1
|
Constâncio V, Lobo J, Sequeira JP, Henrique R, Jerónimo C. Prostate cancer epigenetics - from pathophysiology to clinical application. Nat Rev Urol 2025:10.1038/s41585-024-00991-8. [PMID: 39820138 DOI: 10.1038/s41585-024-00991-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 01/19/2025]
Abstract
Prostate cancer is a multifactorial disease influenced by various molecular features. Over the past decades, epigenetics, which is the study of changes in gene expression without altering the DNA sequence, has been recognized as a major driver of this disease. In the past 50 years, advancements in technological tools to characterize the epigenome have highlighted crucial roles of epigenetic mechanisms throughout the entire spectrum of prostate cancer, from initiation to progression, including localized disease, metastatic dissemination, castration resistance and neuroendocrine transdifferentiation. Substantial advances in the understanding of epigenetic mechanisms in the pathophysiology of prostate cancer have been carried out, but translating preclinical achievements into clinical practice remains challenging. Ongoing research and biomarker-oriented clinical trials are expected to increase the likelihood of successfully integrating epigenetics into prostate cancer clinical management.
Collapse
Affiliation(s)
- Vera Constâncio
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal
- Doctoral Program in Biomedical Sciences, ICBAS - School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
| | - João Lobo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre Raquel Seruca (Porto.CCC), Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS - School of Medicine & Biomedical Sciences, University of Porto, Porto, Portugal
| | - José Pedro Sequeira
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal
- Doctoral Program in Biomedical Sciences, ICBAS - School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre Raquel Seruca (Porto.CCC), Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS - School of Medicine & Biomedical Sciences, University of Porto, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal.
- Department of Pathology and Molecular Immunology, ICBAS - School of Medicine & Biomedical Sciences, University of Porto, Porto, Portugal.
| |
Collapse
|
2
|
Muletier R, Bourgne C, Guy L, Dougé A. DNA Methylation in Prostate Cancer: Clinical Implications and Potential Applications. Cancer Med 2025; 14:e70528. [PMID: 39783747 PMCID: PMC11714017 DOI: 10.1002/cam4.70528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/20/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Prostate cancer is a common cancer with a variable prognosis. Its management is currently guided by histological and biological markers such as the Gleason score and PSA. Developments in molecular biology are now making it possible to identify new targets for better classification of prostate cancer. Among emerging biomarker, DNA methylation, an epigenetic process, is increasingly being studied in carcinogenesis. Techniques for analyzing DNA methylation are constantly improving, and digital PCR now allows absolute methylation quantification with high sensitivity. These techniques can be performed on circulating tumor DNA. MATERIALS & METHODS We conducted a literature review of scientific articles addressing the topic of DNA methylation in prostate cancer. RESULTS & DISCUSSION This review summarizes the different genes whose methylation is involved in carcinogenesis and their clinical implications, both diagnostic and prognostic. Methylation monitoring could also be useful for the prediction of treatment response. However, most studies are retrospective, and prospective studies are needed to validate these data.
Collapse
Affiliation(s)
- Romane Muletier
- Service d'Oncologie médicaleCHU Gabriel MontpiedClermont‐FerrandFrance
| | - Céline Bourgne
- Hématologie BiologiqueCHU EstaingClermont‐FerrandFrance
- Équipe d'Accueil 7453 CHELTERUniversité Clermont Auvergne, CHU Clermont‐Ferrand, Hôpital EstaingClermont‐FerrandFrance
| | - Laurent Guy
- Service d'UrologieCHU Gabriel MontpiedClermont‐FerrandFrance
| | - Aurore Dougé
- Service d'Oncologie médicaleCHU Gabriel MontpiedClermont‐FerrandFrance
- Équipe d'Accueil 7453 CHELTERUniversité Clermont Auvergne, CHU Clermont‐Ferrand, Hôpital EstaingClermont‐FerrandFrance
| |
Collapse
|
3
|
Hussein MAF, Lismont C, Costa CF, Li H, Claessens F, Fransen M. Characterization of the Peroxisomal Proteome and Redox Balance in Human Prostate Cancer Cell Lines. Antioxidants (Basel) 2024; 13:1340. [PMID: 39594482 PMCID: PMC11591464 DOI: 10.3390/antiox13111340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Prostate cancer (PCa) is associated with disruptions in cellular redox balance. Given the intricate role of peroxisomes in redox metabolism, we conducted comprehensive proteomics analyses to compare peroxisomal and redox protein profiles between benign (RWPE-1) and malignant (22Rv1, LNCaP, and PC3) prostate cell lines. Our analyses revealed significant enrichment of the "peroxisome" pathway among proteins notably upregulated in androgen receptor (AR)-positive cell lines. In addition, catalase (CAT) activity was consistently higher in these malignant cell lines compared to RWPE-1, which contrasts with previous studies reporting lower CAT levels and increased H2O2 levels in PCa tissues compared to adjacent normal tissues. To mimic this clinical scenario, we used RNA interference to knock down CAT expression. Our results show that reduced CAT levels enhanced 22Rv1 and LNCaP cell proliferation. R1881-induced activation of AR, a key driver of PCa, increased expression of the H2O2-producing peroxisomal β-oxidation enzymes acyl-coenzyme A oxidase 1 and 3, reduced CAT expression and activity, and elevated peroxisomal H2O2 levels. Considering these changes and other antioxidant enzyme profile alterations, we propose that enhanced AR activity in PCa reduces CAT function, leading to increased peroxisomal H2O2 levels that trigger adaptive stress responses to promote cell survival, growth, and proliferation.
Collapse
Affiliation(s)
- Mohamed A. F. Hussein
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; (M.A.F.H.); (C.L.); (C.F.C.); (H.L.)
- Department of Biochemistry, Faculty of Pharmacy, Assiut University, Asyut 71515, Egypt
| | - Celien Lismont
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; (M.A.F.H.); (C.L.); (C.F.C.); (H.L.)
| | - Cláudio F. Costa
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; (M.A.F.H.); (C.L.); (C.F.C.); (H.L.)
| | - Hongli Li
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; (M.A.F.H.); (C.L.); (C.F.C.); (H.L.)
| | - Frank Claessens
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium;
| | - Marc Fransen
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; (M.A.F.H.); (C.L.); (C.F.C.); (H.L.)
| |
Collapse
|
4
|
Graham MK, Wang R, Chikarmane R, Abel B, Vaghasia A, Gupta A, Zheng Q, Hicks J, Sysa-Shah P, Pan X, Castagna N, Liu J, Meyers J, Skaist A, Zhang Y, Rubenstein M, Schuebel K, Simons BW, Bieberich CJ, Nelson WG, Lupold SE, DeWeese TL, De Marzo AM, Yegnasubramanian S. Convergent alterations in the tumor microenvironment of MYC-driven human and murine prostate cancer. Nat Commun 2024; 15:7414. [PMID: 39198404 PMCID: PMC11358296 DOI: 10.1038/s41467-024-51450-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
How prostate cancer cells and their precursors mediate changes in the tumor microenvironment (TME) to drive prostate cancer progression is unclear, in part due to the inability to longitudinally study the disease evolution in human tissues. To overcome this limitation, we perform extensive single-cell RNA-sequencing (scRNA-seq) and molecular pathology of the comparative biology between human prostate cancer and key stages in the disease evolution of a genetically engineered mouse model (GEMM) of prostate cancer. Our studies of human tissues reveal that cancer cell-intrinsic activation of MYC signaling is a common denominator across the well-known molecular and pathological heterogeneity of human prostate cancer. Cell communication network and pathway analyses in GEMMs show that MYC oncogene-expressing neoplastic cells, directly and indirectly, reprogram the TME during carcinogenesis, leading to a convergence of cell state alterations in neighboring epithelial, immune, and fibroblast cell types that parallel key findings in human prostate cancer.
Collapse
Affiliation(s)
- Mindy K Graham
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Urology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Rulin Wang
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Roshan Chikarmane
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Bulouere Abel
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Ajay Vaghasia
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Anuj Gupta
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Qizhi Zheng
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Jessica Hicks
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Polina Sysa-Shah
- The Brady Urological Institute and Department of Urology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Xin Pan
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Nicole Castagna
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Jianyong Liu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Jennifer Meyers
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Alyza Skaist
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Yan Zhang
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Michael Rubenstein
- Department of Biological Sciences, University of Maryland at Baltimore County, Baltimore, MD, USA
| | - Kornel Schuebel
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Brian W Simons
- Center for Comparative Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Charles J Bieberich
- Department of Biological Sciences, University of Maryland at Baltimore County, Baltimore, MD, USA
| | - William G Nelson
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- The Brady Urological Institute and Department of Urology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Shawn E Lupold
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- The Brady Urological Institute and Department of Urology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Theodore L DeWeese
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- The Brady Urological Institute and Department of Urology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Angelo M De Marzo
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- The Brady Urological Institute and Department of Urology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Srinivasan Yegnasubramanian
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
- inHealth Precision Medicine Program, Johns Hopkins Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Dai Z, Chen H, Feng K, Li T, Liu W, Zhou Y, Yang D, Xue B, Zhu J. Promoter hypermethylation of Y-chromosome gene PRKY as a potential biomarker for the early diagnosis of prostate cancer. Epigenomics 2024; 16:835-850. [PMID: 38979582 PMCID: PMC11370963 DOI: 10.1080/17501911.2024.2365625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/04/2024] [Indexed: 07/10/2024] Open
Abstract
Aim: To develop a methylation marker of Y-chromosome gene in the early diagnosis of prostate cancer (PCa).Materials & methods: We utilized bioinformatics analysis to identify the expression and promoter methylation of Y-chromosome gene PRKY in PCa and other common malignancies. Single-center experiments were conducted to validate the diagnostic value of PRKY promoter methylation in PCa.Results: PRKY expression was significantly down-regulated in PCa and its mechanism may be related to promoter methylation. PRKY promoter methylation is highly specific for the diagnosis of early PCa, which may be superior to prostate-specific antigen, mpMRI and other excellent molecular biomarkers.Conclusion: PRKY promoter methylation may be a potential marker for the early and accurate diagnosis of PCa.
Collapse
Affiliation(s)
- Zheng Dai
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Department of Urology, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230061, China
| | - Hongbing Chen
- Department of Urology, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230061, China
| | - Kaiwen Feng
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Tuoxin Li
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Weifeng Liu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yibin Zhou
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Dongrong Yang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Boxin Xue
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Jin Zhu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| |
Collapse
|
6
|
Terrazzan A, Vanini R, Ancona P, Bianchi N, Taccioli C, Aguiari G. State-of-the-art in transposable element modulation affected by drugs in malignant prostatic cancer cells. J Cell Biochem 2024; 125:e30557. [PMID: 38501160 DOI: 10.1002/jcb.30557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/14/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Over recent years, the investigation of transposable elements (TEs) has granted researchers a deeper comprehension of their characteristics and functions, particularly regarding their significance in the mechanisms contributing to cancer development. This manuscript focuses on prostate carcinoma cell lines and offers a comprehensive review intended to scrutinize the associations and interactions between TEs and genes, as well as their response to treatment using various chemical drugs, emphasizing their involvement in cancer progression. We assembled a compendium of articles retrieved from the PubMed database to construct networks demonstrating correlations with genes and pharmaceuticals. In doing so, we linked the transposition of certain TE types to the expression of specific transcripts directly implicated in carcinogenesis. Additionally, we underline that treatment employing different drugs revealed unique patterns of TE reactivation. Our hypothesis gathers the current understanding and guides research toward evidence-based investigations, emphasizing the association between antiviral drugs, chemotherapy, and the reduced expression of TEs in patients affected by prostate cancer.
Collapse
Affiliation(s)
- Anna Terrazzan
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Laboratory for Advanced Therapy Technologies (LTTA), University of Ferrara, Ferrara, Italy
| | - Riccardo Vanini
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Pietro Ancona
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Cristian Taccioli
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Padua, Italy
| | - Gianluca Aguiari
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| |
Collapse
|
7
|
Enikeeva K, Rafikova G, Sharifyanova Y, Mulyukova D, Vanzin A, Pavlov V. Epigenetics as a Key Factor in Prostate Cancer. Adv Biol (Weinh) 2024; 8:e2300520. [PMID: 38379272 DOI: 10.1002/adbi.202300520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/01/2024] [Indexed: 02/22/2024]
Abstract
Nowadays, prostate cancer is one of the most common forms of malignant neoplasms in men all over the world. Against the background of increasing incidence, there is a high mortality rate from prostate cancer, which is associated with an inadequate treatment strategy. Such a high prevalence of prostate cancer requires the development of methods that can ensure early detection of the disease, improve the effectiveness of treatment, and predict the therapeutic effect. Under these circumstances, it becomes crucial to focus on the development of effective diagnostic and therapeutic approaches. Due to the development of molecular genetic methods, a large number of studies have been accumulated on the role of epigenetic regulation of gene activity in cancer development, since it is epigenetic changes that can be detected at the earliest stages of cancer development. The presence of epigenetic aberrations in tumor tissue and correlations with drug resistance suggest new therapeutic approaches. Detection of epigenetic alterations such as CpG island methylation, histone modification, and microRNAs as biomarkers will improve the diagnosis of the disease, and the use of these strategies as targets for therapy will allow for greater personalization of prostate cancer treatment.
