1
|
Vyas D, Ware J, Billington L, Rodriguez RJ, Shenberger J, Garg PM. Utility of Abdominal Near Infrared Spectroscopy in the Management of Neonates: A Review. Am J Perinatol 2025. [PMID: 40148222 DOI: 10.1055/a-2567-5178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Near-infrared spectroscopy (NIRS) is a noninvasive technique that utilizes light in the near-infrared spectrum to assess regional tissue oxygenation. The initial application of NIRS focused on measuring cerebral oxygenation. Recently, numerous studies focused on the utility of NIRS in measuring abdominal regional perfusion in preterm and full-term neonates-hepatic (right subcostal) and mesenteric (left lower quadrant/infra-umbilical probe). Abdominal NIRS, specifically the infraumbilical values obtained within the first week of life, is a useful tool for the evaluation of feeding intolerance and an early marker of the development of necrotizing enterocolitis (NEC) as changes in NIRS in the first 24 hours of abdominal symptoms helps define NEC severity. In addition, NIRS holds promise in identifying changes in abdominal regional perfusion with blood transfusion. The goal of this review is to summarize the current knowledge of factors affecting abdominal NIRS measurements, specifically alterations associated with feeding, blood transfusion, and necrotizing enterocolitis (NEC). We present information from the published clinical research in conjunction with information collected from an extensive search in the databases PubMed, EMBASE, and Scopus. · Abdominal NIRS is still an underutilized tool at the bedside in various clinical conditions.. · Compared with cerebral NIRS, splanchnic NIRS has more variability.. · Splanchnic NIRS can be used for clinical conditions such as feeding, blood transfusion, and NEC.. · There is a need for standardized algorithms in infants based on their GA and clinical diagnosis..
Collapse
Affiliation(s)
- Dipen Vyas
- Division of Newborn Medicine, Department of Pediatrics, Children's of Mississippi, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jennifer Ware
- Division of Newborn Medicine, Department of Pediatrics, Children's of Mississippi, University of Mississippi Medical Center, Jackson, Mississippi
| | - Lauren Billington
- Division of Newborn Medicine, Department of Pediatrics, Children's of Mississippi, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ricardo J Rodriguez
- Department of Pediatrics/Neonatology, Atrium Health Wake Forest Baptist, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Jeffrey Shenberger
- Department of Pediatrics/Neonatology, Connecticut Children's, Hartford, Connecticut
| | - Parvesh M Garg
- Department of Pediatrics/Neonatology, Atrium Health Wake Forest Baptist, Wake Forest School of Medicine, Winston Salem, North Carolina
| |
Collapse
|
2
|
Khan MNA, Zahour N, Tariq U, Masri G, Almadani IF, Al-Nashah H. Exploring Effects of Mental Stress with Data Augmentation and Classification Using fNIRS. SENSORS (BASEL, SWITZERLAND) 2025; 25:428. [PMID: 39860797 PMCID: PMC11768738 DOI: 10.3390/s25020428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 12/31/2024] [Accepted: 01/11/2025] [Indexed: 01/27/2025]
Abstract
Accurately identifying and discriminating between different brain states is a major emphasis of functional brain imaging research. Various machine learning techniques play an important role in this regard. However, when working with a small number of study participants, the lack of sufficient data and achieving meaningful classification results remain a challenge. In this study, we employ a classification strategy to explore stress and its impact on spatial activation patterns and brain connectivity caused by the Stroop color-word task (SCWT). To improve our results and increase our dataset, we use data augmentation with a deep convolutional generative adversarial network (DCGAN). The study is carried out at two separate times of day (morning and evening) and involves 21 healthy participants. Additionally, we introduce binaural beats (BBs) stimulation to investigate its potential for stress reduction. The morning session includes a control phase with 10 SCWT trials, whereas the afternoon session is divided into three phases: stress, mitigation (with 16 Hz BB stimulation), and post-mitigation, each with 10 SCWT trials. For a comprehensive evaluation, the acquired fNIRS data are classified using a variety of machine-learning approaches. Linear discriminant analysis (LDA) showed a maximum accuracy of 60%, whereas non-augmented data classified by a convolutional neural network (CNN) provided the highest classification accuracy of 73%. Notably, after augmenting the data with DCGAN, the classification accuracy increases dramatically to 96%. In the time series data, statistically significant differences were noticed in the data before and after BB stimulation, which showed an improvement in the brain state, in line with the classification results. These findings illustrate the ability to detect changes in brain states with high accuracy using fNIRS, underline the need for larger datasets, and demonstrate that data augmentation can significantly help when data are scarce in the case of brain signals.
Collapse
Affiliation(s)
- M. N. Afzal Khan
- Department of Electrical Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates; (M.N.A.K.); (N.Z.); (U.T.); (G.M.); (I.F.A.)
| | - Nada Zahour
- Department of Electrical Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates; (M.N.A.K.); (N.Z.); (U.T.); (G.M.); (I.F.A.)
| | - Usman Tariq
- Department of Electrical Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates; (M.N.A.K.); (N.Z.); (U.T.); (G.M.); (I.F.A.)
| | - Ghinwa Masri
- Department of Electrical Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates; (M.N.A.K.); (N.Z.); (U.T.); (G.M.); (I.F.A.)
| | - Ismat F. Almadani
- Department of Electrical Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates; (M.N.A.K.); (N.Z.); (U.T.); (G.M.); (I.F.A.)
| | - Hasan Al-Nashah
- Department of Electrical Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates; (M.N.A.K.); (N.Z.); (U.T.); (G.M.); (I.F.A.)
- Biosciences and Bioengineering Graduate Program, American University of Sharjah, Sharjah 26666, United Arab Emirates
| |
Collapse
|
3
|
Yamamoto Y, Kawai W, Hayashi T, Uga M, Kyutoku Y, Dan I. Adjusting effective multiplicity ( M eff ) for family-wise error rate in functional near-infrared spectroscopy data with a small sample size. NEUROPHOTONICS 2024; 11:035004. [PMID: 39071050 PMCID: PMC11283272 DOI: 10.1117/1.nph.11.3.035004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/30/2024]
Abstract
Significance The advancement of multichannel functional near-infrared spectroscopy (fNIRS) has enabled measurements across a wide range of brain regions. This increase in multiplicity necessitates the control of family-wise errors in statistical hypothesis testing. To address this issue, the effective multiplicity (M eff ) method designed for channel-wise analysis, which considers the correlation between fNIRS channels, was developed. However, this method loses reliability when the sample size is smaller than the number of channels, leading to a rank deficiency in the eigenvalues of the correlation matrix and hindering the accuracy ofM eff calculations. Aim We aimed to reevaluate the effectiveness of theM eff method for fNIRS data with a small sample size. Approach In experiment 1, we used resampling simulations to explore the relationship between sample size andM eff values. Based on these results, experiment 2 employed a typical exponential model to investigate whether validM eff could be predicted from a small sample size. Results Experiment 1 revealed that theM eff values were underestimated when the sample size was smaller than the number of channels. However, an exponential pattern was observed. Subsequently, in experiment 2, we found that validM eff values can be derived from sample sizes of 30 to 40 in datasets with 44 and 52 channels using a typical exponential model. Conclusions The findings from these two experiments indicate the potential for the effective application ofM eff correction in fNIRS studies with sample sizes smaller than the number of channels.
Collapse
Affiliation(s)
- Yuki Yamamoto
- Chuo University, Applied Cognitive Neuroscience Laboratory, Faculty of Science and Engineering, Tokyo, Japan
| | - Wakana Kawai
- Chuo University, Applied Cognitive Neuroscience Laboratory, Faculty of Science and Engineering, Tokyo, Japan
| | - Tatsuya Hayashi
- Chuo University, Applied Cognitive Neuroscience Laboratory, Faculty of Science and Engineering, Tokyo, Japan
- Yamato University, Department of Information Science, Faculty of Science and Engineering, Osaka, Japan
| | - Minako Uga
- Health Science University, Department of Welfare and Psychology, Faculty of Health Science, Yamanashi, Japan
| | - Yasushi Kyutoku
- Chuo University, Applied Cognitive Neuroscience Laboratory, Faculty of Science and Engineering, Tokyo, Japan
| | - Ippeita Dan
- Chuo University, Applied Cognitive Neuroscience Laboratory, Faculty of Science and Engineering, Tokyo, Japan
| |
Collapse
|
4
|
Rier L, Rhodes N, Pakenham DO, Boto E, Holmes N, Hill RM, Reina Rivero G, Shah V, Doyle C, Osborne J, Bowtell RW, Taylor M, Brookes MJ. Tracking the neurodevelopmental trajectory of beta band oscillations with optically pumped magnetometer-based magnetoencephalography. eLife 2024; 13:RP94561. [PMID: 38831699 PMCID: PMC11149934 DOI: 10.7554/elife.94561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Neural oscillations mediate the coordination of activity within and between brain networks, supporting cognition and behaviour. How these processes develop throughout childhood is not only an important neuroscientific question but could also shed light on the mechanisms underlying neurological and psychiatric disorders. However, measuring the neurodevelopmental trajectory of oscillations has been hampered by confounds from instrumentation. In this paper, we investigate the suitability of a disruptive new imaging platform - optically pumped magnetometer-based magnetoencephalography (OPM-MEG) - to study oscillations during brain development. We show how a unique 192-channel OPM-MEG device, which is adaptable to head size and robust to participant movement, can be used to collect high-fidelity electrophysiological data in individuals aged between 2 and 34 years. Data were collected during a somatosensory task, and we measured both stimulus-induced modulation of beta oscillations in sensory cortex, and whole-brain connectivity, showing that both modulate significantly with age. Moreover, we show that pan-spectral bursts of electrophysiological activity drive task-induced beta modulation, and that their probability of occurrence and spectral content change with age. Our results offer new insights into the developmental trajectory of beta oscillations and provide clear evidence that OPM-MEG is an ideal platform for studying electrophysiology in neurodevelopment.
Collapse
Affiliation(s)
- Lukas Rier
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
| | - Natalie Rhodes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
- Diagnostic Imaging, The Hospital for Sick ChildrenTorontoCanada
| | - Daisie O Pakenham
- Clinical Neurophysiology, Nottingham University Hospitals NHS Trust, Queens Medical CentreNottinghamUnited States
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley DriveNottinghamUnited Kingdom
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley DriveNottinghamUnited Kingdom
| | - Ryan M Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley DriveNottinghamUnited Kingdom
| | - Gonzalo Reina Rivero
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
| | | | | | | | - Richard W Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
| | - Margot Taylor
- Diagnostic Imaging, The Hospital for Sick ChildrenTorontoCanada
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley DriveNottinghamUnited Kingdom
| |
Collapse
|
5
|
Ning M, Duwadi S, Yücel MA, von Lühmann A, Boas DA, Sen K. fNIRS dataset during complex scene analysis. Front Hum Neurosci 2024; 18:1329086. [PMID: 38576451 PMCID: PMC10991699 DOI: 10.3389/fnhum.2024.1329086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/06/2024] [Indexed: 04/06/2024] Open
Affiliation(s)
- Matthew Ning
- Department of Biomedical Engineering, Neurophotonics Center, Boston University, Boston, MA, United States
| | - Sudan Duwadi
- Department of Biomedical Engineering, Neurophotonics Center, Boston University, Boston, MA, United States
| | - Meryem A. Yücel
- Department of Biomedical Engineering, Neurophotonics Center, Boston University, Boston, MA, United States
| | - Alexander von Lühmann
- Department of Biomedical Engineering, Neurophotonics Center, Boston University, Boston, MA, United States
- BIFOLD – Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
- Intelligent Biomedical Sensing (IBS) Lab, Technical University Berlin, Berlin, Germany
| | - David A. Boas
- Department of Biomedical Engineering, Neurophotonics Center, Boston University, Boston, MA, United States
| | - Kamal Sen
- Department of Biomedical Engineering, Neurophotonics Center, Boston University, Boston, MA, United States
| |
Collapse
|
6
|
Rier L, Rhodes N, Pakenham D, Boto E, Holmes N, Hill RM, Rivero GR, Shah V, Doyle C, Osborne J, Bowtell R, Taylor MJ, Brookes MJ. The neurodevelopmental trajectory of beta band oscillations: an OPM-MEG study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.573933. [PMID: 38260246 PMCID: PMC10802362 DOI: 10.1101/2024.01.04.573933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Neural oscillations mediate the coordination of activity within and between brain networks, supporting cognition and behaviour. How these processes develop throughout childhood is not only an important neuroscientific question but could also shed light on the mechanisms underlying neurological and psychiatric disorders. However, measuring the neurodevelopmental trajectory of oscillations has been hampered by confounds from instrumentation. In this paper, we investigate the suitability of a disruptive new imaging platform - Optically Pumped Magnetometer-based magnetoencephalography (OPM-MEG) - to study oscillations during brain development. We show how a unique 192-channel OPM-MEG device, which is adaptable to head size and robust to participant movement, can be used to collect high-fidelity electrophysiological data in individuals aged between 2 and 34 years. Data were collected during a somatosensory task, and we measured both stimulus-induced modulation of beta oscillations in sensory cortex, and whole-brain connectivity, showing that both modulate significantly with age. Moreover, we show that pan-spectral bursts of electrophysiological activity drive task-induced beta modulation, and that their probability of occurrence and spectral content change with age. Our results offer new insights into the developmental trajectory of beta oscillations and provide clear evidence that OPM-MEG is an ideal platform for studying electrophysiology in neurodevelopment.
