1
|
Kumari D, Grant-Bier J, Kadyrov F, Usdin K. Intersection of the fragile X-related disorders and the DNA damage response. DNA Repair (Amst) 2024; 144:103785. [PMID: 39549538 PMCID: PMC11789500 DOI: 10.1016/j.dnarep.2024.103785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024]
Abstract
The Repeat Expansion Diseases (REDs) are a large group of human genetic disorders that result from an increase in the number of repeats in a disease-specific tandem repeat or microsatellite. Emerging evidence suggests that the repeats trigger an error-prone form of DNA repair that causes the expansion mutation by exploiting a limitation in normal mismatch repair. Furthermore, while much remains to be understood about how the mutation causes pathology in different diseases in this group, there is evidence to suggest that some of the downstream consequences of repeat expansion trigger the DNA damage response in ways that contribute to disease pathology. This review will discuss these subjects in the context of the Fragile X-related disorders (aka the FMR1 disorders) that provide a particularly interesting example of the intersection between the repeats and the DNA damage response that may also be relevant for many other diseases in this group.
Collapse
Affiliation(s)
- Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jessalyn Grant-Bier
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Farid Kadyrov
- Division of Biochemistry and Molecular Biology, Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Rohrer C, Palumbo A, Paul M, Reese E, Basu S. Neurotransmitters and neural hormone-based probes for quadruplex DNA sequences associated with neurodegenerative diseases. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-24. [PMID: 39561111 DOI: 10.1080/15257770.2024.2431145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
The potential of neurotransmitters and neural hormones as possible G-quadruplex DNA binders was analyzed using fluorescence spectroscopy, surface-enhanced Raman spectroscopy (SERS), DNA melting analysis, and molecular docking. G-quadruplex sequences, (GGC)3 and G4C2, with roles in Fragile X syndrome and amyotrophic lateral sclerosis (ALS), respectively, were selected, and their interactions with melatonin, serotonin, and gamma-aminobutyric acid (GABA), were studied. Both melatonin and serotonin demonstrated strong interactions with the DNA sequences with hydrogen bonding being the primary mode of interaction, with some non-intercalative interactions involving the π systems. GABA demonstrated much weaker interactions and may not be a suitable candidate as a probe for low concentrations of G-quadruplex DNA.
Collapse
Affiliation(s)
- Callie Rohrer
- Department of Chemistry, Susquehanna University, Selinsgrove, PA, USA
| | - Alexis Palumbo
- Department of Chemistry, Susquehanna University, Selinsgrove, PA, USA
| | - Marissa Paul
- Department of Chemistry, Susquehanna University, Selinsgrove, PA, USA
| | - Erin Reese
- Department of Biology, Susquehanna University, Selinsgrove, PA, USA
| | - Swarna Basu
- Department of Chemistry, Susquehanna University, Selinsgrove, PA, USA
| |
Collapse
|
3
|
Mirceta M, Schmidt MM, Shum N, Prasolava T, Meikle B, Lanni S, Mohiuddin M, McKeever P, Zhang M, Liang M, van der Werf I, Scheers S, Dion P, Wang P, Wilson M, Abell T, Philips E, Sznajder Ł, Swanson M, Mehkary M, Khan M, Yokoi K, Jung C, de Jong P, Freudenreich C, McGoldrick P, Yuen RC, Abrahão A, Keith J, Zinman L, Robertson J, Rogaeva E, Rouleau G, Kooy R, Pearson C. C9orf72 repeat expansion creates the unstable folate-sensitive fragile site FRA9A. NAR MOLECULAR MEDICINE 2024; 1:ugae019. [PMID: 39669124 PMCID: PMC11632612 DOI: 10.1093/narmme/ugae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024]
Abstract
The hyper-unstable Chr9p21 locus, harbouring the interferon gene cluster, oncogenes and C9orf72, is linked to multiple diseases. C9orf72 (GGGGCC)n expansions (C9orf72Exp) are associated with incompletely penetrant amyotrophic lateral sclerosis, frontotemporal dementia and autoimmune disorders. C9orf72Exp patients display hyperactive cGAS-STING-linked interferon immune and DNA damage responses, but the source of immunostimulatory or damaged DNA is unknown. Here, we show C9orf72Exp in pre-symptomatic and amyotrophic lateral sclerosis-frontotemporal dementia patient cells and brains cause the folate-sensitive chromosomal fragile site, FRA9A. FRA9A centers on >33 kb of C9orf72 as highly compacted chromatin embedded in an 8.2 Mb fragility zone spanning 9p21, encompassing 46 genes, making FRA9A one of the largest fragile sites. C9orf72Exp cells show chromosomal instability, heightened global- and Chr9p-enriched sister-chromatid exchanges, truncated-Chr9s, acentric-Chr9s and Chr9-containing micronuclei, providing endogenous sources of damaged and immunostimulatory DNA. Cells from one C9orf72Exp patient contained a highly rearranged FRA9A-expressing Chr9 with Chr9-wide dysregulated gene expression. Somatic C9orf72Exp repeat instability and chromosomal fragility are sensitive to folate deficiency. Age-dependent repeat instability, chromosomal fragility and chromosomal instability can be transferred to CNS and peripheral tissues of transgenic C9orf72Exp mice, implicating C9orf72Exp as the source. Our results highlight unappreciated effects of C9orf72 expansions that trigger vitamin-sensitive chromosome fragility, adding structural variations to the disease-enriched 9p21 locus, and likely elsewhere.
Collapse
Affiliation(s)
- Mila Mirceta
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Monika H M Schmidt
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Natalie Shum
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Tanya K Prasolava
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Bryanna Meikle
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Stella Lanni
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Mohiuddin Mohiuddin
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Paul M McKeever
- Tanz Centre for Research of Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, M5T 2S8, Canada
| | - Ming Zhang
- Tanz Centre for Research of Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, M5T 2S8, Canada
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, Shanghai, 200090, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Advanced Study, Tongji University, Shanghai, 200092, China
| | - Minggao Liang
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | | | - Stefaan Scheers
- Department of Medical Genetics, University of Antwerp, Belgium
| | - Patrick A Dion
- Montreal Neurological Institute-Hospital, McGill University, 3801 University Avenue, Montreal, Quebec, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, 3801 University Avenue, Montreal, Quebec, H3A 2B4, Canada
| | - Peixiang Wang
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Michael D Wilson
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Theresa Abell
- Department of Biology, Tufts University, 200 Boston Avenue, Medford, MA 02155, USA
| | - Elliot A Philips
- Department of Biology, Tufts University, 200 Boston Avenue, Medford, MA 02155, USA
| | - Łukasz J Sznajder
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, College of Medicine, University of Florida, 2033 Mowry Road, Gainesville, FL 32610-3610, USA
- Department of Chemistry and Biochemistry, University of Nevada, 4003-4505 South Maryland Parkway, Las Vegas, NV 89154, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, College of Medicine, University of Florida, 2033 Mowry Road, Gainesville, FL 32610-3610, USA
| | - Mustafa Mehkary
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Mahreen Khan
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Katsuyuki Yokoi
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Christine Jung
- BACPAC Resource Center, Children’s Hospital Oakland Research Institute, 25129 NE 42nd Pl, Redmond, WA 98053, USA
| | - Pieter J de Jong
- BACPAC Resource Center, Children’s Hospital Oakland Research Institute, 25129 NE 42nd Pl, Redmond, WA 98053, USA
| | | | - Philip McGoldrick
- Tanz Centre for Research of Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, M5T 2S8, Canada
| | - Ryan K C Yuen
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Agessandro Abrahão
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, North York, Toronto, ON, M4N 3M5, Canada
| | - Julia Keith
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, North York, Toronto, ON, M4N 3M5, Canada
| | - Lorne Zinman
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, North York, Toronto, ON, M4N 3M5, Canada
| | - Janice Robertson
- Tanz Centre for Research of Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, M5T 2S8, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research of Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, M5T 2S8, Canada
| | - Guy A Rouleau
- Montreal Neurological Institute-Hospital, McGill University, 3801 University Avenue, Montreal, Quebec, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, 3801 University Avenue, Montreal, Quebec, H3A 2B4, Canada
- Department of Human Genetics, McGill University, 3801 University Avenue, Montreal, Quebec, H3A 2B4, Canada
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Belgium
| | - Christopher E Pearson
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| |
Collapse
|
4
|
Lahnsteiner A, Ellmer V, Oberlercher A, Liutkeviciute Z, Schönauer E, Paulweber B, Aigner E, Risch A. G-quadruplex forming regions in GCK and TM6SF2 are targets for differential DNA methylation in metabolic disease and hepatocellular carcinoma patients. Sci Rep 2024; 14:20215. [PMID: 39215018 PMCID: PMC11364803 DOI: 10.1038/s41598-024-70749-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
The alarming increase in global rates of metabolic diseases (MetDs) and their association with cancer risk renders them a considerable burden on our society. The interplay of environmental and genetic factors in causing MetDs may be reflected in DNA methylation patterns, particularly at non-canonical (non-B) DNA structures, such as G-quadruplexes (G4s) or R-loops. To gain insight into the mechanisms of MetD progression, we focused on DNA methylation and functional analyses on intragenic regions of two MetD risk genes, the glucokinase (GCK) exon 7 and the transmembrane 6 superfamily 2 (TM6SF2) intron 2-exon 3 boundary, which harbor non-B DNA motifs for G4s and R-loops.Pyrosequencing of 148 blood samples from a nested cohort study revealed significant differential methylation in GCK and TM6SF2 in MetD patients versus healthy controls. Furthermore, these regions harbor hypervariable and differentially methylated CpGs also in hepatocellular carcinoma versus normal tissue samples from The Cancer Genome Atlas (TCGA). Permanganate/S1 nuclease footprinting with direct adapter ligation (PDAL-Seq), native polyacrylamide DNA gel electrophoresis and circular dichroism (CD) spectroscopy revealed the formation of G4 structures in these regions and demonstrated that their topology and stability is affected by DNA methylation. Detailed analyses including histone marks, chromatin conformation capture data, and luciferase reporter assays, highlighted the cell-type specific regulatory function of the target regions. Based on our analyses, we hypothesize that changes in DNA methylation lead to topological changes, especially in GCK exon 7, and cause the activation of alternative regulatory elements or potentially play a role in alternative splicing.Our analyses provide a new view on the mechanisms underlying the progression of MetDs and their link to hepatocellular carcinomas, unveiling non-B DNA structures as important key players already in early disease stages.
Collapse
Affiliation(s)
- Angelika Lahnsteiner
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria.
