1
|
Györffy D, Závodszky P, Szilágyi A. A Kinetic Transition Network Model Reveals the Diversity of Protein Dimer Formation Mechanisms. Biomolecules 2023; 13:1708. [PMID: 38136580 PMCID: PMC10741920 DOI: 10.3390/biom13121708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Protein homodimers have been classified as three-state or two-state dimers depending on whether a folded monomer forms before association, but the details of the folding-binding mechanisms are poorly understood. Kinetic transition networks of conformational states have provided insight into the folding mechanisms of monomeric proteins, but extending such a network to two protein chains is challenging as all the relative positions and orientations of the chains need to be included, greatly increasing the number of degrees of freedom. Here, we present a simplification of the problem by grouping all states of the two chains into two layers: a dissociated and an associated layer. We combined our two-layer approach with the Wako-Saito-Muñoz-Eaton method and used Transition Path Theory to investigate the dimer formation kinetics of eight homodimers. The analysis reveals a remarkable diversity of dimer formation mechanisms. Induced folding, conformational selection, and rigid docking are often simultaneously at work, and their contribution depends on the protein concentration. Pre-folded structural elements are always present at the moment of association, and asymmetric binding mechanisms are common. Our two-layer network approach can be combined with various methods that generate discrete states, yielding new insights into the kinetics and pathways of flexible binding processes.
Collapse
Affiliation(s)
- Dániel Györffy
- Systems Biology of Reproduction Research Group, Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary;
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083 Budapest, Hungary
| | - Péter Závodszky
- Structural Biophysics Research Group, Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary;
| | - András Szilágyi
- Systems Biology of Reproduction Research Group, Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary;
| |
Collapse
|
2
|
Mészáros B, Hatos A, Palopoli N, Quaglia F, Salladini E, Van Roey K, Arthanari H, Dosztányi Z, Felli IC, Fischer PD, Hoch JC, Jeffries CM, Longhi S, Maiani E, Orchard S, Pancsa R, Papaleo E, Pierattelli R, Piovesan D, Pritisanac I, Tenorio L, Viennet T, Tompa P, Vranken W, Tosatto SCE, Davey NE. Minimum information guidelines for experiments structurally characterizing intrinsically disordered protein regions. Nat Methods 2023; 20:1291-1303. [PMID: 37400558 DOI: 10.1038/s41592-023-01915-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 05/18/2023] [Indexed: 07/05/2023]
Abstract
An unambiguous description of an experiment, and the subsequent biological observation, is vital for accurate data interpretation. Minimum information guidelines define the fundamental complement of data that can support an unambiguous conclusion based on experimental observations. We present the Minimum Information About Disorder Experiments (MIADE) guidelines to define the parameters required for the wider scientific community to understand the findings of an experiment studying the structural properties of intrinsically disordered regions (IDRs). MIADE guidelines provide recommendations for data producers to describe the results of their experiments at source, for curators to annotate experimental data to community resources and for database developers maintaining community resources to disseminate the data. The MIADE guidelines will improve the interpretability of experimental results for data consumers, facilitate direct data submission, simplify data curation, improve data exchange among repositories and standardize the dissemination of the key metadata on an IDR experiment by IDR data sources.
Collapse
Affiliation(s)
- Bálint Mészáros
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Structural Biology and Center for Data Driven Discovery, St Jude Children's Research Hospital, Memphis, TN, USA
| | - András Hatos
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Swiss Cancer Center Leman, Lausanne, Switzerland
| | - Nicolas Palopoli
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - CONICET, Bernal, Buenos Aires, Argentina
| | - Federica Quaglia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council (CNR-IBIOM), Bari, Italy
| | - Edoardo Salladini
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Kim Van Roey
- Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Haribabu Arthanari
- Harvard Medical School (HMS), Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute (DFCI), Boston, MA, USA
| | | | - Isabella C Felli
- Department of Chemistry 'Ugo Schiff' and Magnetic Resonance Center, University of Florence, Sesto Fiorentino (Florence), Italy
| | - Patrick D Fischer
- Harvard Medical School (HMS), Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute (DFCI), Boston, MA, USA
| | - Jeffrey C Hoch
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| | - Cy M Jeffries
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, c/o Deutsches Elektronen-Synchrotron, Hamburg, Germany
| | - Sonia Longhi
- Laboratory Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix Marseille University and Centre National de la Recherche Scientifique (CNRS), Marseille, France
| | - Emiliano Maiani
- Cancer Structural Biology, Danish Cancer Society Research Center, Copenhagen, Denmark
- UniCamillus - Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Sandra Orchard
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, UK
| | - Rita Pancsa
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Elena Papaleo
- Cancer Structural Biology, Danish Cancer Society Research Center, Copenhagen, Denmark
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, Lyngby, Denmark
| | - Roberta Pierattelli
- Department of Chemistry 'Ugo Schiff' and Magnetic Resonance Center, University of Florence, Sesto Fiorentino (Florence), Italy
| | - Damiano Piovesan
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Iva Pritisanac
- Hospital for Sick Children, Toronto, Ontario, Canada
- Medical University of Graz, Graz, Austria
| | - Luiggi Tenorio
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Thibault Viennet
- Harvard Medical School (HMS), Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute (DFCI), Boston, MA, USA
| | - Peter Tompa
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- VIB-VUB Center for Structural Biology, Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Wim Vranken
- Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Norman E Davey
- Division Of Cancer Biology, Institute of Cancer Research, Chester Beatty Laboratories, Chelsea, London, UK.
| |
Collapse
|
3
|
Pastore A, Temussi PA. Unfolding under Pressure: An NMR Perspective. Chembiochem 2023; 24:e202300164. [PMID: 37154795 DOI: 10.1002/cbic.202300164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/10/2023]
Abstract
This review aims to analyse the role of solution nuclear magnetic resonance spectroscopy in pressure-induced in vitro studies of protein unfolding. Although this transition has been neglected for many years because of technical difficulties, it provides important information about the forces that keep protein structure together. We first analyse what pressure unfolding is, then provide a critical overview of how NMR spectroscopy has contributed to the field and evaluate the observables used in these studies. Finally, we discuss the commonalities and differences between pressure-, cold- and heat-induced unfolding. We conclude that, despite specific peculiarities, in both cold and pressure denaturation the important contribution of the state of hydration of nonpolar side chains is a major factor that determines the pressure dependence of the conformational stability of proteins.
Collapse
Affiliation(s)
- Annalisa Pastore
- European Synchrotron Radiation Facilities, 71 Ave des Martyrs, 38000, Grenoble, France
- The Wohl Institute, King's College London, 5 Cutcombe Rd, SE59RT, London, UK
| | | |
Collapse
|
4
|
Silva JL, Foguel D, Ferreira VF, Vieira TCRG, Marques MA, Ferretti GDS, Outeiro TF, Cordeiro Y, de Oliveira GAP. Targeting Biomolecular Condensation and Protein Aggregation against Cancer. Chem Rev 2023. [PMID: 37379327 DOI: 10.1021/acs.chemrev.3c00131] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Biomolecular condensates, membrane-less entities arising from liquid-liquid phase separation, hold dichotomous roles in health and disease. Alongside their physiological functions, these condensates can transition to a solid phase, producing amyloid-like structures implicated in degenerative diseases and cancer. This review thoroughly examines the dual nature of biomolecular condensates, spotlighting their role in cancer, particularly concerning the p53 tumor suppressor. Given that over half of the malignant tumors possess mutations in the TP53 gene, this topic carries profound implications for future cancer treatment strategies. Notably, p53 not only misfolds but also forms biomolecular condensates and aggregates analogous to other protein-based amyloids, thus significantly influencing cancer progression through loss-of-function, negative dominance, and gain-of-function pathways. The exact molecular mechanisms underpinning the gain-of-function in mutant p53 remain elusive. However, cofactors like nucleic acids and glycosaminoglycans are known to be critical players in this intersection between diseases. Importantly, we reveal that molecules capable of inhibiting mutant p53 aggregation can curtail tumor proliferation and migration. Hence, targeting phase transitions to solid-like amorphous and amyloid-like states of mutant p53 offers a promising direction for innovative cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Debora Foguel
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Vitor F Ferreira
- Faculty of Pharmacy, Fluminense Federal University (UFF), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tuane C R G Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Mayra A Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Giulia D S Ferretti
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center, 37075 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, U.K
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075 Göttingen, Germany
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
5
|
Roy UC, Bandyopadhyay P. Correlation between protein conformations and water structure and thermodynamics at high pressure: A molecular dynamics study of the Bovine Pancreatic Trypsin Inhibitor (BPTI) protein. J Chem Phys 2023; 158:095102. [PMID: 36889972 DOI: 10.1063/5.0124837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Pressure-induced perturbation of a protein structure leading to its folding-unfolding mechanism is an important yet not fully understood phenomenon. The key point here is the role of water and its coupling with protein conformations as a function of pressure. In the current work, using extensive molecular dynamics simulation at 298 K, we systematically examine the coupling between protein conformations and water structures of pressures of 0.001, 5, 10, 15, 20 kbar, starting from (partially) unfolded structures of the protein Bovine Pancreatic Trypsin Inhibitor (BPTI). We also calculate localized thermodynamics at those pressures as a function of protein-water distance. Our findings show that both protein-specific and generic effects of pressure are operating. In particular, we found that (1) the amount of increase in water density near the protein depends on the protein structural heterogeneity; (2) the intra-protein hydrogen bond decreases with pressure, while the water-water hydrogen bond per water in the first solvation shell (FSS) increases; protein-water hydrogen bonds also found to increase with pressure, (3) with pressure hydrogen bonds of waters in the FSS getting twisted; and (4) water's tetrahedrality in the FSS decreases with pressure, but it is dependent on the local environment. Thermodynamically, at higher pressure, the structural perturbation of BPTI is due to the pressure-volume work, while the entropy decreases with the increase of pressure due to the higher translational and rotational rigidity of waters in the FSS. The local and subtle effects of pressure, found in this work, are likely to be typical of pressure-induced protein structure perturbation.