Collapse
Affiliation(s)
- Lukas Rier
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Natalie Rhodes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Diagnostic Imaging,The Hospital for Sick Children, 555 University Avenue, Toronto, M5G 1X8, Canada
| | - Daisie Pakenham
- Clinical Neurophysiology, Nottingham University Hospitals NHS Trust, Queens Medical Centre, Derby Rd, Lenton, Nottingham NG7 2UH, UK
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| | - Ryan M. Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| | - Gonzalo Reina Rivero
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Vishal Shah
- QuSpin Inc. 331 South 104th Street, Suite 130, Louisville, Colorado, 80027, USA
| | - Cody Doyle
- QuSpin Inc. 331 South 104th Street, Suite 130, Louisville, Colorado, 80027, USA
| | - James Osborne
- QuSpin Inc. 331 South 104th Street, Suite 130, Louisville, Colorado, 80027, USA
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Margot J. Taylor
- Diagnostic Imaging,The Hospital for Sick Children, 555 University Avenue, Toronto, M5G 1X8, Canada
| | - Matthew J. Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| |
Collapse
|
7
|
Vera DA, García HA, Carbone NA, Waks-Serra MV, Iriarte DI, Pomarico JA. Retrieval of chromophore concentration changes in a digital human head model using analytical mean partial pathlengths of photons. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:025004. [PMID: 38419755 PMCID: PMC10901244 DOI: 10.1117/1.jbo.29.2.025004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 03/02/2024]
Abstract
Significance Continuous-wave functional near-infrared spectroscopy has proved to be a valuable tool for assessing hemodynamic activity in the human brain in a non-invasively and inexpensive way. However, most of the current processing/analysis methods assume the head is a homogeneous medium, and hence do not appropriately correct for the signal coming from the scalp. This effect can be reduced by considering light propagation in a layered model of the human head, being the Monte Carlo (MC) simulations the gold standard to this end. However, this implies large computation times and demanding hardware capabilities. Aim In this work, we study the feasibility of replacing the homogeneous model and the MC simulations by means of analytical multilayered models, combining in this way, the speed and simplicity of implementation of the former with the robustness and accuracy of the latter. Approach Oxy- and deoxyhemoglobin (HbO and HbR, respectively) concentration changes were proposed in two different layers of a magnetic resonance imaging (MRI)-based meshed model of the human head, and then these changes were retrieved by means of (i) a typical homogeneous reconstruction and (ii) a theoretical layered reconstruction. Results Results suggest that the use of analytical models of light propagation in layered models outperforms the results obtained using traditional homogeneous reconstruction algorithms, providing much more accurate results for both, the extra- and the cerebral tissues. We also compare the analytical layered reconstruction with MC-based reconstructions, achieving similar degrees of accuracy, especially in the gray matter layer, but much faster (between 4 and 5 orders of magnitude). Conclusions We have successfully developed, implemented, and validated a method for retrieving chromophore concentration changes in the human brain, combining the simplicity and speed of the traditional homogeneous reconstruction algorithms with robustness and accuracy much more similar to those provided by MC simulations.
Collapse
|
8
|
Ning M, Duwadi S, Yücel MA, Von Lühmann A, Boas DA, Sen K. fNIRS Dataset During Complex Scene Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576715. [PMID: 38328139 PMCID: PMC10849700 DOI: 10.1101/2024.01.23.576715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
When analyzing complex scenes, humans often focus their attention on an object at a particular spatial location. The ability to decode the attended spatial location would facilitate brain computer interfaces for complex scene analysis (CSA). Here, we investigated capability of functional near-infrared spectroscopy (fNIRS) to decode audio-visual spatial attention in the presence of competing stimuli from multiple locations. We targeted dorsal frontoparietal network including frontal eye field (FEF) and intra-parietal sulcus (IPS) as well as superior temporal gyrus/planum temporal (STG/PT). They all were shown in previous functional magnetic resonance imaging (fMRI) studies to be activated by auditory, visual, or audio-visual spatial tasks. To date, fNIRS has not been applied to decode auditory and visual-spatial attention during CSA, and thus, no such dataset exists yet. This report provides an open-access fNIRS dataset that can be used to develop, test, and compare machine learning algorithms for classifying attended locations based on the fNIRS signals on a single trial basis.
Collapse
Affiliation(s)
- Matthew Ning
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Sudan Duwadi
- Neurophotonics Center, Department of Biomedical Engineering, Boston University
| | - Meryem A. Yücel
- Neurophotonics Center, Department of Biomedical Engineering, Boston University
| | - Alexander Von Lühmann
- Neurophotonics Center, Department of Biomedical Engineering, Boston University
- BIFOLD – Berlin Institute for the Foundations of Learning and Data, 10587 Berlin, Germany
- Intelligent Biomedical Sensing (IBS) Lab, Technische Universität Berlin, 10587 Berlin, Germany
| | - David A. Boas
- Neurophotonics Center, Department of Biomedical Engineering, Boston University
| | - Kamal Sen
- Neurophotonics Center, Department of Biomedical Engineering, Boston University
| |
Collapse
|
9
|
杨 骞, 刘 云. [Research progress on brain functional near-infrared spectroscopy technology in the field of neonates]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:86-91. [PMID: 38269465 PMCID: PMC10817743 DOI: 10.7499/j.issn.1008-8830.2309002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/24/2023] [Indexed: 01/26/2024]
Abstract
Functional near infrared spectroscopy (fNIRS) is an emerging neuroimaging tool that reflects the activity and function of brain neurons by monitoring changes in brain oxygen metabolism based on the neurovascular coupling mechanism. It is non-invasive and convenient, especially suitable for monitoring neonatal brain function. This article provides a comprehensive review of research related to the developmental patterns of brain networks concerning language, music, and emotions in neonates using fNIRS. It also covers brain network imaging in neonatal care, resting-state brain network connectivity patterns, and characteristics of brain functional imaging in disease states of neonates using fNIRS.
Collapse
|
10
|
Caredda C, Cohen JE, Mahieu-Williame L, Sablong R, Sdika M, Schneider FC, Picart T, Guyotat J, Montcel B. A priori free spectral unmixing with periodic absorbance changes: application for auto-calibrated intraoperative functional brain mapping. BIOMEDICAL OPTICS EXPRESS 2024; 15:387-412. [PMID: 38223192 PMCID: PMC10783910 DOI: 10.1364/boe.491292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 01/16/2024]
Abstract
Spectral unmixing designates techniques that allow to decompose measured spectra into linear or non-linear combination of spectra of all targets (endmembers). This technique was initially developed for satellite applications, but it is now also widely used in biomedical applications. However, several drawbacks limit the use of these techniques with standard optical devices like RGB cameras. The devices need to be calibrated and a a priori on the observed scene is often necessary. We propose a new method for estimating endmembers and their proportion automatically and without calibration of the acquisition device based on near separable non-negative matrix factorization. This method estimates the endmembers on spectra of absorbance changes presenting periodic events. This is very common in in vivo biomedical and medical optical imaging where hemodynamics dominate the absorbance fluctuations. We applied the method for identifying functional brain areas during neurosurgery using four different RGB cameras (an industrial camera, a smartphone and two surgical microscopes). Results obtained with the auto-calibration method were consistent with the intraoperative gold standards. Endmembers estimated with the auto-calibration method were similar to the calibrated endmembers used in the modified Beer-Lambert law. The similarity was particularly strong when both cardiac and respiratory periodic events were considered. This work can allow a widespread use of spectral imaging in the industrial or medical field.
Collapse
Affiliation(s)
- Charly Caredda
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1,
UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F69100, Lyon,
France
| | - Jérémy E. Cohen
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1,
UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F69100, Lyon,
France
| | - Laurent Mahieu-Williame
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1,
UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F69100, Lyon,
France
| | - Raphaël Sablong
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1,
UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F69100, Lyon,
France
| | - Michaël Sdika
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1,
UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F69100, Lyon,
France
| | - Fabien C. Schneider
- Service de Radiologie, Centre
Hospitalier Universitaire de Saint Etienne, TAPE EA7423,
Université de Lyon, UJM Saint Etienne, F42023, France
| | - Thiébaud Picart
- Service de Neurochirurgie
D, Hospices Civils de Lyon, Bron, France
| | - Jacques Guyotat
- Service de Neurochirurgie
D, Hospices Civils de Lyon, Bron, France
| | - Bruno Montcel
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1,
UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F69100, Lyon,
France
| |
Collapse
|
11
|
Zhao Y, Wei Y, Wang Y, So RHY, Chan CCH, Cheung RTF, Wilkins A. Identification of the human cerebral cortical hemodynamic response to passive whole-body movements using near-infrared spectroscopy. Front Neurol 2023; 14:1280015. [PMID: 38152645 PMCID: PMC10751349 DOI: 10.3389/fneur.2023.1280015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/08/2023] [Indexed: 12/29/2023] Open
Abstract
The human vestibular system is crucial for motion perception, balance control, and various higher cognitive functions. Exploring how the cerebral cortex responds to vestibular signals is not only valuable for a better understanding of how the vestibular system participates in cognitive and motor functions but also clinically significant in diagnosing central vestibular disorders. Near-infrared spectroscopy (NIRS) provides a portable and non-invasive brain imaging technology to monitor cortical hemodynamics under physical motion. Objective This study aimed to investigate the cerebral cortical response to naturalistic vestibular stimulation induced by real physical motion and to validate the vestibular cerebral cortex previously identified using alternative vestibular stimulation. Approach Functional NIRS data were collected from 12 right-handed subjects when they were sitting in a motion platform that generated three types of whole-body passive translational motion (circular, lateral, and fore-and-aft). Main results The study found that different cortical regions were activated by the three types of motion. The cortical response was more widespread under circular motion in two dimensions compared to lateral and fore-and-aft motions in one dimensions. Overall, the identified regions were consistent with the cortical areas found to be activated in previous brain imaging studies. Significance The results provide new evidence of brain selectivity to different types of motion and validate previous findings on the vestibular cerebral cortex.