Collapse
Affiliation(s)
- Kadriia Enikeeva
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, Ufa, 450008, Russia
| | - Guzel Rafikova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, Ufa, 450008, Russia
| | - Yuliya Sharifyanova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, Ufa, 450008, Russia
| | - Diana Mulyukova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, Ufa, 450008, Russia
| | - Alexandr Vanzin
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, Ufa, 450008, Russia
| | - Valentin Pavlov
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, Ufa, 450008, Russia
| |
Collapse
|
8
|
Creighton CJ, Zhang F, Zhang Y, Castro P, Hu R, Islam M, Ghosh S, Ittmann M, Kwabi-Addo B. Comparative and integrative analysis of transcriptomic and epigenomic-wide DNA methylation changes in African American prostate cancer. Epigenetics 2023; 18:2180585. [PMID: 37279148 PMCID: PMC9980641 DOI: 10.1080/15592294.2023.2180585] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
African American (AA) men have the highest incidence and mortality rate from Prostate cancer (PCa) than any other racial/ethnic group. To date, PCa genomic studies have largely under-represented tumour samples from AA men. We measured genome-wide DNA methylation in benign and tumor prostate tissues from AA men using the Illumina Infunium 850 K EPIC array. mRNA expression database from a subset of the AA biospecimen were used to assess correlation of transcriptome and methylation datasets. Genome-wide methylation analysis identified 11,460 probes that were significant (p < 0.01) and differentially methylated in AA PCa compared to normal prostate tissues and showed significant (p < 0.01) inverse-correlation with mRNA expression. Ingenuity pathway analysis and Gene Ontology analysis in our AA dataset compared with TCGA dataset showed similarities in methylation patterns: top candidate genes with significant hypermethylation and corresponding down-regulated gene expression were associated with biological pathways in hemidesmosome assembly, mammary gland development, epidermis development, hormone biosynthesis, and cell communication. In addition, top candidate genes with significant hypomethylation and corresponding up-regulated gene expression were associated with biological pathways in macrophage differentiation, cAMP-dependent protein kinase activity, protein destabilization, transcription co-repression, and fatty acid biosynthesis. In contrast, differences in genome-wide methylation in our AA dataset compared with TCGA dataset were enriched for genes in steroid signalling, immune signalling, chromatin structure remodelling and RNA processing. Overall, differential methylation of AMIGO3, IER3, UPB1, GRM7, TFAP2C, TOX2, PLSCR2, ZNF292, ESR2, MIXL1, BOLL, and FGF6 were significant and uniquely associated with PCa progression in our AA cohort.
Collapse
Affiliation(s)
- Chad J. Creighton
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Flora Zhang
- Center for Women’s Studies, Colgate University, Hamilton, New York, USA
| | - Yiqun Zhang
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Patricia Castro
- Department of Pathology and Immunology, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA
| | - Rong Hu
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
| | - Md Islam
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
| | - Somiranjan Ghosh
- Department of Biology, Howard University, Washington, Columbia, USA
| | - Michael Ittmann
- Department of Pathology and Immunology, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA
| | - Bernard Kwabi-Addo
- Department of Biochemistry and Molecular Biology, Howard University, Washington, Columbia, USA
| |
Collapse
|
9
|
Graham MK, Wang R, Chikarmane R, Wodu B, Vaghasia A, Gupta A, Zheng Q, Hicks J, Sysa-Shah P, Pan X, Castagna N, Liu J, Meyers J, Skaist A, Zhang Y, Schuebel K, Simons BW, Bieberich CJ, Nelson WG, Lupold SE, DeWeese TL, De Marzo AM, Yegnasubramanian S. Convergent alterations in the tumor microenvironment of MYC-driven human and murine prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.07.553268. [PMID: 37905029 PMCID: PMC10614732 DOI: 10.1101/2023.09.07.553268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The tissue microenvironment in prostate cancer is profoundly altered. While such alterations have been implicated in driving prostate cancer initiation and progression to aggressive disease, how prostate cancer cells and their precursors mediate those changes is unclear, in part due to the inability to longitudinally study the disease evolution in human tissues. To overcome this limitation, we performed extensive single-cell RNA-sequencing (scRNA-seq) and rigorous molecular pathology of the comparative biology between human prostate cancer and key time points in the disease evolution of a genetically engineered mouse model (GEMM) of prostate cancer. Our studies of human tissues, with validation in a large external data set, revealed that cancer cell-intrinsic activation of MYC signaling was the top up-regulated pathway in human cancers, representing a common denominator across the well-known molecular and pathological heterogeneity of human prostate cancer. Likewise, numerous non-malignant cell states in the tumor microenvironment (TME), including non-cancerous epithelial, immune, and fibroblast cell compartments, were conserved across individuals, raising the possibility that these cell types may be a sequelae of the convergent MYC activation in the cancer cells. To test this hypothesis, we employed a GEMM of prostate epithelial cell-specific MYC activation in two mouse strains. Cell communication network and pathway analyses suggested that MYC oncogene-expressing neoplastic cells, directly and indirectly, reprogrammed the TME during carcinogenesis, leading to the emergence of cascading cell state alterations in neighboring epithelial, immune, and fibroblast cell types that paralleled key findings in human prostate cancer. Importantly, among these changes, the progression from a precursor-enriched to invasive-cancer-enriched state was accompanied by a cell-intrinsic switch from pro-immunogenic to immunosuppressive transcriptional programs with coinciding enrichment of immunosuppressive myeloid and Treg cells in the immune microenvironment. These findings implicate activation of MYC signaling in reshaping convergent aspects of the TME of prostate cancer as a common denominator across the otherwise well-documented molecular heterogeneity of human prostate cancer.
Collapse
|
10
|
Craddock J, Jiang J, Patrick SM, Mutambirwa SBA, Stricker PD, Bornman MSR, Jaratlerdsiri W, Hayes VM. Alterations in the Epigenetic Machinery Associated with Prostate Cancer Health Disparities. Cancers (Basel) 2023; 15:3462. [PMID: 37444571 DOI: 10.3390/cancers15133462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Prostate cancer is driven by acquired genetic alterations, including those impacting the epigenetic machinery. With African ancestry as a significant risk factor for aggressive disease, we hypothesize that dysregulation among the roughly 656 epigenetic genes may contribute to prostate cancer health disparities. Investigating prostate tumor genomic data from 109 men of southern African and 56 men of European Australian ancestry, we found that African-derived tumors present with a longer tail of epigenetic driver gene candidates (72 versus 10). Biased towards African-specific drivers (63 versus 9 shared), many are novel to prostate cancer (18/63), including several putative therapeutic targets (CHD7, DPF3, POLR1B, SETD1B, UBTF, and VPS72). Through clustering of all variant types and copy number alterations, we describe two epigenetic PCa taxonomies capable of differentiating patients by ancestry and predicted clinical outcomes. We identified the top genes in African- and European-derived tumors representing a multifunctional "generic machinery", the alteration of which may be instrumental in epigenetic dysregulation and prostate tumorigenesis. In conclusion, numerous somatic alterations in the epigenetic machinery drive prostate carcinogenesis, but African-derived tumors appear to achieve this state with greater diversity among such alterations. The greater novelty observed in African-derived tumors illustrates the significant clinical benefit to be derived from a much needed African-tailored approach to prostate cancer healthcare aimed at reducing prostate cancer health disparities.
Collapse
Affiliation(s)
- Jenna Craddock
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa
| | - Jue Jiang
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
| | - Sean M Patrick
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa
| | - Shingai B A Mutambirwa
- Department of Urology, Sefako Makgatho Health Science University, Dr George Mukhari Academic Hospital, Medunsa 0208, South Africa
| | - Phillip D Stricker
- Department of Urology, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - M S Riana Bornman
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa
| | - Weerachai Jaratlerdsiri
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
| | - Vanessa M Hayes
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
- Manchester Cancer Research Centre, University of Manchester, Manchester M20 4GJ, UK
| |
Collapse
|
11
|
Cho CC, Lin CJ, Huang HH, Yang WZ, Fei CY, Lin HY, Lee MS, Yuan HS. Mechanistic Insights into Harmine-Mediated Inhibition of Human DNA Methyltransferases and Prostate Cancer Cell Growth. ACS Chem Biol 2023; 18:1335-1350. [PMID: 37188336 PMCID: PMC10278071 DOI: 10.1021/acschembio.3c00065] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023]
Abstract
Mammalian DNA methyltransferases (DNMTs), including DNMT1, DNMT3A, and DNMT3B, are key DNA methylation enzymes and play important roles in gene expression regulation. Dysregulation of DNMTs is linked to various diseases and carcinogenesis, and therefore except for the two approved anticancer azanucleoside drugs, various non-nucleoside DNMT inhibitors have been identified and reported. However, the underlying mechanisms for the inhibitory activity of these non-nucleoside inhibitors still remain largely unknown. Here, we systematically tested and compared the inhibition activities of five non-nucleoside inhibitors toward the three human DNMTs. We found that harmine and nanaomycin A blocked the methyltransferase activity of DNMT3A and DNMT3B more efficiently than resveratrol, EGCG, and RG108. We further determined the crystal structure of harmine in complex with the catalytic domain of the DNMT3B-DNMT3L tetramer revealing that harmine binds at the adenine cavity of the SAM-binding pocket in DNMT3B. Our kinetics assays confirm that harmine competes with SAM to competitively inhibit DNMT3B-3L activity with a Ki of 6.6 μM. Cell-based studies further show that harmine treatment inhibits castration-resistant prostate cancer cell (CRPC) proliferation with an IC50 of ∼14 μM. The CPRC cells treated with harmine resulted in reactivating silenced hypermethylated genes compared to the untreated cells, and harmine cooperated with an androgen antagonist, bicalutamide, to effectively inhibit the proliferation of CRPC cells. Our study thus reveals, for the first time, the inhibitory mechanism of harmine on DNMTs and highlights new strategies for developing novel DNMT inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Chao-Cheng Cho
- Institute
of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic
of China
| | - Chun-Jung Lin
- Institute
of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic
of China
- Graduate
Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan 10048, Republic of China
| | - Hsun-Ho Huang
- Institute
of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic
of China
- Graduate
Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan 10048, Republic of China
| | - Wei-Zen Yang
- Institute
of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic
of China
| | - Cheng-Yin Fei
- Institute
of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic
of China
| | - Hsin-Ying Lin
- Graduate
Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan 10048, Republic of China
| | - Ming-Shyue Lee
- Graduate
Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan 10048, Republic of China
| | - Hanna S. Yuan
- Institute
of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic
of China
- Graduate
Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan 10048, Republic of China
| |
Collapse
|
12
|
Gopalakrishnan S, Dhaware M, Sudharma AA, Mullapudi SV, Siginam SR, Gogulothu R, Mir IA, Ismail A. Chemopreventive Effect of Cinnamon and Its Bioactive Compounds in a Rat Model of Premalignant Prostate Carcinogenesis. Cancer Prev Res (Phila) 2023; 16:139-151. [PMID: 36517462 DOI: 10.1158/1940-6207.capr-22-0327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/21/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Cinnamon and its bioactive compounds inhibit prostate cancer cell proliferation in vitro. The aim of the current study was to assess the chemopreventive efficacy of cinnamon (CN) and its bioactive compounds in vivo using N-methyl-N-nitrosourea (MNU) and testosterone (T) to induce prostate carcinogenesis in male Wistar/National Institute of Nutrition rats. Cancer-induced (CI) rats (n = 10) developed prostatic hyperplasia and prostatic intraepithelial neoplasia. These histopathologic changes were diminished in CI rats fed for 4 months with diets supplemented with either CN (n = 20) or its bioactive compounds (cinnamaldehyde, n = 10 and procyanidin B2, n = 10). Androgen receptor (AR) expression was lower in the prostates of CI rats than in control, but the AR target gene, probasin, was robustly upregulated. Treatment of CI rats with CN or its bioactive compounds upregulated AR expression but inhibited the expression of the 5-alpha reductase genes (Srd5a1 and Srd5a2) and did not further increase probasin expression, suggesting blunted transcriptional activity of AR due to the limited availability of dihydrotestosterone. MNU+T induced an altered oxidant status in rat prostate, which was reflected by an increase in lipid peroxidation and DNA oxidation. These changes were completely or partially corrected by treatment with CN or the bioactive compounds. CN and its active components increased the activity of the apoptotic enzymes caspase-8 and caspase-3 in the prostates of CI rats. In conclusion, our data demonstrate that CN and its bioactive compounds have inhibitory effects on premalignant prostate lesions induced by MNU + T and, therefore, may be considered for the chemoprevention of prostate cancer. PREVENTION RELEVANCE The research work presented in this article demonstrates the chemopreventive efficacy of CN and its bioactive compounds in a rat model of premalignant prostate cancer.