Collapse
Affiliation(s)
- Umesh C Roy
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pradipta Bandyopadhyay
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
6
|
Al-Ayoubi SR, Schummel PH, Cisse A, Seydel T, Peters J, Winter R. Osmolytes modify protein dynamics and function of tetrameric lactate dehydrogenase upon pressurization. Phys Chem Chem Phys 2019; 21:12806-12817. [PMID: 31165827 DOI: 10.1039/c9cp02310k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We present a study of the combined effects of natural cosolvents (TMAO, glycine, urea) and pressure on the activity of the tetrameric enzyme lactate dehydrogenase (LDH). To this end, high-pressure stopped-flow methodology in concert with fast UV/Vis spectroscopic detection of product formation was applied. To reveal possible pressure effects on the stability and dynamics of the enzyme, FTIR spectroscopic and neutron scattering measurements were carried out. In neat buffer solution, the catalytic turnover number of the enzyme, kcat, increases up to 1000 bar, the pressure range where dissociation of the tetrameric species to dimers sets in. Accordingly, we obtain a negative activation volume, ΔV# = -45.3 mL mol-1. Further, the enzyme substrate complex has a larger volume compared to the enzyme and substrate in the unbound state. The neutron scattering data show that changes in the fast internal dynamics of the enzyme are not responsible for the increase of kcat upon compression. Whereas the magnitude of kcat is similar in the presence of the osmolytes, the pressure of deactivation is modulated by the addition of cosolvents. TMAO and glycine increase the pressure of deactivation, and in accordance with the observed stabilizing effect both cosolvents exhibit against denaturation and/or dissociation of proteins. While urea does not markedly affect the magnitude of the Michaelis constant, KM, both 1 M TMAO and 1 M glycine exhibit smaller KM values of about 0.07 mM and 0.05 mM below about 1 kbar. Such positive effect on the substrate affinity could be rationalized by the effect the two cosolutes impose on the thermodynamic activities of the reactants, which reflect changes in water-mediated intermolecular interactions. Our data show that the intracellular milieu, i.e., the solution conditions that have evolved, may be sufficient to maintain enzymatic activity under extreme environmental conditions, including the whole pressure range encountered on Earth.
Collapse
Affiliation(s)
- Samy R Al-Ayoubi
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany.
| | | | | | | | | | | |
Collapse
|
7
|
Levin A, Cinar S, Paulus M, Nase J, Winter R, Czeslik C. Analyzing protein-ligand and protein-interface interactions using high pressure. Biophys Chem 2019; 252:106194. [PMID: 31177023 DOI: 10.1016/j.bpc.2019.106194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 01/06/2023]
Abstract
All protein function is based on interactions with the environment. Proteins can bind molecules for their transport, their catalytic conversion, or for signal transduction. They can bind to each other, and they adsorb at interfaces, such as lipid membranes or material surfaces. An experimental characterization is needed to understand the underlying mechanisms, but also to make use of proteins in biotechnology or biomedicine. When protein interactions are studied under high pressure, volume changes are revealed that directly describe spatial contributions to these interactions. Moreover, the strength of protein interactions with ligands or interfaces can be tuned in a smooth way by pressure modulation, which can be utilized in the design of drugs and bio-responsive interfaces. In this short review, selected studies of protein-ligand and protein-interface interactions are presented that were carried out under high pressure. Furthermore, a perspective on bio-responsive interfaces is given where protein-ligand binding is applied to create functional interfacial structures.
Collapse
Affiliation(s)
- Artem Levin
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| | - Süleyman Cinar
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| | - Michael Paulus
- Technische Universität Dortmund, Fakultät Physik/Delta, D-44221 Dortmund, Germany
| | - Julia Nase
- Technische Universität Dortmund, Fakultät Physik/Delta, D-44221 Dortmund, Germany
| | - Roland Winter
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| | - Claus Czeslik
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany.
| |
Collapse
|
8
|
Röder K, Joseph JA, Husic BE, Wales DJ. Energy Landscapes for Proteins: From Single Funnels to Multifunctional Systems. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201800175] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Konstantin Röder
- Department of ChemistryUniversity of CambridgeLensfield Road CB2 1EW Cambridge UK
| | - Jerelle A. Joseph
- Department of ChemistryUniversity of CambridgeLensfield Road CB2 1EW Cambridge UK
| | - Brooke E. Husic
- Department of ChemistryUniversity of CambridgeLensfield Road CB2 1EW Cambridge UK
| | - David J. Wales
- Department of ChemistryUniversity of CambridgeLensfield Road CB2 1EW Cambridge UK
| |
Collapse
|
9
|
Fichó E, Reményi I, Simon I, Mészáros B. MFIB: a repository of protein complexes with mutual folding induced by binding. Bioinformatics 2018; 33:3682-3684. [PMID: 29036655 PMCID: PMC5870711 DOI: 10.1093/bioinformatics/btx486] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/02/2017] [Indexed: 12/02/2022] Open
Abstract
Motivation It is commonplace that intrinsically disordered proteins (IDPs) are involved in crucial interactions in the living cell. However, the study of protein complexes formed exclusively by IDPs is hindered by the lack of data and such analyses remain sporadic. Systematic studies benefited other types of protein–protein interactions paving a way from basic science to therapeutics; yet these efforts require reliable datasets that are currently lacking for synergistically folding complexes of IDPs. Results Here we present the Mutual Folding Induced by Binding (MFIB) database, the first systematic collection of complexes formed exclusively by IDPs. MFIB contains an order of magnitude more data than any dataset used in corresponding studies and offers a wide coverage of known IDP complexes in terms of flexibility, oligomeric composition and protein function from all domains of life. The included complexes are grouped using a hierarchical classification and are complemented with structural and functional annotations. MFIB is backed by a firm development team and infrastructure, and together with possible future community collaboration it will provide the cornerstone for structural and functional studies of IDP complexes. Availability and implementation MFIB is freely accessible at http://mfib.enzim.ttk.mta.hu/. The MFIB application is hosted by Apache web server and was implemented in PHP. To enrich querying features and to enhance backend performance a MySQL database was also created. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Erzsébet Fichó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1117, Hungary
| | - István Reményi
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, 'Momentum' Membrane Protein Bioinformatics Research Group, Budapest H-1117, Hungary
| | - István Simon
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1117, Hungary
| | - Bálint Mészáros
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1117, Hungary
| |
Collapse
|
10
|
Julius K, Al-Ayoubi SR, Paulus M, Tolan M, Winter R. The effects of osmolytes and crowding on the pressure-induced dissociation and inactivation of dimeric LADH. Phys Chem Chem Phys 2018; 20:7093-7104. [DOI: 10.1039/c7cp08242h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Compatible osmolytes are able to efficiently modulate the oligomeric state, stability and activity of enzymes at high pressures.