Collapse
Affiliation(s)
- Yue Zhao
- HKUST-Shenzhen Research Institute, Shenzhen, China
- Department of Industrial Engineering and Decision Analytics, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Yue Wei
- HKUST-Shenzhen Research Institute, Shenzhen, China
- Department of Basic Psychology, School of Psychology, Shenzhen University, Shenzhen, China
| | - Yixuan Wang
- HKUST-Shenzhen Research Institute, Shenzhen, China
- Bio-Engineering Graduate Program, School of Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Richard H. Y. So
- HKUST-Shenzhen Research Institute, Shenzhen, China
- Department of Industrial Engineering and Decision Analytics, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Chetwyn C. H. Chan
- Department of Psychology, The Education University of Hong Kong, Tai Po, Hong Kong SAR, China
| | - Raymond T. F. Cheung
- Department of Medicine, School of Clinical Medicine, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Arnold Wilkins
- Centre for Brain Studies, University of Essex, Colchester, United Kingdom
| |
Collapse
|
12
|
Caredda C, Van Reeth E, Mahieu-Williame L, Sablong R, Sdika M, Schneider FC, Picart T, Guyotat J, Montcel B. Intraoperative identification of functional brain areas with RGB imaging using statistical parametric mapping: Simulation and clinical studies. Neuroimage 2023; 278:120286. [PMID: 37487945 DOI: 10.1016/j.neuroimage.2023.120286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/06/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023] Open
Abstract
Complementary technique to preoperative fMRI and electrical brain stimulation (EBS) for glioma resection could improve dramatically the surgical procedure and patient care. Intraoperative RGB optical imaging is a technique for localizing functional areas of the human cerebral cortex that can be used during neurosurgical procedures. However, it still lacks robustness to be used with neurosurgical microscopes as a clinical standard. In particular, a robust quantification of biomarkers of brain functionality is needed to assist neurosurgeons. We propose a methodology to evaluate and optimize intraoperative identification of brain functional areas by RGB imaging. This consist in a numerical 3D brain model based on Monte Carlo simulations to evaluate intraoperative optical setups for identifying functional brain areas. We also adapted fMRI Statistical Parametric Mapping technique to identify functional brain areas in RGB videos acquired for 12 patients. Simulation and experimental results were consistent and showed that the intraoperative identification of functional brain areas is possible with RGB imaging using deoxygenated hemoglobin contrast. Optical functional identifications were consistent with those provided by EBS and preoperative fMRI. We also demonstrated that a halogen lighting may be particularity adapted for functional optical imaging. We showed that an RGB camera combined with a quantitative modeling of brain hemodynamics biomarkers can evaluate in a robust way the functional areas during neurosurgery and serve as a tool of choice to complement EBS and fMRI.
Collapse
Affiliation(s)
- Charly Caredda
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F69100, Lyon, France.
| | - Eric Van Reeth
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F69100, Lyon, France
| | - Laurent Mahieu-Williame
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F69100, Lyon, France
| | - Raphaël Sablong
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F69100, Lyon, France
| | - Michaël Sdika
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F69100, Lyon, France
| | - Fabien C Schneider
- Service de Radiologie, Centre Hospitalier Universitaire de Saint Etienne, TAPE EA7423, Université de Lyon, UJM Saint Etienne, F42023, France
| | - Thiébaud Picart
- Service de Neurochirurgie D, Hospices Civils de Lyon, Bron, France
| | - Jacques Guyotat
- Service de Neurochirurgie D, Hospices Civils de Lyon, Bron, France
| | - Bruno Montcel
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F69100, Lyon, France.
| |
Collapse
|
13
|
Wen X, Peng J, Zhu Y, Bao X, Wan Z, Hu R, Liu H, Li F, Liu Z. Hemodynamic signal changes and functional connectivity in acute stroke patients with dysphagia during volitional swallowing: a pilot study. Med Phys 2023; 50:5166-5175. [PMID: 37314082 DOI: 10.1002/mp.16535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/20/2023] [Accepted: 05/22/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Dysphagia is one of the major post-stroke complications, understanding post-stroke changes in cortical excitability and promoting early remodeling of swallowing-related cortical areas to enable accurate treatment is essential for recovery of patients. OBJECTIVES We aimed to investigate hemodynamic signal changes and functional connectivity in acute stroke patients with dysphagia compared to age-matched healthy participants in response to volitional swallowing using functional near-infrared spectroscopy (fNIRS) in this pilot study. METHODS Patients with first-ever post-stroke dysphagia having an onset of 1-4 weeks and age-matched right-handed healthy subjects were recruited in our study. fNIRS with 47 channels was utilized to detect the oxyhemoglobin (HbO2 ) and reduced hemoglobin (HbR) concentration changes when volitional swallowing. Cohort analysis was performed by a one-sample t-test. Two-sample t-test was utilized to compare the difference in cortical activation between patients with post-stroke dysphagia and healthy subjects. Furthermore, the relative changes in the concentration of the HbO2 throughout the experimental procedure were extracted for the functional connectivity analysis. The Pearson correlation coefficients of the HbO2 concentration of each channel were analyzed on a time series, and then a Fisher Z transformation was then performed, and the transformed values were defined as the functional connection strengths between the channels. RESULTS In this present study, a total of nine patients with acute post-stroke dysphagia were enrolled in the patient group and nine age-matched healthy participants in the healthy control group. Our study observed that the extensive regions of the cerebral cortex were activated in the healthy control group, while the activation area of patient group's cortical regions was quite limited. The mean functional connectivity strength of participants was 0.485 ± 0.105 in the healthy control group, and 0.252 ± 0.146 in the patient group, with a significant difference between the two groups (p = 0.001). CONCLUSION Compared to the healthy individuals, cerebral cortex regions of acute stroke patients were only marginally activated during volitional swallowing task, and the average functional connectivity strength of cortical network in patients was relatively weaker.
Collapse
Affiliation(s)
- Xin Wen
- Department of Rehabilitation Medicine, Yue Bei People's Hospital, Shaoguan, Guangdong, China
- School of Rehabilitation Medicine Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junwei Peng
- Department of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yanying Zhu
- Department of Rehabilitation Medicine, Yue Bei People's Hospital, Shaoguan, Guangdong, China
| | - Xiao Bao
- Department of Rehabilitation Medicine, Yue Bei People's Hospital, Shaoguan, Guangdong, China
| | - Zihao Wan
- College of Physical Education and Health, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Rongliang Hu
- Department of Rehabilitation Medicine, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Huiyu Liu
- Department of Rehabilitation Medicine, Yue Bei People's Hospital, Shaoguan, Guangdong, China
| | - Fang Li
- Department of Rehabilitation Medicine, Yue Bei People's Hospital, Shaoguan, Guangdong, China
| | - Zicai Liu
- Department of Rehabilitation Medicine, Yue Bei People's Hospital, Shaoguan, Guangdong, China
| |
Collapse
|
14
|
Fantini S. Editorial Special Section on Biomedical Diffuse Optics for the Brain. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2023; 4:77-78. [PMID: 37287929 PMCID: PMC10243531 DOI: 10.1109/ojemb.2023.3273048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1899] [Accepted: 01/01/1899] [Indexed: 06/09/2023] Open
Abstract
This special section collects four articles on the application of diffuse optics to measure cerebral hemodynamics and oxygenation. The possibility of using near-infrared light to collect cerebral hemodynamic and metabolic information through the intact scalp and skull was first proposed in the 1970s [1]. Commercial cerebral oximeters were developed in the 1990s, and functional measurements of brain activation, which signaled the birth of functional near-infrared spectroscopy (fNIRS), were first reported in 1993 [2], [3], [4], [5]. Oscillatory cerebral hemodynamics were also investigated in relation to functional and diagnostic applications [6], [7], [8], [9]. Journal special issues were published to celebrate the 20th [10] and 30th [11] anniversaries of fNIRS, and numerous review articles have provided overviews of the field of noninvasive optical measurements of the brain [12], [13], [14], [15].
Collapse
Affiliation(s)
- Sergio Fantini
- Department of Biomedical EngineeringTufts UniversityMedfordMA02155USA
| |
Collapse
|
15
|
Russo C, Senese VP. Functional near-infrared spectroscopy is a useful tool for multi-perspective psychobiological study of neurophysiological correlates of parenting behaviour. Eur J Neurosci 2023; 57:258-284. [PMID: 36485015 DOI: 10.1111/ejn.15890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022]
Abstract
The quality of the relationship between caregiver and child has long-term effects on the cognitive and socio-emotional development of children. A process involved in human parenting is the bio-behavioural synchrony that occurs between the partners in the relationship during interaction. Through interaction, bio-behavioural synchronicity allows the adaptation of the physiological systems of the parent to those of the child and promotes the positive development and modelling of the child's social brain. The role of bio-behavioural synchrony in building social bonds could be investigated using functional near-infrared spectroscopy (fNIRS). In this paper we have (a) highlighted the importance of the quality of the caregiver-child relationship for the child's cognitive and socio-emotional development, as well as the relevance of infantile stimuli in the activation of parenting behaviour; (b) discussed the tools used in the study of the neurophysiological substrates of the parental response; (c) proposed fNIRS as a particularly suitable tool for the study of parental responses; and (d) underlined the need for a multi-systemic psychobiological approach to understand the mechanisms that regulate caregiver-child interactions and their bio-behavioural synchrony. We propose to adopt a multi-system psychobiological approach to the study of parental behaviour and social interaction.
Collapse
Affiliation(s)
- Carmela Russo
- Psychometric Laboratory, Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Vincenzo Paolo Senese
- Psychometric Laboratory, Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| |
Collapse
|
16
|
Guo X, Liu Y, Zhang Y, Wu C. Programming ability prediction: Applying an attention-based convolutional neural network to functional near-infrared spectroscopy analyses of working memory. Front Neurosci 2022; 16:1058609. [PMID: 36532289 PMCID: PMC9751487 DOI: 10.3389/fnins.2022.1058609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/17/2022] [Indexed: 12/04/2022] Open
Abstract
Although theoretical studies have suggested that working-memory capacity is crucial for academic achievement, few empirical studies have directly investigated the relationship between working-memory capacity and programming ability, and no direct neural evidence has been reported to support this relationship. The present study aimed to fill this gap in the literature. Using a between-subject design, 17 programming novices and 18 advanced students performed an n-back working-memory task. During the experiment, their prefrontal hemodynamic responses were measured using a 48-channel functional near-infrared spectroscopy (fNIRS) device. The results indicated that the advanced students had a higher working-memory capacity than the novice students, validating the relationship between programming ability and working memory. The analysis results also showed that the hemodynamic responses in the prefrontal cortex can be used to discriminate between novices and advanced students. Additionally, we utilized an attention-based convolutional neural network to analyze the spatial domains of the fNIRS signals and demonstrated that the left prefrontal cortex was more important than other brain regions for programming ability prediction. This result was consistent with the results of statistical analysis, which in turn improved the interpretability of neural networks.
Collapse
Affiliation(s)
- Xiang Guo
- School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yang Liu
- School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yuzhong Zhang
- School of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada
| | - Chennan Wu
- School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| |
Collapse
|
17
|
Samaei S, Nowacka K, Gerega A, Pastuszak Ż, Borycki D. Continuous-wave parallel interferometric near-infrared spectroscopy (CW πNIRS) with a fast two-dimensional camera. BIOMEDICAL OPTICS EXPRESS 2022; 13:5753-5774. [PMID: 36733725 PMCID: PMC9872890 DOI: 10.1364/boe.472643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/16/2022] [Accepted: 10/01/2022] [Indexed: 06/02/2023]
Abstract
Interferometric near-infrared spectroscopy (iNIRS) is an optical method that noninvasively measures the optical and dynamic properties of the human brain in vivo. However, the original iNIRS technique uses single-mode fibers for light collection, which reduces the detected light throughput. The reduced light throughput is compensated by the relatively long measurement or integration times (∼1 sec), which preclude monitoring of rapid blood flow changes that could be linked to neural activation. Here, we propose parallel interferometric near-infrared spectroscopy (πNIRS) to overcome this limitation. In πNIRS we use multi-mode fibers for light collection and a high-speed, two-dimensional camera for light detection. Each camera pixel acts effectively as a single iNIRS channel. So, the processed signals from each pixel are spatially averaged to reduce the overall integration time. Moreover, interferometric detection provides us with the unique capability of accessing complex information (amplitude and phase) about the light remitted from the sample, which with more than 8000 parallel channels, enabled us to sense the cerebral blood flow with only a 10 msec integration time (∼100x faster than conventional iNIRS). In this report, we have described the theoretical foundations and possible ways to implement πNIRS. Then, we developed a prototype continuous wave (CW) πNIRS system and validated it in liquid phantoms. We used our CW πNIRS to monitor the pulsatile blood flow in a human forearm in vivo. Finally, we demonstrated that CW πNIRS could monitor activation of the prefrontal cortex by recording the change in blood flow in the forehead of the subject while he was reading an unknown text.