Collapse
Affiliation(s)
- Srividya Gopalakrishnan
- Department of Endocrinology, ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| | - Mahamaya Dhaware
- Department of Endocrinology, ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| | | | | | | | - Ramesh Gogulothu
- Department of Endocrinology, ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| | - Irfan Ahmad Mir
- ICMR-National Animal Resource Facility for Biomedical Research, Hyderabad, Telangana, India
| | - Ayesha Ismail
- Department of Endocrinology, ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| |
Collapse
|
13
|
Son SY, Choi JH, Kim EB, Yin J, Seonu SY, Jin SY, Oh JY, Lee MW. Chemopreventive Activity of Ellagitannins from Acer pseudosieboldianum (Pax) Komarov Leaves on Prostate Cancer Cells. PLANTS (BASEL, SWITZERLAND) 2023; 12:1047. [PMID: 36903908 PMCID: PMC10005130 DOI: 10.3390/plants12051047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Several studies have shown that compounds from Acer pseudosieboldianum (Pax) Komarov leaves (APL) display potent anti-oxidative, anti-inflammatory, and anti-proliferative activities. Prostate cancer (PCa) is the most common cancer among older men, and DNA methylation is associated with PCa progression. This study aimed to investigate the chemopreventive activities of the compounds which were isolated from APL on prostate cancer cells and elucidate the mechanisms of these compounds in relation to DNA methylation. One novel ellagitannin [komaniin (14)] and thirteen other known compounds, including glucose derivatives [ethyl-β-D-glucopyranose (3) and (4R)-p-menth-1-ene-7,8-diol 7-O-β-D-glucopyranoside (4)], one phenylpropanoid [junipetrioloside A (5)], three phenolic acid derivatives [ellagic acid-4-β-D-xylopyranoside (1), 4-O-galloyl-quinic acid (2), and gallic acid (8)], two flavonoids [quercetin (11) and kaempferol (12)], and five hydrolysable tannins [geraniin (6), punicafolin (7), granatin B (9), 1,2,3,4,6-penta-galloyl-β-D-glucopyranoside (10), and mallotusinic acid (13)] were isolated from APL. The hydrolyzable tannins (6, 7, 9, 10, 13, and 14) showed potent anti-PCa proliferative and apoptosis-promoting activities. Among the compounds, the ellagitannins in the dehydrohexahydroxydiphenoyl (DHHDP) group (6, 9, 13, and 14), the novel compound 14 showed the most potent inhibitory activity on DNA methyltransferase (DNMT1, 3a and 3b) and glutathione S-transferase P1 methyl removing and re-expression activities. Thus, our results suggested that the ellagitannins (6, 9, 13, and 14) isolated from APL could be a promising treatment option for PCa.
Collapse
|
14
|
The Gut-Prostate Axis: A New Perspective of Prostate Cancer Biology through the Gut Microbiome. Cancers (Basel) 2023; 15:cancers15051375. [PMID: 36900168 PMCID: PMC10000196 DOI: 10.3390/cancers15051375] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/03/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Obesity and a high-fat diet are risk factors associated with prostate cancer, and lifestyle, especially diet, impacts the gut microbiome. The gut microbiome plays important roles in the development of several diseases, such as Alzheimer's disease, rheumatoid arthritis, and colon cancer. The analysis of feces from patients with prostate cancer by 16S rRNA sequencing has uncovered various associations between altered gut microbiomes and prostate cancer. Gut dysbiosis caused by the leakage of gut bacterial metabolites, such as short-chain fatty acids and lipopolysaccharide results in prostate cancer growth. Gut microbiota also play a role in the metabolism of androgen which could affect castration-resistant prostate cancer. Moreover, men with high-risk prostate cancer share a specific gut microbiome and treatments such as androgen-deprivation therapy alter the gut microbiome in a manner that favors prostate cancer growth. Thus, implementing interventions aiming to modify lifestyle or altering the gut microbiome with prebiotics or probiotics may curtail the development of prostate cancer. From this perspective, the "Gut-Prostate Axis" plays a fundamental bidirectional role in prostate cancer biology and should be considered when screening and treating prostate cancer patients.
Collapse
|
15
|
Yu S, Cao S, He S, Zhang K. Locus-Specific Detection of DNA Methylation: The Advance, Challenge, and Perspective of CRISPR-Cas Assisted Biosensors. SMALL METHODS 2023; 7:e2201624. [PMID: 36609885 DOI: 10.1002/smtd.202201624] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Deoxyribonucleic acid (DNA) methylation is one of the epigenetic characteristics that result in heritable and revisable phenotype changes but without sequence changes in DNA. Aberrant methylation occurring at a specific locus was reported to be associated with cancers, insulin resistance, obesity, Alzheimer's disease, Parkinson's disease, etc. Therefore, locus-specific DNA methylation can serve as a valuable biomarker for disease diagnosis and therapy. Recently, Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems are applied to develop biosensors for DNA, ribonucleic acid, proteins, and small molecules detection. Because of their highly specific binding ability and signal amplification capacity, CRISPR-Cas assisted biosensor also serve as a potential tool for locus-specific detection of DNA methylation. In this perspective, based on the detection principle, a detailed classification and comprehensive discussion of recent works about the latest advances in locus-specific detection of DNA methylation using CRISPR-Cas systems are provided. Furthermore, current challenges and future perspectives of CRISPR-based locus-specific detection of DNA methylation are outlined.
Collapse
Affiliation(s)
- Songcheng Yu
- College of Public Health, Zhengzhou University, No.100 Science Avenue, Zhengzhou City, 450001, P. R. China
| | - Shengnan Cao
- College of Public Health, Zhengzhou University, No.100 Science Avenue, Zhengzhou City, 450001, P. R. China
| | - Sitian He
- College of Public Health, Zhengzhou University, No.100 Science Avenue, Zhengzhou City, 450001, P. R. China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, No.100 Science Avenue, Zhengzhou City, 450001, P. R. China
| |
Collapse
|
16
|
Keyvani V, Mollazadeh S, Kheradmand N, Mahmoudian RA, Avan A, Anvari K. Current use of Molecular Mechanisms and Signaling Pathways in Targeted Therapy of Prostate Cancer. Curr Pharm Des 2023; 29:2684-2691. [PMID: 37929740 DOI: 10.2174/0113816128265464231021172202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 11/07/2023]
Abstract
Prostate cancer (PC) is identified as a heterogeneous disease. About 20 to 30% of PC patients experience cancer recurrence, characterized by an increase in the antigen termed serum prostate-specific antigen (PSA). Clinical recurrence of PC commonly occurs after five years. Metastatic castration-resistant prostate cancer (mCRPC) has an intricate genomic background. Therapies that target genomic changes in DNA repair signaling pathways have been progressively approved in the clinic. Innovative therapies like targeting signaling pathways, bone niche, immune checkpoint, and epigenetic marks have been gaining promising results for better management of PC cases with bone metastasis. This review article summarizes the recent consideration of the molecular mechanisms and signaling pathways involved in local and metastatic prostate cancer, highlighting the clinical insinuations of the novel understanding.
Collapse
Affiliation(s)
- Vahideh Keyvani
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Nahid Kheradmand
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reihaneh Alsadat Mahmoudian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane 4059, Australia
| | - Kazem Anvari
- Department of Radiotherapy Oncology, Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Mechanisms of DNA methylation and histone modifications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:51-92. [PMID: 37019597 DOI: 10.1016/bs.pmbts.2023.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The field of genetics has expanded a lot in the past few decades due to the accessibility of human genome sequences, but still, the regulation of transcription cannot be explicated exclusively by the sequence of DNA of an individual. The coordination and crosstalk between chromatin factors which are conserved is indispensable for all living creatures. The regulation of gene expression has been dependent on the methylation of DNA, post-translational modifications of histones, effector proteins, chromatin remodeler enzymes that affect the chromatin structure and function, and other cellular activities such as DNA replication, DNA repair, proliferation and growth. The mutation and deletion of these factors can lead to human diseases. Various studies are being performed to identify and understand the gene regulatory mechanisms in the diseased state. The information from these high throughput screening studies is able to aid the treatment developments based on the epigenetics regulatory mechanisms. This book chapter will discourse on various modifications and their mechanisms that take place on histones and DNA that regulate the transcription of genes.
Collapse
|
18
|
Xu C, Zhao S, Cai L. Epigenetic (De)regulation in Prostate Cancer. Cancer Treat Res 2023; 190:321-360. [PMID: 38113006 PMCID: PMC11421856 DOI: 10.1007/978-3-031-45654-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Prostate cancer (PCa) is a heterogeneous disease exhibiting both genetic and epigenetic deregulations. Epigenetic alterations are defined as changes not based on DNA sequence, which include those of DNA methylation, histone modification, and chromatin remodeling. Androgen receptor (AR) is the main driver for PCa and androgen deprivation therapy (ADT) remains a backbone treatment for patients with PCa; however, ADT resistance almost inevitably occurs and advanced diseases develop termed castration-resistant PCa (CRPC), due to both genetic and epigenetic changes. Due to the reversible nature of epigenetic modifications, inhibitors targeting epigenetic factors have become promising anti-cancer agents. In this chapter, we focus on recent studies about the dysregulation of epigenetic regulators crucially involved in the initiation, development, and progression of PCa and discuss the potential use of inhibitors targeting epigenetic modifiers for treatment of advanced PCa.
Collapse
Affiliation(s)
- Chenxi Xu
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Shuai Zhao
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ling Cai
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
19
|
Conduit C, Mak B, Qu W, Lulio JD, Burder R, Bressel M, Cusick T, Dhillon HM, Lourenço RDA, Underhill C, Torres J, Crumbaker M, Honeyball F, Linton A, Allen R, Davis ID, Clark SJ, Horvath LG, Mahon KL. GUIDE: a randomised non-comparative phase II trial of biomarker-driven intermittent docetaxel versus standard-of-care docetaxel in metastatic castration-resistant prostate cancer (clinical trial protocol). Ther Adv Med Oncol 2022; 14:17588359221092486. [PMID: 35465297 PMCID: PMC9019311 DOI: 10.1177/17588359221092486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/21/2022] [Indexed: 11/26/2022] Open
Abstract
Objective: To determine the efficacy and safety of intermittent docetaxel chemotherapy guided by circulating methylated glutathione S-transferase Pi-1 (mGSTP1) in men with metastatic castration-resistant prostate cancer (CRPC). Patients and Methods: GUIDE (NCT04918810) is a randomised, two-arm, non-comparative phase-2 trial recruiting 120 patients at six Australian centres. Patients with Prostate Cancer Working Group-3 defined metastatic CRPC who are commencing docetaxel 75 mg/m2 q3w will be pre-screened for detectable mGSTP1 at baseline ± following two cycles of treatment. Those with detectable plasma mGSTP1 at baseline that becomes undetectable after two cycles of chemotherapy will be eligible for GUIDE. Prior to Cycle 4 of docetaxel, these patients are randomised 2:1 to one of two treatment arms: Arm A (cease docetaxel and reinstitute if mGSTP1 becomes detectable) or Arm B (continue docetaxel 75 mg/m2 q3w in accordance with clinician’s usual practice). The primary endpoint is radiographic progression-free survival. Secondary endpoints include time on treatment holidays, safety, patient-reported outcomes, overall survival, health resource use, and cost associated with treatment. Enrolment commenced November 2021. Results and Conclusion: The results of this trial will generate data on the clinical utility of mGSTP1 as a novel biomarker to guide treatment de-escalation in metastatic CRPC.