Collapse
Affiliation(s)
- Karin Julius
- Fakultät Physik/DELTA
- TU Dortmund University
- 44221 Dortmund
- Germany
| | - Samy R. Al-Ayoubi
- Physical Chemistry I – Biophysical Chemistry
- Department of Chemistry and Chemical Biology
- TU Dortmund University
- 44227 Dortmund
- Germany
| | - Michael Paulus
- Fakultät Physik/DELTA
- TU Dortmund University
- 44221 Dortmund
- Germany
| | - Metin Tolan
- Fakultät Physik/DELTA
- TU Dortmund University
- 44221 Dortmund
- Germany
| | - Roland Winter
- Physical Chemistry I – Biophysical Chemistry
- Department of Chemistry and Chemical Biology
- TU Dortmund University
- 44227 Dortmund
- Germany
| |
Collapse
|
11
|
de Oliveira GA, Silva JL. The push-and-pull hypothesis in protein unfolding, misfolding and aggregation. Biophys Chem 2017; 231:20-26. [DOI: 10.1016/j.bpc.2017.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 01/17/2023]
|
12
|
Structural basis for the dissociation of α-synuclein fibrils triggered by pressure perturbation of the hydrophobic core. Sci Rep 2016; 6:37990. [PMID: 27901101 PMCID: PMC5128797 DOI: 10.1038/srep37990] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/04/2016] [Indexed: 12/18/2022] Open
Abstract
Parkinson’s disease is a neurological disease in which aggregated forms of the α-synuclein (α-syn) protein are found. We used high hydrostatic pressure (HHP) coupled with NMR spectroscopy to study the dissociation of α-syn fibril into monomers and evaluate their structural and dynamic properties. Different dynamic properties in the non-amyloid-β component (NAC), which constitutes the Greek-key hydrophobic core, and in the acidic C-terminal region of the protein were identified by HHP NMR spectroscopy. In addition, solid-state NMR revealed subtle differences in the HHP-disturbed fibril core, providing clues to how these species contribute to seeding α-syn aggregation. These findings show how pressure can populate so far undetected α-syn species, and they lay out a roadmap for fibril dissociation via pathways not previously observed using other approaches. Pressure perturbs the cavity-prone hydrophobic core of the fibrils by pushing water inward, thereby inducing the dissociation into monomers. Our study offers the molecular details of how hydrophobic interaction and the formation of water-excluded cavities jointly contribute to the assembly and stabilization of the fibrils. Understanding the molecular forces behind the formation of pathogenic fibrils uncovered by pressure perturbation will aid in the development of new therapeutics against Parkinson’s disease.
Collapse
|
13
|
A hypothesis to reconcile the physical and chemical unfolding of proteins. Proc Natl Acad Sci U S A 2015; 112:E2775-84. [PMID: 25964355 DOI: 10.1073/pnas.1500352112] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
High pressure (HP) or urea is commonly used to disturb folding species. Pressure favors the reversible unfolding of proteins by causing changes in the volumetric properties of the protein-solvent system. However, no mechanistic model has fully elucidated the effects of urea on structure unfolding, even though protein-urea interactions are considered to be crucial. Here, we provide NMR spectroscopy and 3D reconstructions from X-ray scattering to develop the "push-and-pull" hypothesis, which helps to explain the initial mechanism of chemical unfolding in light of the physical events triggered by HP. In studying MpNep2 from Moniliophthora perniciosa, we tracked two cooperative units using HP-NMR as MpNep2 moved uphill in the energy landscape; this process contrasts with the overall structural unfolding that occurs upon reaching a threshold concentration of urea. At subdenaturing concentrations of urea, we were able to trap a state in which urea is preferentially bound to the protein (as determined by NMR intensities and chemical shifts); this state is still folded and not additionally exposed to solvent [fluorescence and small-angle X-ray scattering (SAXS)]. This state has a higher susceptibility to pressure denaturation (lower p1/2 and larger ΔVu); thus, urea and HP share concomitant effects of urea binding and pulling and water-inducing pushing, respectively. These observations explain the differences between the molecular mechanisms that control the physical and chemical unfolding of proteins, thus opening up new possibilities for the study of protein folding and providing an interpretation of the nature of cooperativity in the folding and unfolding processes.
Collapse
|
14
|
Song W, Guo JT. Investigation of arc repressor DNA-binding specificity by comparative molecular dynamics simulations. J Biomol Struct Dyn 2015; 33:2083-93. [PMID: 25495540 DOI: 10.1080/07391102.2014.997797] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Transcription factors regulate gene expression through binding to specific DNA sequences. How transcription factors achieve high binding specificity is still not well understood. In this paper, we investigated the role of protein flexibility in protein-DNA-binding specificity by comparative molecular dynamics (MD) simulations. Protein flexibility has been considered as a key factor in molecular recognition, which is intrinsically a dynamic process involving fine structural fitting between binding components. In this study, we performed comparative MD simulations on wild-type and F10V mutant P22 Arc repressor in both free and complex conformations. The F10V mutant has lower DNA-binding specificity though both the bound and unbound main-chain structures between the wild-type and F10V mutant Arc are highly similar. We found that the DNA-binding motif of wild-type Arc is structurally more flexible than the F10V mutant in the unbound state, especially for the six DNA base-contacting residues in each dimer. We demonstrated that the flexible side chains of wild-type Arc lead to a higher DNA-binding specificity through forming more hydrogen bonds with DNA bases upon binding. Our simulations also showed a possible conformational selection mechanism for Arc-DNA binding. These results indicate the important roles of protein flexibility and dynamic properties in protein-DNA-binding specificity.
Collapse
Affiliation(s)
- Wei Song
- a Department of Bioinformatics and Genomics , University of North Carolina at Charlotte , Charlotte , NC 28223 , USA
| | | |
Collapse
|
15
|
Silva JL, Oliveira AC, Vieira TCRG, de Oliveira GAP, Suarez MC, Foguel D. High-Pressure Chemical Biology and Biotechnology. Chem Rev 2014; 114:7239-67. [DOI: 10.1021/cr400204z] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jerson L. Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Andrea C. Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Tuane C. R. G. Vieira
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Guilherme A. P. de Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Marisa C. Suarez
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Debora Foguel
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| |
Collapse
|
16
|
Effect of high pressure treatment on egg white protein digestibility and peptide products. INNOV FOOD SCI EMERG 2013. [DOI: 10.1016/j.ifset.2012.11.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Protein Interactions Investigated by the Raman Spectroscopy for Biosensor Applications. ACTA ACUST UNITED AC 2012. [DOI: 10.1155/2012/462901] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Interaction and surface binding characteristics of staphylococcal protein A (SpA) and an anti-Escherichia coli immunoglobulin G (IgG) were studied using the Raman spectroscopy. The tyrosine amino acid residues present in the α-helix structure of SpA were found to be involved in interaction with IgG. In bulk interaction condition the native structure of proteins was almost preserved where interaction-related changes were observed in the overall secondary structure (α-helix) of SpA. In the adsorbed state, the protein structure was largely modified, which allowed the identification of tyrosine amino acids involved in SpA and IgG interaction. This study constitutes a direct Raman spectroscopic investigation of SpA and IgG (receptor-antibody) interaction mechanism in the goal of a future biosensor application for detection of pathogenic microorganisms.
Collapse
|
18
|
Hédoux A, Guinet Y, Paccou L. Analysis of the mechanism of lysozyme pressure denaturation from Raman spectroscopy investigations, and comparison with thermal denaturation. J Phys Chem B 2011; 115:6740-8. [PMID: 21542584 DOI: 10.1021/jp2014836] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pressure denaturation of lysozyme dissolved in H(2)O and D(2)O was analyzed using Raman investigations in a wide frequency range. The simultaneous analysis of regions corresponding to the molecular fingerprint of the protein (500-1800 cm(-1)), and the low- (50-450 cm(-1)) and high- (2600-3800 cm(-1)) frequency spectra, allow us to probe protein denaturation and the organization of water molecules. The pressure- and heat-induced transformations are compared. Both pressure- and heat-denatured states are obtained through an intermediate state characterized by intact secondary structure and enhanced water penetration in the tertiary structure. As a consequence of a weaker penetration upon pressurizing, it was found that the pressure-denatured state was partially unfolded compared with the heat-denatured state. The mechanism of pressure denaturation was related to the disruption of the hydrogen-bond network of water onto a set of clusters characterized by strengthened O - H interactions, inducing a hardening of protein dynamics. The mechanism is opposite to that observed upon heating, i.e., the softening of the hydrogen bond network of water inducing a softer protein dynamics. The analysis of the intramolecular O-H stretching reveals that pressurizing lysozyme aqueous solution favors the development of low-density water from the protein surface to the bulk, contrasting to the compression of pure water leading to crystallization of high-density ice-VI.
Collapse
|
19
|
Kitahara R, Hata K, Maeno A, Akasaka K, Chimenti MS, Garcia-Moreno E B, Schroer MA, Jeworrek C, Tolan M, Winter R, Roche J, Roumestand C, Montet de Guillen K, Royer CA. Structural plasticity of staphylococcal nuclease probed by perturbation with pressure and pH. Proteins 2011; 79:1293-305. [PMID: 21254234 DOI: 10.1002/prot.22966] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/01/2010] [Accepted: 11/29/2010] [Indexed: 11/11/2022]
Abstract
The ionization of internal groups in proteins can trigger conformational change. Despite this being the structural basis of most biological energy transduction, these processes are poorly understood. Small angle X-ray scattering (SAXS) and nuclear magnetic resonance (NMR) spectroscopy experiments at ambient and high hydrostatic pressure were used to examine how the presence and ionization of Lys-66, buried in the hydrophobic core of a stabilized variant of staphylococcal nuclease, affect conformation and dynamics. NMR spectroscopy at atmospheric pressure showed previously that the neutral Lys-66 affects slow conformational fluctuations globally, whereas the effects of the charged form are localized to the region immediately surrounding position 66. Ab initio models from SAXS data suggest that when Lys-66 is charged the protein expands, which is consistent with results from NMR spectroscopy. The application of moderate pressure (<2 kbar) at pH values where Lys-66 is normally neutral at ambient pressure left most of the structure unperturbed but produced significant nonlinear changes in chemical shifts in the helix where Lys-66 is located. Above 2 kbar pressure at these pH values the protein with Lys-66 unfolded cooperatively adopting a relatively compact, albeit random structure according to Kratky analysis of the SAXS data. In contrast, at low pH and high pressure the unfolded state of the variant with Lys-66 is more expanded than that of the reference protein. The combined global and local view of the structural reorganization triggered by ionization of the internal Lys-66 reveals more detectable changes than were previously suggested by NMR spectroscopy at ambient pressure.