- Cancer Cluster Salzburg, Salzburg, Austria.
| | - Victoria Ellmer
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria
| | - Anna Oberlercher
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria
| | - Zita Liutkeviciute
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria
| | - Esther Schönauer
- Division of Structural Biology, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Salzburg, Austria
| | - Bernhard Paulweber
- First Department of Medicine, University Clinic Salzburg, Salzburg, Austria
| | - Elmar Aigner
- First Department of Medicine, University Clinic Salzburg, Salzburg, Austria
- Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Angela Risch
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| |
Collapse
|
5
|
Tseng YJ, Krans A, Malik I, Deng X, Yildirim E, Ovunc S, Tank EH, Jansen-West K, Kaufhold R, Gomez N, Sher R, Petrucelli L, Barmada S, Todd P. Ribosomal quality control factors inhibit repeat-associated non-AUG translation from GC-rich repeats. Nucleic Acids Res 2024; 52:5928-5949. [PMID: 38412259 PMCID: PMC11162809 DOI: 10.1093/nar/gkae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024] Open
Abstract
A GGGGCC (G4C2) hexanucleotide repeat expansion in C9ORF72 causes amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD), while a CGG trinucleotide repeat expansion in FMR1 leads to the neurodegenerative disorder Fragile X-associated tremor/ataxia syndrome (FXTAS). These GC-rich repeats form RNA secondary structures that support repeat-associated non-AUG (RAN) translation of toxic proteins that contribute to disease pathogenesis. Here we assessed whether these same repeats might trigger stalling and interfere with translational elongation. We find that depletion of ribosome-associated quality control (RQC) factors NEMF, LTN1 and ANKZF1 markedly boost RAN translation product accumulation from both G4C2 and CGG repeats while overexpression of these factors reduces RAN production in both reporter assays and C9ALS/FTD patient iPSC-derived neurons. We also detected partially made products from both G4C2 and CGG repeats whose abundance increased with RQC factor depletion. Repeat RNA sequence, rather than amino acid content, is central to the impact of RQC factor depletion on RAN translation-suggesting a role for RNA secondary structure in these processes. Together, these findings suggest that ribosomal stalling and RQC pathway activation during RAN translation inhibits the generation of toxic RAN products. We propose augmenting RQC activity as a therapeutic strategy in GC-rich repeat expansion disorders.
Collapse
Affiliation(s)
- Yi-Ju Tseng
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amy Krans
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI 48109, USA
| | - Indranil Malik
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284 Telangana, India
| | - Xiexiong Deng
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Evrim Yildirim
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sinem Ovunc
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elizabeth M H Tank
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Karen Jansen-West
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ross Kaufhold
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicolas B Gomez
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Roger Sher
- Department of Neurobiology and Behavior & Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Sami J Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Kumari D, Lokanga RA, McCann C, Ried T, Usdin K. The fragile X locus is prone to spontaneous DNA damage that is preferentially repaired by nonhomologous end-joining to preserve genome integrity. iScience 2024; 27:108814. [PMID: 38303711 PMCID: PMC10831274 DOI: 10.1016/j.isci.2024.108814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/26/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
A long CGG-repeat tract in the FMR1 gene induces the epigenetic silencing that causes fragile X syndrome (FXS). Epigenetic changes include H4K20 trimethylation, a heterochromatic modification frequently implicated in transcriptional silencing. Here, we report that treatment with A-196, an inhibitor of SUV420H1/H2, the enzymes responsible for H4K20 di-/trimethylation, does not affect FMR1 transcription, but does result in increased chromosomal duplications. Increased duplications were also seen in FXS cells treated with SCR7, an inhibitor of Lig4, a ligase essential for NHEJ. Our study suggests that the fragile X (FX) locus is prone to spontaneous DNA damage that is normally repaired by NHEJ. We suggest that heterochromatinization of the FX allele may be triggered, at least in part, in response to this DNA damage.
Collapse
Affiliation(s)
- Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rachel Adihe Lokanga
- Section of Cancer Genomics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cai McCann
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas Ried
- Section of Cancer Genomics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Zheng YY, Dartawan R, Wu Y, Wu C, Zhang H, Lu J, Hu A, Vangaveti S, Sheng J. Structural effects of inosine substitution in telomeric DNA quadruplex. Front Chem 2024; 12:1330378. [PMID: 38312345 PMCID: PMC10834636 DOI: 10.3389/fchem.2024.1330378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024] Open
Abstract
The telomeric DNA, a distal region of eukaryotic chromosome containing guanine-rich repetitive sequence of (TTAGGG)n, has been shown to adopt higher-order structures, specifically G-quadruplexes (G4s). Previous studies have demonstrated the implication of G4 in tumor inhibition through chromosome maintenance and manipulation of oncogene expression featuring their G-rich promoter regions. Besides higher order structures, several regulatory roles are attributed to DNA epigenetic markers. In this work, we investigated how the structural dynamics of a G-quadruplex, formed by the telomeric sequence, is affected by inosine, a prevalent modified nucleotide. We used the standard (TTAGGG)n telomere repeats with guanosine mutated to inosine at each G position. Sequences (GGG)4, (IGG)4, (GIG)4, (GGI)4, (IGI)4, (IIG)4, (GII)4, and (III)4, bridged by TTA linker, are studied using biophysical experiments and molecular modeling. The effects of metal cations in quadruplex folding were explored in both Na+ and K+ containing buffers using CD and UV-melting studies. Our results show that antiparallel quadruplex topology forms with the native sequence (GGG)4 and the terminal modified DNAs (IGG)4 and (GGI)4 in both Na+ and K+ containing buffers. Specifically, quadruplex hybrid was observed for (GGG)4 in K+ buffer. Among the other modified sequences, (GIG)4, (IGI)4 and (GII)4 show parallel features, while (IIG)4 and (III)4 show no detectable conformation in the presence of either Na+ or K+. Our studies indicate that terminal lesions (IGG)4 and (GGI)4 may induce certain unknown conformations. The folding dynamics become undetectable in the presence of more than one inosine substitution except (IGI)4 in both buffer ions. In addition, both UV melting and CD melting studies implied that in most cases the K+ cation confers more thermodynamic stability compared to Na+. Collectively, our conformational studies revealed the diverse structural polymorphisms of G4 with position dependent G-to-I mutations in different ion conditions.
Collapse
Affiliation(s)
- Ya Ying Zheng
- Department of Chemistry, Albany, NY, United States
- The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Ricky Dartawan
- Department of Chemistry, Albany, NY, United States
- The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Yuhan Wu
- Department of Chemistry, Albany, NY, United States
- The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Chengze Wu
- Department of Chemistry, Albany, NY, United States
- The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Hope Zhang
- Department of Chemistry, Albany, NY, United States
- The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Jeanne Lu
- Department of Chemistry, Albany, NY, United States
- The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Ashley Hu
- Department of Chemistry, Albany, NY, United States
- The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Sweta Vangaveti
- The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| | - Jia Sheng
- Department of Chemistry, Albany, NY, United States
- The RNA Institute, University at Albany, State University of New York, Albany, NY, United States
| |
Collapse
|
8
|
Andregic N, Weaver C, Basu S. The binding of a c-MYC promoter G-quadruplex to neurotransmitters: An analysis of G-quadruplex stabilization using DNA melting, fluorescence spectroscopy, surface-enhanced Raman scattering and molecular docking. Biochim Biophys Acta Gen Subj 2023; 1867:130473. [PMID: 37778448 DOI: 10.1016/j.bbagen.2023.130473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
The interactions of several neurotransmitter and neural hormone molecules with the c-MYC G-quadruplex DNA sequence were analyzed using a combination of spectroscopic and computational techniques. The interactions between indole, catecholamine, and amino acid neurotransmitters and DNA sequences could potentially add to the understanding of the role of G-quadruplex structures play in various diseases. Also, the interaction of the DNA sequence derived from the nuclear hypersensitivity element (NHE) III1 region of c-MYC oncogene (Pu22), 5'-TGAGGGTGGGTAGGGTGGGTAA-3', has added significance in that these molecules may promote or inhibit the formation of G-quadruplex DNA which could lead to the development of promising drugs for anticancer therapy. The results showed that these molecules did not disrupt G-quadruplex formation even in the absence of quadruplex-stabilizing cations. There was also evidence of concentration-dependent binding and high binding affinities based on the Stern-Volmer model, and thermodynamically favorable interactions in the form of hydrogen-bonding and interactions involving the π system of the aromatic neurotransmitters.
Collapse
Affiliation(s)
- Nicole Andregic
- Department of Biology, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Caitlin Weaver
- Department of Biology, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Swarna Basu
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA.
| |
Collapse
|
9
|
Williams SL, Casas‐Delucchi CS, Raguseo F, Guneri D, Li Y, Minamino M, Fletcher EE, Yeeles JTP, Keyser UF, Waller ZAE, Di Antonio M, Coster G. Replication-induced DNA secondary structures drive fork uncoupling and breakage. EMBO J 2023; 42:e114334. [PMID: 37781931 PMCID: PMC10646557 DOI: 10.15252/embj.2023114334] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023] Open
Abstract
Sequences that form DNA secondary structures, such as G-quadruplexes (G4s) and intercalated-Motifs (iMs), are abundant in the human genome and play various physiological roles. However, they can also interfere with replication and threaten genome stability. Multiple lines of evidence suggest G4s inhibit replication, but the underlying mechanism remains unclear. Moreover, evidence of how iMs affect the replisome is lacking. Here, we reconstitute replication of physiologically derived structure-forming sequences to find that a single G4 or iM arrest DNA replication. Direct single-molecule structure detection within solid-state nanopores reveals structures form as a consequence of replication. Combined genetic and biophysical characterisation establishes that structure stability and probability of structure formation are key determinants of replisome arrest. Mechanistically, replication arrest is caused by impaired synthesis, resulting in helicase-polymerase uncoupling. Significantly, iMs also induce breakage of nascent DNA. Finally, stalled forks are only rescued by a specialised helicase, Pif1, but not Rrm3, Sgs1, Chl1 or Hrq1. Altogether, we provide a mechanism for quadruplex structure formation and resolution during replication and highlight G4s and iMs as endogenous sources of replication stress.
