1
|
Hess WR, Wilde A, Mullineaux CW. Does mRNA targeting explain gene retention in chloroplasts? TRENDS IN PLANT SCIENCE 2025; 30:147-155. [PMID: 39443276 DOI: 10.1016/j.tplants.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
During their evolution from cyanobacteria, plastids have relinquished most of their genes to the host cell nucleus, but have retained a core set of genes that are transcribed and translated within the organelle. Previous explanations have included incompatible codon or base composition, problems importing certain proteins across the double membrane, or the need for tight regulation in concert with the redox status of the electron transport chain. In this opinion article we propose the 'mRNA targeting hypothesis'. Studies in cyanobacteria suggest that mRNAs encoding core photosynthetic proteins have features that are crucial for membrane targeting and coordination of early steps in complex assembly. We propose that the requirement for intimate involvement of mRNA molecules at the thylakoid surface explains the retention of core photosynthetic genes in chloroplasts.
Collapse
Affiliation(s)
- Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Annegret Wilde
- Molecular Genetics of Prokaryotes, Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Conrad W Mullineaux
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
2
|
Chai W, Li H, Xu H, Zhu Q, Li S, Yuan C, Ji W, Wang J, Sheng L. ZmDST44 Gene Is a Positive Regulator in Plant Drought Stress Tolerance. BIOLOGY 2024; 13:552. [PMID: 39194490 DOI: 10.3390/biology13080552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024]
Abstract
Improving drought tolerance in plants is essential for increasing crop yields under water-limited conditions. In this study, we investigated the functional role of the maize gene ZmDST44, which is targeted by the miRNA ZmmiR139. Our results indicate that ZmmiR139 regulates ZmDST44 by cleaving its mRNA, as confirmed by inverse expression patterns and 5'-RACE analysis. Overexpression of ZmDST44 in Arabidopsis, rice, and maize resulted in significant enhancements in drought tolerance. Transgenic plants exhibited reduced malondialdehyde (MDA) levels, increased proline accumulation, and upregulation of drought-responsive genes compared to wild-type plants. Transgenic Arabidopsis and rice showed improved drought resistance and higher post-drought recovery rates, and transgenic maize displayed lower sensitivity to drought stress. These findings suggest that ZmDST44 acts as a positive regulator of drought tolerance across different plant species and holds promise for developing drought-resistant crops through genetic engineering.
Collapse
Affiliation(s)
- Wenbo Chai
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222006, China
| | - Hongtao Li
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222006, China
| | - Hanyuan Xu
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222006, China
| | - Qing Zhu
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222006, China
| | - Shufen Li
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222006, China
| | - Chao Yuan
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222006, China
| | - Wei Ji
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222006, China
| | - Jun Wang
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222006, China
| | - Lei Sheng
- Anhui Academy of Agricultural Sciences, Hefei 230036, China
| |
Collapse
|
3
|
Manning T, Birch R, Stevenson T, Nugent G, Whitney S. Bacterial Form II Rubisco can support wild-type growth and productivity in Solanum tuberosum cv. Desiree (potato) under elevated CO 2. PNAS NEXUS 2023; 2:pgac305. [PMID: 36743474 PMCID: PMC9896143 DOI: 10.1093/pnasnexus/pgac305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/22/2022] [Indexed: 02/05/2023]
Abstract
The last decade has seen significant advances in the development of approaches for improving both the light harvesting and carbon fixation pathways of photosynthesis by nuclear transformation, many involving multigene synthetic biology approaches. As efforts to replicate these accomplishments from tobacco into crops gather momentum, similar diversification is needed in the range of transgenic options available, including capabilities to modify crop photosynthesis by chloroplast transformation. To address this need, here we describe the first transplastomic modification of photosynthesis in a crop by replacing the native Rubisco in potato with the faster, but lower CO2-affinity and poorer CO2/O2 specificity Rubisco from the bacterium Rhodospirillum rubrum. High level production of R. rubrum Rubisco in the potRr genotype (8 to 10 µmol catalytic sites m2) allowed it to attain wild-type levels of productivity, including tuber yield, in air containing 0.5% (v/v) CO2. Under controlled environment growth at 25°C and 350 µmol photons m2 PAR, the productivity and leaf biochemistry of wild-type potato at 0.06%, 0.5%, or 1.5% (v/v) CO2 and potRr at 0.5% or 1.5% (v/v) CO2 were largely indistinguishable. These findings suggest that increasing the scope for enhancing productivity gains in potato by improving photosynthate production will necessitate improvement to its sink-potential, consistent with current evidence productivity gains by eCO2 fertilization for this crop hit a ceiling around 560 to 600 ppm CO2.
Collapse
Affiliation(s)
- Tahnee Manning
- School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Rosemary Birch
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT 0200, Australia
| | - Trevor Stevenson
- School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Gregory Nugent
- School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Spencer Whitney
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT 0200, Australia
| |
Collapse
|
4
|
Buck S, Rhodes T, Gionfriddo M, Skinner T, Yuan D, Birch R, Kapralov MV, Whitney SM. Escherichia coli expressing chloroplast chaperones as a proxy to test heterologous Rubisco production in leaves. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:664-676. [PMID: 36322613 DOI: 10.1093/jxb/erac435] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Rubisco is a fundamental enzyme in photosynthesis and therefore for life. Efforts to improve plant Rubisco performance have been hindered by the enzymes' complex chloroplast biogenesis requirements. New Synbio approaches, however, now allow the production of some plant Rubisco isoforms in Escherichia coli. While this enhances opportunities for catalytic improvement, there remain limitations in the utility of the expression system. Here we generate, optimize, and test a robust Golden Gate cloning E. coli expression system incorporating the protein folding machinery of tobacco chloroplasts. By comparing the expression of different plant Rubiscos in both E. coli and plastome-transformed tobacco, we show that the E. coli expression system can accurately predict high level Rubisco production in chloroplasts but poorly forecasts the biogenesis potential of isoforms with impaired production in planta. We reveal that heterologous Rubisco production in E. coli and tobacco plastids poorly correlates with Rubisco large subunit phylogeny. Our findings highlight the need to fully understand the factors governing Rubisco biogenesis if we are to deliver an efficient, low-cost screening tool that can accurately emulate chloroplast expression.
Collapse
Affiliation(s)
- Sally Buck
- ARC Centre of Excellence in Translational Photosynthesis, Australian National University, Canberra 2000, Australia
| | - Tim Rhodes
- ARC Centre of Excellence in Translational Photosynthesis, Australian National University, Canberra 2000, Australia
| | - Matteo Gionfriddo
- ARC Centre of Excellence in Translational Photosynthesis, Australian National University, Canberra 2000, Australia
| | - Tanya Skinner
- ARC Centre of Excellence in Translational Photosynthesis, Australian National University, Canberra 2000, Australia
| | - Ding Yuan
- ARC Centre of Excellence in Translational Photosynthesis, Australian National University, Canberra 2000, Australia
| | - Rosemary Birch
- ARC Centre of Excellence in Translational Photosynthesis, Australian National University, Canberra 2000, Australia
| | - Maxim V Kapralov
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Spencer M Whitney
- ARC Centre of Excellence in Translational Photosynthesis, Australian National University, Canberra 2000, Australia
| |
Collapse
|
5
|
Abstract
Cell penetrating peptides (CPPs) are short peptides that are able to translocate themselves and their cargo into cells. The progressive and continuous application of CPPs in various fields of basic and applied research shows that they are efficient delivery vectors for an assortment of biomolecules, including nucleic acids and proteins. This feature makes CPPs an excellent tool for modification of plant genomes through transgenesis and genome editing. In this review, we present the progress during the last three decades in application of CPPs for delivery of DNA, RNA, and proteins into plant cells and tissues. Moreover, we highlight the exploiting of CPPs as advantageous and beneficial tool for plant genome editing via delivery of nuclease proteins, and provide a practical example of genome alternation through CPP-delivered nucleases. Finally, the current exploitation of peptides in organelle-specific DNA delivery and modification of organellar genomes is discussed.
Collapse
|
6
|
Abstract
The plastid genome (plastome ) has proved a valuable source of data for evaluating evolutionary relationships among angiosperms. Through basic and applied approaches, plastid transformation technology offers the potential to understand and improve plant productivity, providing food, fiber, energy, and medicines to meet the needs of a burgeoning global population. The growing genomic resources available to both phylogenetic and biotechnological investigations is allowing novel insights and expanding the scope of plastome research to encompass new species. In this chapter, we present an overview of some of the seminal and contemporary research that has contributed to our current understanding of plastome evolution and attempt to highlight the relationship between evolutionary mechanisms and the tools of plastid genetic engineering.