Collapse
Affiliation(s)
- Ryo Kitahara
- College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Schroer MA, Paulus M, Jeworrek C, Krywka C, Schmacke S, Zhai Y, Wieland DCF, Sahle CJ, Chimenti M, Royer CA, Garcia-Moreno B, Tolan M, Winter R. High-pressure SAXS study of folded and unfolded ensembles of proteins. Biophys J 2010; 99:3430-7. [PMID: 21081092 PMCID: PMC2980736 DOI: 10.1016/j.bpj.2010.09.046] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 09/19/2010] [Accepted: 09/23/2010] [Indexed: 11/29/2022] Open
Abstract
A structural interpretation of the thermodynamic stability of proteins requires an understanding of the structural properties of the unfolded state. High-pressure small-angle x-ray scattering was used to measure the effects of temperature, pressure, denaturants, and stabilizing osmolytes on the radii of gyration of folded and unfolded state ensembles of staphylococcal nuclease. A set of variants with the internal Val-66 replaced with Ala, Tyr, or Arg was used to examine how changes in the volume and polarity of an internal microcavity affect the dimensions of the native state and the pressure sensitivity of the ensemble. The unfolded state ensembles achieved for these proteins with high pressure were more compact than those achieved at high temperature, and were all very sensitive to the presence of urea and glycerol. Substitutions at the hydrophobic core detectably altered the conformation of the protein, even in the folded state. The introduction of a charged residue, such as Arg, inside the hydrophobic interior of a protein could dramatically alter the structural properties, even those of the unfolded state. The data suggest that a charge at an internal position can interfere with the formation of transient hydrophobic clusters in the unfolded state, and ensure that the pressure-unfolded form of a protein occupies the maximum volume possible. Only at high temperatures does the radius of gyration of the unfolded state ensemble approach the value for a statistical random coil.
Collapse
Affiliation(s)
- Martin A. Schroer
- Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund, Germany
| | - Michael Paulus
- Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund, Germany
| | | | - Christina Krywka
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Saskia Schmacke
- Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund, Germany
| | - Yong Zhai
- Fakultät Chemie, Technische Universität Dortmund, Dortmund, Germany
| | | | - Christoph J. Sahle
- Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund, Germany
| | - Michael Chimenti
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Catherine A. Royer
- Centre de Biochimie Structurale, Institut National de la Santé et de la Recherche Médicale U554, Centre National de la Recherche Scientifique/Unite Mixte de Recherche, 5048 Université de Montpellier, Montpellier, France
| | | | - Metin Tolan
- Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund, Germany
| | - Roland Winter
- Fakultät Chemie, Technische Universität Dortmund, Dortmund, Germany
| |
Collapse
|
21
|
Sarupria S, Ghosh T, García AE, Garde S. Studying pressure denaturation of a protein by molecular dynamics simulations. Proteins 2010; 78:1641-51. [PMID: 20146357 DOI: 10.1002/prot.22680] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Many globular proteins unfold when subjected to several kilobars of hydrostatic pressure. This "unfolding-up-on-squeezing" is counter-intuitive in that one expects mechanical compression of proteins with increasing pressure. Molecular simulations have the potential to provide fundamental understanding of pressure effects on proteins. However, the slow kinetics of unfolding, especially at high pressures, eliminates the possibility of its direct observation by molecular dynamics (MD) simulations. Motivated by experimental results-that pressure denatured states are water-swollen, and theoretical results-that water transfer into hydrophobic contacts becomes favorable with increasing pressure, we employ a water insertion method to generate unfolded states of the protein Staphylococcal Nuclease (Snase). Structural characteristics of these unfolded states-their water-swollen nature, retention of secondary structure, and overall compactness-mimic those observed in experiments. Using conformations of folded and unfolded states, we calculate their partial molar volumes in MD simulations and estimate the pressure-dependent free energy of unfolding. The volume of unfolding of Snase is negative (approximately -60 mL/mol at 1 bar) and is relatively insensitive to pressure, leading to its unfolding in the pressure range of 1500-2000 bars. Interestingly, once the protein is sufficiently water swollen, the partial molar volume of the protein appears to be insensitive to further conformational expansion or unfolding. Specifically, water-swollen structures with relatively low radii of gyration have partial molar volume that are similar to that of significantly more unfolded states. We find that the compressibility change on unfolding is negligible, consistent with experiments. We also analyze hydration shell fluctuations to comment on the hydration contributions to protein compressibility. Our study demonstrates the utility of molecular simulations in estimating volumetric properties and pressure stability of proteins, and can be potentially extended for applications to protein complexes and assemblies.
Collapse
Affiliation(s)
- Sapna Sarupria
- Howard P Isermann Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | |
Collapse
|
22
|
Silva JL, Foguel D. Hydration, cavities and volume in protein folding, aggregation and amyloid assembly. Phys Biol 2009; 6:015002. [DOI: 10.1088/1478-3975/6/1/015002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Schwarcz WD, Carnelocce L, Silva JL, Oliveira AC, Gonçalves RB. Conformational changes in bovine lactoferrin induced by slow or fast temperature increases. Biol Chem 2008. [DOI: 10.1515/bc.2008.116_bchm.just-accepted] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Abstract
Troponin is the singular Ca(2+)-sensitive protein in the contraction of vertebrate striated muscles. Troponin C (TnC), the Ca(2+)-binding subunit of the troponin complex, has two distinct domains, C and N, which have different properties despite their extensive structural homology. In this work, we analyzed the thermodynamic stability of the isolated N-domain of TnC using a fluorescent mutant with Phe 29 replaced by Trp (F29W/N-domain, residues 1-90). The complete unfolding of the N-domain of TnC in the absence or presence of Ca(2+) was achieved by combining high hydrostatic pressure and urea, a maneuver that allowed us to calculate the thermodynamic parameters (DeltaV and DeltaG(atm)). In this study, we propose that part of the affinity for Ca(2+) is contributed by the free-energy change of folding of the N- and C-domains that takes place when Ca(2+) binds. The importance of the free-energy change for the structural and regulatory functions of the TnC isolated domains was evaluated. Our results shed light on how the coupling between folding and ion binding contributes to the fine adjustment of the affinity for Ca(2+) in EF-hand proteins, which is crucial to function.
Collapse
|
25
|
Schwarcz WD, Carnelocce L, Silva JL, Oliveira AC, Gonçalves RB. Conformational changes in bovine lactoferrin induced by slow or fast temperature increases. Biol Chem 2008; 389:1137-42. [DOI: 10.1515/bc.2008.116] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Lactoferrin (LF) is an iron-binding protein present in several secreted substances, such as milk, and has broad antimicrobial and physiological properties. Because high temperatures may affect protein stability and its functional properties, we investigated the effect of heat on bovine LF structure and stability. The effects of temperatures used during the pasteurization process on LF and its relationship to protein functionality were studied. Conformational changes were monitored using spectroscopic techniques, such as circular dichroism (CD) and fluorescence spectroscopy. The CD data at 70°C showed that LF's secondary structure is drastically and irreversibly affected when the temperature is gradually increased. The same effect is observed when the temperature is gradually raised from 25°C to 105°C and changes are monitored by tryptophan fluorescence emission. We also verified the effects of simulating the pasteurization process; LF remained well structured during the entire process and this result was not time-dependent. Owing to preservation of the secondary structure with changes in the tertiary structure, we thus believe that pasteurization might cause LF to change into an intermediate partially folded state. A better understanding of heat stability is important for the use of LF as a bioactive component in food.