Collapse
Affiliation(s)
- Sophie L Williams
- Genome Replication Lab, Division of Cancer Biology, Institute of Cancer ResearchChester Beatty LaboratoriesLondonUK
| | - Corella S Casas‐Delucchi
- Genome Replication Lab, Division of Cancer Biology, Institute of Cancer ResearchChester Beatty LaboratoriesLondonUK
| | - Federica Raguseo
- Chemistry DepartmentImperial College London, MSRHLondonUK
- Institute of Chemical Biology, MSRHLondonUK
| | | | - Yunxuan Li
- Cavendish LaboratoryUniversity of CambridgeCambridgeUK
| | | | | | | | | | | | - Marco Di Antonio
- Chemistry DepartmentImperial College London, MSRHLondonUK
- Institute of Chemical Biology, MSRHLondonUK
- Francis Crick InstituteLondonUK
| | - Gideon Coster
- Genome Replication Lab, Division of Cancer Biology, Institute of Cancer ResearchChester Beatty LaboratoriesLondonUK
| |
Collapse
|
10
|
Nain N, Singh A, Khan S, Kukreti S. G-quadruplex formation at human DAT1 gene promoter: Effect of cytosine methylation. Biochem Biophys Rep 2023; 34:101464. [PMID: 37096205 PMCID: PMC10121379 DOI: 10.1016/j.bbrep.2023.101464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/26/2023] Open
Abstract
The dopamine transporter gene (DAT1), a recognized genetic risk factor for attention deficit hyperactivity disorder (ADHD) is principally responsible for the regulation of dopamine synaptic levels and serves as a key target in many psychostimulants drugs. DAT1 gene methylation has been considered an epigenetic marker in ADHD. The identification of G-rich sequence motifs potential to form G-quadruplexes is correlated with functionally important genomic regions. Herein, biophysical and biochemical techniques are employed to investigate the structural polymorphism along with the effect of cytosine methylation on a 26-nt G-rich sequence present in the promoter region of the DAT1 gene. The gel electrophoresis, circular dichroism spectroscopy, and UV-thermal melting data are well correlated and conclude the formation of a parallel (bimolecular), as well as antiparallel (tetramolecular) G-quadruplex in Na+ solution. Interestingly, the existence of uni-, bi-, tri-, and tetramolecular quadruplex structures in K+ solution exhibited only the parallel type G-quadruplex. The results demonstrate that in presence of either cation (Na+ or K+) the cytosine methylation reserved the structural topologies unaltered. However, methylation lowers the thermal stability of G-quadruplexes and the duplex structures, as well. These findings provide insights to understand the regulatory mechanisms underlying the formation of the G-quadruplex structure induced by DNA methylation.
Collapse
Affiliation(s)
- Nishu Nain
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Anju Singh
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi, Delhi, 110007, India
- Department of Chemistry, Ramjas College, University of Delhi, Delhi, 110007, India
| | - Shoaib Khan
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Shrikant Kukreti
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi, Delhi, 110007, India
- Corresponding author.
| |
Collapse
|
11
|
Tseng YJ, Malik I, Deng X, Krans A, Jansen-West K, Tank EM, Gomez NB, Sher R, Petrucelli L, Barmada SJ, Todd PK. Ribosomal quality control factors inhibit repeat-associated non-AUG translation from GC-rich repeats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544135. [PMID: 37333274 PMCID: PMC10274811 DOI: 10.1101/2023.06.07.544135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
A GGGGCC (G4C2) hexanucleotide repeat expansion in C9ORF72 causes amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD), while a CGG trinucleotide repeat expansion in FMR1 leads to the neurodegenerative disorder Fragile X-associated tremor/ataxia syndrome (FXTAS). These GC-rich repeats form RNA secondary structures that support repeat-associated non-AUG (RAN) translation of toxic proteins that contribute to disease pathogenesis. Here we assessed whether these same repeats might trigger stalling and interfere with translational elongation. We find that depletion of ribosome-associated quality control (RQC) factors NEMF, LTN1, and ANKZF1 markedly boost RAN translation product accumulation from both G4C2 and CGG repeats while overexpression of these factors reduces RAN production in both reporter cell lines and C9ALS/FTD patient iPSC-derived neurons. We also detected partially made products from both G4C2 and CGG repeats whose abundance increased with RQC factor depletion. Repeat RNA sequence, rather than amino acid content, is central to the impact of RQC factor depletion on RAN translation - suggesting a role for RNA secondary structure in these processes. Together, these findings suggest that ribosomal stalling and RQC pathway activation during RAN translation elongation inhibits the generation of toxic RAN products. We propose augmenting RQC activity as a therapeutic strategy in GC-rich repeat expansion disorders.
Collapse
Affiliation(s)
- Yi-Ju Tseng
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Indranil Malik
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiexiong Deng
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Amy Krans
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI, 48109, USA
| | - Karen Jansen-West
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Nicolas B. Gomez
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Roger Sher
- Department of Neurobiology and Behavior & Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, 11794, USA
| | | | - Sami J. Barmada
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Peter K. Todd
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI, 48109, USA
| |
Collapse
|
12
|
Xu P, Zhang J, Pan F, Mahn C, Roland C, Sagui C, Weninger K. Frustration Between Preferred States of Complementary Trinucleotide Repeat DNA Hairpins Anticorrelates with Expansion Disease Propensity. J Mol Biol 2023; 435:168086. [PMID: 37024008 PMCID: PMC10191799 DOI: 10.1016/j.jmb.2023.168086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
DNA trinucleotide repeat (TRs) expansion beyond a threshold often results in human neurodegenerative diseases. The mechanisms causing expansions remain unknown, although the tendency of TR ssDNA to self-associate into hairpins that slip along their length is widely presumed related. Here we apply single molecule FRET (smFRET) experiments and molecular dynamics simulations to determine conformational stabilities and slipping dynamics for CAG, CTG, GAC and GTC hairpins. Tetraloops are favored in CAG (89%), CTG (89%) and GTC (69%) while GAC favors triloops. We also determined that TTG interrupts near the loop in the CTG hairpin stabilize the hairpin against slipping. The different loop stabilities have implications for intermediate structures that may form when TR-containing duplex DNA opens. Opposing hairpins in the (CAG) ∙ (CTG) duplex would have matched stability whereas opposing hairpins in a (GAC) ∙ (GTC) duplex would have unmatched stability, introducing frustration in the (GAC) ∙ (GTC) opposing hairpins that could encourage their resolution to duplex DNA more rapidly than in (CAG) ∙ (CTG) structures. Given that the CAG and CTG TR can undergo large, disease-related expansion whereas the GAC and GTC sequences do not, these stability differences can inform and constrain models of expansion mechanisms of TR regions.
Collapse
Affiliation(s)
- Pengning Xu
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA. https://twitter.com/@XPengning
| | - Jiahui Zhang
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Feng Pan
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Chelsea Mahn
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Christopher Roland
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Celeste Sagui
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA.
| | - Keith Weninger
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
13
|
Wright SE, Todd PK. Native functions of short tandem repeats. eLife 2023; 12:e84043. [PMID: 36940239 PMCID: PMC10027321 DOI: 10.7554/elife.84043] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/08/2023] [Indexed: 03/21/2023] Open
Abstract
Over a third of the human genome is comprised of repetitive sequences, including more than a million short tandem repeats (STRs). While studies of the pathologic consequences of repeat expansions that cause syndromic human diseases are extensive, the potential native functions of STRs are often ignored. Here, we summarize a growing body of research into the normal biological functions for repetitive elements across the genome, with a particular focus on the roles of STRs in regulating gene expression. We propose reconceptualizing the pathogenic consequences of repeat expansions as aberrancies in normal gene regulation. From this altered viewpoint, we predict that future work will reveal broader roles for STRs in neuronal function and as risk alleles for more common human neurological diseases.
Collapse
Affiliation(s)
- Shannon E Wright
- Department of Neurology, University of Michigan–Ann ArborAnn ArborUnited States
- Neuroscience Graduate Program, University of Michigan–Ann ArborAnn ArborUnited States
- Department of Neuroscience, Picower InstituteCambridgeUnited States
| | - Peter K Todd
- Department of Neurology, University of Michigan–Ann ArborAnn ArborUnited States
- VA Ann Arbor Healthcare SystemAnn ArborUnited States
| |
Collapse
|
14
|
Teng Y, Zhu M, Qiu Z. G-Quadruplexes in Repeat Expansion Disorders. Int J Mol Sci 2023; 24:ijms24032375. [PMID: 36768697 PMCID: PMC9916761 DOI: 10.3390/ijms24032375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
The repeat expansions are the main genetic cause of various neurodegeneration diseases. More than ten kinds of repeat sequences with different lengths, locations, and structures have been confirmed in the past two decades. G-rich repeat sequences, such as CGG and GGGGCC, are reported to form functional G-quadruplexes, participating in many important bioprocesses. In this review, we conducted an overview concerning the contribution of G-quadruplex in repeat expansion disorders and summarized related mechanisms in current pathological studies, including the increasing genetic instabilities in replication and transcription, the toxic RNA foci formed in neurons, and the loss/gain function of proteins and peptides. Furthermore, novel strategies targeting G-quadruplex repeats were developed based on the understanding of disease mechanism. Small molecules and proteins binding to G-quadruplex in repeat expansions were investigated to protect neurons from dysfunction and delay the progression of neurodegeneration. In addition, the effects of environment on the stability of G-quadruplex were discussed, which might be critical factors in the pathological study of repeat expansion disorders.
Collapse
|
15
|
Mirceta M, Shum N, Schmidt MHM, Pearson CE. Fragile sites, chromosomal lesions, tandem repeats, and disease. Front Genet 2022; 13:985975. [PMID: 36468036 PMCID: PMC9714581 DOI: 10.3389/fgene.2022.985975] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/02/2022] [Indexed: 09/16/2023] Open
Abstract
Expanded tandem repeat DNAs are associated with various unusual chromosomal lesions, despiralizations, multi-branched inter-chromosomal associations, and fragile sites. Fragile sites cytogenetically manifest as localized gaps or discontinuities in chromosome structure and are an important genetic, biological, and health-related phenomena. Common fragile sites (∼230), present in most individuals, are induced by aphidicolin and can be associated with cancer; of the 27 molecularly-mapped common sites, none are associated with a particular DNA sequence motif. Rare fragile sites ( ≳ 40 known), ≤ 5% of the population (may be as few as a single individual), can be associated with neurodevelopmental disease. All 10 molecularly-mapped folate-sensitive fragile sites, the largest category of rare fragile sites, are caused by gene-specific CGG/CCG tandem repeat expansions that are aberrantly CpG methylated and include FRAXA, FRAXE, FRAXF, FRA2A, FRA7A, FRA10A, FRA11A, FRA11B, FRA12A, and FRA16A. The minisatellite-associated rare fragile sites, FRA10B, FRA16B, can be induced by AT-rich DNA-ligands or nucleotide analogs. Despiralized lesions and multi-branched inter-chromosomal associations at the heterochromatic satellite repeats of chromosomes 1, 9, 16 are inducible by de-methylating agents like 5-azadeoxycytidine and can spontaneously arise in patients with ICF syndrome (Immunodeficiency Centromeric instability and Facial anomalies) with mutations in genes regulating DNA methylation. ICF individuals have hypomethylated satellites I-III, alpha-satellites, and subtelomeric repeats. Ribosomal repeats and subtelomeric D4Z4 megasatellites/macrosatellites, are associated with chromosome location, fragility, and disease. Telomere repeats can also assume fragile sites. Dietary deficiencies of folate or vitamin B12, or drug insults are associated with megaloblastic and/or pernicious anemia, that display chromosomes with fragile sites. The recent discovery of many new tandem repeat expansion loci, with varied repeat motifs, where motif lengths can range from mono-nucleotides to megabase units, could be the molecular cause of new fragile sites, or other chromosomal lesions. This review focuses on repeat-associated fragility, covering their induction, cytogenetics, epigenetics, cell type specificity, genetic instability (repeat instability, micronuclei, deletions/rearrangements, and sister chromatid exchange), unusual heritability, disease association, and penetrance. Understanding tandem repeat-associated chromosomal fragile sites provides insight to chromosome structure, genome packaging, genetic instability, and disease.