Collapse
Affiliation(s)
- Ciara Conduit
- Australian and New Zealand Urogenital and Prostate (ANZUP) Cancer Trials Group, Camperdown, NSW, Australia Personalised Oncology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Blossom Mak
- Chris O’Brien Lifehouse, Camperdown, NSW, Australia Garvan Institute of Medical Research, Darlinghurst, NSW, Australia The University of Sydney, Sydney, NSW, Australia
| | - Wenjia Qu
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Juliana Di Lulio
- Centre for Biostatistics and Clinical Trials (BaCT), Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Ronan Burder
- Centre for Biostatistics and Clinical Trials (BaCT), Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Matthias Bressel
- Centre for Biostatistics and Clinical Trials (BaCT), Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Thomas Cusick
- Australian and New Zealand Urogenital and Prostate (ANZUP) Cancer Trials Group, Camperdown, NSW, Australia
| | - Haryana M. Dhillon
- Australian and New Zealand Urogenital and Prostate (ANZUP) Cancer Trials Group, Camperdown, NSW, Australia Centre for Medical Psychology and Evidence-Based Decision-Making, School of Psychology, Faculty of Science, The University of Sydney, Sydney, NSW, Australia Psycho-Oncology Cooperative Research Group, School of Psychology, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Richard De Abreu Lourenço
- Centre for Health Economics Research and Evaluation, University of Technology Sydney, Sydney, NSW, Australia
| | - Craig Underhill
- Border Medical Oncology Research Unit, Albury Wodonga Regional Cancer Centre, Albury, NSW, Australia University of NSW Rural Clinical School, Albury, NSW, Australia
| | - Javier Torres
- Goulburn Valley Health, Shepparton, VIC, Australia Rural Medical School, The University of Melbourne, Shepparton, VIC, Australia
| | - Megan Crumbaker
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia St. Vincent’s Clinical School, University of New South Wales, Sydney, NSW, Australia The Kinghorn Cancer Centre, St. Vincent’s Hospital Sydney, Darlinghurst, NSW, Australia
| | - Florian Honeyball
- Dubbo Base Hospital, Dubbo, NSW, Australia School of Rural Health, The University of Sydney, Dubbo, NSW, Australia
| | - Anthony Linton
- The University of Sydney, Sydney, NSW, Australia Concord Cancer Centre, Concord Repatriation General Hospital, Concord, NSW, Australia
| | - Ray Allen
- Australian and New Zealand Urogenital and Prostate (ANZUP) Cancer Trials Group, Camperdown, NSW, Australia
| | - Ian D. Davis
- Australian and New Zealand Urogenital and Prostate (ANZUP) Cancer Trials Group, Camperdown, NSW, Australia Eastern Health Clinical School, Monash University, Box Hill, VIC, Australia Eastern Health, Box Hill, VIC, Australia
| | - Susan J. Clark
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia UNSW Sydney, Sydney, NSW, Australia
| | - Lisa G. Horvath
- Chris O’Brien Lifehouse, Camperdown, NSW, Australia Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia The University of Sydney, Sydney, NSW, Australia Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Kate L. Mahon
- Chris O’Brien Lifehouse, 119-143 Missenden Rd, Camperdown, NSW 2050, Australia
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- The University of Sydney, Sydney, NSW, AustraliaRoyal Prince Alfred Hospital, Camperdown, NSW, Australia
| |
Collapse
|
20
|
Liu D, Che B, Chen P, He J, Mu Y, Chen K, Zhang W, Xu S, Tang K. GSTT1, an increased risk factor for prostate cancer in patients with metabolic syndrome. J Clin Lab Anal 2022; 36:e24352. [PMID: 35293017 PMCID: PMC8993662 DOI: 10.1002/jcla.24352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background Glutathione S‐transferase (GSTs) gene polymorphism and metabolic syndrome (Mets) are generally considered to be risk factors for prostate cancer (PCa). However, this conclusion is still controversial. There is a close relationship between GSTs gene polymorphism and Mets. We suspect that the effect of GSTs gene polymorphism and Mets on PCa may be the result of their joint action. As a result, the purpose of this study was to investigate the potential effect of GSTs gene polymorphism on PCa in patients with Mets. Methods We collected blood samples from 128 patients with PCa and 200 controls. The GSTs gene polymorphism was detected by polymerase chain reaction‐restriction fragment length polymorphism (PCR–RFLP). Age, characteristics of Mets, frequencies of GSTs gene polymorphism, total prostate volume (TPV), Gleason score, and prostate‐specific antigen (PSA) were recorded and analyzed. Results There were significant differences in BMI, TG, LDL‐C, FBG, SBP, DBP, and HDL‐C among the control group, N‐PCa group, and Mets‐PCa group (p < 0.05). GSTT1 null genotype (OR = 2.844, 95% CI: 1.791–4.517), GSTM1 null genotype (OR = 2.192, 95% CI: 1.395–3.446), and GSTP1 (A/G + G/G) genotype (OR = 2.315, 95% CI: 1.465–3.657) were associated with PCa susceptibility and malignancy. Only the GSTT1 null genotype in Mets patients was positively correlated with PCa. Conclusions Our study suggests that GSTs gene polymorphism may be a risk factor for PCa and can predict the susceptibility and malignancy of PCa. Secondly, in Mets patients, GSTT1 null genotype significantly increased the risk of PCa. GSTM1 null genotype and the effect of GSTP1 (AG + GG) on PCa were not significantly related to Mets.
Collapse
Affiliation(s)
- Dongdong Liu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Bangwei Che
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Pan Chen
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jun He
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yi Mu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kehang Chen
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wenjun Zhang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shenghan Xu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kaifa Tang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Institute of Medical Science of Guizhou Medical University, Guiyang, China
| |
Collapse
|
21
|
Safarzadeh M, Pan G. Detection of a Double-Stranded MGMT Gene Using Electrochemically Reduced Graphene Oxide (ErGO) Electrodes Decorated with AuNPs and Peptide Nucleic Acids (PNA). BIOSENSORS 2022; 12:98. [PMID: 35200358 PMCID: PMC8869880 DOI: 10.3390/bios12020098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022]
Abstract
The ability to detect double-stranded DNA (dsDNA) as a biomarker without denaturing it to single-stranded DNA (ss-DNA) continues to be a major challenge. In this work, we report a sandwich biosensor for the detection of the ds-methylated MGMT gene, a potential biomarker for brain tumors and breast cancer. The purpose of this biosensor is to achieve simultaneous recognition of the gene sequence, as well as the presence of methylation. The biosensor is based on reduced graphene oxide (rGO) electrodes decorated with gold nanoparticles (AuNPs) and uses Peptide Nucleic Acid (PNA) that binds to the ds-MGMT gene. The reduction of GO was performed in two ways: electrochemically (ErGO) and thermally (TrGO). XPS and Raman spectroscopy, as well as voltammetry techniques, showed that the ErGO was more efficiently reduced, had a higher C/O ratio, showed a smaller crystallite size of the sp2 lattice, and was more stable during measurement. It was also revealed that the electro-deposition of the AuNPs was more successful on the ErGO surface due to the higher At% of Au on the ErGO electrode. Therefore, the ErGO/AuNPs electrode was used to develop biosensors to detect the ds-MGMT gene. PNA, which acts as a bio-recognition element, was used to form a self-assembled monolayer (SAM) on the ErGO/AuNPs surface via the amine-AuNPs interaction, recognizing the ds-MGMT gene sequence by its invasion of the double-stranded DNA and the formation of a triple helix. The methylation was then detected using biotinylated-anti-5mC, which was then measured using the amperometric technique. The selectivity study showed that the proposed biosensor was able to distinguish between blank, non-methylated, non-complementary, and target dsDNA spiked in mouse plasma. The LOD was calculated to be 0.86 pM with a wide linear range of 1 pM to 50 µM. To the best of our knowledge, this is the first report on using PNA to detect ds-methylated DNA. This sandwich design can be modified to detect other methylated genes, making it a promising platform to detect ds-methylated biomarkers.
Collapse
Affiliation(s)
- Mina Safarzadeh
- Wolfson Nanomaterials and Devices Laboratory, School of Engineering, Computing and Mathematics, Faculty of Science and Engineering, University of Plymouth, Plymouth PL4 8AA, UK;
| | | |
Collapse
|
22
|
Nelson WG, Brawley OW, Isaacs WB, Platz EA, Yegnasubramanian S, Sfanos KS, Lotan TL, De Marzo AM. Health inequity drives disease biology to create disparities in prostate cancer outcomes. J Clin Invest 2022; 132:e155031. [PMID: 35104804 PMCID: PMC8803327 DOI: 10.1172/jci155031] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer exerts a greater toll on African American men than on White men of European descent (hereafter referred to as European American men): the disparity in incidence and mortality is greater than that of any other common cancer. The disproportionate impact of prostate cancer on Black men has been attributed to the genetics of African ancestry, to diet and lifestyle risk factors, and to unequal access to quality health care. In this Review, all of these influences are considered in the context of the evolving understanding that chronic or recurrent inflammatory processes drive prostatic carcinogenesis. Studies of inherited susceptibility highlight the contributions of genes involved in prostate cell and tissue repair (BRCA1/2, ATM) and regeneration (HOXB13 and MYC). Social determinants of health appear to accentuate these genetic influences by fueling prostate inflammation and associated cell and genome damage. Molecular characterization of the prostate cancers that arise in Black versus White men further implicates this inflammatory microenvironment in disease behavior. Yet, when Black and White men with similar grade and stage of prostate cancer are treated equally, they exhibit equivalent outcomes. The central role of prostate inflammation in prostate cancer development and progression augments the impact of the social determinants of health on disease pathogenesis. And, when coupled with poorer access to high-quality treatment, these inequities result in a disparate burden of prostate cancer on African American men.
Collapse
|
23
|
ChallaSivaKanaka S, Vickman RE, Kakarla M, Hayward SW, Franco OE. Fibroblast heterogeneity in prostate carcinogenesis. Cancer Lett 2022; 525:76-83. [PMID: 34715252 PMCID: PMC8788937 DOI: 10.1016/j.canlet.2021.10.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/17/2021] [Accepted: 10/19/2021] [Indexed: 01/30/2023]
Abstract
Our understanding of stromal components, specifically cancer-associated fibroblasts (CAF), in prostate cancer (PCa), has evolved from considering these cells as inert bystanders to acknowledging their significance as players in prostate tumorigenesis. CAF are multifaceted-they promote cancer cell growth, migration and remodel the tumor microenvironment. Although targeting CAF could be a promising strategy for PCa treatment, they incorporate a high but undefined degree of intrinsic cellular heterogeneity. The interaction between CAF subpopulations, with the normal and tumor epithelium and with other cell types is not yet characterized. Defining these interactions and the critical signaling nodes that support tumorigenesis will enable the development of novel strategies to control prostate cancer progression. Here we will discuss the origins, molecular and functional heterogeneity of CAF in PCa. We highlight the challenges associated with delineating CAF heterogeneity and discuss potential areas of research that would assist in expanding our knowledge of CAF and their role in PCa tumorigenesis.
Collapse
Affiliation(s)
- Sathyavathi ChallaSivaKanaka
- Department of Surgery, NorthShore University HealthSystem, Research Institute, 1001 University Place, Evanston, IL, 60201, USA
| | - Renee E Vickman
- Department of Surgery, NorthShore University HealthSystem, Research Institute, 1001 University Place, Evanston, IL, 60201, USA
| | - Mamatha Kakarla
- Department of Surgery, NorthShore University HealthSystem, Research Institute, 1001 University Place, Evanston, IL, 60201, USA
| | - Simon W Hayward
- Department of Surgery, NorthShore University HealthSystem, Research Institute, 1001 University Place, Evanston, IL, 60201, USA
| | - Omar E Franco
- Department of Surgery, NorthShore University HealthSystem, Research Institute, 1001 University Place, Evanston, IL, 60201, USA. http://
| |
Collapse
|
24
|
Predicting RNA 5-Methylcytosine Sites by Using Essential Sequence Features and Distributions. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4035462. [PMID: 35071593 PMCID: PMC8776474 DOI: 10.1155/2022/4035462] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/07/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022]
Abstract
Methylation is one of the most common and considerable modifications in biological systems mediated by multiple enzymes. Recent studies have shown that methylation has been widely identified in different RNA molecules. RNA methylation modifications have various kinds, such as 5-methylcytosine (m5C). However, for individual methylation sites, their functions still remain to be elucidated. Testing of all methylation sites relies heavily on high-throughput sequencing technology, which is expensive and labor consuming. Thus, computational prediction approaches could serve as a substitute. In this study, multiple machine learning models were used to predict possible RNA m5C sites on the basis of mRNA sequences in human and mouse. Each site was represented by several features derived from
-mers of an RNA subsequence containing such site as center. The powerful max-relevance and min-redundancy (mRMR) feature selection method was employed to analyse these features. The outcome feature list was fed into incremental feature selection method, incorporating four classification algorithms, to build efficient models. Furthermore, the sites related to features used in the models were also investigated.
Collapse
|
25
|
Chiao JW. What causes prostate cancer-learning from a tragedy. Carcinogenesis 2021; 42:1221-1222. [PMID: 34431987 DOI: 10.1093/carcin/bgab078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/12/2021] [Accepted: 08/24/2021] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jen Wei Chiao
- Department of Medicine, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
26
|
Witt JH, Friedrich M, Jandrig B, Porsch M, Baumunk D, Liehr UB, Wendler JJ, Schostak M. Molecular margin status after radical prostatectomy using glutathione S-transferase P1 (GSTP1) promoter hypermethylation. BJU Int 2021; 130:454-462. [PMID: 34657365 DOI: 10.1111/bju.15618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To assess the potential for molecular staging in biopsies of the prostatic fossa after radical prostatectomy (RP) by searching for occult tumour cells through analysis of glutathione S-transferase P1 (GSTP1) methylation status. PATIENTS AND METHODS We analysed 2446 biopsies: 2286 biopsies from a group of 254 patients with clinically organ-confined prostate cancer who underwent RP and 160 biopsies from a control group of 32 patients. After prostate gland excision, biopsies were obtained from defined areas of the prostatic fossa and bisected for histopathological and molecular genetics analyses. Results were related to clinicopathological data including tumour stage, lymph node status, resection status, tumour grading, initial PSA level, and biochemical recurrence. RESULTS In total, 34 patients (13.4%) had at least one core positive for the GSTP1 promoter hypermethylation, six of whom (17.6%) were characterised as having a clinically localised tumour stage (pT2, pN0) and 28 (82.4%) as an advanced tumour stage (≥pT3 and/or pN1). GSTP1 promoter hypermethylation significantly correlated with tumour stage (P < 0.001), International Society of Urological Pathology grading (P = 0.001), lymph node status (P < 0.001), surgical margin status (P < 0.001), and biochemical recurrence (P = 0.001). Furthermore, in 46 patients (18.1%) further analysis led to a down- or upgrading of conventional surgical margin status. Classical R-status (margins of the specimen) is significantly superior to histological sampling from the fossa (P = 0.006) but not to GSTP1 analysis from the fossa (P = 0.227). CONCLUSION For the detection of residual tumour in the fossa after RP in order to better predict recurrence, molecular GSTP1 promoter hypermethylation has some value; however, the classical R-status (margins of the specimen) is simpler and more widely applicable with similar results.