Collapse
Affiliation(s)
- Tracey A Ruhlman
- Integrative Biology, University of Texas at Austin, Austin, TX, USA.
| | - Robert K Jansen
- Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
7
|
Yarra R. Plastome engineering in vegetable crops: current status and future prospects. Mol Biol Rep 2020; 47:8061-8074. [PMID: 32880066 DOI: 10.1007/s11033-020-05770-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 08/28/2020] [Indexed: 01/12/2023]
Abstract
Plastome (plastid genome) engineering has grown up and got smarter for the transgene expression. Plastid transformation has profound benefits over nuclear transformation, includes a higher level of transgene expression, integration via homologous recombination, transgene containment, lack of gene silencing, and position effect. Substantial and fruitful progress has been achieved in plastome engineering of vegetable crops through the use of improved regeneration/selection procedures, plastid transformation vectors with efficient promoters, and 3/, 5/regulatory sequences. Plastid transformation technology developed for vegetable crops being used as a platform for the production of industrially important proteins and some of the genes of agronomic importance has been stably integrated and expressed in plastome. Although great progress has been accomplished in the plastid transformation of vegetable crops, still it is restricted to few species because of the unavailability of whole plastome sequencing. In this review, the author focus on the technology, progress, and advancements in plastid transformation of vegetable plants such as lettuce, tomato, potato, cabbage, cauliflower, eggplant, carrot, soybean, and bitter melon are reviewed. The conclusions, future prospects, and expansion of plastid transformation technology to other vegetable crops for genetic improvement and production of edible vaccines are proposed.
Collapse
Affiliation(s)
- Rajesh Yarra
- Department of Agronomy, University of Florida, IFAS, Gainesville, FL, 32611, USA.
| |
Collapse
|
8
|
Martin-Avila E, Lim YL, Birch R, Dirk LMA, Buck S, Rhodes T, Sharwood RE, Kapralov MV, Whitney SM. Modifying Plant Photosynthesis and Growth via Simultaneous Chloroplast Transformation of Rubisco Large and Small Subunits. THE PLANT CELL 2020; 32:2898-2916. [PMID: 32647068 PMCID: PMC7474299 DOI: 10.1105/tpc.20.00288] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/15/2020] [Accepted: 07/06/2020] [Indexed: 05/20/2023]
Abstract
Engineering improved Rubisco for the enhancement of photosynthesis is challenged by the alternate locations of the chloroplast rbcL gene and nuclear RbcS genes. Here we develop an RNAi-RbcS tobacco (Nicotiana tabacum) master-line, tobRrΔS, for producing homogenous plant Rubisco by rbcL-rbcS operon chloroplast transformation. Four genotypes encoding alternative rbcS genes and adjoining 5'-intergenic sequences revealed that Rubisco production was highest (50% of the wild type) in the lines incorporating a rbcS gene whose codon use and 5' untranslated-region matched rbcL Additional tobacco genotypes produced here incorporated differing potato (Solanum tuberosum) rbcL-rbcS operons that either encoded one of three mesophyll small subunits (pS1, pS2, and pS3) or the potato trichome pST-subunit. The pS3-subunit caused impairment of potato Rubisco production by ∼15% relative to the lines producing pS1, pS2, or pST However, the βA-βB loop Asn-55-His and Lys-57-Ser substitutions in the pS3-subunit improved carboxylation rates by 13% and carboxylation efficiency (CE) by 17%, relative to potato Rubisco incorporating pS1 or pS2-subunits. Tobacco photosynthesis and growth were most impaired in lines producing potato Rubisco incorporating the pST-subunit, which reduced CE and CO2/O2 specificity 40% and 15%, respectively. Returning the rbcS gene to the plant plastome provides an effective bioengineering chassis for introduction and evaluation of novel homogeneous Rubisco complexes in a whole plant context.
Collapse
Affiliation(s)
- Elena Martin-Avila
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Yi-Leen Lim
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Rosemary Birch
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Lynnette M A Dirk
- Department of Horticulture, Seed Biology Group, University of Kentucky, Lexington, Kentucky 40546-0312
| | - Sally Buck
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Timothy Rhodes
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Robert E Sharwood
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Maxim V Kapralov
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Spencer M Whitney
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| |
Collapse
|
9
|
Salesse-Smith CE, Sharwood RE, Busch FA, Kromdijk J, Bardal V, Stern DB. Overexpression of Rubisco subunits with RAF1 increases Rubisco content in maize. NATURE PLANTS 2018; 4:802-810. [PMID: 30287949 DOI: 10.1038/s41477-018-0252-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/15/2018] [Indexed: 05/21/2023]
Abstract
Rubisco catalyses a rate-limiting step in photosynthesis and has long been a target for improvement due to its slow turnover rate. An alternative to modifying catalytic properties of Rubisco is to increase its abundance within C4 plant chloroplasts, which might increase activity and confer a higher carbon assimilation rate. Here, we overexpress the Rubisco large (LS) and small (SS) subunits with the Rubisco assembly chaperone RUBISCO ASSEMBLY FACTOR 1 (RAF1). While overexpression of LS and/or SS had no discernable impact on Rubisco content, addition of RAF1 overexpression resulted in a >30% increase in Rubisco content. Gas exchange showed a 15% increase in CO2 assimilation (ASAT) in UBI-LSSS-RAF1 transgenic plants, which correlated with increased fresh weight and in vitro Vcmax calculations. The divergence of Rubisco content and assimilation could be accounted for by the Rubisco activation state, which decreased up to 23%, suggesting that Rubisco activase may be limiting Vcmax, and impinging on the realization of photosynthetic potential from increased Rubisco content.
Collapse
Affiliation(s)
| | - Robert E Sharwood
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Florian A Busch
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Johannes Kromdijk
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| | | | | |
Collapse
|
10
|
Sloan DB, Warren JM, Williams AM, Wu Z, Abdel-Ghany SE, Chicco AJ, Havird JC. Cytonuclear integration and co-evolution. Nat Rev Genet 2018; 19:635-648. [PMID: 30018367 PMCID: PMC6469396 DOI: 10.1038/s41576-018-0035-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The partitioning of genetic material between the nucleus and cytoplasmic (mitochondrial and plastid) genomes within eukaryotic cells necessitates coordinated integration between these genomic compartments, with important evolutionary and biomedical implications. Classic questions persist about the pervasive reduction of cytoplasmic genomes via a combination of gene loss, transfer and functional replacement - and yet why they are almost always retained in some minimal form. One striking consequence of cytonuclear integration is the existence of 'chimeric' enzyme complexes composed of subunits encoded in two different genomes. Advances in structural biology and comparative genomics are yielding important insights into the evolution of such complexes, including correlated sequence changes and recruitment of novel subunits. Thus, chimeric cytonuclear complexes provide a powerful window into the mechanisms of molecular co-evolution.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA.
| | - Jessica M Warren
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Alissa M Williams
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Zhiqiang Wu
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | | | - Adam J Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Justin C Havird
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
11
|
Sharwood RE. Engineering chloroplasts to improve Rubisco catalysis: prospects for translating improvements into food and fiber crops. THE NEW PHYTOLOGIST 2017; 213:494-510. [PMID: 27935049 DOI: 10.1111/nph.14351] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/10/2016] [Indexed: 05/19/2023]
Abstract
494 I. 495 II. 496 III. 496 IV. 499 V. 499 VI. 501 VII. 501 VIII. 502 IX. 505 X. 506 507 References 507 SUMMARY: The uncertainty of future climate change is placing pressure on cropping systems to continue to provide stable increases in productive yields. To mitigate future climates and the increasing threats against global food security, new solutions to manipulate photosynthesis are required. This review explores the current efforts available to improve carbon assimilation within plant chloroplasts by engineering Rubisco, which catalyzes the rate-limiting step of CO2 fixation. Fixation of CO2 and subsequent cycling of 3-phosphoglycerate through the Calvin cycle provides the necessary carbohydrate building blocks for maintaining plant growth and yield, but has to compete with Rubisco oxygenation, which results in photorespiration that is energetically wasteful for plants. Engineering improvements in Rubisco is a complex challenge and requires an understanding of chloroplast gene regulatory pathways, and the intricate nature of Rubisco catalysis and biogenesis, to transplant more efficient forms of Rubisco into crops. In recent times, major advances in Rubisco engineering have been achieved through improvement of our knowledge of Rubisco synthesis and assembly, and identifying amino acid catalytic switches in the L-subunit responsible for improvements in catalysis. Improving the capacity of CO2 fixation in crops such as rice will require further advances in chloroplast bioengineering and Rubisco biogenesis.
Collapse
Affiliation(s)
- Robert E Sharwood
- ARC Center of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
12
|
Carmo-Silva E, Scales JC, Madgwick PJ, Parry MAJ. Optimizing Rubisco and its regulation for greater resource use efficiency. PLANT, CELL & ENVIRONMENT 2015; 38:1817-32. [PMID: 25123951 DOI: 10.1111/pce.12425] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/01/2014] [Accepted: 08/03/2014] [Indexed: 05/19/2023]
Abstract
Rubisco catalyses the carboxylation of ribulose-1,5-bisphosphate (RuBP), enabling net CO2 assimilation in photosynthesis. The properties and regulation of Rubisco are not optimal for biomass production in current and projected future environments. Rubisco is relatively inefficient, and large amounts of the enzyme are needed to support photosynthesis, requiring large investments in nitrogen. The competing oxygenation of RuBP by Rubisco decreases photosynthetic efficiency. Additionally, Rubisco is inhibited by some sugar phosphates and depends upon interaction with Rubisco activase (Rca) to be reactivated. Rca activity is modulated by the chloroplast redox status and ADP/ATP ratios, thereby mediating Rubisco activation and photosynthetic induction in response to irradiance. The extreme thermal sensitivity of Rca compromises net CO2 assimilation at moderately high temperatures. Given its central role in carbon assimilation, the improvement of Rubisco function and regulation is tightly linked with irradiance, nitrogen and water use efficiencies. Although past attempts have had limited success, novel technologies and an expanding knowledge base make the challenge of improving Rubisco activity in crops an achievable goal. Strategies to optimize Rubisco and its regulation are addressed in relation to their potential to improve crop resource use efficiency and climate resilience of photosynthesis.