Collapse
Affiliation(s)
- Mila Mirceta
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Natalie Shum
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Monika H. M. Schmidt
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Christopher E. Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Bansal A, Kaushik S, Kukreti S. Non-canonical DNA structures: Diversity and disease association. Front Genet 2022; 13:959258. [PMID: 36134025 PMCID: PMC9483843 DOI: 10.3389/fgene.2022.959258] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
A complete understanding of DNA double-helical structure discovered by James Watson and Francis Crick in 1953, unveil the importance and significance of DNA. For the last seven decades, this has been a leading light in the course of the development of modern biology and biomedical science. Apart from the predominant B-form, experimental shreds of evidence have revealed the existence of a sequence-dependent structural diversity, unusual non-canonical structures like hairpin, cruciform, Z-DNA, multistranded structures such as DNA triplex, G-quadruplex, i-motif forms, etc. The diversity in the DNA structure depends on various factors such as base sequence, ions, superhelical stress, and ligands. In response to these various factors, the polymorphism of DNA regulates various genes via different processes like replication, transcription, translation, and recombination. However, altered levels of gene expression are associated with many human genetic diseases including neurological disorders and cancer. These non-B-DNA structures are expected to play a key role in determining genetic stability, DNA damage and repair etc. The present review is a modest attempt to summarize the available literature, illustrating the occurrence of non-canonical structures at the molecular level in response to the environment and interaction with ligands and proteins. This would provide an insight to understand the biological functions of these unusual DNA structures and their recognition as potential therapeutic targets for diverse genetic diseases.
Collapse
Affiliation(s)
- Aparna Bansal
- Nucleic Acid Research Lab, Department of Chemistry, University of Delhi, Delhi, India
- Department of Chemistry, Hansraj College, University of Delhi, Delhi, India
| | - Shikha Kaushik
- Nucleic Acid Research Lab, Department of Chemistry, University of Delhi, Delhi, India
- Department of Chemistry, Rajdhani College, University of Delhi, New Delhi, India
| | - Shrikant Kukreti
- Nucleic Acid Research Lab, Department of Chemistry, University of Delhi, Delhi, India
- *Correspondence: Shrikant Kukreti,
| |
Collapse
|
17
|
Casas-Delucchi CS, Daza-Martin M, Williams SL, Coster G. The mechanism of replication stalling and recovery within repetitive DNA. Nat Commun 2022; 13:3953. [PMID: 35853874 PMCID: PMC9296464 DOI: 10.1038/s41467-022-31657-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/27/2022] [Indexed: 11/09/2022] Open
Abstract
Accurate chromosomal DNA replication is essential to maintain genomic stability. Genetic evidence suggests that certain repetitive sequences impair replication, yet the underlying mechanism is poorly defined. Replication could be directly inhibited by the DNA template or indirectly, for example by DNA-bound proteins. Here, we reconstitute replication of mono-, di- and trinucleotide repeats in vitro using eukaryotic replisomes assembled from purified proteins. We find that structure-prone repeats are sufficient to impair replication. Whilst template unwinding is unaffected, leading strand synthesis is inhibited, leading to fork uncoupling. Synthesis through hairpin-forming repeats is rescued by replisome-intrinsic mechanisms, whereas synthesis of quadruplex-forming repeats requires an extrinsic accessory helicase. DNA-induced fork stalling is mechanistically similar to that induced by leading strand DNA lesions, highlighting structure-prone repeats as an important potential source of replication stress. Thus, we propose that our understanding of the cellular response to replication stress may also be applied to DNA-induced replication stalling.
Collapse
Affiliation(s)
- Corella S Casas-Delucchi
- Genome Replication lab, Division of Cancer Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Manuel Daza-Martin
- Genome Replication lab, Division of Cancer Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Sophie L Williams
- Genome Replication lab, Division of Cancer Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Gideon Coster
- Genome Replication lab, Division of Cancer Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK.
| |
Collapse
|
18
|
Quantitative detection of CpG methylation level on G-quadruplex and i-motif-forming DNA by recombinase polymerase amplification. Anal Bioanal Chem 2022; 414:6223-6231. [PMID: 35788871 DOI: 10.1007/s00216-022-04192-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 11/01/2022]
Abstract
Detection of CpG methylation levels holds immense potential for application in medical diagnosis of various diseases. In this study, we report the development of a recombinase polymerase amplification (RPA)-based CpG methylation level sensing system on G-quadruplex (G4) and intercalated motif (i-motif)-forming regions, which are stabilized by CpG methylation. This detection system is based on the principle that DNA polymerase is stalled at the methylated G4 and i-motif-forming region, which results in a decrease in the initial elongation efficiency of RPA. This reduction in turn affects the onset of amplification depending on the extent of CpG methylation; therefore, the methylation level is quantified by RPA. We demonstrate that the onset of amplification was delayed by CpG methylation when PCR products containing the vascular endothelial growth factor (VEGF) G4 and i-motif-forming region were used as the template. Furthermore, onset of amplification was delayed with the increase in CpG methylation of the VEGF region on genomic DNA. These results demonstrate that the sensing system is capable of directly detecting the methylation level at a constant temperature (39 °C) within 30 min without performing bisulfite conversion or affinity capture of methylated DNA.
Collapse
|
19
|
Marilovtseva EV, Studitsky VM. Guanine Quadruplexes in Cell Nucleus Metabolism. Mol Biol 2021. [DOI: 10.1134/s0026893321040075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Hayward BE, Usdin K. Mechanisms of Genome Instability in the Fragile X-Related Disorders. Genes (Basel) 2021; 12:genes12101633. [PMID: 34681027 PMCID: PMC8536109 DOI: 10.3390/genes12101633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/17/2022] Open
Abstract
The Fragile X-related disorders (FXDs), which include the intellectual disability fragile X syndrome (FXS), are disorders caused by expansion of a CGG-repeat tract in the 5′ UTR of the X-linked FMR1 gene. These disorders are named for FRAXA, the folate-sensitive fragile site that localizes with the CGG-repeat in individuals with FXS. Two pathological FMR1 allele size classes are distinguished. Premutation (PM) alleles have 54–200 repeats and confer the risk of fragile X-associated tremor/ataxia syndrome (FXTAS) and fragile X-associated primary ovarian insufficiency (FXPOI). PM alleles are prone to both somatic and germline expansion, with female PM carriers being at risk of having a child with >200+ repeats. Inheritance of such full mutation (FM) alleles causes FXS. Contractions of PM and FM alleles can also occur. As a result, many carriers are mosaic for different sized alleles, with the clinical presentation depending on the proportions of these alleles in affected tissues. Furthermore, it has become apparent that the chromosomal fragility of FXS individuals reflects an underlying problem that can lead to chromosomal numerical and structural abnormalities. Thus, large numbers of CGG-repeats in the FMR1 gene predisposes individuals to multiple forms of genome instability. This review will discuss our current understanding of these processes.
Collapse
|
21
|
Vafaeie F, Alerasool M, Kaseb Mojaver N, Mojarrad M. Fragile X Syndrome in a Female With Homozygous Full-Mutation Alleles of the FMR1 Gene. Cureus 2021; 13:e16340. [PMID: 34395123 PMCID: PMC8357243 DOI: 10.7759/cureus.16340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 11/05/2022] Open
Abstract
Fragile X syndrome (FXS) has been reported as the leading cause of mental retardation (MR) that predominantly involves males compared to females. An over-expansion of CGG repeats in the 5' untranslated region of the FMR1 gene plays the primary role in this disease. In this study, we encountered a homozygote female patient affected by FMR1 expansion mutation. Surprisingly, she had inherited her full-mutated alleles from two different ancestors. This condition is an extremely rare case of FXS. After accurate genetic counseling, family members were referred to the laboratory for genetic testing. Karyotype with two X chromosomes was the finding after the G-banding study of the proband. Molecular analysis indicated that she was a female with full-mutated or pre-mutated alleles on both of her X chromosomes. It is a rare phenomenon that we detected in this patient. We have concluded that a combination of allele instability during oogenesis and inheritance of two alleles are the leading cause of MR in the presented case.
Collapse
Affiliation(s)
- Farzane Vafaeie
- Medical Genetics Laboratory, Genetic Foundation of Khorasan Razavi, Mashhad, IRN
| | - Masoome Alerasool
- Medical Genetics Laboratory, Genetic Foundation of Khorasan Razavi, Mashhad, IRN.,Department of Medical Genetics, Mashhad University of Medical Sciences, Mashhad, IRN
| | - Nasrin Kaseb Mojaver
- Medical Genetics Laboratory, Genetic Foundation of Khorasan Razavi, Mashhad, IRN
| | - Majid Mojarrad
- Medical Genetics Laboratory, Genetic Foundation of Khorasan Razavi, Mashhad, IRN.,Department of Medical Genetics, Mashhad University of Medical Sciences, Mashhad, IRN.,Genetic Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, IRN
| |
Collapse
|
22
|
Garribba L, Vogel I, Lerdrup M, Gonçalves Dinis MM, Ren L, Liu Y. Folate Deficiency Triggers the Abnormal Segregation of a Region With Large Cluster of CG-Rich Trinucleotide Repeats on Human Chromosome 2. Front Genet 2021; 12:695124. [PMID: 34276797 PMCID: PMC8281231 DOI: 10.3389/fgene.2021.695124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Folate deficiency is associated with a broad range of human disorders, including anemia, fetal neural tube defects, age-associated dementia and several types of cancer. It is well established that a subgroup of rare fragile sites (RFSs) containing expanded CGG trinucleotide repeat (TNR) sequences display instability when cells are deprived of folate. However, given that folate sensitive RFSs exist in a very small percentage of the population, they are unlikely to be the cause of the widespread health problems associated with folate deficiency. We hypothesized that folate deficiency could specifically affect DNA replication at regions containing CG-rich repeat sequences. For this, we identified a region on human chromosome 2 (Chr2) comprising more than 300 CG-rich TNRs (termed “FOLD1”) by examining the human genome database. Via the analysis of chromosome shape and segregation in mitosis, we demonstrate that, when human cells are cultured under folate stress conditions, Chr2 is prone to display a “kink” or “bending” at FOLD1 in metaphase and nondisjunction in anaphase. Furthermore, long-term folate deprivation causes Chr2 aneuploidy. Our results provide new evidence on the abnormalities folate deficiency could cause in human cells. This could facilitate future studies on the deleterious health conditions associated with folate deficiency.