Collapse
Affiliation(s)
- Jörn H Witt
- Department of Urology, St. Antonius-Hospital, Gronau, Germany
| | - Maria Friedrich
- Clinic of Urology, Uro-Oncology, Robot-assisted and Focal Therapy, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany.,Department of Urology, University Hospital, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Burkhard Jandrig
- Department of Urology, University Hospital, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | | | | | - Uwe-B Liehr
- Department of Urology, University Hospital, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Johann J Wendler
- Department of Urology, University Hospital, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Martin Schostak
- Clinic of Urology, Uro-Oncology, Robot-assisted and Focal Therapy, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany.,Department of Urology, University Hospital, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
27
|
Friedemann M, Horn F, Gutewort K, Tautz L, Jandeck C, Bechmann N, Sukocheva O, Wirth MP, Fuessel S, Menschikowski M. Increased Sensitivity of Detection of RASSF1A and GSTP1 DNA Fragments in Serum of Prostate Cancer Patients: Optimisation of Diagnostics Using OBBPA-ddPCR. Cancers (Basel) 2021; 13:4459. [PMID: 34503269 PMCID: PMC8431466 DOI: 10.3390/cancers13174459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 02/05/2023] Open
Abstract
Identification of aberrant DNA methylation is a promising tool in prostate cancer (PCa) diagnosis and treatment. In this study, we evaluated a two-step method named optimised bias-based preamplification followed by digital PCR (OBBPA-dPCR). The method was used to identify promoter hypermethylation of 2 tumour suppressor genes RASSF1A and GSTP1 in the circulating cell-free DNA (cfDNA) from serum samples of PCa patients (n = 75), benign prostatic hyperplasia (BPH, n = 58), and healthy individuals (controls, n = 155). The PCa cohort was further subdivided into subgroups comprising (I) patients with Gleason Scores (GS) ≤ 7 (n = 55), (II) GS ≥ 8 (n = 10), and (III) patients with metastatic PCa diagnosis (n = 10). We found that RASSF1A methylation levels were significantly increased in all 3 PCa subgroups compared to the controls and BPH cohorts (p < 0.01 for all comparisons). Fractional abundances of methylated GSTP1 DNA fragments were significantly increased in subgroup III of metastatic PCa patients (p < 0.001). RASSF1A methylation analysis was found to be beneficial as a complementary biomarker where further diagnostic validation is most crucial. In combination with free PSA, RASSF1A methylation status helps to identify PCa patients with GS ≥ 8 and grey-zone total PSA values between 2-10 ng/mL. In our study, PCR biases between 80-90% were sufficient to detect minute amounts of tumour DNA with high signal-to-noise ratios as well as high analytical sensitivity and specificity. Both RASSF1A and GSTP1 exhibited strongly increased DNA methylation levels in all metastatic PCa patients. Our data indicates a superior sensitivity of epigenetic biomarker analyses in early detection of PCa metastases that should also help to improve PCa therapy.
Collapse
Affiliation(s)
- Markus Friedemann
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany; (M.F.); (L.T.); (F.H.); (K.G.); (C.J.); (N.B.)
| | - Friederike Horn
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany; (M.F.); (L.T.); (F.H.); (K.G.); (C.J.); (N.B.)
| | - Katharina Gutewort
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany; (M.F.); (L.T.); (F.H.); (K.G.); (C.J.); (N.B.)
| | - Lars Tautz
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany; (M.F.); (L.T.); (F.H.); (K.G.); (C.J.); (N.B.)
| | - Carsten Jandeck
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany; (M.F.); (L.T.); (F.H.); (K.G.); (C.J.); (N.B.)
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany; (M.F.); (L.T.); (F.H.); (K.G.); (C.J.); (N.B.)
- Department of Medicine III, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
- German Department of Human Nutrition Potsdam-Rehbruecke, Institute of Experimental Diabetology, 14558 Nuthetal, Germany
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Olga Sukocheva
- School of Health Sciences, Flinders University of South Australia, Bedford Park, SA 5042, Australia;
| | - Manfred P. Wirth
- Department of Urology, Carl Gustav Carus University Hospital, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany; (M.P.W.); (S.F.)
| | - Susanne Fuessel
- Department of Urology, Carl Gustav Carus University Hospital, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany; (M.P.W.); (S.F.)
| | - Mario Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany; (M.F.); (L.T.); (F.H.); (K.G.); (C.J.); (N.B.)
| |
Collapse
|
28
|
Wang L, Ren G, Lin B. Expression of 5-methylcytosine regulators is highly associated with the clinical phenotypes of prostate cancer and DNMTs expression predicts biochemical recurrence. Cancer Med 2021; 10:5681-5695. [PMID: 34227253 PMCID: PMC8366102 DOI: 10.1002/cam4.4108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
In patients with prostate cancer (PCa), there is a high rate of overdiagnosis and frequent overtreatment. Therefore, there is an urgent need for more accurate prediction of biochemical recurrence (BCR). DNA methylation regulation patterns play crucial roles in tumorigenicity, progression, and treatment efficacy in PCa. However, the global relationship between epigenetic alterations, changes in mRNA levels, and pathologic phenotypes of PCa remain largely undefined. Here, we conducted a systematic analysis to identify global coexpression and comethylation modules in PCa. We identified coregulated methylation and expression modules and the relationships between epigenetic modifications, tumor progression, and the corresponding immune microenvironment in PCa. Our results show that DNA methyltransferases (DNMTs) are strongly associated with pathologic phenotypes and immune infiltration patterns in PCa. We built a two-factor predictive model using the expression features of DNMT3B and DNMT1. The model was used to predict the BCR status of patients with PCa and achieved area under the receiver operating characteristic curve values of 0.70 and 0.88 in the training and independent testing datasets, respectively.
Collapse
Affiliation(s)
- Lin Wang
- College of Life ScienceZhejiang UniversityHangzhouChina
- Systems Biology Division, Zhejiang California International Nanosystems Institute (ZCNI)Zhejiang UniversityHangzhouChina
| | - Guoping Ren
- Department of Pathology, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Biaoyang Lin
- College of Life ScienceZhejiang UniversityHangzhouChina
- Systems Biology Division, Zhejiang California International Nanosystems Institute (ZCNI)Zhejiang UniversityHangzhouChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Department of UrologyUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
29
|
Kukkonen K, Taavitsainen S, Huhtala L, Uusi-Makela J, Granberg KJ, Nykter M, Urbanucci A. Chromatin and Epigenetic Dysregulation of Prostate Cancer Development, Progression, and Therapeutic Response. Cancers (Basel) 2021; 13:3325. [PMID: 34283056 PMCID: PMC8268970 DOI: 10.3390/cancers13133325] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023] Open
Abstract
The dysregulation of chromatin and epigenetics has been defined as the overarching cancer hallmark. By disrupting transcriptional regulation in normal cells and mediating tumor progression by promoting cancer cell plasticity, this process has the ability to mediate all defined hallmarks of cancer. In this review, we collect and assess evidence on the contribution of chromatin and epigenetic dysregulation in prostate cancer. We highlight important mechanisms leading to prostate carcinogenesis, the emergence of castration-resistance upon treatment with androgen deprivation therapy, and resistance to antiandrogens. We examine in particular the contribution of chromatin structure and epigenetics to cell lineage commitment, which is dysregulated during tumorigenesis, and cell plasticity, which is altered during tumor progression.
Collapse
Affiliation(s)
- Konsta Kukkonen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Sinja Taavitsainen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Laura Huhtala
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Joonas Uusi-Makela
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Kirsi J. Granberg
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Matti Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33520 Tampere, Finland; (K.K.); (S.T.); (L.H.); (J.U.-M.); (K.J.G.); (M.N.)
| | - Alfonso Urbanucci
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
| |
Collapse
|
30
|
Vidal I, Zheng Q, Hicks JL, Chen J, Platz EA, Trock BJ, Kulac I, Baena-Del Valle JA, Sfanos KS, Ernst S, Jones T, Maynard JP, Glavaris SA, Nelson WG, Yegnasubramanian S, De Marzo AM. GSTP1 positive prostatic adenocarcinomas are more common in Black than White men in the United States. PLoS One 2021; 16:e0241934. [PMID: 34191807 PMCID: PMC8244883 DOI: 10.1371/journal.pone.0241934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/28/2021] [Indexed: 12/16/2022] Open
Abstract
GSTP1 is a member of the Glutathione-S-transferase (GST) family silenced by CpG island DNA hypermethylation in 90-95% of prostate cancers. However, prostate cancers expressing GSTP1 have not been well characterized. We used immunohistochemistry against GSTP1 to examine 1673 primary prostatic adenocarcinomas on tissue microarrays (TMAs) with redundant sampling from the index tumor from prostatectomies. GSTP1 protein was positive in at least one TMA core in 7.7% of cases and in all TMA cores in 4.4% of cases. The percentage of adenocarcinomas from Black patients who had any GSTP1 positive TMA cores was 14.9%, which was 2.5 times higher than the percentage from White patients (5.9%; P < 0.001). Further, the percentages of tumors from Black patients who had all TMA spots positive for GSTP1 (9.5%) was 3-fold higher than the percentage from White patients (3.2%; P<0.001). In terms of association with other molecular alterations, GSTP1 positivity was enriched in ERG positive cancers among Black men. By in situ hybridization, GSTP1 mRNA expression was concordant with protein staining, supporting the lack of silencing of at least some GSTP1 alleles in GSTP1-positive tumor cells. This is the first report revealing that GSTP1-positive prostate cancers are substantially over-represented among prostate cancers from Black compared to White men. This observation should prompt additional studies to determine whether GSTP1 positive cases represent a distinct molecular subtype of prostate cancer and whether GSTP1 expression could provide a biological underpinning for the observed disparate outcomes for Black men.
Collapse
Affiliation(s)
- Igor Vidal
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Qizhi Zheng
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jessica L. Hicks
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jiayu Chen
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Elizabeth A. Platz
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
- The Brady Urological Research Institute at Johns Hopkins, Baltimore, Maryland, United States of America
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Bruce J. Trock
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
- The Brady Urological Research Institute at Johns Hopkins, Baltimore, Maryland, United States of America
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | | | | | - Karen S. Sfanos
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
- The Brady Urological Research Institute at Johns Hopkins, Baltimore, Maryland, United States of America
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sarah Ernst
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Tracy Jones
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Janielle P. Maynard
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Stephanie A. Glavaris
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - William G. Nelson
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
- The Brady Urological Research Institute at Johns Hopkins, Baltimore, Maryland, United States of America
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Srinivasan Yegnasubramanian
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
- The Brady Urological Research Institute at Johns Hopkins, Baltimore, Maryland, United States of America
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Angelo M. De Marzo
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
- The Brady Urological Research Institute at Johns Hopkins, Baltimore, Maryland, United States of America
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
31
|
Karamitrousis EI, Balgkouranidou I, Xenidis N, Amarantidis K, Biziota E, Koukaki T, Trypsianis G, Karayiannakis A, Bolanaki H, Kolios G, Lianidou E, Kakolyris S. Prognostic Role of RASSF1A, SOX17 and Wif-1 Promoter Methylation Status in Cell-Free DNA of Advanced Gastric Cancer Patients. Technol Cancer Res Treat 2021; 20:1533033820973279. [PMID: 33928818 PMCID: PMC8113658 DOI: 10.1177/1533033820973279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epigenetic modification of several genes is a key component in the development of gastric cancer. The methylation status of RASSF1A, SOX17 and Wif-1 genes was evaluated in the cell free circulating DNA of 70 patients with advanced gastric cancer, using methylation-specific PCR. Patients with higher cell-free DNA concentration seem to have lower PFS, than patients with lower cell-free DNA concentration (p = 0.001). RASSF1A was the tumor suppressor gene, most frequently methylated in metastatic gastric cancer patients, followed by SOX17 and Wif-1 (74.3%, 60.0% and 47.1%, respectively). Patients having the SOX17 promoter methylated, had lower progression free survival and overall survival, than unmethylated ones (p < 0.001). Patients having the Wif-1 promoter methylated, had lower progression free survival and overall survival, than unmethylated ones (p = 0.001). Patients having the RASSF1A promoter methylated, had lower progression free survival and overall survival, than unmethylated ones (p = 0.004). Promoter methylation of the examined genes was significantly associated with a decrease in progression free survival and overall survival, comparing to that of patients without methylation. Simultaneous methylation of the above genes was associated with even worse progression free survival and overall survival. The methylation of RASSF1A, SOX-17 and Wif-1 and genes, is a frequent epigenetic event in patients with advanced gastric cancer.