Collapse
Affiliation(s)
| | - Joanna C Scales
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| | - Pippa J Madgwick
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| | - Martin A J Parry
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| |
Collapse
|
13
|
Why chloroplasts and mitochondria retain their own genomes and genetic systems: Colocation for redox regulation of gene expression. Proc Natl Acad Sci U S A 2015; 112:10231-8. [PMID: 26286985 DOI: 10.1073/pnas.1500012112] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Chloroplasts and mitochondria are subcellular bioenergetic organelles with their own genomes and genetic systems. DNA replication and transmission to daughter organelles produces cytoplasmic inheritance of characters associated with primary events in photosynthesis and respiration. The prokaryotic ancestors of chloroplasts and mitochondria were endosymbionts whose genes became copied to the genomes of their cellular hosts. These copies gave rise to nuclear chromosomal genes that encode cytosolic proteins and precursor proteins that are synthesized in the cytosol for import into the organelle into which the endosymbiont evolved. What accounts for the retention of genes for the complete synthesis within chloroplasts and mitochondria of a tiny minority of their protein subunits? One hypothesis is that expression of genes for protein subunits of energy-transducing enzymes must respond to physical environmental change by means of a direct and unconditional regulatory control--control exerted by change in the redox state of the corresponding gene product. This hypothesis proposes that, to preserve function, an entire redox regulatory system has to be retained within its original membrane-bound compartment. Colocation of gene and gene product for redox regulation of gene expression (CoRR) is a hypothesis in agreement with the results of a variety of experiments designed to test it and which seem to have no other satisfactory explanation. Here, I review evidence relating to CoRR and discuss its development, conclusions, and implications. This overview also identifies predictions concerning the results of experiments that may yet prove the hypothesis to be incorrect.
Collapse
|
14
|
Fukayama H, Koga A, Hatanaka T, Misoo S. Small subunit of a cold-resistant plant, Timothy, does not significantly alter the catalytic properties of Rubisco in transgenic rice. PHOTOSYNTHESIS RESEARCH 2015; 124:57-65. [PMID: 25595546 DOI: 10.1007/s11120-015-0085-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/08/2015] [Indexed: 06/04/2023]
Abstract
Effects of overexpression of high activity-type Rubisco small subunit (RbcS) from a cold-resistant plant, timothy (Phleum pratense), on kinetic properties of Rubisco were studied in rice (Oryza sativa). The full-length mRNA sequence of timothy RbcS (PpRbcS1) was determined by 5'RACE and 3'RACE. The coding sequence of PpRbcS1 was fused to the chlorophyll a/b-binding protein promoter and introduced into rice. PpRbcS was highly expressed in leaf blade and accounted for approximately 30 % of total RbcS in homozygous transgenic lines. However, the catalytic turnover rate and K m for CO2 of Rubisco did not significantly change in these transgenic lines compared to non-transgenic rice, suggesting that PpRbcS1 is not effective for improvement of catalytic efficiency of rice Rubisco. The photosynthetic rate and growth were essentially unchanged, whereas the photosynthetic rate at low CO2 condition was marginally increased in transgenic lines. Rubisco content was significantly increased, whereas soluble protein, nitrogen, and chlorophyll contents were unchanged in transgenic lines compared to non-transgenic rice. Because the kinetic properties were similar, observed slight increase in photosynthetic rate at low CO2 is considered to be large due to increase in Rubisco content in transgenic lines. Introduction of foreign RbcS is an effective approach for the improvement of Rubisco kinetics and photosynthesis. However, in this study, it was suggested that RbcS of high activity-type Rubisco, even showing higher amino acid identity with rice RbcS, did not always enhance the catalytic turnover rate of Rubisco in rice. Thus, we should carefully select RbcS to be overexpressed before introduction.
Collapse
Affiliation(s)
- Hiroshi Fukayama
- Graduate School of Agricultural Science, Laboratory of Crop Science, Kobe University, Nada-ku, Kobe, 657-8501, Japan,
| | | | | | | |
Collapse
|
15
|
Scharff LB, Bock R. Synthetic biology in plastids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:783-98. [PMID: 24147738 DOI: 10.1111/tpj.12356] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/08/2013] [Accepted: 10/16/2013] [Indexed: 05/21/2023]
Abstract
Plastids (chloroplasts) harbor a small gene-dense genome that is amenable to genetic manipulation by transformation. During 1 billion years of evolution from the cyanobacterial endosymbiont to present-day chloroplasts, the plastid genome has undergone a dramatic size reduction, mainly as a result of gene losses and the large-scale transfer of genes to the nuclear genome. Thus the plastid genome can be regarded as a naturally evolved miniature genome, the gradual size reduction and compaction of which has provided a blueprint for the design of minimum genomes. Furthermore, because of the largely prokaryotic genome structure and gene expression machinery, the high transgene expression levels attainable in transgenic chloroplasts and the very low production costs in plant systems, the chloroplast lends itself to synthetic biology applications that are directed towards the efficient synthesis of green chemicals, biopharmaceuticals and other metabolites of commercial interest. This review describes recent progress with the engineering of plastid genomes with large constructs of foreign or synthetic DNA, and highlights the potential of the chloroplast as a model system in bottom-up and top-down synthetic biology approaches.
Collapse
Affiliation(s)
- Lars B Scharff
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | | |
Collapse
|
16
|
Abstract
The plastid genome (plastome) has proved a valuable source of data for evaluating evolutionary relationships among angiosperms. Through basic and applied approaches, plastid transformation technology offers the potential to understand and improve plant productivity, providing food, fiber, energy and medicines to meet the needs of a burgeoning global population. The growing genomic resources available to both phylogenetic and biotechnological investigations are allowing novel insights and expanding the scope of plastome research to encompass new species. In this chapter we present an overview of some of the seminal and contemporary research that has contributed to our current understanding of plastome evolution and attempt to highlight the relationship between evolutionary mechanisms and tools of plastid genetic engineering.
Collapse
Affiliation(s)
- Tracey A Ruhlman
- Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
17
|
Krech K, Fu HY, Thiele W, Ruf S, Schöttler MA, Bock R. Reverse genetics in complex multigene operons by co-transformation of the plastid genome and its application to the open reading frame previously designated psbN. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:1062-74. [PMID: 23738654 DOI: 10.1111/tpj.12256] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/24/2013] [Accepted: 06/03/2013] [Indexed: 05/28/2023]
Abstract
Reverse genetics approaches have contributed enormously to the elucidation of gene functions in plastid genomes and the determination of structure-function relationships in chloroplast multiprotein complexes. Gene knock-outs are usually performed by disrupting the reading frame of interest with a selectable marker cassette. Site-directed mutagenesis is done by placing the marker into the adjacent intergenic spacer and relying on co-integration of the desired mutation by homologous recombination. These strategies are not applicable to genes residing in large multigene operons or other gene-dense genomic regions, because insertion of the marker cassette into an operon-internal gene or into the nearest intergenic spacer is likely to interfere with expression of adjacent genes in the operon or disrupt cis-elements for the expression of neighboring genes and operons. Here we have explored the possibility of using a co-transformation strategy to mutate a small gene of unknown function (psbN) that is embedded in a complex multigene operon. Although inactivation of psbN resulted in strong impairment of photosynthesis, homoplasmic knock-out lines were readily recovered by co-transformation with a selectable marker integrating >38 kb away from the targeted psbN. Our results suggest co-transformation as a suitable strategy for the functional analysis of plastid genes and operons, which allows the recovery of unselected homoplasmic mutants even if the introduced mutations entail a significant selective disadvantage. Moreover, our data provide evidence for involvement of the psbN gene product in the biogenesis of both photosystem I and photosystem II. We therefore propose to rename the gene product 'photosystem biogenesis factor 1' and the gene pbf1.
Collapse
Affiliation(s)
- Katharina Krech
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Hanson MR, Gray BN, Ahner BA. Chloroplast transformation for engineering of photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:731-42. [PMID: 23162121 DOI: 10.1093/jxb/ers325] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Many efforts are underway to engineer improvements in photosynthesis to meet the challenges of increasing demands for food and fuel in rapidly changing environmental conditions. Various transgenes have been introduced into either the nuclear or plastid genomes in attempts to increase photosynthetic efficiency. We examine the current knowledge of the critical features that affect levels of expression of plastid transgenes and protein accumulation in transplastomic plants, such as promoters, 5' and 3' untranslated regions, RNA-processing sites, translation signals and amino acid sequences that affect protein turnover. We review the prior attempts to manipulate the properties of ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) through plastid transformation. We illustrate how plastid operons could be created for expression of the multiple genes needed to introduce new pathways or enzymes to enhance photosynthetic rates or reduce photorespiration. We describe here the past accomplishments and future prospects for manipulating plant enzymes and pathways to enhance carbon assimilation through plastid transformation.
