A gamma expression in the adult blood of most of the multicopy HPFH-2, HPFH-3, or HPFH-6 lines, in contrast to the control LCRA gamma lines which were silenced. Cre-mediated generation of single copy lines showed persistent gamma gene expression maintained in some of the HPFH-2 and HPFH-6 lines, but not in any of the HPFH-3 or LCRA gamma lines. In the HPFH-2 and HPFH-6 lines, persistent gamma gene expression correlated with euchromatic transgene integrations. Thus, our observations provide support for a model whereby HPFH conditions arise from the juxtaposition of enhancers as well as permissive chromatin subdomains in the vicinity of the gamma-globin genes.
Collapse
Affiliation(s)
- Eleni Z Katsantoni
- Department of Basic Sciences, University of Crete School of Medicine, Heraklion, Greece
| | | | | | | | | | | | | |
Collapse
|
49
|
Navas PA, Swank RA, Yu M, Peterson KR, Stamatoyannopoulos G. Mutation of a transcriptional motif of a distant regulatory element reduces the expression of embryonic and fetal globin genes. Hum Mol Genet 2003; 12:2941-8. [PMID: 14506128 PMCID: PMC2808411 DOI: 10.1093/hmg/ddg319] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
High-level beta-globin gene expression is dependent on the presence of the locus control region (LCR), a powerful regulatory element physically characterized by five DNase I-hypersensitive sites (HS), designated HS1-HS5. Of these, HS3 contains seven GT motifs that are essential for its activity. One of the motifs, GT6, has been shown by in vivo footprinting to display the largest difference in signal between fetal and adult globin expressing cells. We assessed the contribution of GT6 on the downstream globin gene expression by mutating this motif in a 248 kb beta-globin locus yeast artificial chromosome and measuring the activity of beta-globin genes in GT6m beta-YAC transgenic mice. Seven transgenic lines were established, three of which contained at least one intact copy of the beta-globin locus and were further investigated. The mutation of the GT6 motif reduced the expression of epsilon- and gamma-globin genes during embryonic erythropoiesis. During definitive erythropoiesis, gamma-globin gene expression was significantly reduced while beta-globin gene expression was virtually indistinguishable from wild-type controls. We conclude that the GT6 motif of hypersensitive site 3 of the LCR is required for normal epsilon- and gamma-globin gene expression during embryonic erythropoiesis and for gamma-globin gene expression during definitive erythropoiesis in the fetal liver. Our results provide evidence that mutations of single transcriptional motifs of distant regulatory elements can have profound effects on gene expression.
Collapse
|
50
|
Alami R, Fan Y, Pack S, Sonbuchner TM, Besse A, Lin Q, Greally JM, Skoultchi AI, Bouhassira EE. Mammalian linker-histone subtypes differentially affect gene expression in vivo. Proc Natl Acad Sci U S A 2003; 100:5920-5. [PMID: 12719535 PMCID: PMC156302 DOI: 10.1073/pnas.0736105100] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2002] [Indexed: 01/26/2023] Open
Abstract
Posttranslational modifications and remodeling of nucleosomes are critical factors in the regulation of transcription. Higher-order folding of chromatin also is likely to contribute to the control of gene expression, but the absence of a detailed description of the structure of the chromatin fiber has impaired progress in this area. Mammalian somatic cells contain a set of H1 linker-histone subtypes, H1 (0) and H1a to H1e, that bind to nucleosome core particles and to the linker DNA between nucleosomes. To determine whether the H1 histone subtypes play differential roles in the regulation of gene expression, we combined mice lacking specific H1 histone subtypes with mice carrying transgenes subject to position effects. Because position effects result from the unique chromatin structure created by the juxtaposition of regulatory elements in the transgene and at the site of integration, transgenes can serve as exquisitely sensitive indicators of chromatin structure. We report that some, but not all, linker histones can attenuate or accentuate position effects. The results suggest that the linker-histone subtypes play differential roles in the control of gene expression and that the sequential arrangement of the linker histones on the chromatin fiber might regulate higher-order chromatin structure and fine-tune expression levels.
Collapse
Affiliation(s)
- Raouf Alami
- Department of Medicine, Division of Hematology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | |
Collapse
|