Collapse
|
26
|
Rocha CB, Suarez MC, Yu A, Ballard L, Sorenson MM, Foguel D, Silva JL. Volume and free energy of folding for troponin C C-domain: linkage to ion binding and N-domain interaction. Biochemistry 2008; 47:5047-58. [PMID: 18393534 DOI: 10.1021/bi702058t] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Troponin C (TnC) is an 18-kDa acidic protein of the EF-hand family that serves as the trigger for muscle contraction. In this study, we investigated the thermodynamic stability of the C-domain of TnC in all its occupancy states (apo, Mg (2+)-, and Ca (2+)-bound states) using a fluorescent mutant with Phe 105 replaced by Trp (F105W/C-domain, residues 88-162) and (1)H NMR spectroscopy. High hydrostatic pressure was employed as a perturbing agent, in combination with urea or without it. On the basis of changes in Trp emission, the C-domain apo state was denatured by pressure (in the range of 1-1000 bar) in the absence of urea. The fluorescence data were corroborated by following the changes in the (1)H NMR signal of Histidine 128. Addition of Ca (2+) or Mg (2+) increased the C-domain stability so that complete denaturation was attained only by the combined use of high hydrostatic pressure and either 7-8 M or 1.5-2 M urea, respectively. The (1)H NMR spectra in the presence of Ca (2+) was typical of a highly structured protein and allowed us to follow the changes in the local environment of several amino-acid residues as a function of pressure at 4 M Urea. Different residues presented different volume changes, but those that are in the hydrophobic core portrayed values very similar to that obtained for tryptophan 105 as measured by fluorescence, indicating that it is indeed a good probe for the overall tertiary structure. From these experiments, we calculated the thermodynamic parameters (Delta G degrees atm and Delta V) that govern the folding of the C-domain in all its possible physiological states and constructed a thermodynamic cycle. Furthermore, a comparison of the volume and free-energy changes of folding of isolated C-domain with those of intact TnC (F105W) revealed that the N-domain has little effect on the structure of the C-domain, even in the presence of Ca (2+). The volume and free-energy diagrams reveal a landscape of different conformations from the less structured, denatured apo form to the highly structured, Ca (2+)-bound form. The large change in folding free energy of the C-domain that takes place when Ca (2+) binds may explain the much higher Ca (2+) affinity of sites III and IV, 2 orders of magnitude higher than the affinity of sites I and II.
Collapse
Affiliation(s)
- Cristiane Barbosa Rocha
- Instituto de Bioquímica Médica, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro 21941-590, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
27
|
Abdul Latif AR, Kono R, Tachibana H, Akasaka K. Kinetic analysis of amyloid protofibril dissociation and volumetric properties of the transition state. Biophys J 2007; 92:323-9. [PMID: 16997869 PMCID: PMC1697859 DOI: 10.1529/biophysj.106.088120] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Accepted: 08/31/2006] [Indexed: 11/18/2022] Open
Abstract
We present here the first detailed kinetic analysis of the dissociation reaction of amyloid protofibrils by utilizing pressure as an accelerator of the reaction. The experiment is carried out on an excessively diluted typical protofibril solution formed from an intrinsically denatured disulfide-deficient variant of hen lysozyme with Trp fluorescence as the reporter in the pressure range 3-400 MPa. From the analysis of the time-dependent fluorescence decay and the length distribution of the protofibrils measured on atomic force microscopy, we conclude that the protofibril grows or decays by attachment or detachment of a monomer at one end of the protofibril with a monomer dissociation rate independent of the length of the fibril. Furthermore, we find that the dissociation reaction is strongly dependent on pressure, characterized with a negative activation volume DeltaV(odouble dagger) = -50.5 +/- 1.60 ml mol(-1) at 0.1 MPa and with a negative activation compressibility Deltakappa(double dagger) = -0.013 +/- 0.001 ml mol(-1) bar(-1) or -0.9 x 10(-6) ml g(-1) bar(-1). These results indicate that the protofibril is a highly compressible high-volume state, but that it becomes less compressible and less voluminous in the transition state, most probably due to partial hydration of the existing voids. The system eventually reaches the lowest-volume state with full hydration of the monomer in the dissociated state.
Collapse
Affiliation(s)
- Abdul Raziq Abdul Latif
- Department of Biotechnological Science, School of Biology-Oriented Science and Technology, Kinki University, Wakayama, Japan
| | | | | | | |
Collapse
|
28
|
Gu J, Gribskov M, Bourne PE. Wiggle-predicting functionally flexible regions from primary sequence. PLoS Comput Biol 2006; 2:e90. [PMID: 16839194 PMCID: PMC1500818 DOI: 10.1371/journal.pcbi.0020090] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 06/02/2006] [Indexed: 11/18/2022] Open
Abstract
The Wiggle series are support vector machine-based predictors that identify regions of functional flexibility using only protein sequence information. Functionally flexible regions are defined as regions that can adopt different conformational states and are assumed to be necessary for bioactivity. Many advances have been made in understanding the relationship between protein sequence and structure. This work contributes to those efforts by making strides to understand the relationship between protein sequence and flexibility. A coarse-grained protein dynamic modeling approach was used to generate the dataset required for support vector machine training. We define our regions of interest based on the participation of residues in correlated large-scale fluctuations. Even with this structure-based approach to computationally define regions of functional flexibility, predictors successfully extract sequence-flexibility relationships that have been experimentally confirmed to be functionally important. Thus, a sequence-based tool to identify flexible regions important for protein function has been created. The ability to identify functional flexibility using a sequence based approach complements structure-based definitions and will be especially useful for the large majority of proteins with unknown structures. The methodology offers promise to identify structural genomics targets amenable to crystallization and the possibility to engineer more flexible or rigid regions within proteins to modify their bioactivity.
Collapse
Affiliation(s)
- Jenny Gu
- Department of Pharmacology and Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California, USA.
| | | | | |
Collapse
|
29
|
Silva JL, Cordeiro Y, Foguel D. Protein folding and aggregation: Two sides of the same coin in the condensation of proteins revealed by pressure studies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:443-51. [PMID: 16480935 DOI: 10.1016/j.bbapap.2005.11.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 11/14/2005] [Indexed: 11/12/2022]
Abstract
Hydrostatic pressure can be considered as "thermodynamic tweezers" to approach the protein folding problem and to study the cases when folding goes wrong leading to the protein folding disorders. The main outcome of the use of high pressure in this field is the stabilization of folding intermediates such as partially folded conformations, thus allowing us to characterize their structural properties. Because partially folded intermediates are usually at the intersection between productive and off-pathway folding, they may give rise to misfolded proteins, aggregates and amyloids that are involved in many neurodegenerative diseases, such as transmissible spongiform encephalopathies, Alzheimer's disease, Parkinson's disease and Huntington's disease. Of particular interest is the use of hydrostatic pressure to unveil the structural transitions in prion conversion and to populate possible intermediates in the folding/unfolding pathway of the prion protein. The main hypothesis for prion diseases proposes that the cellular protein (PrP(C)) can be altered into a misfolded, beta-sheet-rich isoform, the PrP(Sc) (from scrapie). It has been demonstrated that hydrostatic pressure affects the balance between the different prion species. The last findings on the application of high pressure on amyloidogenic proteins will be discussed here as regards to their energetic and volumetric properties. The use of high pressure promises to contribute to the identification of the underlying mechanisms of these neurodegenerative diseases and to develop new therapeutic approaches.
Collapse
Affiliation(s)
- Jerson L Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, and Centro Nacional de Ressonância Magnética Nuclear de Macromoléculas, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, RJ, Brazil.
| | | | | |
Collapse
|
30
|
Skouri-Panet F, Quevillon-Cheruel S, Michiel M, Tardieu A, Finet S. sHSPs under temperature and pressure: the opposite behaviour of lens alpha-crystallins and yeast HSP26. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:372-83. [PMID: 16476575 DOI: 10.1016/j.bbapap.2005.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 11/21/2005] [Accepted: 12/06/2005] [Indexed: 11/25/2022]
Abstract
Small angle X-ray scattering was used to follow the temperature and pressure induced structural transitions of polydisperse native calf lens alpha-crystallins and recombinant human alphaB-crystallins and of monodisperse yeast HSP26. The alpha-crystallins were known to increase in size with increasing temperature, whereas HSP26 partially dissociates into dimers. SAXS intensity curves demonstrated that the average 40-mer calf alpha-crystallin converted into 80-mer in a narrow temperature range, from 60 to 69 degrees C, whereas the average 30-mer alphaB-crystallin was continuously transformed into 60-mer at lower temperature, from 40 to 60 degrees C. These temperature-induced transitions were irreversible. Similar transitions, yet reversible, could be induced with pressure in the 100 to 300 MPa pressure range. Moreover, temperature and pressure could be combined to lower the transition temperatures. On the other hand, SAXS curves recorded during pressure scans from 0.1 to 200 MPa with monodisperse 24-mer HSP26 revealed dissociation of the 24-mer into dimers. This dissociation was complete and reversible. Whatever the sHSP, a decrease of partial specific volume was found to be associated with the pressure induced quaternary structure transitions, in agreement with the hypothesis that such transitions represent a first step on the protein denaturation pathway.
Collapse
|
31
|
Chandrika B, Schnackenberg LK, Raveendran P, Wallen SL. High Resolution1H NMR Structural Studies of Sucrose Octaacetate in Supercritical Carbon Dioxide. Chemistry 2005; 11:6266-71. [PMID: 16078290 DOI: 10.1002/chem.200500215] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
High pressure (HP), high resolution (HR), proton nuclear magnetic resonance (1H NMR) spectroscopy has been utilized for the first time to investigate the solution structure of a carbohydrate based system, sucrose octaacetate (SOA), in supercritical CO2. The studies indicate that the average solution state conformation of the alpha-D-Glucopyranosyl ring of SOA in scCO2 medium is consistent with the 4C1 chair form, while the beta-D-fructofuranosyl ring adopts an envelope conformation. The investigations also suggest that scCO2 is a promising medium to study the solution structure and conformation of acetylated sugar systems. Spectral manifestations of a specific interaction between the acetate methyl protons and CO2 molecules are also presented.