Collapse
Affiliation(s)
- Saeed Samaei
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Klaudia Nowacka
- International Centre for Translational Eye Research, Skierniewicka 10A, 01-230 Warsaw, Poland
| | - Anna Gerega
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Żanna Pastuszak
- Department of Neurosurgery, Mossakowski Medical Research Center Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Dawid Borycki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- International Centre for Translational Eye Research, Skierniewicka 10A, 01-230 Warsaw, Poland
| |
Collapse
|
18
|
A Wearable Prefrontal Cortex Oxygen Saturation Measurement System Based on Near Infrared Spectroscopy. ELECTRONICS 2022. [DOI: 10.3390/electronics11131971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The measurement of blood oxygen saturation in the prefrontal cortex (PFC), especially during sleep, is of great significance for clinical research. Herein, we present a wearable PFC oxygen saturation measurement system using dual-wavelength functional near-infrared spectroscopy. The system is well designed for user-friendly donning and has the advantages of comfort, convenience, portability, and affordability. The performance of the proposed system is investigated by the calibration and experimental results. The wearable system has demonstrated great potential to conduct the physiological monitoring of PFC, and it can be widely deployed in daily life.
Collapse
|
19
|
Tseng HJ, Lu CF, Jeng JS, Cheng CM, Chu JW, Chen MH, Bai YM, Tsai SJ, Su TP, Li CT. Frontal asymmetry as a core feature of major depression: a functional near-infrared spectroscopy study. J Psychiatry Neurosci 2022; 47:E186-E193. [PMID: 35508329 PMCID: PMC9074804 DOI: 10.1503/jpn.210131] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/22/2021] [Accepted: 01/01/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Frontal asymmetry plays a major role in depression. However, patients with treatment-resistant depression (TRD) have widespread hypofrontality. We investigated whether patients with TRD have a characteristic frontal activation pattern in functional near-infrared spectroscopy (fNIRS) findings and how the frontal cortex responds to different levels of cognitive tasks. METHODS We enrolled 27 right-handed patients with TRD, 27 patients without TRD and 27 healthy controls. We used multichannel fNIRS to evaluate activation of the bilateral dorsolateral prefrontal cortex (DLPFC), ventrolateral prefrontal cortex (VLPFC) and left motor area in response to 3 tasks: finger tapping, a low cognitive-load motor task; verbal fluency, a moderate cognitive-load task; and a dual task involving simultaneous finger tapping and verbal fluency, a high cognitive-load task. RESULTS We found significant between-group differences in left DLPFC activation for all 3 tasks. The healthy controls had cortical activation in the left motor area during finger tapping and the bilateral frontal cortex during the dual task. However, patients without TRD had right VLPFC activation during finger tapping and left DLPFC activation during the dual task. Patients with TRD had bilateral DLPFC activation during finger tapping but exhibited increased bilateral VLPFC and left motor area activation during verbal fluency and increased left motor area activation during the dual task. In healthy controls and patients without TRD, we found that the right VLPFC was positively correlated with depression severity. LIMITATIONS Our cohort included only patients with late-onset depression. CONCLUSION We found different patterns of abnormal frontal activation between patients with and without TRD. In patients without TRD, the right prefrontal cortex (PFC) was recruited during simple motor tasks. However, in patients with TRD, the bilateral PFC was recruited during simple tasks and motor cortical resources were used compensatorily during PFC-demanding complex cognitive tasks.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Cheng-Ta Li
- From the Department of Psychiatry (Tseng, Jeng, Cheng, Chu, Chen, Bai, Tsai, Su, Li), Taipei Veterans General Hospital, Taipei, Taiwan; the Department of Biomedical Imaging and Radiological Sciences (Lu), National Yang Ming University, Taipei, Taiwan; the Division of Psychiatry (Cheng, Chen, Bai, Tsai, Su, Li), School of Medicine, National Yang-Ming University, Taipei, Taiwan; the Department of Psychiatry (Su), Cheng Hsin General Hospital, Taipei, Taiwan
| |
Collapse
|
20
|
Miyata H, Tani R, Toratani S, Okamoto T. Effects of Tongue Pressure on Cerebral Blood Volume Dynamics: A Functional Near-Infrared Spectroscopy Study. Brain Sci 2022; 12:brainsci12020296. [PMID: 35204059 PMCID: PMC8870264 DOI: 10.3390/brainsci12020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/24/2022] Open
Abstract
Tongue pressure measurement (TPM) is an indicator of oral function. However, the association between tongue pressure and cerebral activation remains unclear. We used near-infrared spectroscopy (NIRS) to examine the correlation between cerebral cortex activation and tongue pressure stimulation against the anterior palatal mucosa. We measured voluntary maximum tongue pressure (MTP) using a TPM device; a pressure value of approximately 60% of the MTP was used for the experimental tongue pressure (MTP60%). We examined the effect of oral functional tongue pressure stimulation against the anterior palatal mucosa on cerebral activation using NIRS in 13 adults. Tongue pressure stimulation caused significant changes in cerebral blood flow in some areas compared with controls (p < 0.05). We performed a correlation analysis (p < 0.05) between MTP60% and changes in oxygenated hemoglobin in all 47 NIRS channels. MTP60% triggered activation of the right somatosensory motor area and right dorsolateral prefrontal cortex and deactivation of the anterior prefrontal cortex (APFC). TPM balloon-probe insertion in the oral cavity activated the bilateral somatosensory motor area and deactivated the wide area of the APFC. Moreover, MTP60% via the TPM balloon probe activated the bilateral somatosensory and motor cortex areas. Tongue pressure stimulation changes cerebral blood flow, and NIRS is useful in investigating the relationship between oral stimulation and brain function.
Collapse
Affiliation(s)
- Hidemasa Miyata
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan; (H.M.); (S.T.)
| | - Ryouji Tani
- Oral and Maxillofacial Surgery, Hiroshima University Hospital, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan
- Correspondence: ; Tel.: +81-82-257-5665; Fax: +81-82-257-5669
| | - Shigeaki Toratani
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan; (H.M.); (S.T.)
| | - Tetsuji Okamoto
- School of Medical Sciences, University of East Asia, 2-1 Ichinomiyagakuenchō, Shimonoseki 751-8503, Japan;
| |
Collapse
|
21
|
Wang J, Grant T, Velipasalar S, Geng B, Hirshfield L. Taking a Deeper Look at the Brain: Predicting Visual Perceptual and Working Memory Load from High-Density fNIRS Data. IEEE J Biomed Health Inform 2021; 26:2308-2319. [PMID: 34882566 DOI: 10.1109/jbhi.2021.3133871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Predicting workload using physiological sensors has taken on a diffuse set of methods in recent years. However, the majority of these methods train models on small datasets, with small numbers of channel locations on the brain, limiting a models ability to transfer across participants, tasks, or experimental sessions. In this paper, we introduce a new method of modeling a large, cross-participant and cross-session set of high density functional near infrared spectroscopy (fNIRS) data by using an approach grounded in cognitive load theory and employing a Bi-Directional Gated Recurrent Unit (BiGRU) incorporating attention mechanism and self-supervised label augmentation (SLA). We show that our proposed CNN-BiGRU-SLA model can learn and classify different levels of working memory load (WML) and visual processing load (VPL) across participants. Importantly, we leverage a multi-label classification scheme, where our models are trained to predict simultaneously occurring levels of WML and VPL. We evaluate our model using leave-one-participant-out (LOOCV) as well as 10-fold cross validation. Using LOOCV, for binary classification (off/on), we reached an F1-score of 0.9179 for WML and 0.8907 for VPL across 22 participants (each participant did 2 sessions). For multi-level (off, low, high) classification, we reached an F1-score of 0.7972 for WML and 0.7968 for VPL. Using 10-fold cross validation, for multi-level classification, we reached an F1-score of 0.7742 for WML and 0.7741 for VPL.
Collapse
|
22
|
Intraoperative Resting-State Functional Connectivity Based on RGB Imaging. Diagnostics (Basel) 2021; 11:diagnostics11112067. [PMID: 34829414 PMCID: PMC8625493 DOI: 10.3390/diagnostics11112067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/27/2021] [Accepted: 11/04/2021] [Indexed: 11/26/2022] Open
Abstract
RGB optical imaging is a marker-free, contactless, and non-invasive technique that is able to monitor hemodynamic brain response following neuronal activation using task-based and resting-state procedures. Magnetic resonance imaging (fMRI) and functional near infra-red spectroscopy (fNIRS) resting-state procedures cannot be used intraoperatively but RGB imaging provides an ideal solution to identify resting-state networks during a neurosurgical operation. We applied resting-state methodologies to intraoperative RGB imaging and evaluated their ability to identify resting-state networks. We adapted two resting-state methodologies from fMRI for the identification of resting-state networks using intraoperative RGB imaging. Measurements were performed in 3 patients who underwent resection of lesions adjacent to motor sites. The resting-state networks were compared to the identifications provided by RGB task-based imaging and electrical brain stimulation. Intraoperative RGB resting-state networks corresponded to RGB task-based imaging (DICE:0.55±0.29). Resting state procedures showed a strong correspondence between them (DICE:0.66±0.11) and with electrical brain stimulation. RGB imaging is a relevant technique for intraoperative resting-state networks identification. Intraoperative resting-state imaging has several advantages compared to functional task-based analyses: data acquisition is shorter, less complex, and less demanding for the patients, especially for those unable to perform the tasks.
Collapse
|
23
|
Agbangla NF, Maillot P, Vitiello D. Mini-Review of Studies Testing the Cardiorespiratory Hypothesis With Near-Infrared Spectroscopy (NIRS): Overview and Perspectives. Front Neurosci 2021; 15:699948. [PMID: 34456672 PMCID: PMC8387658 DOI: 10.3389/fnins.2021.699948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/26/2021] [Indexed: 12/26/2022] Open
Abstract
The cardiorespiratory hypothesis (CH) is one of the hypotheses used by researchers to explain the relationship between cardiorespiratory fitness and cognitive performance during executive functions. Despite the indubitable beneficial effect of training on brain blood flow and function that may explain the link between physical fitness and cognition and the recognition of the near-infrared spectroscopy (NIRS) as a reliable tool for measuring brain oxygenation, few studies investigated the CH with NIRS. It is still not well understood whether an increase in brain flow by training is translated into an increase in cerebral oxygenation. Thus, the objective of this mini-review was to summarize main results of studies that investigated the CH using the NIRS and to propose future research directions.
Collapse
Affiliation(s)
- Nounagnon Frutueux Agbangla
- Laboratory I3SP (URP 3625), Institute of Sport and Health Sciences of Paris - Université de Paris/UFR STAPS, Paris, France.,Laboratory URePSSS - SHERPAS (ULR 7369), Univ. Artois, Univ. Littoral Côte d'Opale, Univ. Lille/UFR STAPS, Liévin, France
| | - Pauline Maillot
- Laboratory I3SP (URP 3625), Institute of Sport and Health Sciences of Paris - Université de Paris/UFR STAPS, Paris, France
| | - Damien Vitiello
- Laboratory I3SP (URP 3625), Institute of Sport and Health Sciences of Paris - Université de Paris/UFR STAPS, Paris, France
| |
Collapse
|
24
|
|
25
|
Galli A, Brigadoi S, Giorgi G, Sparacino G, Narduzzi C. Accurate hemodynamic response estimation by removal of stimulus-evoked superficial response in fNIRS signals. J Neural Eng 2021; 18. [PMID: 33440365 DOI: 10.1088/1741-2552/abdb3a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/13/2021] [Indexed: 11/11/2022]
Abstract
ObjectiveWe address the problem of hemodynamic response estimation when task-evoked extra-cerebral components are present in functional near-infrared spectroscopy (fNIRS) signals. These components might bias the hemodynamic response estimation, therefore careful and accurate denoising of data is needed.ApproachWe propose a dictionary-based algorithm to process every single event-related segment of the acquired signal for both long separation and short separation channels. Stimulus-evoked components and physiological noise are modeled by means of two distinct waveform dictionaries. For each segment, after removal of the physiological noise component in each channel, a template is employed to estimate stimulus-evoked responses in both channels. Then, the estimate from the short-separation channel is employed to correct for the evoked superficial response and refine the hemodynamic response estimate from the long-separation channel.Main resultsAnalysis of simulated, semi-simulated and real data shows that, by averaging single-segment estimates over multiple trials in an experiment, reliable results and improved accuracy compared to other methods can be obtained. The average estimation error of the proposed method for the semi-simulated data set is 34% for HbO and 78% for HbR, considering 40 trials. The proposed method outperforms the results of the methods proposed in the literature. While still far from the possibility of single-trial hemodynamic response estimation, a significant reduction in the number of averaged trials can also be obtained.SignificanceThis work proves that dedicated dictionaries can be successfully employed to model all different components of fNIRS signals. It demonstrates the effectiveness of a specifically designed algorithm structure in dealing with a complex denoising problem, enhancing the possibilities of fNIRS-based hemodynamic response analysis.