Collapse
Affiliation(s)
- Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
19
|
Wostrikoff K, Clark A, Sato S, Clemente T, Stern D. Ectopic expression of Rubisco subunits in maize mesophyll cells does not overcome barriers to cell type-specific accumulation. PLANT PHYSIOLOGY 2012; 160:419-32. [PMID: 22744982 PMCID: PMC3440216 DOI: 10.1104/pp.112.195677] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In maize (Zea mays), Rubisco accumulates in bundle sheath but not mesophyll chloroplasts, but the mechanisms that underlie cell type-specific expression are poorly understood. To explore the coordinated expression of the chloroplast rbcL gene, which encodes the Rubisco large subunit (LS), and the two nuclear RBCS genes, which encode the small subunit (SS), RNA interference was used to reduce RBCS expression. This resulted in Rubisco deficiency and was correlated with translational repression of rbcL. Thus, as in C3 plants, LS synthesis depends on the presence of its assembly partner SS. To test the hypothesis that the previously documented transcriptional repression of RBCS in mesophyll cells is responsible for repressing LS synthesis in mesophyll chloroplasts, a ubiquitin promoter-driven RBCS gene was expressed in both bundle sheath and mesophyll cells. This did not lead to Rubisco accumulation in the mesophyll, suggesting that LS synthesis is impeded even in the presence of ectopic SS expression. To attempt to bypass this putative mechanism, a ubiquitin promoter-driven nuclear version of the rbcL gene was created, encoding an epitope-tagged LS that was expressed in the presence or absence of the Ubi-RBCS construct. Both transgenes were robustly expressed, and the tagged LS was readily incorporated into Rubisco complexes. However, neither immunolocalization nor biochemical approaches revealed significant accumulation of Rubisco in mesophyll cells, suggesting a continuing cell type-specific impairment of its assembly or stability. We conclude that additional cell type-specific factors limit Rubisco expression to bundle sheath chloroplasts.
Collapse
MESH Headings
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Chloroplasts/enzymology
- Chloroplasts/genetics
- Enzyme Stability
- Epitopes/genetics
- Epitopes/metabolism
- Gene Expression Regulation, Plant
- Genes, Plant
- Mesophyll Cells/cytology
- Mesophyll Cells/enzymology
- Models, Biological
- Mutagenesis, Site-Directed
- Photosynthesis
- Plant Vascular Bundle/cytology
- Plant Vascular Bundle/enzymology
- Plants, Genetically Modified/enzymology
- Plants, Genetically Modified/genetics
- Promoter Regions, Genetic
- RNA Interference
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Ribulose-Bisphosphate Carboxylase/genetics
- Ribulose-Bisphosphate Carboxylase/metabolism
- Transcription, Genetic
- Transgenes
- Zea mays/enzymology
- Zea mays/genetics
Collapse
Affiliation(s)
- Katia Wostrikoff
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA.
| | | | | | | | | |
Collapse
|
20
|
Alkatib S, Fleischmann TT, Scharff LB, Bock R. Evolutionary constraints on the plastid tRNA set decoding methionine and isoleucine. Nucleic Acids Res 2012; 40:6713-24. [PMID: 22553362 PMCID: PMC3413147 DOI: 10.1093/nar/gks350] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 03/27/2012] [Accepted: 03/31/2012] [Indexed: 12/31/2022] Open
Abstract
The plastid (chloroplast) genomes of seed plants typically encode 30 tRNAs. Employing wobble and superwobble mechanisms, most codon boxes are read by only one or two tRNA species. The reduced set of plastid tRNAs follows the evolutionary trend of organellar genomes to shrink in size and coding capacity. A notable exception is the AUN codon box specifying methionine and isoleucine, which is decoded by four tRNA species in nearly all seed plants. However, three of these four tRNA genes were lost from the genomes of some parasitic plastid-containing lineages, possibly suggesting that less than four tRNA species could be sufficient to decode the triplets in the AUN box. To test this hypothesis, we have performed knockout experiments for the four AUN-decoding tRNAs in tobacco (Nicotiana tabacum) plastids. We find that all four tRNA genes are essential under both autotrophic and heterotrophic growth conditions, possibly suggesting tRNA import into plastids of parasitic plastid-bearing species. Phylogenetic analysis of the four plastid tRNA genes reveals striking conservation of all those bacterial features that are involved in discrimination between the different tRNA species containing CAU anticodons.
Collapse
Affiliation(s)
| | | | | | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
21
|
Feiz L, Williams-Carrier R, Wostrikoff K, Belcher S, Barkan A, Stern DB. Ribulose-1,5-bis-phosphate carboxylase/oxygenase accumulation factor1 is required for holoenzyme assembly in maize. THE PLANT CELL 2012; 24:3435-46. [PMID: 22942379 PMCID: PMC3462642 DOI: 10.1105/tpc.112.102012] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 07/10/2012] [Accepted: 08/08/2012] [Indexed: 05/03/2023]
Abstract
Most life is ultimately sustained by photosynthesis and its rate-limiting carbon fixing enzyme, ribulose-1,5-bis-phosphate carboxylase/oxygenase (Rubisco). Although the structurally comparable cyanobacterial Rubisco is amenable to in vitro assembly, the higher plant enzyme has been refractory to such manipulation due to poor understanding of its assembly pathway. Here, we report the identification of a chloroplast protein required for Rubisco accumulation in maize (Zea mays), RUBISCO ACCUMULATION FACTOR1 (RAF1), which lacks any characterized functional domains. Maize lines lacking RAF1 due to Mutator transposon insertions are Rubisco deficient and seedling lethal. Analysis of transcripts and proteins showed that Rubisco large subunit synthesis in raf1 plants is not compromised; however, newly synthesized Rubisco large subunit appears in a high molecular weight form whose accumulation requires a specific chaperonin 60 isoform. Gel filtration analysis and blue native gels showed that endogenous and recombinant RAF1 are trimeric; however, following in vivo cross-linking, RAF1 copurifies with Rubisco large subunit, suggesting that they interact weakly or transiently. RAF1 is predominantly expressed in bundle sheath chloroplasts, consistent with a Rubisco accumulation function. Our results support the hypothesis that RAF1 acts during Rubisco assembly by releasing and/or sequestering the large subunit from chaperonins early in the assembly process.
Collapse
Affiliation(s)
- Leila Feiz
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853
| | | | - Katia Wostrikoff
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853
| | - Susan Belcher
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - David B. Stern
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853
| |
Collapse
|
22
|
|
23
|
|
24
|
Whitney SM, Sharwood RE, Orr D, White SJ, Alonso H, Galmés J. Isoleucine 309 acts as a C4 catalytic switch that increases ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) carboxylation rate in Flaveria. Proc Natl Acad Sci U S A 2011; 108:14688-93. [PMID: 21849620 PMCID: PMC3167554 DOI: 10.1073/pnas.1109503108] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Improving global yields of important agricultural crops is a complex challenge. Enhancing yield and resource use by engineering improvements to photosynthetic carbon assimilation is one potential solution. During the last 40 million years C(4) photosynthesis has evolved multiple times, enabling plants to evade the catalytic inadequacies of the CO(2)-fixing enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco). Compared with their C(3) ancestors, C(4) plants combine a faster rubisco with a biochemical CO(2)-concentrating mechanism, enabling more efficient use of water and nitrogen and enhanced yield. Here we show the versatility of plastome manipulation in tobacco for identifying sequences in C(4)-rubisco that can be transplanted into C(3)-rubisco to improve carboxylation rate (V(C)). Using transplastomic tobacco lines expressing native and mutated rubisco large subunits (L-subunits) from Flaveria pringlei (C(3)), Flaveria floridana (C(3)-C(4)), and Flaveria bidentis (C(4)), we reveal that Met-309-Ile substitutions in the L-subunit act as a catalytic switch between C(4) ((309)Ile; faster V(C), lower CO(2) affinity) and C(3) ((309)Met; slower V(C), higher CO(2) affinity) catalysis. Application of this transplastomic system permits further identification of other structural solutions selected by nature that can increase rubisco V(C) in C(3) crops. Coengineering a catalytically faster C(3) rubisco and a CO(2)-concentrating mechanism within C(3) crop species could enhance their efficiency in resource use and yield.