Collapse
Affiliation(s)
- Baby Chandrika
- Department of Chemistry, Kenan and Venable Laboratories, University of North Carolina, Chapel Hill, 27599-3290, USA
| | | | | | | |
Collapse
|
32
|
Paschek D, Nonn S, Geiger A. Low-temperature and high-pressure induced swelling of a hydrophobic polymer-chain in aqueous solution. Phys Chem Chem Phys 2005; 7:2780-6. [PMID: 16189593 DOI: 10.1039/b506207a] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report molecular dynamics simulations of a hydrophobic polymer-chain in aqueous solution between 260 K and 420 K at pressures of 1 bar, 3000 bar, and 4500 bar. The simulations reveal a hydrophobically collapsed structure at low pressures and high temperatures. At 3000 bar and about 260 K and at 4500 bar and about 260 K, however, an abrupt transition to a swelled state is observed. The transition is driven by a smaller volume and a remarkably strong lower enthalpy of the swelled state, indicating a steep positive slope of the corresponding transition line. The swelling is strongly stabilized by the energetically favorable state of water in the polymer's hydrophobic first hydration shell at low temperatures. This finding is consistent with the observation of a positive heat capacity of hydrophobic solvation. Moreover, the slope and location of the estimated swelling transition line for the collapsed hydrophobic chain coincides remarkably well with the cold denaturation transition of proteins.
Collapse
Affiliation(s)
- Dietmar Paschek
- Physikalische Chemie, Universität Dortmund, Otto-Hahn-Str. 6, D-44221 Dortmund, Germany.
| | | | | |
Collapse
|
33
|
Marchal S, Shehi E, Harricane MC, Fusi P, Heitz F, Tortora P, Lange R. Structural instability and fibrillar aggregation of non-expanded human ataxin-3 revealed under high pressure and temperature. J Biol Chem 2003; 278:31554-63. [PMID: 12766160 DOI: 10.1074/jbc.m304205200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein misfolding and formation of structured aggregates are considered to be the earliest events in the development of neurodegenerative diseases, but the mechanism of these biological phenomena remains to be elucidated. Here, we report a study of heat- and pressure-induced unfolding of human Q26 and murine Q6 ataxin-3 using spectroscopic methods. UV absorbance and fluorescence revealed that heat and pressure induced a structural transition of both proteins to a molten globule conformation. The unfolding pathway was partly irreversible and led to a protein conformation where tryptophans were more exposed to water. Furthermore, the use of fluorescent probes (8-anilino-1-naphthalenesulfonate and thioflavin T) allowed the identification of different intermediates during the process of pressure-induced unfolding. At high temperature and pressure, human Q26, but not murine Q6, underwent concentration-dependent aggregation. Fourier transform infrared and circular dichroism spectroscopy revealed that these aggregates are characterized by an increased beta-sheet content. As revealed by electron microscopy, heat- and pressure-induced aggregates were different; high temperature treatment led to fibrillar microaggregates (8-10-nm length), whereas high pressure induced oligomeric structures of globular shape (100 nm in diameter), which sometimes aligned to higher order suprastructures. Several intermediate structures were detected in this process. Two factors appear to govern ataxin unfolding and aggregation, the length of the polyglutamine tract and its protein context.
Collapse
Affiliation(s)
- Stéphane Marchal
- INSERM U128, IFR 122, 1919 route de Mende, F-34293 Montpellier Cédex 5, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Bertini I, Cowan JA, Del Bianco C, Luchinat C, Mansy SS. Thermotoga maritima IscU. Structural characterization and dynamics of a new class of metallochaperone. J Mol Biol 2003; 331:907-24. [PMID: 12909018 DOI: 10.1016/s0022-2836(03)00768-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Members of the IscU family of proteins are among the most conserved of all protein groups, extending across all three kingdoms of life. IscU serves as a scaffold for the assembly of intermediate iron-sulfur cluster centers and further mediates delivery to apo protein targets. Several proteins that mediate delivery of single metal ions to apo targets (termed metallochaperones) have recently been characterized structurally. Each displays a ferredoxin-like betaalphabetabetaalphabeta motif as a structural core. Assembly and delivery of a polynuclear iron-sulfur cluster is, however, a more complex pathway and presumably would demand a distinctive protein mediator. Here, we demonstrate Thermotoga maritima IscU (Tm IscU) to display unique structural and motional characteristics that distinguish it from other members of this class of proteins. In particular, IscU adopts a mobile, physiologically relevant, molten globule-like state that is vastly different from the previously identified ferredoxin-like fold that has thus far been characterized for other metallochaperones. The secondary structural content of Tm IscU is consistent with previous circular dichroism measurements on apo and holo protein, consisting of six alpha-helices and three beta-strands, the latter forming an anti-parallel beta-sheet. Extensive dynamics studies are consistent with a protein that has reasonably well defined secondary structural elements, but with a tertiary structure that is fluxional among widely different conformational arrangements. Analogous conformational flexibility does not exist in other structurally characterized metallochaperones; however, such a dynamic molecule may account for the lack of long-range NOEs, and allow both for the flexibility that is necessary for the multiple roles of Fe-S cluster assembly, and recognition and delivery of that cluster to a target protein. Additionally, the fluxionality of IscU is unique in that the protein appears to be more compact (based on 1H/2H exchange, R1, R2, and NOE data) but yet more fluid (lack of long-range NOEs) than typical molten globule proteins.
Collapse
Affiliation(s)
- Ivano Bertini
- Magnetic Resonance Center, University of Florence, Via L. Sacconi, 6-50019 Sesto Fiorentino, Italy.
| | | | | | | | | |
Collapse
|
35
|
Affiliation(s)
- Antonio D Molina-García
- Department of Engineering, Instituto del Frío, C.S.I.C., José Antonio Novais, 10, Ciudad Universitaria, 28040 Madrid, Spain.
| |
Collapse
|
36
|
Chapeaurouge A, Johansson JS, Ferreira ST. Folding of a de novo designed native-like four-helix bundle protein. J Biol Chem 2002; 277:16478-83. [PMID: 11832477 DOI: 10.1074/jbc.m105232200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The folding of a model native-like dimeric four-helix bundle protein, (alpha(2))(2), was investigated using guanidine hydrochloride, hydrostatic pressure, and low temperature. Unfolding by guanidine hydrochloride followed by circular dichroism and intrinsic fluorescence spectroscopy revealed a highly cooperative transition between the native-like and unfolded states, with free energy of unfolding determined from CD data, DeltaG(unf) = 14.3 +/- 0.8 kcal/mol. However, CD and intrinsic fluorescence data were not superimposable, indicating the presence of an intermediate state during the folding transition. To stabilize the folding intermediate, we used hydrostatic pressure and low temperature. In both cases, dissociation of the dimeric native-like (alpha(2))(2) into folded monomers (alpha(2)) was observed. van't Hoff analysis of the low temperature experiments, assuming a two-state dimer 171-monomer transition, yielded a free energy of dissociation of (alpha(2))(2) of DeltaG(diss) = 11.4 +/- 0.4 kcal/mol, in good agreement with the free energy determined from pressure dissociation experiments (DeltaG(diss) = 10.5 +/- 0.1 kcal/mol). Binding of the hydrophobic fluorescent probe 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS) to the pressure- and cold-dissociated states of (alpha(2))(2) indicated the existence of molten-globule monomers. In conclusion, we demonstrate that the folding pathway of (alpha(2))(2) can be described by a three-state transition including a monomeric molten globule-like state.
Collapse
Affiliation(s)
- Alex Chapeaurouge
- Departamento de Bioquimica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil.
| | | | | |
Collapse
|
37
|
Perrett S, Zhou JM. Expanding the pressure technique: insights into protein folding from combined use of pressure and chemical denaturants. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1595:210-23. [PMID: 11983397 DOI: 10.1016/s0167-4838(01)00345-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The fundamental principles derived from in vitro protein folding experiments have practical application in understanding the pathology of diseases of protein misfolding and for the development of industrial processes to produce proteins as pharmaceuticals and biotechnological reagents. High pressure as a tool to denature or disaggregate proteins offers a number of unique advantages. The emphasis of this review is on how low concentrations of chemical denaturants can be used in combination with high pressure to extend the range and scope of this useful technique. This approach has already been used in a number of studies, which are discussed here in the context of the questions they address. These include: the origin of the volume change observed on protein unfolding, pressure-induced formation of partially structured intermediates, pressure-induced dissociation of oligomeric and aggregated proteins, and the use of volume changes to probe the structure of the transition state. Wider use of hydrostatic pressure as a denaturation tool, facilitated by combination with chemical denaturants, is likely to bring significant advances to our understanding of protein structure, stability and folding, particularly in relation to proteins associated with the amyloid and prion diseases.