Collapse
Affiliation(s)
- Alessandra Galli
- Information Engineering, University of Padova School of Engineering, Via Gradenigo 6b, Padova, 35131, ITALY
| | - Sabrina Brigadoi
- Department of Developmental Psychology, University of Padova, Padova, ITALY
| | - Giada Giorgi
- Department of Information Enginnering, University of Padua, via Gradenigo 6/B, Padova, Padova, Padova, 35122, ITALY
| | - Giovanni Sparacino
- Information Engineering, Università degli Studi di Padova, Via Gradenigo 6/B, Padova, 35122, ITALY
| | - Claudio Narduzzi
- Information Engineering, University of Padua, via G. Gradenigo, 6/b, Padova, I-35131, ITALY
| |
Collapse
|
26
|
Peng C, Hou X. Applications of functional near-infrared spectroscopy (fNIRS) in neonates. Neurosci Res 2020; 170:18-23. [PMID: 33347910 DOI: 10.1016/j.neures.2020.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 11/30/2022]
Abstract
Functional near-infrared spectroscopy (fNIRS) is a method of monitoring brain oxygenation. This technique investigates hemodynamic changes in the cerebral cortex. fNIRS is widely used in clinical and scientific research. In this review, we focus on the applications of fNIRS on neonates. Here, applications form two distinct categories: task associated studies, and hemoglobin phase change studies. fNIRS is non-invasive, easily performed, and repeatable. However, it has limited monitoring depth and spatial resolution when used in newborns. Moreover, with recent technological advances, it is now possible to explore neuronal activity patterns using fNIRS in both healthy and pathological conditions. For more than 20 years, fNIRS has enabled clinicians to gain insight into cerebral development and mechanisms of injury in neonates. fNIRS is a useful supplement to existing technologies due to its ability to interrogate the neonatal brain function.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Neonatal Ward, Peking University First Hospital, Beijing, 100034, China
| | - Xinlin Hou
- Department of Neonatal Ward, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
27
|
Sappia MS, Hakimi N, Colier WNJM, Horschig JM. Signal quality index: an algorithm for quantitative assessment of functional near infrared spectroscopy signal quality. BIOMEDICAL OPTICS EXPRESS 2020; 11:6732-6754. [PMID: 33282521 PMCID: PMC7687963 DOI: 10.1364/boe.409317] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 05/23/2023]
Abstract
We propose the signal quality index (SQI) algorithm as a novel tool for quantitatively assessing the functional near infrared spectroscopy (fNIRS) signal quality in a numeric scale from 1 (very low quality) to 5 (very high quality). The algorithm comprises two preprocessing steps followed by three consecutive rating stages. The results on a dataset annotated by independent fNIRS experts showed SQI performed significantly better (p<0.05) than PHOEBE (placing headgear optodes efficiently before experimentation) and SCI (scalp coupling index), two existing algorithms, in both quantitatively rating and binary classifying the fNIRS signal quality. Employment of the proposed algorithm to estimate the signal quality before processing the fNIRS signals increases certainty in the interpretations.
Collapse
Affiliation(s)
- M. Sofía Sappia
- Artinis Medical Systems, B.V., Einsteinweg 17, 6662 PW Elst, The Netherlands
- Radboud University Nijmegen, Donders Institute for Brain, Behaviour and Cognition, 6525 EN Nijmegen, The Netherlands
- These authors contributed equally to this work
| | - Naser Hakimi
- Artinis Medical Systems, B.V., Einsteinweg 17, 6662 PW Elst, The Netherlands
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, Utrecht 3584 EA, The Netherlands
- These authors contributed equally to this work
| | | | - Jörn M. Horschig
- Artinis Medical Systems, B.V., Einsteinweg 17, 6662 PW Elst, The Netherlands
| |
Collapse
|
28
|
Dehais F, Karwowski W, Ayaz H. Brain at Work and in Everyday Life as the Next Frontier: Grand Field Challenges for Neuroergonomics. FRONTIERS IN NEUROERGONOMICS 2020; 1:583733. [PMID: 38234310 PMCID: PMC10790928 DOI: 10.3389/fnrgo.2020.583733] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/28/2020] [Indexed: 01/19/2024]
Affiliation(s)
- Frederic Dehais
- ISAE-SUPAERO, Université de Toulouse, Toulouse, France
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Waldemar Karwowski
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, United States
| | - Hasan Ayaz
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
- Drexel Solutions Institute, Drexel University, Philadelphia, PA, United States
- Department of Psychology, College of Arts and Sciences, Drexel University, Philadelphia, PA, United States
- Department of Family and Community Health, University of Pennsylvania, Philadelphia, PA, United States
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
29
|
Gruber T, Debracque C, Ceravolo L, Igloi K, Marin Bosch B, Frühholz S, Grandjean D. Human Discrimination and Categorization of Emotions in Voices: A Functional Near-Infrared Spectroscopy (fNIRS) Study. Front Neurosci 2020; 14:570. [PMID: 32581695 PMCID: PMC7290129 DOI: 10.3389/fnins.2020.00570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/08/2020] [Indexed: 11/24/2022] Open
Abstract
Functional Near-Infrared spectroscopy (fNIRS) is a neuroimaging tool that has been recently used in a variety of cognitive paradigms. Yet, it remains unclear whether fNIRS is suitable to study complex cognitive processes such as categorization or discrimination. Previously, functional imaging has suggested a role of both inferior frontal cortices in attentive decoding and cognitive evaluation of emotional cues in human vocalizations. Here, we extended paradigms used in functional magnetic resonance imaging (fMRI) to investigate the suitability of fNIRS to study frontal lateralization of human emotion vocalization processing during explicit and implicit categorization and discrimination using mini-blocks and event-related stimuli. Participants heard speech-like but semantically meaningless pseudowords spoken in various tones and evaluated them based on their emotional or linguistic content. Behaviorally, participants were faster to discriminate than to categorize; and processed the linguistic faster than the emotional content of stimuli. Interactions between condition (emotion/word), task (discrimination/categorization) and emotion content (anger, fear, neutral) influenced accuracy and reaction time. At the brain level, we found a modulation of the Oxy-Hb changes in IFG depending on condition, task, emotion and hemisphere (right or left), highlighting the involvement of the right hemisphere to process fear stimuli, and of both hemispheres to treat anger stimuli. Our results show that fNIRS is suitable to study vocal emotion evaluation, fostering its application to complex cognitive paradigms.
Collapse
Affiliation(s)
- Thibaud Gruber
- Neuroscience of Emotion and Affective Dynamics Lab, Department of Psychology and Educational Sciences and Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland.,Cognitive Science Center, University of Neuchâtel, Neuchâtel, Switzerland
| | - Coralie Debracque
- Neuroscience of Emotion and Affective Dynamics Lab, Department of Psychology and Educational Sciences and Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
| | - Leonardo Ceravolo
- Neuroscience of Emotion and Affective Dynamics Lab, Department of Psychology and Educational Sciences and Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
| | - Kinga Igloi
- Department of Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Geneva Neuroscience Center, University of Geneva, Geneva, Switzerland
| | - Blanca Marin Bosch
- Department of Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Geneva Neuroscience Center, University of Geneva, Geneva, Switzerland
| | - Sascha Frühholz
- Department of Psychology, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zürich, Zurich, Switzerland.,Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Didier Grandjean
- Neuroscience of Emotion and Affective Dynamics Lab, Department of Psychology and Educational Sciences and Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
30
|
Social Cognition in the Age of Human–Robot Interaction. Trends Neurosci 2020; 43:373-384. [DOI: 10.1016/j.tins.2020.03.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/04/2020] [Accepted: 03/26/2020] [Indexed: 11/22/2022]
|
31
|
Nagels-Coune L, Benitez-Andonegui A, Reuter N, Lührs M, Goebel R, De Weerd P, Riecke L, Sorger B. Brain-Based Binary Communication Using Spatiotemporal Features of fNIRS Responses. Front Hum Neurosci 2020; 14:113. [PMID: 32351371 PMCID: PMC7174771 DOI: 10.3389/fnhum.2020.00113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/12/2020] [Indexed: 12/14/2022] Open
Abstract
“Locked-in” patients lose their ability to communicate naturally due to motor system dysfunction. Brain-computer interfacing offers a solution for their inability to communicate by enabling motor-independent communication. Straightforward and convenient in-session communication is essential in clinical environments. The present study introduces a functional near-infrared spectroscopy (fNIRS)-based binary communication paradigm that requires limited preparation time and merely nine optodes. Eighteen healthy participants performed two mental imagery tasks, mental drawing and spatial navigation, to answer yes/no questions during one of two auditorily cued time windows. Each of the six questions was answered five times, resulting in five trials per answer. This communication paradigm thus combines both spatial (two different mental imagery tasks, here mental drawing for “yes” and spatial navigation for “no”) and temporal (distinct time windows for encoding a “yes” and “no” answer) fNIRS signal features for information encoding. Participants’ answers were decoded in simulated real-time using general linear model analysis. Joint analysis of all five encoding trials resulted in an average accuracy of 66.67 and 58.33% using the oxygenated (HbO) and deoxygenated (HbR) hemoglobin signal respectively. For half of the participants, an accuracy of 83.33% or higher was reached using either the HbO signal or the HbR signal. For four participants, effective communication with 100% accuracy was achieved using either the HbO or HbR signal. An explorative analysis investigated the differentiability of the two mental tasks based solely on spatial fNIRS signal features. Using multivariate pattern analysis (MVPA) group single-trial accuracies of 58.33% (using 20 training trials per task) and 60.56% (using 40 training trials per task) could be obtained. Combining the five trials per run using a majority voting approach heightened these MVPA accuracies to 62.04 and 75%. Additionally, an fNIRS suitability questionnaire capturing participants’ physical features was administered to explore its predictive value for evaluating general data quality. Obtained questionnaire scores correlated significantly (r = -0.499) with the signal-to-noise of the raw light intensities. While more work is needed to further increase decoding accuracy, this study shows the potential of answer encoding using spatiotemporal fNIRS signal features or spatial fNIRS signal features only.
Collapse
Affiliation(s)
- Laurien Nagels-Coune
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands.,Maastricht Brain Imaging Center, Maastricht, Netherlands.,University Psychiatric Centre Sint-Kamillus, Bierbeek, Belgium
| | - Amaia Benitez-Andonegui
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands.,Maastricht Brain Imaging Center, Maastricht, Netherlands
| | - Niels Reuter
- Institute of Systems Neuroscience, Heinrich-Heine University, Düsseldorf, Germany.,Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
| | | | - Rainer Goebel
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands.,Maastricht Brain Imaging Center, Maastricht, Netherlands.,Brain Innovation B.V., Maastricht, Netherlands
| | - Peter De Weerd
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands.,Maastricht Brain Imaging Center, Maastricht, Netherlands.,Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, Netherlands
| | - Lars Riecke
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands.,Maastricht Brain Imaging Center, Maastricht, Netherlands
| | - Bettina Sorger
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands.,Maastricht Brain Imaging Center, Maastricht, Netherlands
| |
Collapse
|
32
|
Pinti P, Tachtsidis I, Hamilton A, Hirsch J, Aichelburg C, Gilbert S, Burgess PW. The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience. Ann N Y Acad Sci 2020; 1464:5-29. [PMID: 30085354 PMCID: PMC6367070 DOI: 10.1111/nyas.13948] [Citation(s) in RCA: 553] [Impact Index Per Article: 110.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 01/11/2023]
Abstract
The past few decades have seen a rapid increase in the use of functional near-infrared spectroscopy (fNIRS) in cognitive neuroscience. This fast growth is due to the several advances that fNIRS offers over the other neuroimaging modalities such as functional magnetic resonance imaging and electroencephalography/magnetoencephalography. In particular, fNIRS is harmless, tolerant to bodily movements, and highly portable, being suitable for all possible participant populations, from newborns to the elderly and experimental settings, both inside and outside the laboratory. In this review we aim to provide a comprehensive and state-of-the-art review of fNIRS basics, technical developments, and applications. In particular, we discuss some of the open challenges and the potential of fNIRS for cognitive neuroscience research, with a particular focus on neuroimaging in naturalistic environments and social cognitive neuroscience.