Collapse
Affiliation(s)
- Spencer M Whitney
- Research School of Biology, Australian National University, Canberra ACT 2601, Australia.
| | | | | | | | | | | |
Collapse
|
25
|
Tungsuchat-Huang T, Slivinski KM, Sinagawa-Garcia SR, Maliga P. Visual spectinomycin resistance (aadA(au)) gene for facile identification of transplastomic sectors in tobacco leaves. PLANT MOLECULAR BIOLOGY 2011; 76:453-61. [PMID: 21193947 DOI: 10.1007/s11103-010-9724-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Accepted: 12/19/2010] [Indexed: 05/28/2023]
Abstract
Identification of a genetically stable Nicotiana tabacum (tobacco) plant with a uniform population of transformed plastid genomes (ptDNA) takes two cycles of plant regeneration from chimeric leaves and analysis of multiple shoots by Southern probing in each cycle. Visual detection of transgenic sectors facilitates identification of transformed shoots in the greenhouse, complementing repeated cycles of blind purification in culture. In addition, it provides a tool to monitor the maintenance of transplastomic state. Our current visual marker system requires two genes: the aurea bar (bar(au)) gene that confers a golden leaf phenotype and a spectinomycin resistance (aadA) gene that is necessary for the introduction of the bar(au) gene in the plastid genome. We developed a novel aadA gene that fulfills both functions: it is a conventional selectable aadA gene in culture, and allows detection of transplastomic sectors in the greenhouse by leaf color. Common causes of pigment deficiency in leaves are mutations in photosynthetic genes, which affect chlorophyll accumulation. We use a different approach to achieve pigment deficiency: post-transcriptional interference with the expression of the clpP1 plastid gene by aurea aadA(au) transgene. This interference produces plants with reduced growth and a distinct color, but maintains a wild-type gene set and the capacity for photosynthesis. Importantly, when the aurea gene is removed, green pigmentation and normal growth rate are restored. Because the aurea plants are viable, the new aadA(au) genes are useful to query rare events in large populations and for in planta manipulation of the plastid genome.
Collapse
Affiliation(s)
- Tarinee Tungsuchat-Huang
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | | | | | | |
Collapse
|
26
|
Day A, Goldschmidt-Clermont M. The chloroplast transformation toolbox: selectable markers and marker removal. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:540-53. [PMID: 21426476 DOI: 10.1111/j.1467-7652.2011.00604.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Plastid transformation is widely used in basic research and for biotechnological applications. Initially developed in Chlamydomonas and tobacco, it is now feasible in a broad range of species. Selection of transgenic lines where all copies of the polyploid plastid genome are transformed requires efficient markers. A number of traits have been used for selection such as photoautotrophy, resistance to antibiotics and tolerance to herbicides or to other metabolic inhibitors. Restoration of photosynthesis is an effective primary selection method in Chlamydomonas but can only serve as a screening tool in flowering plants. The most successful and widely used markers are derived from bacterial genes that inactivate antibiotics, such as aadA that confers resistance to spectinomycin and streptomycin. For many applications, the presence of a selectable marker that confers antibiotic resistance is not desirable. Efficient marker removal methods are a major attraction of the plastid engineering tool kit. They exploit the homologous recombination and segregation pathways acting on chloroplast genomes and are based on direct repeats, transient co-integration or co-transformation and segregation of trait and marker genes. Foreign site-specific recombinases and their target sites provide an alternative and effective method for removing marker genes from plastids.
Collapse
Affiliation(s)
- Anil Day
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | | |
Collapse
|
27
|
Zhang XH, Webb J, Huang YH, Lin L, Tang RS, Liu A. Hybrid Rubisco of tomato large subunits and tobacco small subunits is functional in tobacco plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:480-8. [PMID: 21421395 DOI: 10.1016/j.plantsci.2010.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 11/07/2010] [Accepted: 11/09/2010] [Indexed: 05/08/2023]
Abstract
Biogenesis of functional ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in plants requires specific assembly in the chloroplast of the imported, cytosol-synthesized small subunits (SS) with the chloroplast-made large subunits (LS). Accumulating evidence indicates that chloroplasts (plastids) generally have a low tolerance for assembling foreign or modified Rubisco. To explore Rubisco engineering, we created two lines of transplastomic tobacco plants whose rbcL gene was replaced by tomato-derived rbcL: plant LLS2 with Rubisco composed of tobacco SS and Q437R LS and plant LLS4 with a hybrid Rubisco of tobacco SS and tomato LS (representing four substitutions of Y226F, A230T, S279T and Q437R from tobacco LS). Plant LLS2 exhibited similar phenotypes as the wild type. Plant LLS4 showed lower chlorophyll and Rubisco levels particularly in young emerging leaves, lower photosynthesis rates and biomass during early stages of development, but was able to reach reproductive maturity and somewhat wild type-like phenotype under ambient CO₂ condition. In vitro assays detected similar carboxylase activity and RuBP affinity in LLS2 and LLS4 plants as in wild type. Our studies demonstrated that tomato LS was sufficiently assembled with tobacco SS into functional Rubisco. The hybrid Rubisco of tomato LS and tobacco SS can drive photosynthesis that supports photoautotrophic growth and reproduction of tobacco plants under ambient CO₂ and light conditions. We discuss the effect of these residue substitutions on Rubisco activity and the possible attribution of chlorophyll deficiency to the in planta photosynthesis performance in the hybrid Rubisco plants.
Collapse
Affiliation(s)
- Xing-Hai Zhang
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Leister D, Kleine T. Role of intercompartmental DNA transfer in producing genetic diversity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 291:73-114. [PMID: 22017974 DOI: 10.1016/b978-0-12-386035-4.00003-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In eukaryotic cells, genes are found in three compartments-the nucleus, mitochondria, and plastids-and extensive gene transfer has occurred between them. Most organellar genes in the nucleus migrated there long ago, but transfer is ongoing and ubiquitous. It now generates mostly noncoding nuclear DNA, can also disrupt gene functions, and reshape genes by adding novel exons. Plastid or nuclear sequences have also contributed to the formation of mitochondrial tRNA genes. It is now clear that organelle-to-nucleus DNA transfer involves the escape of DNA molecules from the organelles at times of stress or at certain developmental stages, and their subsequent incorporation at sites of double-stranded breaks in nuclear DNA by nonhomologous recombination. Intercompartmental DNA transfer thus appears to be an inescapable phenomenon that has had a broad impact on eukaryotic evolution, affecting DNA repair, gene and genome evolution, and redirecting proteins to different target compartments.
Collapse
Affiliation(s)
- Dario Leister
- Lehrstuhl für Molekularbiologie der Pflanzen, Department Biologie I, Ludwig-Maximilians-Universität München-LMU, Planegg-Martinsried, Germany
| | | |
Collapse
|
29
|
Maliga P, Svab Z. Engineering the plastid genome of Nicotiana sylvestris, a diploid model species for plastid genetics. Methods Mol Biol 2011; 701:37-50. [PMID: 21181523 DOI: 10.1007/978-1-61737-957-4_2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The plastids of higher plants have their own ∼120-160-kb genome that is present in 1,000-10,000 copies per cell. Engineering of the plastid genome (ptDNA) is based on homologous recombination between the plastid genome and cloned ptDNA sequences in the vector. A uniform population of engineered ptDNA is obtained by selection for marker genes encoded in the vectors. Manipulations of ptDNA include (1) insertion of transgenes in intergenic regions; (2) posttransformation excision of marker genes to obtain marker-free plants; (3) gene knockouts and gene knockdowns, and (4) cotransformation with multiple plasmids to introduce nonselected genes without physical linkage to marker genes. Most experiments on plastome engineering have been carried out in the allotetraploid Nicotiana tabacum. We report here for the first time plastid transformation in Nicotiana sylvestris, a diploid ornamental species. We demonstrate that the protocols and vectors developed for plastid transformation in N. tabacum are directly applicable to N. sylvestris with the advantage that the N. sylvestris transplastomic lines are suitable for mutant screens.
Collapse
Affiliation(s)
- Pal Maliga
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| | | |
Collapse
|
30
|
Walter M, Piepenburg K, Schöttler MA, Petersen K, Kahlau S, Tiller N, Drechsel O, Weingartner M, Kudla J, Bock R. Knockout of the plastid RNase E leads to defective RNA processing and chloroplast ribosome deficiency. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:851-63. [PMID: 21105931 DOI: 10.1111/j.1365-313x.2010.04377.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Ribonuclease E (RNase E) represents a key enzyme in bacterial RNA metabolism. It plays multifarious roles in RNA processing and also initiates degradation of mRNA by endonucleolytic cleavage. Plastids (chloroplasts) are derived from formerly free-living bacteria and have largely retained eubacterial gene expression mechanisms. Here we report the functional characterization of a chloroplast RNase E that is encoded by a single-copy nuclear gene in the model plant Arabidopsis thaliana. Analysis of knockout plants revealed that, unlike in bacteria, RNase E is not essential for survival. Absence of RNase E results in multiple defects in chloroplast RNA metabolism. Most importantly, polycistronic precursor transcripts overaccumulate in the knockout plants, while several mature monocistronic mRNAs are strongly reduced, suggesting an important function of RNase E in intercistronic processing of primary transcripts from chloroplast operons. We further show that disturbed maturation of a transcript encoding essential ribosomal proteins results in plastid ribosome deficiency and, therefore, provides a molecular explanation for the observed mutant phenotype.