Collapse
Affiliation(s)
| | - Ioanna Balgkouranidou
- Department of Oncology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Nikolaos Xenidis
- Department of Oncology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Kyriakos Amarantidis
- Department of Oncology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Eirini Biziota
- Department of Oncology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Triantafyllia Koukaki
- Department of Oncology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Grigorios Trypsianis
- Department of Medical Statistics, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Anastasios Karayiannakis
- Second Department of Surgery, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Helen Bolanaki
- Second Department of Surgery, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - George Kolios
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Evi Lianidou
- Department of Chemistry, Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, University of Athens, Athens, Greece
| | - Stylianos Kakolyris
- Department of Oncology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
32
|
Yin A, Shang Z, Etcheverry A, He Y, Aubry M, Lu N, Liu Y, Mosser J, Lin W, Zhang X, Dong Y. Integrative analysis identifies an immune-relevant epigenetic signature for prognostication of non-G-CIMP glioblastomas. Oncoimmunology 2021; 10:1902071. [PMID: 33854822 PMCID: PMC8018210 DOI: 10.1080/2162402x.2021.1902071] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The clinical and molecular implications of DNA methylation alterations remain unclear among the majority of glioblastomas (GBMs) without glioma-CpGs island methylator phenotype (G-CIMP); integrative multi-level molecular profiling may provide useful information. Independent cohorts of non-G-CIMP GBMs or IDH wild type (wt) lower-grade gliomas (LGGs) from local and public databases with DNA methylation and gene expression microarray data were included for discovery and validation of a multimarker signature, combined using a RISK score model. Bioinformatic and in vitro functional analyses were employed for biological validation. Using a strict multistep selection approach, we identified eight CpGs, each of which was significantly correlated with overall survival (OS) of non-G-CIMP GBMs, independent of age, the O-6-methylguanine-DNA methyltransferase (MGMT) methylation status, treatments and other identified CpGs. An epigenetic RISK signature of the 8 CpGs was developed and validated to robustly and independently prognosticate prognosis in different cohorts of not only non-G-GIMP GBMs, but also IDHwt LGGs. It also showed good discriminating value in stratified cohorts by current clinical and molecular factors. Bioinformatic analysis revealed consistent correlation of the epigenetic signature to distinct immune-relevant transcriptional profiles of GBM bulks. Functional experiments showed that S100A2 appeared to be epigenetically regulated by one identified CpG and was associated with GBM cell proliferation, apoptosis, invasion, migration and immunosuppression. The prognostic 8-CpGs RISK score signature may be of promising value for refining current glioma risk classification, and its potential links to distinct immune phenotypes make it a promising biomarker candidate for predicting response to anti-glioma immunotherapy.
Collapse
Affiliation(s)
- Anan Yin
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, The People's Republic of China.,Department of Neurosurgery, The 960th Hospital of the People's Liberation Army, Taian, Shandong Province, The People's Republic of China
| | - Zhende Shang
- Department of Neurosurgery, The 960th Hospital of the People's Liberation Army, Taian, Shandong Province, The People's Republic of China.,Department of Neurosurgery, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, The People's Republic of China
| | - Amandine Etcheverry
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGdR), Rennes, France.,Faculté de Médecine, Université Rennes1, UEB, UMS 3480 Biosit, Rennes, France.,CHU Rennes, Service de Génétique Moléculaire et Génomique, Rennes, France
| | - Yalong He
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, The People's Republic of China
| | - Marc Aubry
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGdR), Rennes, France
| | - Nan Lu
- Department of Neurosurgery, The 960th Hospital of the People's Liberation Army, Taian, Shandong Province, The People's Republic of China
| | - Yuhe Liu
- Department of Neurosurgery, The 960th Hospital of the People's Liberation Army, Taian, Shandong Province, The People's Republic of China
| | - Jean Mosser
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGdR), Rennes, France.,Faculté de Médecine, Université Rennes1, UEB, UMS 3480 Biosit, Rennes, France.,CHU Rennes, Service de Génétique Moléculaire et Génomique, Rennes, France
| | - Wei Lin
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, The People's Republic of China
| | - Xiang Zhang
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, The People's Republic of China
| | - Yu Dong
- Department of Stomatology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi Province, The People's Republic of China.,State Key Laboratory of Military Stomatology, School of Stomatology, Air Force Medical University, Xi'an, Shaanxi Province, The People's Republic of China
| |
Collapse
|
33
|
Aberrant Hypermethylation-Mediated Suppression of PYCARD Is Extremely Frequent in Prostate Cancer with Gleason Score ≥ 7. DISEASE MARKERS 2021; 2021:8858905. [PMID: 33628338 PMCID: PMC7881737 DOI: 10.1155/2021/8858905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 12/24/2022]
Abstract
Epigenetic gene silencing by aberrant DNA methylation leads to loss of key cellular pathways in tumorigenesis. In order to analyze the effects of DNA methylation on prostate cancer, we established LNCaP-derived human prostate cancer cells that can pharmacologically induce global reactivation of hypermethylated genes by the methyl-CpG targeted transcriptional activation (MeTA) method. The MeTA suppressed the growth of LNCaP-derived cells and induced apoptosis. Microarray analysis indicated that PYCARD (PYD and CARD domain containing) encoding an apoptosis-inducing factor was upregulated by 65-fold or more after treatment with MeTA. We analyzed DNA methylation statuses using 50 microdissected primary prostate cancer tissues and found an extremely high frequency of tumor-specific promoter hypermethylation of PYCARD (90%, 45/50). Moreover, DNA methylation status was significantly associated with Gleason score (P = 0.0063); the frequency of tumor-specific hypermethylation was 96% (44/46) in tumors with Gleason score ≥ 7, whereas that in tumors with Gleason score 6 was 25% (1/4). Immunohistochemical analyses using these 50 cases indicated that only 8% (4/50) of cancerous tissues expressed PYCARD, whereas 80% (40/50) of corresponding normal prostate epithelial and/or basal cells expressed PYCARD. In addition, there was no relationship between PYCARD immunostaining and the Gleason score in cancerous tissue and surrounding normal tissue. Inducible expression of PYCARD inhibited cell proliferation by induction of apoptosis. These results suggest that aberrant methylation of PYCARD is a distinctive feature of prostate cancers with Gleason score ≥ 7 and may play an important role in escaping from apoptosis in prostatic tumorigenesis.
Collapse
|
34
|
Al Zoubi M, Aljabali A. Polymorphisms, antioxidant genes, and cancer. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
35
|
Sugiura M, Sato H, Kanesaka M, Imamura Y, Sakamoto S, Ichikawa T, Kaneda A. Epigenetic modifications in prostate cancer. Int J Urol 2020; 28:140-149. [PMID: 33111429 DOI: 10.1111/iju.14406] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/27/2020] [Indexed: 12/18/2022]
Abstract
Prostate cancer is a major cause of cancer-related deaths among men worldwide. In addition to genomic alterations, epigenetic alterations accumulated in prostate cancer have been elucidated. While aberrant deoxyribonucleic acid hypermethylation in promoter CpG islands inactivates crucial genes associated with deoxyribonucleic acid repair, cell cycle, apoptosis or cell adhesion, aberrant deoxyribonucleic acid hypomethylation can lead to oncogene activation. Acetylation of histone is also deregulated in prostate cancer, which could cause aberrant super-enhancer formation and activation of genes associated with cancer development. Deregulations of histone methylation, such as an increase of trimethylation at position 27 of histone H3 by enhancer of zeste homolog2 overexpression, or other modifications, such as phosphorylation and ubiquitination, are also involved in prostate cancer development, and inhibitors targeting these epigenomic aberrations might be novel therapeutic strategies. In this review, we provide an overview of epigenetic alterations in the development and progression of prostate cancer, focusing on deoxyribonucleic acid methylation and histone modifications.
Collapse
Affiliation(s)
- Masahiro Sugiura
- Departments of, Department of, Urology, Chiba University Graduate School of Medicine, Chiba, Japan.,Department of, Molecular Oncology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hiroaki Sato
- Departments of, Department of, Urology, Chiba University Graduate School of Medicine, Chiba, Japan.,Department of, Molecular Oncology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Manato Kanesaka
- Departments of, Department of, Urology, Chiba University Graduate School of Medicine, Chiba, Japan.,Department of, Molecular Oncology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yusuke Imamura
- Departments of, Department of, Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Shinichi Sakamoto
- Departments of, Department of, Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tomohiko Ichikawa
- Departments of, Department of, Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Atsushi Kaneda
- Department of, Molecular Oncology, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
36
|
Esopi D, Graham MK, Brosnan-Cashman JA, Meyers J, Vaghasia A, Gupta A, Kumar B, Haffner MC, Heaphy CM, De Marzo AM, Meeker AK, Nelson WG, Wheelan SJ, Yegnasubramanian S. Pervasive promoter hypermethylation of silenced TERT alleles in human cancers. Cell Oncol (Dordr) 2020; 43:847-861. [PMID: 32468444 PMCID: PMC7581602 DOI: 10.1007/s13402-020-00531-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND In cancers, maintenance of telomeres often occurs through activation of the catalytic subunit of telomerase, encoded by TERT. Yet, most cancers show only modest levels of TERT gene expression, even in the context of activating hotspot promoter mutations (C228T and C250T). The role of epigenetic mechanisms, including DNA methylation, in regulating TERT gene expression in cancer cells is as yet not fully understood. METHODS Here, we have carried out the most comprehensive characterization to date of TERT promoter methylation using ultra-deep bisulfite sequencing spanning the CpG island surrounding the core TERT promoter in 96 different human cell lines, including primary, immortalized and cancer cell types, as well as in control and reference samples. RESULTS In general, we observed that immortalized and cancer cell lines were hypermethylated in a region upstream of the recurrent C228T and C250T TERT promoter mutations, while non-malignant primary cells were comparatively hypomethylated in this region. However, at the allele-level, we generally found that hypermethylation of promoter sequences in cancer cells is associated with repressed expression, and the remaining unmethylated alleles marked with open chromatin are largely responsible for the observed TERT expression in cancer cells. CONCLUSIONS Our findings suggest that hypermethylation of the TERT promoter alleles signals transcriptional repression of those alleles, leading to attenuation of TERT activation in cancer cells. This type of fine tuning of TERT expression may account for the modest activation of TERT expression in most cancers.
Collapse
Affiliation(s)
- David Esopi
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Vertex Genetic Therapies, Watertown, MA USA
| | - Mindy Kim Graham
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Jacqueline A. Brosnan-Cashman
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD USA
- American Association for Cancer Research, Publications Division, Boston, MA USA
| | - Jennifer Meyers
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Ajay Vaghasia
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Anuj Gupta
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | | | - Michael C. Haffner
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Fred Hutchinson Cancer Research Center, Division of Human Biology, Seattle, Washington State USA
| | - Christopher M. Heaphy
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Medicine, Boston University School of Medicine, Boston, MA USA
| | - Angelo M. De Marzo
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Alan K. Meeker
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - William G. Nelson
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Sarah J. Wheelan
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| | - Srinivasan Yegnasubramanian
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| |
Collapse
|
37
|
Wu L, Yang Y, Guo X, Shu XO, Cai Q, Shu X, Li B, Tao R, Wu C, Nikas JB, Sun Y, Zhu J, Roobol MJ, Giles GG, Brenner H, John EM, Clements J, Grindedal EM, Park JY, Stanford JL, Kote-Jarai Z, Haiman CA, Eeles RA, Zheng W, Long J. An integrative multi-omics analysis to identify candidate DNA methylation biomarkers related to prostate cancer risk. Nat Commun 2020; 11:3905. [PMID: 32764609 PMCID: PMC7413371 DOI: 10.1038/s41467-020-17673-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/28/2020] [Indexed: 12/21/2022] Open
Abstract
It remains elusive whether some of the associations identified in genome-wide association studies of prostate cancer (PrCa) may be due to regulatory effects of genetic variants on CpG sites, which may further influence expression of PrCa target genes. To search for CpG sites associated with PrCa risk, here we establish genetic models to predict methylation (N = 1,595) and conduct association analyses with PrCa risk (79,194 cases and 61,112 controls). We identify 759 CpG sites showing an association, including 15 located at novel loci. Among those 759 CpG sites, methylation of 42 is associated with expression of 28 adjacent genes. Among 22 genes, 18 show an association with PrCa risk. Overall, 25 CpG sites show consistent association directions for the methylation-gene expression-PrCa pathway. We identify DNA methylation biomarkers associated with PrCa, and our findings suggest that specific CpG sites may influence PrCa via regulating expression of candidate PrCa target genes.