Collapse
Affiliation(s)
- Paola Pinti
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Antonia Hamilton
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
| | - Joy Hirsch
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
- Department of PsychiatryYale School of MedicineNew HavenConnecticut
- Department of NeuroscienceYale School of MedicineNew HavenConnecticut
- Comparative MedicineYale School of MedicineNew HavenConnecticut
| | | | - Sam Gilbert
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
| | - Paul W. Burgess
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
| |
Collapse
|
33
|
Müller M, Österreich M. Cerebral Microcirculatory Blood Flow Dynamics During Rest and a Continuous Motor Task. Front Physiol 2019; 10:1355. [PMID: 31708802 PMCID: PMC6821676 DOI: 10.3389/fphys.2019.01355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/11/2019] [Indexed: 12/13/2022] Open
Abstract
Objectives: To examine the brain’s microcirculatory response over the course of a continuous 5-min elbow movement task in order to estimate its potential role in grading vaso-neural coupling compared to the macrocirculatory response. Methods: We simultaneously recorded cerebral blood flow velocity (CBFV), changes in oxygenated/deoxygenated hemoglobin concentrations ([oxHb], [deoxHb]), blood pressure (BP), and end-tidal CO2 over 5-min periods of rest and left elbow movements in 24 healthy persons (13 women and 11 men of mean age ± SD, 38 ± 11 years). A low frequency range (0.07–0.15 Hz) was used for analysis by transfer function estimates of phase and gain. Results: Elbow movement led to a small BP increase (mean BP at rest 83 mm Hg, at movement 87; p < 0.01) and a small ETCO2 decrease (at rest 44.6 mm Hg, at movement 41.7 mm Hg; p < 0.01). Further, it increased BP-[oxHb] phase from 55° (both sides) to 74° (right; p < 0.05)/69° (left; p < 0.05), and BP-[deoxHb] phase from 264° (right)/270° (left) to 288° (right; p < 0.05)/297° (left; p = 0.09). The cerebral mean transit time at 0.1 Hz of 5.6 s of rest remained unchanged by movement. Elbow movement significantly decreased BP-CBFV gain on both sides, and BP-CBFV phase only on the right side (p = 0.05). Conclusion: Elbow movement leads to an increased time delay between BP and [oxHb]/[deoxHb] while leaving the cerebral mean transit time unchanged. Phase shifting is usually the more robust parameter when using a transfer function to estimate dynamic cerebral autoregulation; phase shifting at the microcirculatory level seems to be a better marker of VNC-induced changes than phase shifting between BP and CBFV.
Collapse
Affiliation(s)
- Martin Müller
- Neurovascular Laboratory, Neurocenter, Lucerne Kantonsspital, Lucerne, Switzerland
| | - Mareike Österreich
- Neurovascular Laboratory, Neurocenter, Lucerne Kantonsspital, Lucerne, Switzerland
| |
Collapse
|
34
|
Almajidy RK, Mankodiya K, Abtahi M, Hofmann UG. A Newcomer's Guide to Functional Near Infrared Spectroscopy Experiments. IEEE Rev Biomed Eng 2019; 13:292-308. [PMID: 31634142 DOI: 10.1109/rbme.2019.2944351] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review presents a practical primer for functional near-infrared spectroscopy (fNIRS) with respect to technology, experimentation, and analysis software. Its purpose is to jump-start interested practitioners considering utilizing a non-invasive, versatile, nevertheless challenging window into the brain using optical methods. We briefly recapitulate relevant anatomical and optical foundations and give a short historical overview. We describe competing types of illumination (trans-illumination, reflectance, and differential reflectance) and data collection methods (continuous wave, time domain and frequency domain). Basic components (light sources, detection, and recording components) of fNIRS systems are presented. Advantages and limitations of fNIRS techniques are offered, followed by a list of very practical recommendations for its use. A variety of experimental and clinical studies with fNIRS are sampled, shedding light on many brain-related ailments. Finally, we describe and discuss a number of freely available analysis and presentation packages suited for data analysis. In conclusion, we recommend fNIRS due to its ever-growing body of clinical applications, state-of-the-art neuroimaging technique and manageable hardware requirements. It can be safely concluded that fNIRS adds a new arrow to the quiver of neuro-medical examinations due to both its great versatility and limited costs.
Collapse
|
35
|
Caredda C, Mahieu-Williame L, Sablong R, Sdika M, Alston L, Guyotat J, Montcel B. Intraoperative quantitative functional brain mapping using an RGB camera. NEUROPHOTONICS 2019; 6:045015. [PMID: 31890745 PMCID: PMC6929684 DOI: 10.1117/1.nph.6.4.045015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Intraoperative optical imaging is a localization technique for the functional areas of the human brain cortex during neurosurgical procedures. However, it still lacks robustness to be used as a clinical standard. In particular, new biomarkers of brain functionality with improved sensitivity and specificity are needed. We present a method for the computation of hemodynamics-based functional brain maps using an RGB camera and a white light source. We measure the quantitative oxy and deoxyhemoglobin concentration changes in the human brain cortex with the modified Beer-Lambert law and Monte Carlo simulations. A functional model has been implemented to evaluate the functional brain areas following neuronal activation by physiological stimuli. The results show a good correlation between the computed quantitative functional maps and the brain areas localized by electrical brain stimulation (EBS). We demonstrate that an RGB camera combined with a quantitative modeling of brain hemodynamics biomarkers can evaluate in a robust way the functional areas during neurosurgery and serve as a tool of choice to complement EBS.
Collapse
Affiliation(s)
- Charly Caredda
- Université de Lyon, Institut National des Sciences Appliquées de Lyon, Université Claude Bernard Lyon 1, Université Jean Monnet Saint Étienne, Centre National de la Recherche Scientifique, INSERM, CREATIS UMR 5220, Lyon, France
| | - Laurent Mahieu-Williame
- Université de Lyon, Institut National des Sciences Appliquées de Lyon, Université Claude Bernard Lyon 1, Université Jean Monnet Saint Étienne, Centre National de la Recherche Scientifique, INSERM, CREATIS UMR 5220, Lyon, France
| | - Raphaël Sablong
- Université de Lyon, Institut National des Sciences Appliquées de Lyon, Université Claude Bernard Lyon 1, Université Jean Monnet Saint Étienne, Centre National de la Recherche Scientifique, INSERM, CREATIS UMR 5220, Lyon, France
| | - Michaël Sdika
- Université de Lyon, Institut National des Sciences Appliquées de Lyon, Université Claude Bernard Lyon 1, Université Jean Monnet Saint Étienne, Centre National de la Recherche Scientifique, INSERM, CREATIS UMR 5220, Lyon, France
| | - Laure Alston
- Université de Lyon, Institut National des Sciences Appliquées de Lyon, Université Claude Bernard Lyon 1, Université Jean Monnet Saint Étienne, Centre National de la Recherche Scientifique, INSERM, CREATIS UMR 5220, Lyon, France
| | - Jacques Guyotat
- Hospices Civils de Lyon, Service de Neurochirurgie D, Lyon, France
| | - Bruno Montcel
- Université de Lyon, Institut National des Sciences Appliquées de Lyon, Université Claude Bernard Lyon 1, Université Jean Monnet Saint Étienne, Centre National de la Recherche Scientifique, INSERM, CREATIS UMR 5220, Lyon, France
| |
Collapse
|
36
|
Wang G, Liu Z, Feng Y, Li J, Dong H, Wang D, Li J, Yan N, Liu T, Yan X. Monitoring the Depth of Anesthesia Through the Use of Cerebral Hemodynamic Measurements Based on Sample Entropy Algorithm. IEEE Trans Biomed Eng 2019; 67:807-816. [PMID: 31180830 DOI: 10.1109/tbme.2019.2921362] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE The aim of this study is to explore the relationship between the depth of anesthesia and the cerebral hemodynamic variables during the complete anesthesia process. METHODS In this study, near-infrared spectroscopy signals were used to record eight kinds of cerebral hemodynamic variables, including left, right, proximal, distal deoxygenated (Hb) and oxygenated (HbO2) hemoglobin concentration changes. Then, by measuring the complexity information of cerebral hemodynamic variables, the sample entropy was calculated as a new index of monitoring the depth of anesthesia. RESULTS By means of receiver operating characteristic curve analysis, the sample entropy approach was proved to effectively discriminate anesthesia maintenance and waking phases. The discriminatory ability of HbO2 signals was stronger than that of Hb signals and the distal signals had weaker discrimination capability when compared with the proximal signals. In addition, there was statistical consistency between the bispectral index and sample entropy of cerebral hemodynamic variables during the complete anesthesia process. Moreover, the cerebral hemodynamic signals could not be interfered by clinical electrical devices. CONCLUSION The sample entropy of cerebral hemodynamic variables could be suitable as a new index for monitoring the depth of anesthesia. SIGNIFICANCE This study is very meaningful for developing new modality and decoding methods in perspective of anesthesia surveillance and may result in the anesthesia monitoring system with high performance.
Collapse
|
37
|
Huo C, Xu G, Li Z, Lv Z, Liu Q, Li W, Ma H, Wang D, Fan Y. Limb linkage rehabilitation training-related changes in cortical activation and effective connectivity after stroke: A functional near-infrared spectroscopy study. Sci Rep 2019; 9:6226. [PMID: 30996244 PMCID: PMC6470232 DOI: 10.1038/s41598-019-42674-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 04/02/2019] [Indexed: 01/04/2023] Open
Abstract
Stroke remains the leading cause of long-term disability worldwide. Rehabilitation training is essential for motor function recovery following stroke. Specifically, limb linkage rehabilitation training can stimulate motor function in the upper and lower limbs simultaneously. This study aimed to investigate limb linkage rehabilitation task-related changes in cortical activation and effective connectivity (EC) within a functional brain network after stroke by using functional near-infrared spectroscopy (fNIRS) imaging. Thirteen stroke patients with either left hemiparesis (L-H group, n = 6) and or right hemiparesis (R-H group, n = 7) and 16 healthy individuals (control group) participated in this study. A multichannel fNIRS system was used to measure changes in cerebral oxygenated hemoglobin (delta HbO2) and deoxygenated hemoglobin (delta HHb) in the bilateral prefrontal cortices (PFCs), motor cortices (MCs), and occipital lobes (OLs) during (1) the resting state and (2) a motor rehabilitation task with upper and lower limb linkage (first 10 min [task_S1], last 10 min [task_S2]). The frequency-specific EC among the brain regions was calculated based on coupling functions and dynamic Bayesian inference in frequency intervals: high-frequency I (0.6-2 Hz) and II (0.145-0.6 Hz), low-frequency III (0.052-0.145 Hz), and very-low-frequency IV (0.021-0.052 Hz). The results showed that the stroke patients exhibited an asymmetric (greater activation in the contralesional versus ipsilesional motor region) cortical activation pattern versus healthy controls. Compared with the healthy controls, the stroke patients showed significantly lower EC (p < 0.025) in intervals I and II in the resting and task states. The EC from the MC and OL to the right PFC in interval IV was significantly higher in the R-H group than in the control group during the resting and task states (p < 0.025). Furthermore, the L-H group showed significantly higher EC from the MC and OL to the left PFC in intervals III and IV during the task states compared with the control group (p < 0.025). The significantly increased influence of the MC and OL on the contralesional PFC in low- and very-low-frequency bands suggested that plastic reorganization of cognitive resources severed to compensate for impairment in stroke patients during the motor rehabilitation task. This study can serve as a basis for understanding task-related reorganization of functional brain networks and developing novel assessment techniques for stroke rehabilitation.