Collapse
Affiliation(s)
- Michael Walter
- Institut für Botanik, Universität Münster, Schlossplatz 4, 48149 Münster, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kohl S, Bock R. Transposition of a bacterial insertion sequence in chloroplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:423-36. [PMID: 19144000 DOI: 10.1111/j.1365-313x.2009.03787.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Bacterial transposable elements (IS elements, transposons) represent an important determinant of genome structure and dynamics, and are a major force driving genome evolution. Here, we have tested whether bacterial insertion sequences (IS elements) can transpose in a prokaryotic compartment of the plant cell, the plastid (chloroplast). Using plastid transformation, we have integrated different versions of the Escherichia coli IS element IS150 into the plastid genome of tobacco (Nicotiana tabacum) plants. We show that IS150 is faithfully mobilized inside the chloroplast, and that enormous quantities of transposition intermediates accumulate. As synthesis of the IS150 transposase is dependent upon programmed ribosomal frame shifting, our data indicate that this process also occurs in chloroplasts. Interestingly, all insertion events detected affect a single site in the plastid genome, suggesting that the integration of IS150 is highly sequence dependent. In contrast, the initiation of the transposition process was found to be independent of the sequence context. Finally, our data also demonstrate that plastids lack the capacity to repair double-strand breaks in their genomes by non-homologous end joining, a finding that has important implications for genome stability, and which may explain the peculiar immunity of the plastid to invading promiscuous DNA sequences of nuclear and mitochondrial origin.
Collapse
Affiliation(s)
- Stefan Kohl
- Max-Planck-Institut für Molekulare Pflanzenphysiologie (MPI-MP), Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | | |
Collapse
|
32
|
Kleine T, Maier UG, Leister D. DNA transfer from organelles to the nucleus: the idiosyncratic genetics of endosymbiosis. ANNUAL REVIEW OF PLANT BIOLOGY 2009; 60:115-38. [PMID: 19014347 DOI: 10.1146/annurev.arplant.043008.092119] [Citation(s) in RCA: 257] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In eukaryotes, DNA is exchanged between endosymbiosis-derived compartments (mitochondria and chloroplasts) and the nucleus. Organelle-to-nucleus DNA transfer involves repair of double-stranded breaks by nonhomologous end-joining, and resulted during early organelle evolution in massive relocation of organelle genes to the nucleus. A large fraction of the products of the nuclear genes so acquired are retargeted to their ancestral compartment; many others now function in new subcellular locations. Almost all present-day nuclear transfers of mitochondrial or plastid DNA give rise to noncoding sequences, dubbed nuclear mitochondrial DNAs (NUMTs) and nuclear plastid DNAs (NUPTs). Some of these sequences were recruited as exons, thus introducing new coding sequences into preexisting nuclear genes by a novel mechanism. In organisms derived from secondary or tertiary endosymbiosis, serial gene transfers involving nucleus-to-nucleus migration of DNA have also occurred. Intercompartmental DNA transfer therefore represents a significant driving force for gene and genome evolution, relocating and refashioning genes and contributing to genetic diversity.
Collapse
Affiliation(s)
- Tatjana Kleine
- Lehrstuhl für Botanik, Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.
| | | | | |
Collapse
|
33
|
Peterhansel C, Niessen M, Kebeish RM. Metabolic Engineering Towards the Enhancement of Photosynthesis†. Photochem Photobiol 2008; 84:1317-23. [DOI: 10.1111/j.1751-1097.2008.00427.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Ehlert B, Schöttler MA, Tischendorf G, Ludwig-Müller J, Bock R. The paramutated SULFUREA locus of tomato is involved in auxin biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3635-47. [PMID: 18757490 PMCID: PMC2561159 DOI: 10.1093/jxb/ern213] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 07/23/2008] [Accepted: 07/24/2008] [Indexed: 05/23/2023]
Abstract
The tomato (Solanum lycopersicum) sulfurea mutation displays trans-inactivation of wild-type alleles in heterozygous plants, a phenomenon referred to as paramutation. Homozygous mutant plants and paramutated leaf tissue of heterozygous plants show a pigment-deficient phenotype. The molecular basis of this phenotype and the function of the SULFUREA gene (SULF) are unknown. Here, a comprehensive physiological analysis of the sulfurea mutant is reported which suggests a molecular function for the SULFUREA locus. It is found that the sulf mutant is auxin-deficient and that the pigment-deficient phenotype is likely to represent only a secondary consequence of the auxin deficiency. This is most strongly supported by the isolation of a suppressor mutant which shows an auxin overaccumulation phenotype and contains elevated levels of indole-3-acetic acid (IAA). Several lines of evidence point to a role of the SULF gene in tryptophan-independent auxin biosynthesis, a pathway whose biochemistry and enzymology is still completely unknown. Thus, the sulfurea mutant may provide a promising entry point into elucidating the tryptophan-independent pathway of IAA synthesis.
Collapse
Affiliation(s)
- Britta Ehlert
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Mark Aurel Schöttler
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Gilbert Tischendorf
- Freie Universität Berlin, Institut für Biologie, Pflanzenphysiologie, D-14195 Berlin, Germany
| | - Jutta Ludwig-Müller
- Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20b, D-01062, Dresden, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
35
|
Krause K. From chloroplasts to “cryptic” plastids: evolution of plastid genomes in parasitic plants. Curr Genet 2008; 54:111-21. [DOI: 10.1007/s00294-008-0208-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 07/21/2008] [Accepted: 07/22/2008] [Indexed: 10/21/2022]
|
36
|
Bock R, Timmis JN. Reconstructing evolution: gene transfer from plastids to the nucleus. Bioessays 2008; 30:556-66. [PMID: 18478535 DOI: 10.1002/bies.20761] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
During evolution, the genomes of eukaryotic cells have undergone major restructuring to meet the new regulatory challenges associated with compartmentalization of the genetic material in the nucleus and the organelles acquired by endosymbiosis (mitochondria and plastids). Restructuring involved the loss of dispensable or redundant genes and the massive translocation of genes from the ancestral organelles to the nucleus. Genomics and bioinformatic data suggest that the process of DNA transfer from organelles to the nucleus still continues, providing raw material for evolutionary tinkering in the nuclear genome. Recent reconstruction of these events in the laboratory has provided a unique tool to observe genome evolution in real time and to study the molecular mechanisms by which plastid genes are converted into functional nuclear genes. Here, we summarize current knowledge about plastid-to-nuclear gene transfer in the context of genome evolution and discuss new insights gained from experiments that recapitulate endosymbiotic gene transfer in the laboratory.
Collapse
Affiliation(s)
- Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany.
| | | |
Collapse
|
37
|
Whitney SM, Sharwood RE. Construction of a tobacco master line to improve Rubisco engineering in chloroplasts. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:1909-21. [PMID: 18250079 DOI: 10.1093/jxb/erm311] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The inability to assemble Rubisco from any photosynthetic eukaryote within Escherichia coli has hampered structure-function studies of higher plant Rubisco. Precise genetic manipulation of the tobacco chloroplast genome (plastome) by homologous recombination has facilitated the successful production of transplastomic lines that have either mutated the Rubisco large subunit (L) gene, rbcL, or replaced it with foreign variants. Here the capacity of a new tobacco transplastomic line, (cm)trL, to augment future Rubisco engineering studies is demonstrated. Initially the rbcL was replaced with the selectable marker gene, aadA, and an artificial codon-modified (cm)rbcM gene that codes for the structurally novel Rubisco dimer (L(2), approximately 100 kDa) from Rhodosprillum rubrum. To obtain (cm)trL, the aadA was excised by transiently introducing a T-DNA encoding CRE recombinase biolistically. Selection using aadA enabled transplantation of mutated and wild-type tobacco Rubisco genes into the (cm)trL plastome with an efficiency that was 3- to 10-fold higher than comparable transformations into wild-type tobacco. Transformants producing the re-introduced form I tobacco Rubisco variants (hexadecamers comprising eight L and eight small subunits, approximately 520 kDa) were identified by non-denaturing PAGE with fully segregated homoplasmic lines (where no L(2) Rubisco was produced) obtained within 6-9 weeks after transformation which enabled their Rubisco kinetics to be quickly examined. Here the usefulness of (cm)trL in more readily examining the production, folding, and assembly capabilities of both mutated tobacco and foreign form I Rubisco subunits in tobacco plastids is discussed, and the feasibility of quickly assessing the kinetic properties of those that functionally assemble is demonstrated.
Collapse
Affiliation(s)
- Spencer M Whitney
- Molecular Plant Physiology Group, Research School of Biological Sciences, Australian National University, Canberra, Australian Capital Territory 0200, Australia.
| | | |
Collapse
|
38
|
Rogalski M, Karcher D, Bock R. Superwobbling facilitates translation with reduced tRNA sets. Nat Struct Mol Biol 2008; 15:192-8. [PMID: 18193063 DOI: 10.1038/nsmb.1370] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 11/12/2007] [Indexed: 11/08/2022]
Abstract
Some bacterial and most organelle genomes do not encode the full set of 32 tRNA species required to read all codons according to Crick's wobble rules. 'Superwobble', in which a tRNA species with an unmodified U in the wobble position reads all four nucleotides in the third codon position, represents one possible mechanism for how a reduced tRNA set could still suffice. We have tested the superwobble hypothesis by producing knockout mutants for the pair of plastid glycine tRNA genes. Here we show that, whereas the tRNA gene with U in the wobble position is essential, the gene with G in this position is nonessential, demonstrating that the U-containing anticodon can indeed read all four glycine triplets. We also show that the price for superwobbling is a reduced translational efficiency, which explains why most organisms prefer pairs of isoaccepting tRNAs over the superwobbling mechanism.