Collapse
Affiliation(s)
- Lang Wu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA.
| | - Yaohua Yang
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiang Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bingshan Li
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ran Tao
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chong Wu
- Department of Statistics, Florida State University, Tallahassee, FL, USA
| | - Jason B Nikas
- Research & Development, Genomix Inc, Minneapolis, MN, USA
| | - Yanfa Sun
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
- College of Life Science, Longyan University, Longyan, Fujian, P. R. China
| | - Jingjing Zhu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Monique J Roobol
- Department of Urology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Graham G Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, 207 Bouverie St, Melbourne, VIC, 3010, Australia
- Cancer Epidemiology & Intelligence Division, Cancer Council Victoria, 615 St Kilda Rd, Melbourne, VIC, 3004, Australia
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Esther M John
- Department of Medicine (Oncology) and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Judith Clements
- Australian Prostate Cancer Research Centre-QLD, Institute of Health and Biomedical Innovation and School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| | | | - Jong Y Park
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Janet L Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Zsofia Kote-Jarai
- Division of Genetics and Epidemiology, The Institute of Cancer Research, and The Royal Marsden NHS Foundation Trust, London, UK
| | - Christopher A Haiman
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rosalind A Eeles
- Division of Genetics and Epidemiology, The Institute of Cancer Research, and The Royal Marsden NHS Foundation Trust, London, UK
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
38
|
Nguyen TN, Nguyen HQ, Le DH. Unveiling prognostics biomarkers of tyrosine metabolism reprogramming in liver cancer by cross-platform gene expression analyses. PLoS One 2020; 15:e0229276. [PMID: 32542016 PMCID: PMC7295234 DOI: 10.1371/journal.pone.0229276] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Tyrosine is mainly degraded in the liver by a series of enzymatic reactions. Abnormal expression of the tyrosine catabolic enzyme tyrosine aminotransferase (TAT) has been reported in patients with hepatocellular carcinoma (HCC). Despite this, aberration in tyrosine metabolism has not been investigated in cancer development. In this work, we conduct comprehensive cross-platform study to obtain foundation for discoveries of potential therapeutics and preventative biomarkers of HCC. We explore data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Gene Expression Profiling Interactive Analysis (GEPIA), Oncomine and Kaplan Meier plotter (KM plotter) and performed integrated analyses to evaluate the clinical significance and prognostic values of the tyrosine catabolic genes in HCC. We find that five tyrosine catabolic enzymes are downregulated in HCC compared to normal liver at mRNA and protein level. Moreover, low expression of these enzymes correlates with poorer survival in patients with HCC. Notably, we identify pathways and upstream regulators that might involve in tyrosine catabolic reprogramming and further drive HCC development. In total, our results underscore tyrosine metabolism alteration in HCC and lay foundation for incorporating these pathway components in therapeutics and preventative strategies.
Collapse
Affiliation(s)
- Tran N. Nguyen
- Department of Computational Biomedicine, Vingroup Big Data Institute, Hanoi, Vietnam
- * E-mail:
| | - Ha Q. Nguyen
- Department of Computer Vision, Vingroup Big Data Institute, Hanoi, Vietnam
| | - Duc-Hau Le
- Department of Computational Biomedicine, Vingroup Big Data Institute, Hanoi, Vietnam
| |
Collapse
|
39
|
Cui J, Li G, Yin J, Li L, Tan Y, Wei H, Liu B, Deng L, Tang J, Chen Y, Yi L. GSTP1 and cancer: Expression, methylation, polymorphisms and signaling (Review). Int J Oncol 2020; 56:867-878. [PMID: 32319549 DOI: 10.3892/ijo.2020.4979] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/17/2020] [Indexed: 01/04/2023] Open
Abstract
Glutathione S‑transferase Pi (GSTP1) is an isozyme encoded by the GST pi gene that plays an important regulatory role in detoxification, anti‑oxidative damage, and the occurrence of various diseases. The aim of the present study was to review the association between the expression of GSTP1 and the development and treatment of various cancers, and discuss GSTP1 methylation in several malignant tumors, such as prostate, breast and lung cancer, as well as hepatocellular carcinoma; to review the association between polymorphism of the GSTP1 gene and various diseases; and to review the effects of GSTP1 on electrophilic oxidative stress, cell signal transduction, and the regulation of carcinogenic factors. Collectively, GSTP1 plays a major role in the development of various diseases.
Collapse
Affiliation(s)
- Jian Cui
- Hengyang Medical College, Institute of Cytology and Genetics, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Guoqing Li
- Hengyang Medical College, Institute of Cytology and Genetics, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jie Yin
- Hengyang Medical College, Institute of Cytology and Genetics, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Linwei Li
- Department of Laboratory, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yue Tan
- Hengyang Medical College, Institute of Cytology and Genetics, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Haoran Wei
- Hengyang Medical College, Institute of Cytology and Genetics, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Bang Liu
- Hengyang Medical College, Institute of Cytology and Genetics, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Lihong Deng
- Hengyang Medical College, Institute of Cytology and Genetics, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jialu Tang
- Hengyang Medical College, Institute of Cytology and Genetics, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yonglin Chen
- Hengyang Medical College, Institute of Cytology and Genetics, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Lan Yi
- Hengyang Medical College, Institute of Cytology and Genetics, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
40
|
Cheng Y, He C, Wang M, Ma X, Mo F, Yang S, Han J, Wei X. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther 2019; 4:62. [PMID: 31871779 PMCID: PMC6915746 DOI: 10.1038/s41392-019-0095-0] [Citation(s) in RCA: 679] [Impact Index Per Article: 113.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 02/05/2023] Open
Abstract
Epigenetic alternations concern heritable yet reversible changes in histone or DNA modifications that regulate gene activity beyond the underlying sequence. Epigenetic dysregulation is often linked to human disease, notably cancer. With the development of various drugs targeting epigenetic regulators, epigenetic-targeted therapy has been applied in the treatment of hematological malignancies and has exhibited viable therapeutic potential for solid tumors in preclinical and clinical trials. In this review, we summarize the aberrant functions of enzymes in DNA methylation, histone acetylation and histone methylation during tumor progression and highlight the development of inhibitors of or drugs targeted at epigenetic enzymes.
Collapse
Affiliation(s)
- Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Cai He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Mo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shengyong Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Junhong Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
41
|
Mishra R, Haldar S, Suchanti S, Bhowmick NA. Epigenetic changes in fibroblasts drive cancer metabolism and differentiation. Endocr Relat Cancer 2019; 26:R673-R688. [PMID: 31627186 PMCID: PMC6859444 DOI: 10.1530/erc-19-0347] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 10/17/2019] [Indexed: 12/17/2022]
Abstract
Genomic changes that drive cancer initiation and progression contribute to the co-evolution of the adjacent stroma. The nature of the stromal reprogramming involves differential DNA methylation patterns and levels that change in response to the tumor and systemic therapeutic intervention. Epigenetic reprogramming in carcinoma-associated fibroblasts are robust biomarkers for cancer progression and have a transcriptional impact that support cancer epithelial progression in a paracrine manner. For prostate cancer, promoter hypermethylation and silencing of the RasGAP, RASAL3 that resulted in the activation of Ras signaling in carcinoma-associated fibroblasts. Stromal Ras activity initiated a process of macropinocytosis that provided prostate cancer epithelia with abundant glutamine for metabolic conversion to fuel its proliferation and a signal to transdifferentiate into a neuroendocrine phenotype. This epigenetic oncogenic metabolic/signaling axis seemed to be further potentiated by androgen receptor signaling antagonists and contributed to therapeutic resistance. Intervention of stromal signaling may complement conventional therapies targeting the cancer cell.
Collapse
Affiliation(s)
- Rajeev Mishra
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Subhash Haldar
- Department of Biotechnology, Brainware University, Kolkata, India
| | - Surabhi Suchanti
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Neil A Bhowmick
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Research, Greater Los Angeles Veterans Administration, Los Angeles, California, USA
- Correspondence should be addressed to N A Bhowmick:
| |
Collapse
|
42
|
Patel PG, Wessel T, Kawashima A, Okello JBA, Jamaspishvili T, Guérard KP, Lee L, Lee AYW, How NE, Dion D, Scarlata E, Jackson CL, Boursalie S, Sack T, Dunn R, Moussa M, Mackie/ K, Ellis A, Marra E, Chin J, Siddiqui K, Hetou K, Pickard LA, Arthur-Hayward V, Bauman G, Chevalier S, Brimo F, Boutros PC, Lapointe PhD J, Bartlett JMS, Gooding RJ, Berman DM. A three-gene DNA methylation biomarker accurately classifies early stage prostate cancer. Prostate 2019; 79:1705-1714. [PMID: 31433512 DOI: 10.1002/pros.23895] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/29/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND We identify and validate accurate diagnostic biomarkers for prostate cancer through a systematic evaluation of DNA methylation alterations. MATERIALS AND METHODS We assembled three early prostate cancer cohorts (total patients = 699) from which we collected and processed over 1300 prostatectomy tissue samples for DNA extraction. Using real-time methylation-specific PCR, we measured normalized methylation levels at 15 frequently methylated loci. After partitioning sample sets into independent training and validation cohorts, classifiers were developed using logistic regression, analyzed, and validated. RESULTS In the training dataset, DNA methylation levels at 7 of 15 genomic loci (glutathione S-transferase Pi 1 [GSTP1], CCDC181, hyaluronan, and proteoglycan link protein 3 [HAPLN3], GSTM2, growth arrest-specific 6 [GAS6], RASSF1, and APC) showed large differences between cancer and benign samples. The best binary classifier was the GAS6/GSTP1/HAPLN3 logistic regression model, with an area under these curves of 0.97, which showed a sensitivity of 94%, and a specificity of 93% after external validation. CONCLUSION We created and validated a multigene model for the classification of benign and malignant prostate tissue. With false positive and negative rates below 7%, this three-gene biomarker represents a promising basis for more accurate prostate cancer diagnosis.
Collapse
Affiliation(s)
- Palak G Patel
- Department of Pathology & Molecular Medicine, Queen's University, Kingston, Ontario, Canada
- Division of Cancer Biology & Genetics, Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | - Thomas Wessel
- Life Sciences Group, Thermo Fisher Scientific, Waltham, Massachusetts
| | - Atsunari Kawashima
- Department of Pathology & Molecular Medicine, Queen's University, Kingston, Ontario, Canada
- Division of Cancer Biology & Genetics, Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
- Department of Urology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - John B A Okello
- Department of Pathology & Molecular Medicine, Queen's University, Kingston, Ontario, Canada
- Division of Cancer Biology & Genetics, Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
- Cardiac Genome Clinic, Ted Rogers Centre for Heart Research, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tamara Jamaspishvili
- Department of Pathology & Molecular Medicine, Queen's University, Kingston, Ontario, Canada
- Division of Cancer Biology & Genetics, Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | - Karl-Philippe Guérard
- Division of Urology, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| | - Laura Lee
- Ontario Institute for Cancer Research (OICR), Toronto, Ontario, Canada
| | - Anna Ying-Wah Lee
- Ontario Institute for Cancer Research (OICR), Toronto, Ontario, Canada
| | - Nathan E How
- Department of Pathology & Molecular Medicine, Queen's University, Kingston, Ontario, Canada
- Division of Cancer Biology & Genetics, Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | - Dan Dion
- Ontario Institute for Cancer Research (OICR), Toronto, Ontario, Canada
| | - Eleonora Scarlata
- Division of Urology, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| | - Chelsea L Jackson
- Department of Pathology & Molecular Medicine, Queen's University, Kingston, Ontario, Canada
- Division of Cancer Biology & Genetics, Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | - Suzanne Boursalie
- Department of Pathology & Molecular Medicine, Queen's University, Kingston, Ontario, Canada
- Division of Cancer Biology & Genetics, Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | - Tanya Sack
- Department of Pathology & Molecular Medicine, Queen's University, Kingston, Ontario, Canada
- Division of Cancer Biology & Genetics, Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | - Rachel Dunn
- Department of Pathology & Molecular Medicine, Queen's University, Kingston, Ontario, Canada
- Division of Cancer Biology & Genetics, Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | - Madeleine Moussa
- Division of Surgical Pathology, Departmant of Pathology and Laboratory Medicine, London Health Sciences Centre, London, Ontario, Canada
| | - Karen Mackie/
- Division of Surgical Pathology, Departmant of Pathology and Laboratory Medicine, London Health Sciences Centre, London, Ontario, Canada
| | - Audrey Ellis
- Division of Surgical Pathology, Departmant of Pathology and Laboratory Medicine, London Health Sciences Centre, London, Ontario, Canada
| | - Elizabeth Marra
- Division of Surgical Pathology, Departmant of Pathology and Laboratory Medicine, London Health Sciences Centre, London, Ontario, Canada
| | - Joseph Chin
- Department of Surgery (Urology), London Health Sciences Centre, London, ON, Canada
| | - Khurram Siddiqui
- Department of Surgery (Urology), London Health Sciences Centre, London, ON, Canada
| | - Khalil Hetou
- Department of Surgery (Urology), London Health Sciences Centre, London, ON, Canada
| | | | | | - Glenn Bauman
- Division of Radiation Oncology, London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada
- Department of Physics and Astronomy, University of Western Ontario, London, Ontario, Canada
| | - Simone Chevalier
- Division of Urology, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| | - Fadi Brimo
- Department of Pathology, McGill University Health Center and McGill University, Montreal, Québec, Canada
| | - Paul C Boutros
- Ontario Institute for Cancer Research (OICR), Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Departments of Urology and Human Genetics, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| | - Jacques Lapointe PhD
- Division of Urology, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| | - John M S Bartlett
- Diagnostic Development, Ontario Institute for Cancer Research (OICR), Toronto, Ontario, Canada
| | - Robert J Gooding
- Division of Cancer Biology & Genetics, Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
- Department of Physics, Engineering Physics & Astronomy, Queen's University, Kingston, Ontario, Canada
| | - David M Berman
- Department of Pathology & Molecular Medicine, Queen's University, Kingston, Ontario, Canada
- Division of Cancer Biology & Genetics, Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
43
|
Xu J, Tsai CW, Chang WS, Han Y, Bau DT, Pettaway CA, Gu J. Methylation of global DNA repeat LINE-1 and subtelomeric DNA repeats D4Z4 in leukocytes is associated with biochemical recurrence in African American prostate cancer patients. Carcinogenesis 2019; 40:1055-1060. [PMID: 30874286 DOI: 10.1093/carcin/bgz061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/06/2019] [Accepted: 03/12/2019] [Indexed: 11/13/2022] Open
Abstract
Global DNA methylation may play important roles in cancer etiology and prognosis. The goal of this study is to investigate whether the methylation of long interspersed nucleotide elements (LINE-1) and subtelomeric DNA repeats D4Z4 in leukocyte DNA is associated with aggressive prostate cancer (PCa) in African Americans. We measured DNA methylation levels of LINE-1 and D4Z4 in 306 African American (AA) PCa patients using pyrosequencing and compared their methylation levels among clinical variables. We further applied multivariate Cox proportional hazards model and Kaplan-Meier survival function and log-rank tests to assess the association between DNA methylation and biochemical recurrence (BCR). Overall, there was no significant difference of the methylation levels of LINE-1 and D4Z4 among patients with different clinical and epidemiological characteristics. However, the methylation of LINE-1 and D4Z4 was associated with BCR. Patients with lower LINE-1 methylation and higher D4Z4 methylation exhibited markedly increased risks of BCR with adjusted hazard ratios of 3.34 (95% confidence interval, 1.32-8.45) and 4.12 (95% confidence interval, 1.32-12.86), respectively, and significantly shorter BCR-free survival times. Our results suggest that lower global DNA methylation and higher subtelomeric region methylation may predict worse prognosis in localized AA PCa patients.