Collapse
Affiliation(s)
- Lorenza Garribba
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ivan Vogel
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mads Lerdrup
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Marisa M Gonçalves Dinis
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Liqun Ren
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ying Liu
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Tseng YJ, Sandwith SN, Green KM, Chambers AE, Krans A, Raimer HM, Sharlow ME, Reisinger MA, Richardson AE, Routh ED, Smaldino MA, Wang YH, Vaughn JP, Todd PK, Smaldino PJ. The RNA helicase DHX36-G4R1 modulates C9orf72 GGGGCC hexanucleotide repeat-associated translation. J Biol Chem 2021; 297:100914. [PMID: 34174288 PMCID: PMC8326427 DOI: 10.1016/j.jbc.2021.100914] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/02/2021] [Accepted: 06/22/2021] [Indexed: 12/26/2022] Open
Abstract
GGGGCC (G4C2) hexanucleotide repeat expansions in the endosomal trafficking gene C9orf72 are the most common genetic cause of ALS and frontotemporal dementia. Repeat-associated non-AUG (RAN) translation of this expansion through near-cognate initiation codon usage and internal ribosomal entry generates toxic proteins that accumulate in patients' brains and contribute to disease pathogenesis. The helicase protein DEAH-box helicase 36 (DHX36–G4R1) plays active roles in RNA and DNA G-quadruplex (G4) resolution in cells. As G4C2 repeats are known to form G4 structures in vitro, we sought to determine the impact of manipulating DHX36 expression on repeat transcription and RAN translation. Using a series of luciferase reporter assays both in cells and in vitro, we found that DHX36 depletion suppresses RAN translation in a repeat length–dependent manner, whereas overexpression of DHX36 enhances RAN translation from G4C2 reporter RNAs. Moreover, upregulation of RAN translation that is typically triggered by integrated stress response activation is prevented by loss of DHX36. These results suggest that DHX36 is active in regulating G4C2 repeat translation, providing potential implications for therapeutic development in nucleotide repeat expansion disorders.
Collapse
Affiliation(s)
- Yi-Ju Tseng
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA; Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Siara N Sandwith
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | - Katelyn M Green
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Amy Krans
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Heather M Raimer
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | | - Eric D Routh
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| | - James P Vaughn
- Division of Cancer Biology, NanoMedica LLC, Winston-Salem, North Carolina, USA
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA; Department of Neurology, Ann Arbor VA Medical Center, Ann Arbor, Michigan, USA.
| | | |
Collapse
|
24
|
Mishra S, Kota S, Chaudhary R, Misra HS. Guanine quadruplexes and their roles in molecular processes. Crit Rev Biochem Mol Biol 2021; 56:482-499. [PMID: 34162300 DOI: 10.1080/10409238.2021.1926417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The role of guanine quadruplexes (G4) in fundamental biological processes like DNA replication, transcription, translation and telomere maintenance is recognized. G4 structure dynamics is regulated by G4 structure binding proteins and is thought to be crucial for the maintenance of genome integrity in both prokaryotic and eukaryotic cells. Growing research over the last decade has expanded the existing knowledge of the functional diversity of G4 (DNA and RNA) structures across the working models. The control of G4 structure dynamics using G4 binding drugs has been suggested as the putative targets in the control of cancer and bacterial pathogenesis. This review has brought forth the collections of recent information that indicate G4 (mostly G4 DNA) roles in microbial pathogenesis, DNA damaging stress response in bacteria and mammalian cells. Studies in mitochondrial gene function regulation by G4s have also been underscored. Finally, the interdependence of G4s and epigenetic modifications and their speculated medical implications through G4 interacting proteins has been discussed.
Collapse
Affiliation(s)
- Shruti Mishra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute (DAE Deemed to be University), Mumbai, India
| | - Swathi Kota
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute (DAE Deemed to be University), Mumbai, India
| | - Reema Chaudhary
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute (DAE Deemed to be University), Mumbai, India
| | - H S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute (DAE Deemed to be University), Mumbai, India
| |
Collapse
|
25
|
Cave JW, Willis DE. G-quadruplex regulation of neural gene expression. FEBS J 2021; 289:3284-3303. [PMID: 33905176 DOI: 10.1111/febs.15900] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/24/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022]
Abstract
G-quadruplexes are four-stranded helical nucleic acid structures characterized by stacked tetrads of guanosine bases. These structures are widespread throughout mammalian genomic DNA and RNA transcriptomes, and prevalent across all tissues. The role of G-quadruplexes in cancer is well-established, but there has been a growing exploration of these structures in the development and homeostasis of normal tissue. In this review, we focus on the roles of G-quadruplexes in directing gene expression in the nervous system, including the regulation of gene transcription, mRNA processing, and trafficking, as well as protein translation. The role of G-quadruplexes and their molecular interactions in the pathology of neurological diseases is also examined. Outside of cancer, there has been only limited exploration of G-quadruplexes as potential intervention targets to treat disease or injury. We discuss studies that have used small-molecule ligands to manipulate G-quadruplex stability in order to treat disease or direct neural stem/progenitor cell proliferation and differentiation into therapeutically relevant cell types. Understanding the many roles that G-quadruplexes have in the nervous system not only provides critical insight into fundamental molecular mechanisms that control neurological function, but also provides opportunities to identify novel therapeutic targets to treat injury and disease.
Collapse
Affiliation(s)
- John W Cave
- InVitro Cell Research LLC, Englewood, NJ, USA
| | - Dianna E Willis
- Burke Neurological Institute, White Plains, NY, USA.,Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
26
|
Ajjugal Y, Kolimi N, Rathinavelan T. Secondary structural choice of DNA and RNA associated with CGG/CCG trinucleotide repeat expansion rationalizes the RNA misprocessing in FXTAS. Sci Rep 2021; 11:8163. [PMID: 33854084 PMCID: PMC8046799 DOI: 10.1038/s41598-021-87097-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 03/22/2021] [Indexed: 11/09/2022] Open
Abstract
CGG tandem repeat expansion in the 5'-untranslated region of the fragile X mental retardation-1 (FMR1) gene leads to unusual nucleic acid conformations, hence causing genetic instabilities. We show that the number of G…G (in CGG repeat) or C…C (in CCG repeat) mismatches (other than A…T, T…A, C…G and G…C canonical base pairs) dictates the secondary structural choice of the sense and antisense strands of the FMR1 gene and their corresponding transcripts in fragile X-associated tremor/ataxia syndrome (FXTAS). The circular dichroism (CD) spectra and electrophoretic mobility shift assay (EMSA) reveal that CGG DNA (sense strand of the FMR1 gene) and its transcript favor a quadruplex structure. CD, EMSA and molecular dynamics (MD) simulations also show that more than four C…C mismatches cannot be accommodated in the RNA duplex consisting of the CCG repeat (antisense transcript); instead, it favors an i-motif conformational intermediate. Such a preference for unusual secondary structures provides a convincing justification for the RNA foci formation due to the sequestration of RNA-binding proteins to the bidirectional transcripts and the repeat-associated non-AUG translation that are observed in FXTAS. The results presented here also suggest that small molecule modulators that can destabilize FMR1 CGG DNA and RNA quadruplex structures could be promising candidates for treating FXTAS.
Collapse
Affiliation(s)
- Yogeeshwar Ajjugal
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana State, 502285, India
| | - Narendar Kolimi
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana State, 502285, India
| | | |
Collapse
|
27
|
Laddachote S, Ishii R, Yoshida W. Effects of CpG methylation on the thermal stability of c-kit2, c-kit*, and c-kit1 G-quadruplex structures. BBA ADVANCES 2021; 1:100007. [PMID: 37082005 PMCID: PMC10074881 DOI: 10.1016/j.bbadva.2021.100007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 11/25/2022] Open
Abstract
In genomic DNA, G-quadruplex (G4)-forming DNA can form either a duplex or G4 structure, suggesting that understanding the factors regulating G4 formation is important for revealing the cellular functions controlled by G4 formation. Cytosine DNA methylation in the CpG islands is known to play an important role in transcriptional regulation. Additionally, CpG methylation increases the thermal stability of G4 structures such as BCL2 and VEGF G4. In this study, we evaluated the effects of CpG methylation in three G4 structures (c-kit2, c-kit*, and c-kit1) produced by the c-KIT promoter. Each was analyzed using circular dichroism (CD) melting analysis. The results demonstrate that CpG methylation does not alter the thermal stability of c-kit2 G4 structure when formed in the presence of K+; a single-CpG methylation at C1 or C11 decreases the thermal stability of any c-kit2 G4 structure formed in the presence of Na+ and Mg2+ while methylation at C5 increases the thermal stability; CpG methylation does not alter the thermal stability of c-kit1 or c-kit* G4 structures formed in the presence of K+; and the c-kit1 and c-kit* G4-forming oligonucleotides do not form G4 structures in the presence of Na+ and Mg2+. These results provide important clues for understanding the regulatory mechanisms underlying the formation of CpG methylation-induced G4 structures.
Collapse
|
28
|
Alternative DNA Structures In Vivo: Molecular Evidence and Remaining Questions. Microbiol Mol Biol Rev 2020; 85:85/1/e00110-20. [PMID: 33361270 DOI: 10.1128/mmbr.00110-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Duplex DNA naturally folds into a right-handed double helix in physiological conditions. Some sequences of unusual base composition may nevertheless form alternative structures, as was shown for many repeated sequences in vitro However, evidence for the formation of noncanonical structures in living cells is difficult to gather. It mainly relies on genetic assays demonstrating their function in vivo or through genetic instability reflecting particular properties of such structures. Efforts were made to reveal their existence directly in a living cell, mainly by generating antibodies specific to secondary structures or using chemical ligands selected for their affinity to these structures. Among secondary structure-forming DNAs are G-quadruplexes, human fragile sites containing minisatellites, AT-rich regions, inverted repeats able to form cruciform structures, hairpin-forming CAG/CTG triplet repeats, and triple helices formed by homopurine-homopyrimidine GAA/TTC trinucleotide repeats. Many of these alternative structures are involved in human pathologies, such as neurological or developmental disorders, as in the case of trinucleotide repeats, or cancers triggered by translocations linked to fragile sites. This review will discuss and highlight evidence supporting the formation of alternative DNA structures in vivo and will emphasize the role of the mismatch repair machinery in binding mispaired DNA duplexes, triggering genetic instability.