Collapse
Affiliation(s)
- Marcelo Rogalski
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | | | | |
Collapse
|
39
|
Sharwood RE, von Caemmerer S, Maliga P, Whitney SM. The catalytic properties of hybrid Rubisco comprising tobacco small and sunflower large subunits mirror the kinetically equivalent source Rubiscos and can support tobacco growth. PLANT PHYSIOLOGY 2008; 146:83-96. [PMID: 17993544 PMCID: PMC2230571 DOI: 10.1104/pp.107.109058] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 11/01/2007] [Indexed: 05/18/2023]
Abstract
Plastomic replacement of the tobacco (Nicotiana tabacum) Rubisco large subunit gene (rbcL) with that from sunflower (Helianthus annuus; rbcL(S)) produced tobacco(Rst) transformants that produced a hybrid Rubisco consisting of sunflower large and tobacco small subunits (L(s)S(t)). The tobacco(Rst) plants required CO(2) (0.5% v/v) supplementation to grow autotrophically from seed despite the substrate saturated carboxylation rate, K(m), for CO(2) and CO(2)/O(2) selectivity of the L(s)S(t) enzyme mirroring the kinetically equivalent tobacco and sunflower Rubiscos. Consequently, at the onset of exponential growth when the source strength and leaf L(s)S(t) content were sufficient, tobacco(Rst) plants grew to maturity without CO(2) supplementation. When grown under a high pCO(2), the tobacco(Rst) seedlings grew slower than tobacco and exhibited unique growth phenotypes: Juvenile plants formed clusters of 10 to 20 structurally simple oblanceolate leaves, developed multiple apical meristems, and the mature leaves displayed marginal curling and dimpling. Depending on developmental stage, the L(s)S(t) content in tobacco(Rst) leaves was 4- to 7-fold less than tobacco, and gas exchange coupled with chlorophyll fluorescence showed that at 2 mbar pCO(2) and growth illumination CO(2) assimilation in mature tobacco(Rst) leaves remained limited by Rubisco activity and its rate (approximately 11 micromol m(-2) s(-1)) was half that of tobacco controls. (35)S-methionine labeling showed the stability of assembled L(s)S(t) was similar to tobacco Rubisco and measurements of light transient CO(2) assimilation rates showed L(s)S(t) was adequately regulated by tobacco Rubisco activase. We conclude limitations to tobacco(Rst) growth primarily stem from reduced rbcL(S) mRNA levels and the translation and/or assembly of sunflower large with the tobacco small subunits that restricted L(s)S(t) synthesis.
Collapse
Affiliation(s)
- Robert Edward Sharwood
- Molecular Plant Physiology Group, Research School of Biological Sciences, Australian National University, Canberra, Australian Capital Territory, Australia
| | | | | | | |
Collapse
|
40
|
Engineering Photosynthetic Pathways. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s1755-0408(07)01004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
|
41
|
Portis AR, Parry MAJ. Discoveries in Rubisco (Ribulose 1,5-bisphosphate carboxylase/oxygenase): a historical perspective. PHOTOSYNTHESIS RESEARCH 2007; 94:121-43. [PMID: 17665149 DOI: 10.1007/s11120-007-9225-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 07/04/2007] [Indexed: 05/16/2023]
Abstract
Historic discoveries and key observations related to Rubisco (Ribulose 1,5-bisphosphate carboxylase/oxygenase), from 1947 to 2006, are presented. Currently, around 200 papers describing Rubisco research are published each year and the literature contains more than 5000 manuscripts on the subject. While trying to ensure that all the major events over this period are recorded, this analysis will inevitably be incomplete and will reflect the areas of particular interest to the authors.
Collapse
Affiliation(s)
- Archie R Portis
- Photosynthesis Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University of Illinois, 1201 West Gregory Drive, Urbana, IL 61801, USA.
| | | |
Collapse
|
42
|
Abstract
Biolistic delivery of DNA initiated plastid transformation research and still is the most widelyused approach to generate transplastomic lines in both algae and higher plants. The principal designof transformation vectors is similar in both phylogenetic groups. Although important additions tothe list of species transformed in their plastomes have been made in algae and in higher plants, thekey organisms in the area are still the two species, in which stable plastid transformation was initiallysuccessful, i.e., Chlamydomonas reinhardtii and tobacco. Basicresearch into organelle biology has substantially benefited from the homologous recombination-basedcapability to precisely insert at predetermined loci, delete, disrupt, or exchange plastid genomesequences. Successful expression of recombinant proteins, including pharmaceutical proteins, hasbeen demonstrated in Chlamydomonas as well as in higher plants,where some interesting agronomic traits were also engineered through plastid transformation.
Collapse
|
43
|
Wostrikoff K, Stern D. Rubisco large-subunit translation is autoregulated in response to its assembly state in tobacco chloroplasts. Proc Natl Acad Sci U S A 2007; 104:6466-71. [PMID: 17404229 PMCID: PMC1851044 DOI: 10.1073/pnas.0610586104] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Indexed: 01/01/2023] Open
Abstract
Plants rely on ribulose bisphosphate carboxylase/oxygenase (Rubisco) for carbon fixation. Higher plant Rubisco possesses an L(8)S(8) structure, with the large subunit (LS) encoded in the chloroplast by rbcL and the small subunit encoded by the nuclear RBCS gene family. Because its components accumulate stoichiometrically but are encoded in two genetic compartments, rbcL and RBCS expression must be tightly coordinated. Although this coordination has been observed, the underlying mechanisms have not been defined. Here, we use tobacco to understand how LS translation is related to its assembly status. To do so, two transgenic lines deficient in LS biogenesis were created: a chloroplast transformant expressing a truncated and unstable LS polypeptide, and a line where a homolog of the maize Rubisco-specific chaperone, BSD2, was repressed by RNAi. We found that in both lines, LS translation is no longer regulated by the availability of small subunit (SS), indicating that LS translation is not activated by the presence of its assembly partner but, rather, undergoes an autoregulation of translation. Pulse labeling experiments indicate that LS is synthesized but not accumulated in the transgenic lines, suggesting that accumulation of a repressor motif is required for LS assembly-dependent translational regulation.
Collapse
Affiliation(s)
- Katia Wostrikoff
- Boyce Thompson Institute for Plant Research, Cornell University, Tower Road, Ithaca, NY 14853
| | - David Stern
- Boyce Thompson Institute for Plant Research, Cornell University, Tower Road, Ithaca, NY 14853
| |
Collapse
|
44
|
Whitney SM, Sharwood RE. Linked Rubisco subunits can assemble into functional oligomers without impeding catalytic performance. J Biol Chem 2006; 282:3809-18. [PMID: 17150955 DOI: 10.1074/jbc.m610479200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although transgenic manipulation in higher plants of the catalytic large subunit (L) of the photosynthetic CO2-fixing enzyme ribulose 1,5-bisphospahte carboxylase/oxygenase (Rubisco) is now possible, the manipulation of its cognate small subunit (S) is frustrated by the nuclear location of its multiple gene copies. To examine whether L and S can be engineered simultaneously by fusing them together, the subunits from Synechococcus PCC6301 Rubisco were tethered together by different linker sequences, producing variant fusion peptides. In Escherichia coli the variant PCC6301 LS fusions assembled into catalytically functional octameric ([LS]8) and hexadecameric ([[LS]8]2) quaternary structures that excluded the integration of co-expressed unfused S. Assembly of the LS fusions into Rubisco complexes was impaired 50-90% relative to the assembly of unlinked L and S into L8S8 enzyme. Assembly in E. coli was not emulated using tobacco SL fusions that accumulated entirely as insoluble protein. Catalytic measurements showed the CO2/O2 specificity, carboxylation rate, and Michaelis constants for CO2 and ribulose 1,5-bisphosphate for the cyanobacterial Rubisco complexes comprising fusions where the S was linked to the N terminus of L closely matched those of the wild-type L8S8 enzyme. In contrast, the substrate affinities and carboxylation rate of the Rubisco complexes comprising fusions where L was fused to the N terminus of S or a six-histidine tag was appended to the C terminus of L were compromised. Overall this work provides a framework for implementing an alternative strategy for exploring simultaneous engineering of modified, or foreign, Rubisco L and S subunits in higher plant plastids.