Collapse
Affiliation(s)
- Sarah Perrett
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, PR China
| | | |
Collapse
|
38
|
Jonas J. High-resolution nuclear magnetic resonance studies of proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1595:145-59. [PMID: 11983393 DOI: 10.1016/s0167-4838(01)00341-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The combination of advanced high-resolution nuclear magnetic resonance (NMR) techniques with high-pressure capability represents a powerful experimental tool in studies of protein folding. This review is organized as follows: after a general introduction of high-pressure, high-resolution NMR spectroscopy of proteins, the experimental part deals with instrumentation. The main section of the review is devoted to NMR studies of reversible pressure unfolding of proteins with special emphasis on pressure-assisted cold denaturation and the detection of folding intermediates. Recent studies investigating local perturbations in proteins and the experiments following the effects of point mutations on pressure stability of proteins are also discussed. Ribonuclease A, lysozyme, ubiquitin, apomyoglobin, alpha-lactalbumin and troponin C were the model proteins investigated.
Collapse
Affiliation(s)
- Jiri Jonas
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana, Urbana, IL 61801, USA.
| |
Collapse
|
39
|
Cioni P, Strambini GB. Tryptophan phosphorescence and pressure effects on protein structure. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1595:116-30. [PMID: 11983391 DOI: 10.1016/s0167-4838(01)00339-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
After a brief introduction of the potentialities of Trp phosphorescence spectroscopy for probing the conformation and flexibility of protein structure, this presentation summarizes the effects of hydrostatic pressure (up to 3 kbar) on the native fold of monomeric and oligomeric proteins as inferred from the variation of the intrinsic phosphorescence lifetime and the oxygen and acrylamide bimolecular quenching rate constants of buried Trp residues. The pressure/temperature response of the globular fold and modulation of its dynamical structure is analyzed both in terms of a reduction of internal cavities and of hydration of the polypeptide. The implications of these findings for the thermodynamic stability of proteins and for the determination of subunit dissociation equilibria under high pressure conditions are also discussed.
Collapse
Affiliation(s)
- Patrizia Cioni
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Pisa, Ghezzano, Italy.
| | | |
Collapse
|
40
|
Royer CA. Revisiting volume changes in pressure-induced protein unfolding. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1595:201-9. [PMID: 11983396 DOI: 10.1016/s0167-4838(01)00344-2] [Citation(s) in RCA: 333] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It has long been known that the application of hydrostatic pressure generally leads to the unfolding of proteins. Despite a relatively large number of reports in the literature over the past few decades, there has been great confusion over the sign and magnitude as well as the fundamental factors contributing to volume effects in protein conformational transitions. It is the goal of this review to present and discuss the results obtained concerning the sign and magnitude of the volume changes accompanying the unfolding of proteins. The vast majority of cases point to a significant decrease in volume upon unfolding. Nonetheless, there is evidence that, due to differences in the thermal expansivity of the folded and unfolded states of proteins reported in a half dozen manuscripts, that the sign of the volume change may become positive at higher temperatures.
Collapse
Affiliation(s)
- Catherine A Royer
- Centre de Biochimie Structurale, INSERM U554, CNRS UMR 5048, Montpellier, France.
| |
Collapse
|
41
|
Silva JL, Oliveira AC, Gomes AMO, Lima LMTR, Mohana-Borges R, Pacheco ABF, Foguel D. Pressure induces folding intermediates that are crucial for protein-DNA recognition and virus assembly. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1595:250-65. [PMID: 11983400 DOI: 10.1016/s0167-4838(01)00348-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Protein-nucleic acid interactions are crucial for a variety of fundamental biological processes such as replication, transcription, restriction, translation and virus assembly. The molecular basis of protein-DNA and protein-RNA recognition is deeply related to the thermodynamics of the systems. We review here how protein-nucleic acid interactions can be approached in the same way as protein-protein interactions involved in protein folding and protein assembly, using hydrostatic pressure as the primary tool and employing several spectroscopic techniques, especially fluorescence, circular dichroism and high-resolution nuclear magnetic resonance. High pressure has the unique property of stabilizing partially folded states or molten-globule states of a protein. The competition between correct folding and misfolding, which in many proteins leads to formation of insoluble aggregates is an important problem in the biotechnology industry and in human diseases such as amyloidosis, Alzheimer's, prion and tumor diseases. The pressure studies reveal that a gradient of partially folded (molten globule) conformations is present between the unfolded and fully folded structure of several bacteria, plant and mammalian viruses. Using pressure, we have detected the presence of a ribonucleoprotein intermediate, where the coat protein is partially unfolded but bound to RNA. These intermediates are potential targets for antiviral compounds. Pressure studies on viruses have direct biotechnological applications. The ability of pressure to inactivate viruses has been evaluated with a view toward the applications of vaccine development and virus sterilization. Recent studies demonstrate that pressure causes virus inactivation while preserving the immunogenic properties. There is substantial evidence that a high-pressure cycle traps a virus in the 'fusion intermediate state', not infectious but highly immunogenic.
Collapse
Affiliation(s)
- Jerson L Silva
- Programa de Biologia Estrutural, Departamento de Bioquímica Médica - ICB, Centro Nacional de Ressonância Magnética Nuclear de Macromoléculas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | |
Collapse
|
42
|
Silva JL, Foguel D, Royer CA. Pressure provides new insights into protein folding, dynamics and structure. Trends Biochem Sci 2001; 26:612-8. [PMID: 11590014 DOI: 10.1016/s0968-0004(01)01949-1] [Citation(s) in RCA: 305] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hydrostatic pressure is a powerful tool for studying protein folding, and the dynamics and structure of folding intermediates. Recently, pressure techniques have opened two important fronts to aid our understanding of how polypeptides fold into highly structured conformations. The first advance is the stabilization of folding intermediates, making it possible to characterize their structures and dynamics by different methodologies. Kinetic studies under pressure constitute the second advance, promising detailed appraisal and understanding of protein folding landscapes. The combination of these two approaches enables dissection of the roles of packing and cavities in folding, and in assembly of multimolecular structures such as protein-DNA complexes and viruses. The study of aggregates and amyloids, derived from partially folded intermediates at the junction between productive and off-pathway folding, have also been studied, promising better understanding of diseases associated with protein misfolding.
Collapse
Affiliation(s)
- J L Silva
- Departamento de Bioquímica Médica, Instituto de Ciências Biomédicas and Centro Nacional de Ressonância Magnética Nuclear de Macromoléculas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil.
| | | | | |
Collapse
|
43
|
Sasahara K, Sakurai M, Nitta K. Pressure effect on denaturant-induced unfolding of hen egg white lysozyme. Proteins 2001; 44:180-7. [PMID: 11455591 DOI: 10.1002/prot.1083] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The influence of hydrostatic pressure (< or =100 MPa) on denaturant-induced unfolding of hen egg white lysozyme was investigated by means of ultraviolet spectroscopy at various temperatures. Assuming a two-state transition model, the dependence of Gibbs free-energy change of unfolding on the denaturant concentration was calculated. Under applied hydrostatic pressure, these data were interpreted as suggesting that a two-state model is not applicable in a restricted temperature range; the dominant effect of hydrostatic pressure is to affect the cooperativity in protein unfolding due to a chemical equilibrium shift in the direction of the reduction in the system volume. The deviation from the two-state transition model appears to be rationalized by assuming that applied pressure induces an intermediate conformation between the native and unfolded states of the protein. The implication of the thermodynamic stability of protein under pressure was discussed.
Collapse
Affiliation(s)
- K Sasahara
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | | | | |
Collapse
|
44
|
Glycerol-Induced Aggregation of the Oligomeric L-Asparaginase II from E. coli Monitored with ATR-FTIR. Int J Mol Sci 2001. [DOI: 10.3390/i2020109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
45
|
Saad-Nehme J, Silva JL, Meyer-Fernandes JR. Osmolytes protect mitochondrial F(0)F(1)-ATPase complex against pressure inactivation. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1546:164-70. [PMID: 11257519 DOI: 10.1016/s0167-4838(01)00137-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have previously reported that carbohydrates and polyols protect different enzymes against thermal inactivation and deleterious effects promoted by guanidinium chloride and urea. Here, we show that these osmolytes (carbohydrates, polyols and methylamines) protect mitochondrial F(0)F(1)-ATPase against pressure inactivation. Pressure stability of mitochondrial F(0)F(1)-ATPase complex by osmolytes was studied using preparations of membrane-bound submitochondrial particles depleted or containing inhibitor protein (IP). Hydrostatic pressure in the range from 0.5 to 2.0 kbar causes inactivation of submitochondrial particles depleted of IP (AS particles). However, the osmolytes prevent pressure inactivation of the complex in a dose-dependent manner, remaining up to 80% of hydrolytic activity at the highest osmolyte concentration. Submitochondrial particles containing IP (MgATP-SMP) exhibit low ATPase activity and dissociation of IP increases the hydrolytic activity of the enzyme. MgATP-SMP subjected to pressure (2.2 kbar, for 1 h) and then preincubated at 42 degrees C to undergo activation did not have an increase in activity. However, particles pressurized in the presence of 1.5 M of sucrose or 3.0 M of glucose were protected and after preincubation at 42 degrees C, showed an activation very similarly to those kept at 1 bar. In accordance with the preferential hydration theory, we believe that osmolytes reduce to a minimum the surface of the macromolecule to be hydrated and oppose pressure-induced alterations of the native fold that are driven by hydration forces.