Collapse
Affiliation(s)
- Congcong Huo
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, China
| | - Gongcheng Xu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100086, Beijing, China
| | - Zengyong Li
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, China.
- Key Laboratory of Rehabilitation Aids Technology and System of the Ministry of Civil Affairs, Beijing, 100176, China.
| | - Zeping Lv
- Rehabilitation Hospital, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, China
| | - Qianying Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100086, Beijing, China
| | - Wenhao Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100086, Beijing, China
| | - Hongzhuo Ma
- Rehabilitation Hospital, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, China
| | - Daifa Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100086, Beijing, China.
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China.
| | - Yubo Fan
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, China.
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100086, Beijing, China.
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
38
|
Brighter G, Rader N. Establishing Shot Type Affects Arousal and Cognitive Load During Transitions Between Novel Interior Locations in Films. Front Hum Neurosci 2019; 13:3. [PMID: 30745867 PMCID: PMC6360176 DOI: 10.3389/fnhum.2019.00003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/04/2019] [Indexed: 11/14/2022] Open
Abstract
An “establishing shot” prefaces a scene in a movie with a wide shot of the scene’s location. It is meant to help viewers process a shift to a new location. Establishing shots can depict the actors in the space in which they will be acting, the exterior of a building, or the larger geographic context of the scene. While use of an establishing shot is standard filmmaking practice, some argue that establishing shots are unnecessary. This study sought to investigate how effective four types of establishing shots are at helping viewers process location shifts. Pupil diameter was recorded using a MangoldVision eye tracking system as a measure of arousal and cognitive load. Oxygenation levels in the prefrontal cortex provided an additional measure of cognitive load assessed through functional near infrared spectroscopy (fNIRS). We expected scene transitions to be followed by transient increases in pupil diameter and oxygenation levels, suggesting increased cognitive load and arousal. We predicted that participants should experience less cognitive load and arousal after a transition to a new scene when that scene has been prefaced with an establishing shot and that these effects would be greatest for establishing shots that depict actors. We found that geographic establishing shots produced significantly lower average pupil diameter than all other establishing shot types and the use of no establishing shot. Actors establishing shots elicited significantly lower average pupil diameter values than the use of no establishing shot. Maximum and average oxygenation values for the actors establishing shot condition were significantly higher than for the exterior establishing shot condition. An alpha level of 0.05 was used for all analyses. These results suggest differences between pupil diameter and fNIRS in terms of the psychological phenomenon they measure, and may inform the design of future films.
Collapse
Affiliation(s)
- Grant Brighter
- Mind-Body Laboratory, Department of Psychology, Ithaca College, Ithaca, NY, United States
| | - Nancy Rader
- Cognition Laboratory, Department of Psychology, Ithaca College, Ithaca, NY, United States
| |
Collapse
|
39
|
Saikia MJ, Besio WG, Mankodiya K. WearLight: Toward a Wearable, Configurable Functional NIR Spectroscopy System for Noninvasive Neuroimaging. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:91-102. [PMID: 30334769 DOI: 10.1109/tbcas.2018.2876089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Functional near-infrared spectroscopy (fNIRS) has emerged as an effective brain monitoring technique to measure the hemodynamic response of the cortical surface. Its wide popularity and adoption in recent time attribute to its portability, ease of use, and flexibility in multimodal studies involving electroencephalography. While fNIRS is still emerging on various fronts including hardware, software, algorithm, and applications, it still requires overcoming several scientific challenges associated with brain monitoring in naturalistic environments where the human participants are allowed to move and required to perform various tasks stimulating brain behaviors. In response to these challenges and demands, we have developed a wearable fNIRS system, WearLight that was built upon an Internet-of-Things embedded architecture for onboard intelligence, configurability, and data transmission. In addition, we have pursued detailed research and comparative analysis on the design of the optodes encapsulating an near-infrared light source and a detector into 3-D printed material. We performed rigorous experimental studies on human participants to test reliability, signal-to-noise ratio, and configurability. Most importantly, we observed that WearLight has a capacity to measure hemodynamic responses in various setups including arterial occlusion on the forearm and frontal lobe brain activity during breathing exercises in a naturalistic environment. Our promising experimental results provide an evidence of preliminary clinical validation of WearLight. This encourages us to move toward intensive studies involving brain monitoring.
Collapse
|
40
|
Nishizawa Y, Kanazawa T, Kawabata Y, Matsubara T, Maruyama S, Kawano M, Kinoshita S, Koh J, Matsuo K, Yoneda H. fNIRS Assessment during an Emotional Stroop Task among Patients with Depression: Replication and Extension. Psychiatry Investig 2019; 16:80-86. [PMID: 30696239 PMCID: PMC6354038 DOI: 10.30773/pi.2018.11.12.2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/12/2018] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE Accumulated evidence collected via functional near-infrared spectroscopy (fNIRS) has been reported with regard to mental disorders. A previous finding revealed that emotional words evoke left frontal cortex activity in patients with depression. The primary aim of the current study was to replicate this finding using an independent dataset and evaluate the brain region associated with the severity of depression using an emotional Stroop task. METHODS Oxygenized and deoxygenized hemoglobin recording in the brain by fNIRS on 14 MDD patients and 20 normal controls. RESULTS Hyperactivated oxygenized hemoglobin was observed in the left frontal cortex on exposure to unfavorable stimuli, but no significant difference was found among patients with depression compared with healthy controls on exposure to favorable stimuli. This result is consistent with previous findings. Moreover, an evoked wave associated with the left upper frontal cortex on favorable stimuli was inversely correlated with the severity of depression. CONCLUSION Our current work using fNIRS provides a potential clue regarding the location of depression symptom severity in the left upper frontal cortex. Future studies should verify our findings and expand them into a precise etiology of depression.
Collapse
Affiliation(s)
| | - Tetsufumi Kanazawa
- Department of Neuropsychiatry, Osaka Medical College, Osaka, Japan.,The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Yasuo Kawabata
- Department of Neuropsychiatry, Osaka Medical College, Osaka, Japan
| | - Toshio Matsubara
- Health Administration Center, Yamaguchi University Organization for University Education, Yamaguchi, Japan.,Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | | | - Makoto Kawano
- Department of Neuropsychiatry, Osaka Medical College, Osaka, Japan
| | - Shinya Kinoshita
- Department of Neuropsychiatry, Osaka Medical College, Osaka, Japan
| | - Jun Koh
- Department of Neuropsychiatry, Osaka Medical College, Osaka, Japan
| | - Koji Matsuo
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan.,Department of Psychiatry, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Hiroshi Yoneda
- Department of Neuropsychiatry, Osaka Medical College, Osaka, Japan
| |
Collapse
|
41
|
Fantini S, Frederick B, Sassaroli A. Perspective: Prospects of non-invasive sensing of the human brain with diffuse optical imaging. APL PHOTONICS 2018; 3:110901. [PMID: 31187064 PMCID: PMC6559748 DOI: 10.1063/1.5038571] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/14/2018] [Indexed: 05/19/2023]
Abstract
Since the initial demonstration of near-infrared spectroscopy (NIRS) for noninvasive measurements of brain perfusion and metabolism in the 1970s, and its application to functional brain studies (fNIRS) in the 1990s, the field of noninvasive optical studies of the brain has been continuously growing. Technological developments, data analysis advances, and novel areas of application keep advancing the field. In this article, we provide a view of the state of the field of cerebral NIRS, starting with a brief historical introduction and a description of the information content of the NIRS signal. We argue that NIRS and fNIRS studies should always report data of both oxy- and deoxyhemoglobin concentrations in brain tissue, as they complement each other to provide more complete functional and physiological information, and may help identify different types of confounds. One significant challenge is the assessment of absolute tissue properties, be them optical or physiological, so that relative measurements account for the vast majority of NIRS and fNIRS applications. However, even relative measurements of hemodynamics or metabolic changes face the major problem of a potential contamination from extracerebral tissue layers. Accounting for extracerebral contributions to fNIRS signals is one of the most critical barriers in the field. We present some of the approaches that were proposed to tackle this challenge in the study of cerebral hemodynamics and functional connectivity. Finally, we critically compare fNIRS and functional magnetic resonance imaging (fMRI) by relating their measurements in terms of signal and noise, and by commenting on their complementarity.
Collapse
Affiliation(s)
- Sergio Fantini
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Blaise Frederick
- Brain Imaging Center, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard University Medical School, Boston, MA, USA
| | - Angelo Sassaroli
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| |
Collapse
|
42
|
Proulx N, Samadani AA, Chau T. Online classification of the near-infrared spectroscopy fast optical signal for brain-computer interfaces. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aada1a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
43
|
Curtin A, Ayaz H. The Age of Neuroergonomics: Towards Ubiquitous and Continuous Measurement of Brain Function with fNIRS. JAPANESE PSYCHOLOGICAL RESEARCH 2018. [DOI: 10.1111/jpr.12227] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Witmer JS, Aeschlimann EA, Metz AJ, Troche SJ, Rammsayer TH. Functional Near-Infrared Spectroscopy Recordings of Visuospatial Working Memory Processes. Part II: A Replication Study in Children on Sensitivity and Mental-Ability-Induced Differences in Functional Activation. Brain Sci 2018; 8:E152. [PMID: 30103538 PMCID: PMC6119993 DOI: 10.3390/brainsci8080152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 01/21/2023] Open
Abstract
In a previous study in young adults, we showed that hemodynamic changes as measured by functional near-infrared spectroscopy (fNIRS) were sensitive for identifying visuospatial working memory (WM)-related functional brain activation in the prefrontal cortex. This functional activation, however, could not be verified for participants with far-above-average mental ability, suggesting different cognitive processes adopted by this group. The present study was designed to confirm these findings in 11- to 13-year-old children by applying the same study design, experimental task, fNIRS setup, and statistical approach. We successfully replicated the earlier findings on sensitivity of fNIRS with regard to visuospatial WM-specific task demands in our children sample. Likewise, mental-ability-induced differences in functional activation were even more pronounced in the children compared with in the young adults. By testing a children sample, we were able to not only replicate our previous findings based on adult participants but also generalize the validity of these findings to children. This latter aspect seems to be of particular significance considering the relatively large number of fNIRS studies on WM performance in children.
Collapse
Affiliation(s)
- Joëlle S Witmer
- Institute of Psychology, University of Bern, 3012 Bern, Switzerland.
| | - Eva A Aeschlimann
- Institute of Psychology, University of Bern, 3012 Bern, Switzerland.
| | - Andreas J Metz
- Institute of Psychology, University of Bern, 3012 Bern, Switzerland.
| | - Stefan J Troche
- Institute of Psychology, University of Bern, 3012 Bern, Switzerland.
| | | |
Collapse
|
45
|
Mukli P, Nagy Z, Racz FS, Herman P, Eke A. Impact of Healthy Aging on Multifractal Hemodynamic Fluctuations in the Human Prefrontal Cortex. Front Physiol 2018; 9:1072. [PMID: 30147657 PMCID: PMC6097581 DOI: 10.3389/fphys.2018.01072] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/17/2018] [Indexed: 11/23/2022] Open
Abstract
Fluctuations in resting-state cerebral hemodynamics show scale-free behavior over two distinct scaling ranges. Changes in such bimodal (multi) fractal pattern give insight to altered cerebrovascular or neural function. Our main goal was to assess the distribution of local scale-free properties characterizing cerebral hemodynamics and to disentangle the influence of aging on these multifractal parameters. To this end, we obtained extended resting-state records (N = 214) of oxyhemoglobin (HbO), deoxyhemoglobin (HbR) and total hemoglobin (HbT) concentration time series with continuous-wave near-infrared spectroscopy technology from the brain cortex. 52 healthy volunteers were enrolled in this study: 24 young (30.6 ± 8.2 years), and 28 elderly (60.5 ± 12.0 years) subjects. Using screening tests on power-law, multifractal noise, and shuffled data sets we evaluated the presence of true multifractal hemodynamics reflecting long-range correlation (LRC). Subsequently, scaling-range adaptive bimodal signal summation conversion (SSC) was performed based on standard deviation (σ) of signal windows across a range of temporal scales (s). Building on moments of different order (q) of the measure, σ(s), multifractal SSC yielded generalized Hurst exponent function, H(q), and singularity spectrum, D(h) separately for a fast and slow component (the latter dominating the highest temporal scales). Parameters were calculated reflecting the estimated measure at s = N (focus), degree of LRC [Hurst exponent, H(2) and maximal Hölder exponent, hmax] and measuring strength of multifractality [full-width-half-maximum of D(h) and ΔH15 = H(−15)−H(15)]. Correlation-based signal improvement (CBSI) enhanced our signal in terms of interpreting changes due to neural activity or local/systemic hemodynamic influences. We characterized the HbO-HbR relationship with the aid of fractal scale-wise correlation coefficient, rσ(s) and SSC-based multifractal covariance analysis. In the majority of subjects, cerebral hemodynamic fluctuations proved bimodal multifractal. In case of slow component of raw HbT, hmax, and Ĥ(2) were lower in the young group explained by a significantly increased rσ(s) among elderly at high temporal scales. Regarding the fast component of CBSI-pretreated HbT and that of HbO-HbR covariance, hmax, and focus were decreased in the elderly group. These observations suggest an attenuation of neurovascular coupling reflected by a decreased autocorrelation of the neuronal component concomitant with an accompanying increased autocorrelation of the non-neuronal component in the elderly group.