Collapse
Affiliation(s)
- Spencer M Whitney
- Molecular Plant Physiology, Research School of Biological Sciences, Australian National University, P O Box 475, Canberra, Australian Capital Territory 2601, Australia.
| | | |
Collapse
|
45
|
Rogalski M, Ruf S, Bock R. Tobacco plastid ribosomal protein S18 is essential for cell survival. Nucleic Acids Res 2006; 34:4537-45. [PMID: 16945948 PMCID: PMC1636375 DOI: 10.1093/nar/gkl634] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 08/06/2006] [Accepted: 08/11/2006] [Indexed: 11/16/2022] Open
Abstract
Plastid genomes contain a conserved set of genes most of which are involved in either photosynthesis or gene expression. Among the ribosomal protein genes present in higher plant plastid genomes, rps18 is special in that it is absent from the plastid genomes of several non-green unicellular organisms, including Euglena longa and Toxoplasma gondii. Here we have tested whether the ribosomal protein S18 is required for translation by deleting the rps18 gene from the tobacco plastid genome. We report that, while deletion of the rps18 gene was readily obtained, no homoplasmic Deltarps18 plants or leaf sectors could be isolated. Instead, segregation into homoplasmy led to severe defects in leaf development suggesting that the knockout of rps18 is lethal and the S18 protein is required for cell survival. Our data demonstrate that S18 is indispensable for plastid ribosome function in tobacco and support an essential role for plastid translation in plant development. Moreover, we demonstrate the occurrence of flip-flop recombination on short inverted repeat sequences which generates different isoforms of the transformed plastid genome that differ in the orientation a 70 kb segment in the large single-copy region. However, infrequent occurrence of flip-flop recombination and random segregation of plastid genomes result in the predominant presence of only one of the isoforms in many tissue samples. Implications for the interpretation of chloroplast transformation experiments and vector design are discussed.
Collapse
Affiliation(s)
- Marcelo Rogalski
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1D-14476 Golm, Germany
| | - Stephanie Ruf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1D-14476 Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1D-14476 Golm, Germany
| |
Collapse
|
46
|
Balaji B, Gilson M, Roy H. Binding of a transition state analog to newly synthesized Rubisco. PHOTOSYNTHESIS RESEARCH 2006; 89:43-8. [PMID: 16763877 DOI: 10.1007/s11120-006-9067-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2006] [Accepted: 04/22/2006] [Indexed: 05/10/2023]
Abstract
Radioactive amino acids, when added to isolated pea chloroplasts or chloroplast extracts engaged in protein synthesis, are incorporated into Rubisco large subunits that co-migrate with native Rubisco during nondenaturing electrophoresis. We have added the transition state analog 2'-carboxyarabinitol bisphosphate (CABP) to chloroplast extracts after in organello or in vitro incorporation of radioactive amino acids into Rubisco large subunits. Upon addition of CABP the radioactive bands co-migrating with native Rubisco undergo a readily detected shift in electrophoretic mobility just as the native enzyme, thus demonstrating the ability of the newly assembled molecules to interact with this transition state analog.
Collapse
Affiliation(s)
- Boovaraghan Balaji
- Biology Department, Rensselaer Polytechnic Institute, Troy, New York 12180-3590, USA
| | | | | |
Collapse
|
47
|
Kode V, Mudd EA, Iamtham S, Day A. Isolation of precise plastid deletion mutants by homology-based excision: a resource for site-directed mutagenesis, multi-gene changes and high-throughput plastid transformation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:901-9. [PMID: 16709203 DOI: 10.1111/j.1365-313x.2006.02736.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We describe a simple and efficient homology-based excision method to delete plastid genes. The procedure allows one or more adjacent plastid genes to be deleted without the retention of a marker gene. We used aadA-based transformation to duplicate a 649 bp region of plastid DNA corresponding to the atpB promoter region. Efficient recombination between atpB repeats deletes the intervening foreign genes and 1,984 bp of plastid DNA (co-ordinates 57,424-59,317) containing the rbcL gene. Only five foreign bases are present in DeltarbcL plants illustrating the precision of homology-based excision. Sequence analysis of non-functional rbcL-related sequences in DeltarbcL plants indicated an extra-plastidic origin. Mutant DeltarbcL plants were heterotrophic, pale-green and contained round plastids with reduced amounts of thylakoids. Restoration of autotrophy and leaf pigmentation following aadA-based transformation with the wild-type rbcL gene ruled out mutations in other genes. Excision and re-use of aadA shows that, despite the multiplicity of plastid genomes, homology-based excision ensures complete removal of functional aadA genes. Rescue of the DeltarbcL mutation and autotrophic growth stabilizes transgenic plastids in heteroplasmic transformants following antibiotic withdrawal, enhancing the overall efficiency of plastid transformation. Unlike the available set of homoplasmic knockout mutants in 25 plastid genes, the rbcL deletion mutant isolated here is readily transformed with the efficient aadA marker gene. This improvement in deletion design facilitates advanced studies that require the isolation of double mutants in distant plastid genes and the replacement of the deleted locus with site-directed mutant alleles and is not easily achieved using other methods.
Collapse
Affiliation(s)
- Vasumathi Kode
- Faculty of Life Sciences, The University of Manchester, 3.614 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | | | | | |
Collapse
|
48
|
Barbrook AC, Howe CJ, Purton S. Why are plastid genomes retained in non-photosynthetic organisms? TRENDS IN PLANT SCIENCE 2006; 11:101-8. [PMID: 16406301 DOI: 10.1016/j.tplants.2005.12.004] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 12/05/2005] [Accepted: 12/20/2005] [Indexed: 05/06/2023]
Abstract
The evolution of the plastid from a photosynthetic bacterial endosymbiont involved a dramatic reduction in the complexity of the plastid genome, with many genes either discarded or transferred to the nucleus of the eukaryotic host. However, this evolutionary process has not gone to completion and a subset of genes remains in all plastids examined to date. The various hypotheses put forward to explain the retention of the plastid genome have tended to focus on the need for photosynthetic organisms to retain a genetic system in the chloroplast, and they fail to explain why heterotrophic plants and algae, and the apicomplexan parasites all retain a genome in their non-photosynthetic plastids. Here we consider two additional explanations: the 'essential tRNAs' hypothesis and the 'transfer-window' hypothesis.
Collapse
Affiliation(s)
- Adrian C Barbrook
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, UK
| | | | | |
Collapse
|
49
|
Kode V, Mudd EA, Iamtham S, Day A. The tobacco plastid accD gene is essential and is required for leaf development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:237-44. [PMID: 16212603 DOI: 10.1111/j.1365-313x.2005.02533.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Angiosperm plastid genomes typically encode approximately 80 polypeptides, mainly specifying plastid-localized functions such as photosynthesis and gene expression. Plastid protein synthesis and expression of the plastid clpP1 gene are essential for development in tobacco, indicating the presence of one or more plastid genes whose influence extends beyond the plastid compartment. The plastid accD gene encodes the beta-carboxyl transferase subunit of acetyl-CoA carboxylase and is present in the plastids of most flowering plants, including non-photosynthetic parasitic plants. We replaced the wild-type accD gene with an aadA-disrupted mutant allele using homologous recombination. Persistent heteroplasmy in the presence of antibiotics indicated that the wild-type accD allele was essential. The phenotype of the accD knockout was revealed in plastid transformants grown in the absence of antibiotics. Leaves contained pale green sectors and lacked part or all of the leaf lamina due to arrested division or loss of cells. Abnormal structures were present in plastids found in mutant plants, indicating that accD might be required to maintain the plastid compartment. Loss of the plastid compartment would be expected to be lethal. These results provide genetic evidence showing the essential role of plastid ACCase in the pathway leading to the synthesis of products required for the extra-plastidic processes needed for leaf development.
Collapse
Affiliation(s)
- Vasumathi Kode
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, UK
| | | | | | | |
Collapse
|
50
|
Allahverdiyeva Y, Mamedov F, Mäenpää P, Vass I, Aro EM. Modulation of photosynthetic electron transport in the absence of terminal electron acceptors: characterization of the rbcL deletion mutant of tobacco. BIOCHIMICA ET BIOPHYSICA ACTA 2005; 1709:69-83. [PMID: 16038871 DOI: 10.1016/j.bbabio.2005.06.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 06/06/2005] [Accepted: 06/08/2005] [Indexed: 11/16/2022]
Abstract
Tobacco rbcL deletion mutant, which lacks the key enzyme Rubisco for photosynthetic carbon assimilation, was characterized with respect to thylakoid functional properties and protein composition. The Delta rbcL plants showed an enhanced capacity for dissipation of light energy by non-photochemical quenching which was accompanied by low photochemical quenching and low overall photosynthetic electron transport rate. Flash-induced fluorescence relaxation and thermoluminescence measurements revealed a slow electron transfer and decreased redox gap between Q(A) and Q(B), whereas the donor side function of the Photosystem II (PSII) complex was not affected. The 77 K fluorescence emission spectrum of Delta rbcL plant thylakoids implied a presence of free light harvesting complexes. Mutant plants also had a low amount of photooxidisible P700 and an increased ratio of PSII to Photosystem I (PSI). On the other hand, an elevated level of plastid terminal oxidase and the lack of F0 'dark rise' in fluorescence measurements suggest an enhanced plastid terminal oxidase-mediated electron flow to O2 in Delta rbcL thylakoids. Modified electron transfer routes together with flexible dissipation of excitation energy through PSII probably have a crucial role in protection of PSI from irreversible protein damage in the Delta rbcL mutant under growth conditions. This protective capacity was rapidly exceeded in Delta rbcL mutant when the light level was elevated resulting in severe degradation of PSI complexes.
Collapse
Affiliation(s)
- Yagut Allahverdiyeva
- Department of Biology, Plant Physiology and Molecular Biology, Turku University, FIN-20014 Turku, Finland
| | | | | | | | | |
Collapse
|