Collapse
Affiliation(s)
- Junfeng Xu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chia-Wen Tsai
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Shin Chang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Yuyan Han
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Da-Tian Bau
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Curtis A Pettaway
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
44
|
Mahon KL, Qu W, Lin HM, Spielman C, Cain D, Jacobs C, Stockler MR, Higano CS, de Bono JS, Chi KN, Clark SJ, Horvath LG. Serum Free Methylated Glutathione S-transferase 1 DNA Levels, Survival, and Response to Docetaxel in Metastatic, Castration-resistant Prostate Cancer: Post Hoc Analyses of Data from a Phase 3 Trial. Eur Urol 2019; 76:306-312. [DOI: 10.1016/j.eururo.2018.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 11/01/2018] [Indexed: 11/25/2022]
|
45
|
Fuentes-Hernández S, Alarcón-Sánchez BR, Guerrero-Escalera D, Montes-Aparicio AV, Castro-Gil MP, Idelfonso-García OG, Rosas-Madrigal S, Aparicio-Bautista DI, Pérez-Hernández JL, Reyes-Gordillo K, Lakshman MR, Vásquez-Garzón VR, Baltiérrez-Hoyos R, López-González MDL, Sierra-Santoyo A, Villa-Treviño S, Pérez-Carreón JI, Arellanes-Robledo J. Chronic administration of diethylnitrosamine to induce hepatocarcinogenesis and to evaluate its synergistic effect with other hepatotoxins in mice. Toxicol Appl Pharmacol 2019; 378:114611. [DOI: 10.1016/j.taap.2019.114611] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023]
|
46
|
Wu L, Shu X, Bao J, Guo X, Kote-Jarai Z, Haiman CA, Eeles RA, Zheng W. Analysis of Over 140,000 European Descendants Identifies Genetically Predicted Blood Protein Biomarkers Associated with Prostate Cancer Risk. Cancer Res 2019; 79:4592-4598. [PMID: 31337649 DOI: 10.1158/0008-5472.can-18-3997] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/21/2019] [Accepted: 07/17/2019] [Indexed: 12/24/2022]
Abstract
Several blood protein biomarkers have been associated with prostate cancer risk. However, most studies assessed only a small number of biomarkers and/or included a small sample size. To identify novel protein biomarkers of prostate cancer risk, we studied 79,194 cases and 61,112 controls of European ancestry, included in the PRACTICAL/ELLIPSE consortia, using genetic instruments of protein quantitative trait loci for 1,478 plasma proteins. A total of 31 proteins were associated with prostate cancer risk including proteins encoded by GSTP1, whose methylation level was shown previously to be associated with prostate cancer risk, and MSMB, SPINT2, IGF2R, and CTSS, which were previously implicated as potential target genes of prostate cancer risk variants identified in genome-wide association studies. A total of 18 proteins inversely correlated and 13 positively correlated with prostate cancer risk. For 28 of the identified proteins, gene somatic changes of short indels, splice site, nonsense, or missense mutations were detected in patients with prostate cancer in The Cancer Genome Atlas. Pathway enrichment analysis showed that relevant genes were significantly enriched in cancer-related pathways. In conclusion, this study identifies 31 candidates of protein biomarkers for prostate cancer risk and provides new insights into the biology and genetics of prostate tumorigenesis. SIGNIFICANCE: Integration of genomics and proteomics data identifies biomarkers associated with prostate cancer risk.
Collapse
Affiliation(s)
- Lang Wu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii.,Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Xiang Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jiandong Bao
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Zsofia Kote-Jarai
- Division of Genetics and Epidemiology, The Institute of Cancer Research, and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Christopher A Haiman
- Department of Preventive Medicine, University of Southern California, Los Angeles, California
| | - Rosalind A Eeles
- Division of Genetics and Epidemiology, The Institute of Cancer Research, and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee.
| | | |
Collapse
|
47
|
Benelli M, Romagnoli D, Demichelis F. Tumor purity quantification by clonal DNA methylation signatures. Bioinformatics 2019; 34:1642-1649. [PMID: 29325057 DOI: 10.1093/bioinformatics/bty011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/06/2018] [Indexed: 12/18/2022] Open
Abstract
Motivation Controlling for tumor purity in molecular analyses is essential to allow for reliable genomic aberration calls, for inter-sample comparison and to monitor heterogeneity of cancer cell populations. In genome wide screening studies, the assessment of tumor purity is typically performed by means of computational methods that exploit somatic copy number aberrations. Results We present a strategy, called Purity Assessment from clonal MEthylation Sites (PAMES), which uses the methylation level of a few dozen, highly clonal, tumor type specific CpG sites to estimate the purity of tumor samples, without the need of a matched benign control. We trained and validated our method in more than 6000 samples from different datasets. Purity estimates by PAMES were highly concordant with other state-of-the-art tools and its evaluation in a cancer cell line dataset highlights its reliability to accurately estimate tumor admixtures. We extended the capability of PAMES to the analysis of CpG islands instead of the more platform-specific CpG sites and demonstrated its accuracy in a set of advanced tumors profiled by high throughput DNA methylation sequencing. These analyses show that PAMES is a valuable tool to assess the purity of tumor samples in the settings of clinical research and diagnostics. Availability and implementation https://github.com/cgplab/PAMES. Contact matteo.benelli@uslcentro.toscana.it or f.demichelis@unitn.it. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Matteo Benelli
- Centre for Integrative Biology, University of Trento, Trento, Italy.,Bioinformatics Unit, Hospital of Prato, Istituto Toscano Tumori, Prato, Italy
| | - Dario Romagnoli
- Centre for Integrative Biology, University of Trento, Trento, Italy.,Bioinformatics Unit, Hospital of Prato, Istituto Toscano Tumori, Prato, Italy
| | - Francesca Demichelis
- Centre for Integrative Biology, University of Trento, Trento, Italy.,Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
48
|
Frame FM, Maitland NJ. Epigenetic Control of Gene Expression in the Normal and Malignant Human Prostate: A Rapid Response Which Promotes Therapeutic Resistance. Int J Mol Sci 2019; 20:E2437. [PMID: 31108832 PMCID: PMC6566891 DOI: 10.3390/ijms20102437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 12/12/2022] Open
Abstract
A successful prostate cancer must be capable of changing its phenotype in response to a variety of microenvironmental influences, such as adaptation to treatment or successful proliferation at a particular metastatic site. New cell phenotypes emerge by selection from the large, genotypically heterogeneous pool of candidate cells present within any tumor mass, including a distinct stem cell-like population. In such a multicellular model of human prostate cancer, flexible responses are primarily governed not only by de novo mutations but appear to be dominated by a combination of epigenetic controls, whose application results in treatment resistance and tumor relapse. Detailed studies of these individual cell populations have resulted in an epigenetic model for epithelial cell differentiation, which is also instructive in explaining the reported high and inevitable relapse rates of human prostate cancers to a multitude of treatment types.
Collapse
Affiliation(s)
- Fiona M Frame
- The Cancer Research Unit, Department of Biology, University of York, Heslington, York YO10 5DD, UK.
| | - Norman J Maitland
- The Cancer Research Unit, Department of Biology, University of York, Heslington, York YO10 5DD, UK.
| |
Collapse
|
49
|
Gurioli G, Martignano F, Salvi S, Costantini M, Gunelli R, Casadio V. GSTP1 methylation in cancer: a liquid biopsy biomarker? Clin Chem Lab Med 2019; 56:702-717. [PMID: 29305565 DOI: 10.1515/cclm-2017-0703] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/31/2017] [Indexed: 12/14/2022]
Abstract
The coding region of GSTP1 gene is preceded by a large CpG-rich region that is frequently affected by methylation. In many cancer types, GSTP1 is affected by hypermethylation and, as a consequence, it has a low expression. The aim of this review is to give an overview on GSTP1 methylation studies with a special focus on liquid biopsy, thus to summarize methods, results, sample types, different diseases, to have a complete information regarding this promising epigenetic biomarker. We used all the most valuable scientific search engines (PubMed, Medline, Scopus and Web of Science) searching the following keywords: GSTP1, methylation, cancer, urine, serum, plasma and blood. GSTP1 is a largely investigated tissue biomarker in several malignancies such as prostate, breast, lung and hepatocellular carcinoma with good performances especially for diagnostic purposes. As a liquid biopsy biomarker, it has been mainly investigated in prostate cancer (PCa) where it showed a high specificity but a low sensitivity; thus, it is recommended in combination with other biomarkers. Despite the large number of published papers and the promising results, GSTP1 has not yet entered the clinical practice even for PCa diagnosis. For this reason, further large and prospective studies are needed to validate this assay.
Collapse
Affiliation(s)
- Giorgia Gurioli
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Filippo Martignano
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy.,Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Samanta Salvi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Matteo Costantini
- Pathology Unit, Department of Medical Oncology, Morgagni Pierantoni Hospital, Forlì, Italy
| | - Roberta Gunelli
- Department of Urology, Morgagni Pierantoni Hospital, Forli, Italy
| | - Valentina Casadio
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
50
|
Trabzonlu L, Kulac I, Zheng Q, Hicks JL, Haffner MC, Nelson WG, Sfanos KS, Ertunc O, Lotan TL, Heaphy CM, Meeker AK, Yegnasubramanian S, De Marzo AM. Molecular Pathology of High-Grade Prostatic Intraepithelial Neoplasia: Challenges and Opportunities. Cold Spring Harb Perspect Med 2019; 9:a030403. [PMID: 30082453 PMCID: PMC6444695 DOI: 10.1101/cshperspect.a030403] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A better understanding of the early stages of prostate cancer initiation, potentially arising from precursor lesions, may fuel development of powerful approaches for prostate cancer prevention or interception. The best-known candidate for such a precursor lesion has been referred to as high-grade prostatic intraepithelial neoplasia (HGPIN). Although there is significant evidence supporting the notion that such HGPIN lesions can give rise to invasive adenocarcinomas of the prostate, there are also numerous complicating considerations and evidence that cloud the picture in many instances. Notably, recent evidence has suggested that some fraction of such lesions that are morphologically consistent with HGPIN may actually be invasive carcinomas masquerading as HGPIN-a state that we term "postinvasive intraepithelial carcinoma" (PIC). Although the prevalence of such PIC lesions is not fully understood, this and other factors can confound the potential of identifying prostate precursors that can be targeted for disease prevention, interception, or treatment. Here, we review our current understanding of the morphological and molecular pathological features of prostate cancer precursor lesions.
Collapse
Affiliation(s)
- Levent Trabzonlu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Ibrahim Kulac
- Department of Pathology, Koc University School of Medicine, Istanbul 34010, Turkey
| | - Qizhi Zheng
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Jessica L Hicks
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Michael C Haffner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - William G Nelson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- The Brady Urological Research Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Karen S Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- The Brady Urological Research Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Onur Ertunc
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Christopher M Heaphy
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- The Brady Urological Research Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Alan K Meeker
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- The Brady Urological Research Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Srinivasan Yegnasubramanian
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- The Brady Urological Research Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- The Brady Urological Research Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| |
Collapse
|