Collapse
|
29
|
Rzeszutek I, Singh A. Small RNAs, Big Diseases. Int J Mol Sci 2020; 21:E5699. [PMID: 32784829 PMCID: PMC7460979 DOI: 10.3390/ijms21165699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 02/06/2023] Open
Abstract
The past two decades have seen extensive research done to pinpoint the role of microRNAs (miRNAs) that have led to discovering thousands of miRNAs in humans. It is not, therefore, surprising to see many of them implicated in a number of common as well as rare human diseases. In this review article, we summarize the progress in our understanding of miRNA-related research in conjunction with different types of cancers and neurodegenerative diseases, as well as their potential in generating more reliable diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Iwona Rzeszutek
- Institute of Biology and Biotechnology, Department of Biotechnology, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Aditi Singh
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| |
Collapse
|
30
|
Mystery of Expansion: DNA Metabolism and Unstable Repeats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1241:101-124. [PMID: 32383118 DOI: 10.1007/978-3-030-41283-8_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The mammalian genome mostly contains repeated sequences. Some of these repeats are in the regulatory elements of genes, and their instability, particularly the propensity to change the repeat unit number, is responsible for 36 well-known neurodegenerative human disorders. The mechanism of repeat expansion has been an unsolved question for more than 20 years. There are a few hypotheses describing models of mutation development. Every hypothesis is based on assumptions about unusual secondary structures that violate DNA metabolism processes in the cell. Some models are based on replication errors, and other models are based on mismatch repair or base excision repair errors. Additionally, it has been shown that epigenetic regulation of gene expression can influence the probability and frequency of expansion. In this review, we consider the molecular bases of repeat expansion disorders and discuss possible mechanisms of repeat expansion during cell metabolism.
Collapse
|
31
|
Folate stress induces SLX1- and RAD51-dependent mitotic DNA synthesis at the fragile X locus in human cells. Proc Natl Acad Sci U S A 2020; 117:16527-16536. [PMID: 32601218 PMCID: PMC7368274 DOI: 10.1073/pnas.1921219117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Folate deficiency is associated with multiple disorders in humans. Through the analysis of the fragile X syndrome locus (FRAXA) in immortalized human lymphocytes or fibroblasts, we demonstrate that FRAXA undergoes DNA synthesis in mitosis (MiDAS). We demonstrate that this process occurs via break-induced DNA replication and requires the SLX1/SLX4 endonuclease complex, the RAD51 recombinase and POLD3, a subunit of polymerase delta. We also demonstrate that other loci undergo MiDAS upon folate stress. This study reveals a function of human SLX1 in the maintenance of FRAXA stability and provides evidence that, in addition to FRAXA, MiDAS occurs at other loci following folate deprivation. These findings provide insight into the diverse and detrimental consequences of folate deficiency in human cells. Folate deprivation drives the instability of a group of rare fragile sites (RFSs) characterized by CGG trinucleotide repeat (TNR) sequences. Pathological expansion of the TNR within the FRAXA locus perturbs DNA replication and is the major causative factor for fragile X syndrome, a sex-linked disorder associated with cognitive impairment. Although folate-sensitive RFSs share many features with common fragile sites (CFSs; which are found in all individuals), they are induced by different stresses and share no sequence similarity. It is known that a pathway (termed MiDAS) is employed to complete the replication of CFSs in early mitosis. This process requires RAD52 and is implicated in generating translocations and copy number changes at CFSs in cancers. However, it is unclear whether RFSs also utilize MiDAS and to what extent the fragility of CFSs and RFSs arises by shared or distinct mechanisms. Here, we demonstrate that MiDAS does occur at FRAXA following folate deprivation but proceeds via a pathway that shows some mechanistic differences from that at CFSs, being dependent on RAD51, SLX1, and POLD3. A failure to complete MiDAS at FRAXA leads to severe locus instability and missegregation in mitosis. We propose that break-induced DNA replication is required for the replication of FRAXA under folate stress and define a cellular function for human SLX1. These findings provide insights into how folate deprivation drives instability in the human genome.
Collapse
|
32
|
Abstract
Trinucleotide repeats are a peculiar class of microsatellites involved in many neurological as well as developmental disorders. Their propensity to generate very large expansions over time is supposedly due to their capacity to form specific secondary structures, such as imperfect hairpins, triple helices, or G-quadruplexes. These unusual structures were proposed to trigger expansions in vivo. Here, I review known technical issues linked to these structures, such as slippage during polymerase chain reaction and aberrant migration of long trinucleotide repeats during agarose gel electrophoresis. Our current understanding of interactions between trinucleotide repeat secondary structures and the mismatch-repair machinery is also quickly reviewed, and critical questions relevant to these interactions are addressed.
Collapse
Affiliation(s)
- Guy-Franck Richard
- Department Genomes & Genetics, Institut Pasteur, CNRS UMR3525, Paris, France.
| |
Collapse
|
33
|
Chiara M, Zambelli F, Picardi E, Horner DS, Pesole G. Critical assessment of bioinformatics methods for the characterization of pathological repeat expansions with single-molecule sequencing data. Brief Bioinform 2019; 21:1971-1986. [DOI: 10.1093/bib/bbz099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/22/2019] [Accepted: 07/09/2019] [Indexed: 01/19/2023] Open
Abstract
Abstract
A number of studies have reported the successful application of single-molecule sequencing technologies to the determination of the size and sequence of pathological expanded microsatellite repeats over the last 5 years. However, different custom bioinformatics pipelines were employed in each study, preventing meaningful comparisons and somewhat limiting the reproducibility of the results. In this review, we provide a brief summary of state-of-the-art methods for the characterization of expanded repeats alleles, along with a detailed comparison of bioinformatics tools for the determination of repeat length and sequence, using both real and simulated data. Our reanalysis of publicly available human genome sequencing data suggests a modest, but statistically significant, increase of the error rate of single-molecule sequencing technologies at genomic regions containing short tandem repeats. However, we observe that all the methods herein tested, irrespective of the strategy used for the analysis of the data (either based on the alignment or assembly of the reads), show high levels of sensitivity in both the detection of expanded tandem repeats and the estimation of the expansion size, suggesting that approaches based on single-molecule sequencing technologies are highly effective for the detection and quantification of tandem repeat expansions and contractions.
Collapse
Affiliation(s)
- Matteo Chiara
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Via Amendola e, 70126 Bari, Italy
| | - Federico Zambelli
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Via Amendola e, 70126 Bari, Italy
| | - Ernesto Picardi
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Via Amendola e, 70126 Bari, Italy
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari “A. Moro”, Via Orabona 4, 70126 Bari, Italy
| | - David S Horner
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Via Amendola e, 70126 Bari, Italy
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Via Amendola e, 70126 Bari, Italy
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari “A. Moro”, Via Orabona 4, 70126 Bari, Italy
| |
Collapse
|
34
|
Islam I, Baba Y, Witarto AB, Yoshida W. G-quadruplex–forming GGA repeat region functions as a negative regulator of the Ccnb1ip1 enhancer. Biosci Biotechnol Biochem 2019; 83:1697-1702. [DOI: 10.1080/09168451.2019.1611412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
ABSTRACT
An enhancer located upstream of the transcriptional start site of Ccnb1ip1 containing two GGA-rich regions and a 14-GGA repeat (GGA)14 region has been previously identified. Three copies of four GGA repeats in the c-myb promoter that form a tetrad:heptad:heptad:tetrad (T:H:H:T) dimerized G-quadruplex (G4) structure reportedly functions as both a transcriptional repressor and activator. Here, the secondary structures of the two GGA-rich and (GGA)14 regions were analyzed using circular dichroism spectral analysis, which indicated that the two GGA-rich DNAs formed parallel-type G4 structures, whereas (GGA)14 DNA formed the T:H:H:T dimerized G4 structure. Reporter assays demonstrated that individual regions did not show enhancer activity; however, the deletion of the (GGA)14 region resulted in 1.5-fold higher enhancer activity than that of the whole enhancer. These results indicate that the (GGA)14 region that forms the T:H:H:T dimerized G4 structure functions as a negative regulator of the Ccnb1ip1 enhancer.
Collapse
Affiliation(s)
- Izzul Islam
- Graduate School of Bionics, Tokyo University of Technology, Hachioji, Japan
- Department of Biotechnology, Sumbawa University of Technology, Sumbawa Besar, Indonesia
| | - Yuji Baba
- Graduate School of Bionics, Tokyo University of Technology, Hachioji, Japan
| | - Arief Budi Witarto
- Department of Biotechnology, Sumbawa University of Technology, Sumbawa Besar, Indonesia
| | - Wataru Yoshida
- Graduate School of Bionics, Tokyo University of Technology, Hachioji, Japan
| |
Collapse
|
35
|
Brcic J, Plavec J. NMR structure of a G-quadruplex formed by four d(G4C2) repeats: insights into structural polymorphism. Nucleic Acids Res 2019; 46:11605-11617. [PMID: 30277522 PMCID: PMC6265483 DOI: 10.1093/nar/gky886] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022] Open
Abstract
Most frequent genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), is a largely increased number of d(G4C2)n•(G2C4)n repeats located in the non-coding region of C9orf72 gene. Non-canonical structures, including G-quadruplexes, formed within expanded repeats have been proposed to drive repeat expansion and pathogenesis of ALS and FTD. Oligonucleotide d[(G4C2)3G4], which represents the shortest oligonucleotide model of d(G4C2) repeats with the ability to form a unimolecular G-quadruplex, forms two major G-quadruplex structures in addition to several minor species which coexist in solution with K+ ions. Herein, we used solution-state NMR to determine the high-resolution structure of one of the major G-quadruplex species adopted by d[(G4C2)3G4]. Structural characterization of the G-quadruplex named AQU was facilitated by a single substitution of dG with 8Br-dG at position 21 and revealed an antiparallel fold composed of four G-quartets and three lateral C-C loops. The G-quadruplex exhibits high thermal stability and is favored kinetically and under slightly acidic conditions. An unusual structural element distinct from a C-quartet is observed in the structure. Two C•C base pairs are stacked on the nearby G-quartet and are involved in a dynamic equilibrium between symmetric N3-amino and carbonyl-amino geometries and protonated C+•C state.