Collapse
Affiliation(s)
- J Saad-Nehme
- Departamento de Bioquímica Médica, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), CCS, Bloco H, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
| | | | | |
Collapse
|
46
|
Lima LM, Foguel D, Silva JL. DNA tightens the dimeric DNA-binding domain of human papillomavirus E2 protein without changes in volume. Proc Natl Acad Sci U S A 2000; 97:14289-94. [PMID: 11114179 PMCID: PMC18911 DOI: 10.1073/pnas.250352197] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The recognition of palindromic specific DNA sequences by the human papillomavirus (HPV) E2 proteins is responsible for regulation of virus transcription. The dimeric E2 DNA-binding domain of HPV-16 (E2c) dissociates into a partially folded state under high hydrostatic pressure. We show here that pressure-induced monomers of E2c are highly structured, as evidenced by NMR hydrogen-deuterium exchange measurements. On binding to both specific and nonspecific DNA, E2c becomes stable against pressure. Competitive binding studies using fluorescence polarization of fluorescein-labeled DNA demonstrate the reversibility of the specific binding. To assess the thermodynamic parameters for the linkage between protein dissociation and DNA binding, urea denaturation curves were obtained at different pressures in the presence of specific and nonspecific DNA sequences. The change in free energy on denaturation fell linearly with increase in pressure for both protein-DNA complexes, and the measured volume change was similar to that obtained for E2c alone. The data show that the free energy of dissociation increases when E2c binds to a nonspecific DNA sequence but increases even more when the protein binds to the specific DNA sequence. Thus, specific complexes are tighter but do not entail variation in the volume change. The thermodynamic data indicate that DNA-bound E2c dissociates into monomers bound to DNA. The existence of monomeric units of E2c bound to DNA may have implications for the formation of DNA loops, as an additional target for viral and host factors binding to the loosely associated dimer of the N-terminal module of the E2 protein.
Collapse
Affiliation(s)
- L M Lima
- Programa de Biologia Estrutural, Departamento de Bioquimica Médica-Instituto de Ciências Biomédicas, Centro Nacional de Ressonância Magnética Nuclear de Macromoléculas, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
47
|
Abstract
Hyphenated HPLC-NMR is a fast growing technology, allowing rapid and detailed structural characterization of unknown mixtures. The technical aspects of the technology are reviewed on the basis of system configuration, operation, solvent suppression, HPLC and NMR optimization, and detection. The combined use of HPLC-NMR and HPLC-MS is also described and discussed. Various applications of HPLC-NMR and integrated HPLC-NMR-MS in drug discovery, especially in the separation and structure elucidation of drug impurities, reaction mixtures, degradation products, in vitro and in vivo metabolites, and combinatorial library samples, are illustrated.
Collapse
Affiliation(s)
- S X Peng
- The Procter & Gamble Company, Health Care Research Center, 8700 Mason-Montgomery Road, Mason, OH 45040, USA.
| |
Collapse
|
48
|
Orekhov VY, Dubovskii PV, Yamada H, Akasaka K, Arseniev AS. Pressure effect on the dynamics of an isolated alpha-helix studied by 15N-1H NMR relaxation. JOURNAL OF BIOMOLECULAR NMR 2000; 17:257-263. [PMID: 10959632 DOI: 10.1023/a:1008346414720] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Dynamics and structure of (1-36)bacteriorhodopsin solubilized in chloroform/methanol mixture (1:1) were investigated by 1H-15N NMR spectroscopy under a hydrostatic pressure of 2000 bar. It was shown that the peptide retains its spatial structure at high pressure. 15N transverse and longitudinal relaxation times, 15N[1H] nuclear Overhauser effects, chemical shifts and the translation diffusion rate of the peptide at 2000 bar were compared with the respective data at ambient pressure [Orekhov et al. (1999) J. Biomol. NMR, 14, 345-356]. The model free analysis of the relaxation data for the helical 9-31 fragment revealed that the high pressure decreases the overall rotation and translation diffusion, as well as apparent order parameters of fast picosecond internal motions (S2) but has no effect on internal nanosecond motions (S2 and taus) of the peptide. The decrease of translation and overall rotation diffusion was attributed to the increase in solvent viscosity and the decrease of apparent order parameters S2f to a compression of hydrogen bonds. It is suggested that this compression causes an elongation of H-N bonds and a decrease of absolute values of chemical shift anisotropy (CSA). In particular, the observed decrease of S2f at 2000 bar can be explained by 0.001 nm increase of N-H bond lengths and 10 ppm decrease of 15N CSA values.
Collapse
Affiliation(s)
- V Y Orekhov
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow
| | | | | | | | | |
Collapse
|
49
|
Ferrão-Gonzales AD, Souto SO, Silva JL, Foguel D. The preaggregated state of an amyloidogenic protein: hydrostatic pressure converts native transthyretin into the amyloidogenic state. Proc Natl Acad Sci U S A 2000; 97:6445-50. [PMID: 10841549 PMCID: PMC18622 DOI: 10.1073/pnas.97.12.6445] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein misfolding and aggregation cause several diseases, by mechanisms that are poorly understood. The formation of amyloid aggregates is the hallmark of most of these diseases. Here, the properties and formation of amyloidogenic intermediates of transthyretin (TTR) were investigated by the use of hydrostatic pressure and spectroscopic techniques. Native TTR tetramers (T(4)) were denatured by high pressure into a conformation that exposes tryptophan residues to the aqueous environment. This conformation was able to bind the hydrophobic probe bis-(8-anilinonaphthalene-1-sulfonate), indicating persistence of elements of secondary and tertiary structure. Lowering the temperature facilitated the pressure-induced denaturation of TTR, which suggests an important role of entropy in stabilizing the native protein. Gel filtration chromatography showed that after a cycle of compression-decompression at 1 degrees C, the main species present was a tetramer, with a small population of monomers. This tetramer, designated T(4)*, had a non-native conformation: it bound more bis-(8-anilinonaphthalene-1-sulfonate) than native T(4), was less stable under pressure, and on decompression formed aggregates under mild acidic conditions (pH 5-5.6). Our data show that hydrostatic pressure converts native tetramers of TTR into an altered state that shares properties with a previously described amyloidogenic intermediate, and it may be an intermediate that lies on the aggregation pathway. This "preaggregated" state, which we call T(4)*, provides insight into the question of how a correctly folded protein may degenerate into the aggregation pathway in amyloidogenic diseases.
Collapse
Affiliation(s)
- A D Ferrão-Gonzales
- Programa de Biologia Estrutural, Departamento de Bioquimica Médica, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
50
|
Lassalle MW, Yamada H, Akasaka K. The pressure-temperature free energy-landscape of staphylococcal nuclease monitored by (1)H NMR. J Mol Biol 2000; 298:293-302. [PMID: 10764598 DOI: 10.1006/jmbi.2000.3659] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The thermodynamic stability of staphylococcal nuclease was studied against the variation of both temperature and pressure by utilizing (1)H NMR spectroscopy at 750 MHz in 20 mM Mes buffer containing 99.9 % (2)H(2)O, pH 5.3. Equilibrium fractions of folded and unfolded protein species were evaluated with the proton signals of two histidine residues as monitor in the pressure range of 30-3300 bar and in the temperature range of 1.5 degrees C-35 degrees C. From the multi-parameter fit of the experimental data to the Gibbs energy equation expressed as a simultaneous function of pressure and temperature, we determined the compressibility change (Deltabeta), the volume change at 1 bar (DeltaV degrees ) and the expansivity change (Deltaalpha) upon unfolding among other thermodynamic parameters: Deltabeta=0.02(+/-0.003) ml mol(-1) bar(-1); Deltaalpha=1.33(+/-0.2) ml mol(-1) K(-1); DeltaV degrees =-41.9(+/-6. 3) ml mol(-1) (at 24 degrees C); DeltaG degrees =13.18(+/-2) kJ mol(-1) (at 24 degrees C); DeltaC(p)=13.12(+/-2) kJ mol(-1) K(-1); DeltaS degrees =0.32(+/-0.05) kJ mol(-1) K(-1 )(at 24 degrees C). The result yields a three-dimensional free energy surface, i.e. the free energy-landscape of staphylococcal nuclease on the P-T plane. The significantly positive Deltabeta and Deltaalpha values suggest that, in the pressure-denatured state, staphylococcal nuclease forms a loosely packed and fluctuating structure. The slight but statistically significant difference between the unfolding transitions of the His8 and His124 environments is considered to reflect local fluctuations in the native state, leading to pre-melting of the His124 environment prior to the cooperative unfolding of the major part of the protein.
Collapse
Affiliation(s)
- M W Lassalle
- Department of Molecular Science, Graduate School of Science and Technology, Kobe University, 1-1 Rokkodai-cho, Kobe, Nada-ku, 657-8501, Japan
| | | | | |
Collapse
|