Collapse
Affiliation(s)
- Peter Mukli
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary.,Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Zoltan Nagy
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Frigyes S Racz
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Peter Herman
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States
| | - Andras Eke
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary.,Department of Physiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
46
|
Sulpizio S, Doi H, Bornstein MH, Cui J, Esposito G, Shinohara K. fNIRS reveals enhanced brain activation to female (versus male) infant directed speech (relative to adult directed speech) in Young Human Infants. Infant Behav Dev 2018; 52:89-96. [PMID: 29909251 PMCID: PMC6528784 DOI: 10.1016/j.infbeh.2018.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 02/07/2023]
Abstract
We hypothesized an association between auditory stimulus structure and activity in the brain that underlies infant auditory preference. In a within-infant design, we assessed brain activity to female and male infant directed relative to adult directed speech in 4-month-old infants using fNIRS. Results are compatible with the hypothesis that enhanced frontal brain activation, specifically in prefrontal cortex that is involved in emotion and reward, is evoked selectively by infant directed speech produced by female voices and may serve as a neuronal substrate for attention to and preference for "motherese" displayed by infants.
Collapse
Affiliation(s)
- Simone Sulpizio
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Hirokazu Doi
- Department of Neurobiology and Behavior, Nagasaki University, Graduate School of Biomedical Science, Japan
| | - Marc H Bornstein
- Child and Family Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, USA; Institute for Fiscal Studies, London, UK.
| | - Joy Cui
- Child and Family Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, USA
| | - Gianluca Esposito
- Department of Psychology and Cognitive Science, University of Trento, Italy; Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore
| | - Kazuyuki Shinohara
- Department of Neurobiology and Behavior, Nagasaki University, Graduate School of Biomedical Science, Japan.
| |
Collapse
|
47
|
Brigadoi S, Salvagnin D, Fischetti M, Cooper RJ. Array Designer: automated optimized array design for functional near-infrared spectroscopy. NEUROPHOTONICS 2018; 5:035010. [PMID: 30238021 PMCID: PMC6135986 DOI: 10.1117/1.nph.5.3.035010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 08/06/2018] [Indexed: 05/08/2023]
Abstract
The position of each source and detector "optode" on the scalp, and their relative separations, determines the sensitivity of each functional near-infrared spectroscopy (fNIRS) channel to the underlying cortex. As a result, selecting appropriate scalp locations for the available sources and detectors is critical to every fNIRS experiment. At present, it is standard practice for the user to undertake this task manually; to select what they believe are the best locations on the scalp to place their optodes so as to sample a given cortical region-of-interest (ROI). This process is difficult, time-consuming, and highly subjective. Here, we propose a tool, Array Designer, that is able to automatically design optimized fNIRS arrays given a user-defined ROI and certain features of the available fNIRS device. Critically, the Array Designer methodology is generalizable and will be applicable to almost any subject population or fNIRS device. We describe and validate the algorithmic methodology that underpins Array Designer by running multiple simulations of array design problems in a realistic anatomical model. We believe that Array Designer has the potential to end the need for manual array design, and in doing so save researchers time, improve fNIRS data quality, and promote standardization across the field.
Collapse
Affiliation(s)
- Sabrina Brigadoi
- University College London, Biomedical Optics Research Laboratory, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
- University of Padova, Department of Developmental Psychology, Padova, Italy
| | - Domenico Salvagnin
- University of Padova, Department of Information Engineering, Padova, Italy
| | - Matteo Fischetti
- University of Padova, Department of Information Engineering, Padova, Italy
| | - Robert J. Cooper
- University College London, Biomedical Optics Research Laboratory, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
- NeoLAB, Rosie Hospital, The Evelyn Perinatal Imaging Centre, Cambridge, United Kingdom
- Address all correspondence to: Robert J. Cooper, E-mail:
| |
Collapse
|
48
|
Witmer JS, Aeschlimann EA, Metz AJ, Troche SJ, Rammsayer TH. The Validity of Functional Near-Infrared Spectroscopy Recordings of Visuospatial Working Memory Processes in Humans. Brain Sci 2018; 8:E62. [PMID: 29621179 PMCID: PMC5924398 DOI: 10.3390/brainsci8040062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/22/2018] [Accepted: 03/30/2018] [Indexed: 11/16/2022] Open
Abstract
Functional near infrared spectroscopy (fNIRS) is increasingly used for investigating cognitive processes. To provide converging evidence for the validity of fNIRS recordings in cognitive neuroscience, we investigated functional activation in the frontal cortex in 43 participants during the processing of a visuospatial working memory (WM) task and a sensory duration discrimination (DD) task functionally unrelated to WM. To distinguish WM-related processes from a general effect of increased task demand, we applied an adaptive approach, which ensured that subjective task demand was virtually identical for all individuals and across both tasks. Our specified region of interest covered Brodmann Area 8 of the left hemisphere, known for its important role in the execution of WM processes. Functional activation, as indicated by an increase of oxygenated and a decrease of deoxygenated hemoglobin, was shown for the WM task, but not in the DD task. The overall pattern of results indicated that hemodynamic responses recorded by fNIRS are sensitive to specific visuospatial WM capacity-related processes and do not reflect a general effect of increased task demand. In addition, the finding that no such functional activation could be shown for participants with far above-average mental ability suggested different cognitive processes adopted by this latter group.
Collapse
Affiliation(s)
- Joëlle S Witmer
- Institute of Psychology, University of Bern, 3012 Bern, Switzerland.
| | - Eva A Aeschlimann
- Institute of Psychology, University of Bern, 3012 Bern, Switzerland.
| | - Andreas J Metz
- Institute of Psychology, University of Bern, 3012 Bern, Switzerland.
| | - Stefan J Troche
- Department of Psychology and Psychotherapy, University of Witten/Herdecke, 58455 Witten, Germany.
| | | |
Collapse
|
49
|
Hocke LM, Duszynski CC, Debert CT, Dleikan D, Dunn JF. Reduced Functional Connectivity in Adults with Persistent Post-Concussion Symptoms: A Functional Near-Infrared Spectroscopy Study. J Neurotrauma 2018; 35:1224-1232. [PMID: 29373947 PMCID: PMC5962910 DOI: 10.1089/neu.2017.5365] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Concussion, or mild traumatic brain injury (mTBI), accounts for ∼80% of all TBIs across North America. The majority of mTBI patients recover within days to weeks; however, 14-36% of the time, acute mTBI symptoms persist for months or even years and develop into persistent post-concussion symptoms (PPCS). There is a need to find biomarkers in patients with PPCS, to improve prognostic ability and to provide insight into the pathophysiology underlying chronic symptoms. Recent research has pointed toward impaired network integrity and cortical communication as a biomarker. In this study we investigated functional near-infrared spectroscopy (fNIRS) as a technique to assess cortical communication deficits in adults with PPCS. Specifically, we aimed to identify cortical communication patterns in prefrontal and motor areas during rest and task, in adult patients with persistent symptoms. We found that (1) the PPCS group showed reduced connectivity compared with healthy controls, (2) increased symptom severity correlated with reduced coherence, and (3) connectivity differences were best distinguishable during task and in particular during the working memory task (n-back task) in the right and left dorsolateral prefrontal cortex (DLPFC). These data show that reduced brain communication may be associated with the pathophysiology of mTBI and that fNIRS, with a relatively simple acquisition paradigm, may provide a useful biomarker of this injury.
Collapse
Affiliation(s)
- Lia M Hocke
- 1 Hotchkiss Brain Institute , Calgary, Alberta, Canada .,2 Department of Radiology, Experimental Imaging Lab , Calgary, Alberta, Canada .,3 Department of Clinical Neurosciences, Foothills Medical Centre , Calgary, Alberta, Canada .,4 Cumming School of Medicine Calgary , Alberta, Canada
| | - Chris C Duszynski
- 1 Hotchkiss Brain Institute , Calgary, Alberta, Canada .,2 Department of Radiology, Experimental Imaging Lab , Calgary, Alberta, Canada .,3 Department of Clinical Neurosciences, Foothills Medical Centre , Calgary, Alberta, Canada .,4 Cumming School of Medicine Calgary , Alberta, Canada
| | - Chantel T Debert
- 1 Hotchkiss Brain Institute , Calgary, Alberta, Canada .,3 Department of Clinical Neurosciences, Foothills Medical Centre , Calgary, Alberta, Canada .,4 Cumming School of Medicine Calgary , Alberta, Canada
| | - Diane Dleikan
- 1 Hotchkiss Brain Institute , Calgary, Alberta, Canada .,2 Department of Radiology, Experimental Imaging Lab , Calgary, Alberta, Canada .,3 Department of Clinical Neurosciences, Foothills Medical Centre , Calgary, Alberta, Canada .,4 Cumming School of Medicine Calgary , Alberta, Canada
| | - Jeff F Dunn
- 1 Hotchkiss Brain Institute , Calgary, Alberta, Canada .,2 Department of Radiology, Experimental Imaging Lab , Calgary, Alberta, Canada .,3 Department of Clinical Neurosciences, Foothills Medical Centre , Calgary, Alberta, Canada .,4 Cumming School of Medicine Calgary , Alberta, Canada
| |
Collapse
|
50
|
Martin CO, Pontbriand-Drolet S, Daoust V, Yamga E, Amiri M, Hübner LC, Ska B. Narrative Discourse in Young and Older Adults: Behavioral and NIRS Analyses. Front Aging Neurosci 2018; 10:69. [PMID: 29615892 PMCID: PMC5864853 DOI: 10.3389/fnagi.2018.00069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 03/01/2018] [Indexed: 11/13/2022] Open
Abstract
Discourse comprehension is at the core of communication capabilities, making it an important component of elderly populations' quality of life. The aim of this study is to evaluate changes in discourse comprehension and the underlying brain activity. Thirty-six participants read short stories and answered related probes in three conditions: micropropositions, macropropositions and situation models. Using near-infrared spectroscopy (NIRS), the variation in oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR) concentrations was assessed throughout the task. The results revealed that the older adults performed with equivalent accuracy to the young ones at the macroproposition level of discourse comprehension, but were less accurate at the microproposition and situation model levels. Similar to what is described in the compensation-related utilization of neural circuits hypothesis (CRUNCH) model, older participants tended to have greater activation in the left dorsolateral prefrontal cortex while reading in all conditions. Although it did not enable them to perform similarly to younger participants in all conditions, this over-activation could be interpreted as a compensation mechanism.
Collapse
Affiliation(s)
- Charles-Olivier Martin
- Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada
| | - Stéphanie Pontbriand-Drolet
- Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada
| | - Valérie Daoust
- Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada
| | - Eric Yamga
- Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada
| | - Mahnoush Amiri
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada.,Génie Biomédical, École Polytechnique de Montréal, Montreal, QC, Canada
| | - Lilian C Hübner
- Departamento de Linguistica, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Bernadette Ska
- Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada
| |
Collapse
|