Collapse
Affiliation(s)
- Jasna Brcic
- Slovenian NMR Center, National Institute of Chemistry, Ljubljana SI-1000, Slovenia
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Ljubljana SI-1000, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana SI-1000, Slovenia.,EN-FIST Center of Excellence, Ljubljana SI-1000, Slovenia
| |
Collapse
|
36
|
Bansal A, Kukreti S. The four repeat Giardia lamblia telomere forms tetramolecular G-quadruplex with antiparallel topology. J Biomol Struct Dyn 2019; 38:1975-1983. [DOI: 10.1080/07391102.2019.1623074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Aparna Bansal
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi (North Campus), Delhi, India
- Department of Chemistry, Hansraj College, University of Delhi (North Campus), Delhi, India
| | - Shrikant Kukreti
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi (North Campus), Delhi, India
| |
Collapse
|
37
|
Repeat Instability in the Fragile X-Related Disorders: Lessons from a Mouse Model. Brain Sci 2019; 9:brainsci9030052. [PMID: 30832215 PMCID: PMC6468611 DOI: 10.3390/brainsci9030052] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/21/2019] [Accepted: 02/27/2019] [Indexed: 12/21/2022] Open
Abstract
The fragile X-related disorders (FXDs) are a group of clinical conditions that result primarily from an unusual mutation, the expansion of a CGG-repeat tract in exon 1 of the FMR1 gene. Mouse models are proving useful for understanding many aspects of disease pathology in these disorders. There is also reason to think that such models may be useful for understanding the molecular basis of the unusual mutation responsible for these disorders. This review will discuss what has been learnt to date about mechanisms of repeat instability from a knock-in FXD mouse model and what the implications of these findings may be for humans carrying expansion-prone FMR1 alleles.
Collapse
|
38
|
Kumari D, Gazy I, Usdin K. Pharmacological Reactivation of the Silenced FMR1 Gene as a Targeted Therapeutic Approach for Fragile X Syndrome. Brain Sci 2019; 9:brainsci9020039. [PMID: 30759772 PMCID: PMC6406686 DOI: 10.3390/brainsci9020039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 12/22/2022] Open
Abstract
More than ~200 CGG repeats in the 5′ untranslated region of the FMR1 gene results in transcriptional silencing and the absence of the FMR1 encoded protein, FMRP. FMRP is an RNA-binding protein that regulates the transport and translation of a variety of brain mRNAs in an activity-dependent manner. The loss of FMRP causes dysregulation of many neuronal pathways and results in an intellectual disability disorder, fragile X syndrome (FXS). Currently, there is no effective treatment for FXS. In this review, we discuss reactivation of the FMR1 gene as a potential approach for FXS treatment with an emphasis on the use of small molecules to inhibit the pathways important for gene silencing.
Collapse
Affiliation(s)
- Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Inbal Gazy
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
39
|
Sengupta A, Ganguly A, Chowdhury S. Promise of G-Quadruplex Structure Binding Ligands as Epigenetic Modifiers with Anti-Cancer Effects. Molecules 2019; 24:E582. [PMID: 30736345 PMCID: PMC6384772 DOI: 10.3390/molecules24030582] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 11/16/2022] Open
Abstract
Evidences from more than three decades of work support the function of non-duplex DNA structures called G-quadruplex (G4) in important processes like transcription and replication. In addition, G4 structures have been studied in connection with DNA base modifications and chromatin/nucleosome arrangements. Recent work, interestingly, shows promise of G4 structures, through interaction with G4 structure-interacting proteins, in epigenetics-in both DNA and histone modification. Epigenetic changes are found to be intricately associated with initiation as well as progression of cancer. Multiple oncogenes have been reported to harbor the G4 structure at regulatory regions. In this context, G4 structure-binding ligands attain significance as molecules with potential to modify the epigenetic state of chromatin. Here, using examples from recent studies we discuss the emerging role of G4 structures in epigenetic modifications and, therefore, the promise of G4 structure-binding ligands in epigenetic therapy.
Collapse
Affiliation(s)
- Antara Sengupta
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi-110025, India.
- Academy of Scientific and Innovative Research, Rafi Marg, New Delhi-110001, India.
| | - Akansha Ganguly
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi-110025, India.
| | - Shantanu Chowdhury
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi-110025, India.
- Academy of Scientific and Innovative Research, Rafi Marg, New Delhi-110001, India.
- GNR Knowledge Centre for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, Mathura Road, New Delhi-110025, India.
| |
Collapse
|
40
|
Abstract
G-quadruplexes (G4s) have become one of the most exciting nucleic acid secondary structures. A noncanonical, four-stranded structure formed in guanine-rich DNA and RNA sequences, G-quadruplexes can readily form under physiologically relevant conditions and are globularly folded structures. DNA is widely recognized as a double-helical structure essential in genetic information storage. However, only ~3% of the human genome is expressed in protein; RNA and DNA may form noncanonical secondary structures that are functionally important. G-quadruplexes are one such example which have gained considerable attention for their formation and regulatory roles in biologically significant regions, such as human telomeres, oncogene-promoter regions, replication initiation sites, and 5'- and 3'-untranslated region (UTR) of mRNA. They are shown to be a regulatory motif in a number of critical cellular processes including gene transcription, translation, replication, and genomic stability. G-quadruplexes are also found in nonhuman genomes, particularly those of human pathogens. Therefore, G-quadruplexes have emerged as a new class of molecular targets for drug development. In addition, there is considerable interest in the use of G-quadruplexes for biomaterials, biosensors, and biocatalysts. The First International Meeting on Quadruplex DNA was held in 2007, and the G-quadruplex field has been growing dramatically over the last decade. The methods used to study G-quadruplexes have been essential to the rapid progress in our understanding of this exciting nucleic acid secondary structure.
Collapse
Affiliation(s)
- Danzhou Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, Purdue Center for Cancer Research, Purdue Institute for Drug Discovery, West Lafayette, IN USA
| | - Clement Lin
- Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN USA
| |
Collapse
|
41
|
Non-duplex G-Quadruplex Structures Emerge as Mediators of Epigenetic Modifications. Trends Genet 2018; 35:129-144. [PMID: 30527765 DOI: 10.1016/j.tig.2018.11.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/10/2018] [Accepted: 11/02/2018] [Indexed: 12/16/2022]
Abstract
The role of non-duplex DNA, the guanine-quadruplex structure in particular, is becoming widely appreciated. Increasing evidence in the last decade implicates quadruplexes in important processes such as transcription and replication. Interestingly, more recent work suggests roles for quadruplexes, in association with quadruplex-interacting proteins, in epigenetics through both DNA and histone modifications. Here, we review the effect of the quadruplex structure on post-replication epigenetic memory and quadruplex-induced promoter DNA/histone modifications. Furthermore, we highlight the epigenetic state of the telomerase promoter where quadruplexes could play a key regulatory role. Finally, we discuss the possibility that DNA structures such as quadruplexes, within a largely duplex DNA background, could act as molecular anchors for locally induced epigenetic modifications.
Collapse
|
42
|
Abstract
The instability of chromosome fragile sites is implicated as a causative factor in several human diseases, including cancer [for common fragile sites (CFSs)] and neurological disorders [for rare fragile sites (RFSs)]. Previous studies have indicated that problems arising during DNA replication are the underlying source of this instability. Although the role of replication stress in promoting instability at CFSs is well documented, much less is known about how the fragility of RFSs arises. Many RFSs, as exemplified by expansion of a CGG trinucleotide repeat sequence in the fragile X syndrome-associated FRAXA locus, exhibit fragility in response to folate deficiency or other forms of "folate stress." We hypothesized that such folate stress, through disturbing the replication program within the pathologically expanded repeats within FRAXA, would lead to mitotic abnormalities that exacerbate locus instability. Here, we show that folate stress leads to a dramatic increase in missegregation of FRAXA coupled with the formation of single-stranded DNA bridges in anaphase and micronuclei that contain the FRAXA locus. Moreover, chromosome X aneuploidy is seen when these cells are exposed to folate deficiency for an extended period. We propose that problematic FRAXA replication during interphase leads to a failure to disjoin the sister chromatids during anaphase. This generates further instability not only at FRAXA itself but also of chromosome X. These data have wider implications for the effects of folate deficiency on chromosome instability in human cells.
Collapse
|
43
|
Mitchell ML, Leveille MP, Solecki RS, Tran T, Cannon B. Sequence-Dependent Effects of Monovalent Cations on the Structural Dynamics of Trinucleotide-Repeat DNA Hairpins. J Phys Chem B 2018; 122:11841-11851. [PMID: 30441902 DOI: 10.1021/acs.jpcb.8b07994] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Repetitive trinucleotide DNA sequences at specific genetic loci are associated with numerous hereditary, neurodegenerative diseases. The propensity of single-stranded domains containing these sequences to form secondary structure via extensive self-complementarity disrupts normal DNA processing to create genetic instabilities. To investigate these intrastrand structural dynamics, a DNA hairpin system was devised for single-molecule fluorescence study of the folding kinetics and energetics for secondary structure formation between two interacting, repetitive domains with specific numbers of the same trinucleotide motif (CXG), where X = T or A. Single-molecule fluorescence resonance energy transfer (smFRET) data show discrete conformational transitions between unstructured and closed hairpin states. The lifetimes of the closed hairpin states correlate with the number of repeats, with (CTG) N/(CTG) N domains maintaining longer-lived, closed states than equivalent-sized (CAG) N/(CAG) N domains. NaCl promotes similar degree of stabilization for the closed hairpin states of both repeat sequences. Temperature-based, smFRET experiments reveal that NaCl favors hairpin closing for (CAG) N/(CAG) N by preordering single-stranded repeat domains to accelerate the closing transition. In contrast, NaCl slows the opening transition of CTG hairpins; however, it promotes misfolded conformations that require unfolding. Energy diagrams illustrate the distinct folding pathways of (CTG) N and (CAG) N repeat domains and identify features that may contribute to their gene-destabilizing effects.
Collapse
Affiliation(s)
- Marisa L Mitchell
- Department of Physics , Loyola University Chicago , Chicago , Illinois 60660 , United States
| | - Michael P Leveille
- Department of Physics , Loyola University Chicago , Chicago , Illinois 60660 , United States
| | - Roman S Solecki
- Department of Physics , Loyola University Chicago , Chicago , Illinois 60660 , United States
| | - Thao Tran
- Department of Physics , Loyola University Chicago , Chicago , Illinois 60660 , United States
| | - Brian Cannon
- Department of Physics , Loyola University Chicago , Chicago , Illinois 60660 , United States
| |
Collapse
|
44
|
Lavezzo E, Berselli M, Frasson I, Perrone R, Palù G, Brazzale AR, Richter SN, Toppo S. G-quadruplex forming sequences in the genome of all known human viruses: A comprehensive guide. PLoS Comput Biol 2018; 14:e1006675. [PMID: 30543627 PMCID: PMC6307822 DOI: 10.1371/journal.pcbi.1006675] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/27/2018] [Accepted: 11/27/2018] [Indexed: 12/21/2022] Open
Abstract
G-quadruplexes are non-canonical nucleic-acid structures that control transcription, replication, and recombination in organisms. G-quadruplexes are present in eukaryotes, prokaryotes, and viruses. In the latter, mounting evidence indicates their key biological activity. Since data on viruses are scattered, we here present a comprehensive analysis of potential quadruplex-forming sequences (PQS) in the genome of all known viruses that can infect humans. We show that occurrence and location of PQSs are features characteristic of each virus class and family. Our statistical analysis proves that their presence within the viral genome is orderly arranged, as indicated by the possibility to correctly assign up to two-thirds of viruses to their exact class based on the PQS classification. For each virus we provide: i) the list of all PQS present in the genome (positive and negative strands), ii) their position in the viral genome, iii) the degree of conservation among strains of each PQS in its genome context, iv) the statistical significance of PQS abundance. This information is accessible from a database to allow the easy navigation of the results: http://www.medcomp.medicina.unipd.it/main_site/doku.php?id=g4virus. The availability of these data will greatly expedite research on G-quadruplex in viruses, with the possibility to accelerate finding therapeutic opportunities to numerous and some fearsome human diseases.
Collapse
Affiliation(s)
- Enrico Lavezzo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Michele Berselli
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Ilaria Frasson
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Rosalba Perrone
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Sara N. Richter
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Stefano Toppo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
45
|
Chu B, Zhang D, Hwang W, Paukstelis PJ. Crystal Structure of a Tetrameric DNA Fold-Back Quadruplex. J Am Chem Soc 2018; 140:16291-16298. [PMID: 30384604 DOI: 10.1021/jacs.8b10153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
DNA can adopt many structures beyond the Watson-Crick duplex. However, the bounds of DNA structural diversity and how these structures might regulate biological processes is only beginning to be understood. Here, we describe the 1.05 Å resolution crystal structure of a DNA oligonucleotide that self-associates to form a non-G-quadruplex fold-back structure. Distinct from previously described fold-back quadruplexes, two-fold-back dimers interact through noncanonical and Watson-Crick interactions to form a tetrameric assembly. These interactions include a hexad base pairing arrangement from two C-G-G base triples. The assembly is dependent on divalent cations, and the interface between the dimeric units creates a cavity in which a cation resides. This structure provides new sequence and structural contexts for the formation of fold-back quadruplexes, further highlighting the potential biological importance of this type of noncanonical DNA structure. This structure may also serve as the basis for designing new types of DNA nanoarchitectures or cation sensors based on the strong divalent cation dependence.
Collapse
Affiliation(s)
- Betty Chu
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization , University of Maryland , College Park , Maryland 20742 , United States
| | - Daoning Zhang
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization , University of Maryland , College Park , Maryland 20742 , United States
| | - Wonseok Hwang
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization , University of Maryland , College Park , Maryland 20742 , United States
| | - Paul J Paukstelis
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization , University of Maryland , College Park , Maryland 20742 , United States
| |
Collapse
|
46
|
The G-rich Repeats in FMR1 and C9orf72 Loci Are Hotspots for Local Unpairing of DNA. Genetics 2018; 210:1239-1252. [PMID: 30396881 DOI: 10.1534/genetics.118.301672] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 10/15/2018] [Indexed: 12/13/2022] Open
Abstract
Pathological mutations involving noncoding microsatellite repeats are typically located near promoters in CpG islands and are coupled with extensive repeat instability when sufficiently long. What causes these regions to be prone to repeat instability is not fully understood. There is a general consensus that instability results from the induction of unusual structures in the DNA by the repeats as a consequence of mispairing between complementary strands. In addition, there is some evidence that repeat instability is mediated by RNA transcription through the formation of three-stranded nucleic structures composed of persistent DNA:RNA hybrids, concomitant with single-strand DNA displacements (R-loops). Using human embryonic stem cells with wild-type and repeat expanded alleles in the FMR1 (CGGs) and C9orf72 (GGGGCCs) genes, we show that these loci constitute preferential sites (hotspots) for DNA unpairing. When R-loops are formed, DNA unpairing is more extensive, and is coupled with the interruptions of double-strand structures by the nontranscribing (G-rich) DNA strand. These interruptions are likely to reflect unusual structures in the DNA that drive repeat instability when the G-rich repeats considerably expand. Further, we demonstrate that when the CGGs in FMR1 are hyper-methylated and transcriptionally inactive, local DNA unpairing is abolished. Our study thus takes one more step toward the identification of dynamic, unconventional DNA structures across the G-rich repeats at FMR1 and C9orf72 disease-associated loci.
Collapse
|
47
|
Stabilization of G-quadruplex structure on vascular endothelial growth factor gene promoter depends on CpG methylation site and cation type. Biochim Biophys Acta Gen Subj 2018; 1862:1933-1937. [DOI: 10.1016/j.bbagen.2018.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 06/01/2018] [Accepted: 06/18/2018] [Indexed: 11/19/2022]
|
48
|
McGinty RJ, Mirkin SM. Cis- and Trans-Modifiers of Repeat Expansions: Blending Model Systems with Human Genetics. Trends Genet 2018; 34:448-465. [PMID: 29567336 PMCID: PMC5959756 DOI: 10.1016/j.tig.2018.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 12/30/2022]
Abstract
Over 30 hereditary diseases are caused by the expansion of microsatellite repeats. The length of the expandable repeat is the main hereditary determinant of these disorders. They are also affected by numerous genomic variants that are either nearby (cis) or physically separated from (trans) the repetitive locus, which we review here. These genetic variants have largely been elucidated in model systems using gene knockouts, while a few have been directly observed as single-nucleotide polymorphisms (SNPs) in patients. There is a notable disconnect between these two bodies of knowledge: knockouts poorly approximate the SNP-level variation in human populations that gives rise to medically relevant cis- and trans-modifiers, while the rarity of these diseases limits the statistical power of SNP-based analysis in humans. We propose that high-throughput SNP-based screening in model systems could become a useful approach to quickly identify and characterize modifiers of clinical relevance for patients.
Collapse
Affiliation(s)
- Ryan J McGinty
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
49
|
Guler GD, Rosenwaks Z, Gerhardt J. Human DNA Helicase B as a Candidate for Unwinding Secondary CGG Repeat Structures at the Fragile X Mental Retardation Gene. Front Mol Neurosci 2018; 11:138. [PMID: 29760651 PMCID: PMC5936766 DOI: 10.3389/fnmol.2018.00138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/04/2018] [Indexed: 12/20/2022] Open
Abstract
The fragile X syndrome (FXS) is caused by a CGG repeat expansion at the fragile X mental retardation (FMR1) gene. FMR1 alleles with more than 200 CGG repeats bear chromosomal fragility when cells experience folate deficiency. CGG repeats were reported to be able to form secondary structures, such as hairpins, in vitro. When such secondary structures are formed, repeats can lead to replication fork stalling even in the absence of any additional perturbation. Indeed, it was recently shown that the replication forks stall at the endogenous FMR1 locus in unaffected and FXS cells, suggesting the formation of secondary repeat structures at the FMR1 gene in vivo. If not dealt with properly replication fork stalling can lead to polymerase slippage and repeat expansion as well as fragile site expression. Despite the presence of repeat structures at the FMR1 locus, chromosomal fragility is only expressed under replicative stress suggesting the existence of potential molecular mechanisms that help the replication fork progress through these repeat regions. DNA helicases are known to aid replication forks progress through repetitive DNA sequences. Yet, the identity of the DNA helicase(s) responsible for unwinding the CGG repeats at FMR1 locus is not known. We found that the human DNA helicase B (HDHB) may provide an answer for this question. We used chromatin-immunoprecipitation assay to study the FMR1 region and common fragile sites (CFS), and asked whether HDHB localizes at replication forks stalled at repetitive regions even in unperturbed cells. HDHB was strongly enriched in S-phase at the repetitive DNA at CFS and FMR1 gene but not in the flanking regions. Taken together, these results suggest that HDHB functions in preventing or repairing stalled replication forks that arise in repeat-rich regions even in unperturbed cells. Furthermore, we discuss the importance and potential role of HDHB and other helicases in the resolution of secondary CGG repeat structures.
Collapse
Affiliation(s)
- Gulfem D Guler
- Celgene Quanticel Research, San Francisco, CA, United States
| | - Zev Rosenwaks
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Jeannine Gerhardt
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States.,Department of Obstetrics and Gynecology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
50
|
Tsukakoshi K, Saito S, Yoshida W, Goto S, Ikebukuro K. CpG Methylation Changes G-Quadruplex Structures Derived from Gene Promoters and Interaction with VEGF and SP1. Molecules 2018; 23:molecules23040944. [PMID: 29670067 PMCID: PMC6017926 DOI: 10.3390/molecules23040944] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/13/2018] [Accepted: 04/15/2018] [Indexed: 12/14/2022] Open
Abstract
G-quadruplex (G4) is a DNA/RNA conformation that consists of two or more G-tetrads resulting from four-guanine bases connected by Hoogsteen-type hydrogen bonds, which is often found in the telomeres of chromatin, as well as in the promoter regions of genes. The function of G4 in the genomic DNA is being elucidated and some G4-protein interactions have been reported; these are believed to play a role in vital cellular functions. In this study, we focused on CpG methylation, a well-known epigenetic modification of the genomic DNA, especially found in the promoter regions. Although many G4-forming sequences within the genomic DNA harbor CpG sites, the relationship between CpG methylation and the binding properties of associated proteins remains unclear. We demonstrated that the binding ability of vascular endothelial growth factor (VEGF) G4 DNA to VEGF165 protein was significantly decreased by CpG methylation. We identified the binding activity of G4 DNA oligonucleotides derived from gene promoter regions to SP1, a transcription factor that interacts with a G4-forming DNA and is also altered by CpG methylation. The effect of methylation on binding affinity was accompanied by changes in G4 structure and/or topology. Therefore, this study suggested that CpG methylation might be involved in protein binding to G4-forming DNA segments for purposes of transcriptional regulation.
Collapse
Affiliation(s)
- Kaori Tsukakoshi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | - Shiori Saito
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | - Wataru Yoshida
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo 192-0982, Japan.
| | - Shinichi Goto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|