1
|
Guo J, Liu ZZ, Su XM, Su YN, He XJ. The SAS chromatin-remodeling complex mediates inflorescence-specific chromatin accessibility for transcription factor binding. Nucleic Acids Res 2025; 53:gkaf316. [PMID: 40298113 PMCID: PMC12038394 DOI: 10.1093/nar/gkaf316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 03/21/2025] [Accepted: 04/11/2025] [Indexed: 04/30/2025] Open
Abstract
While the role of transcription factors in flower development is well understood, the impact of chromatin remodeling on this process remains largely unclear. We conducted a comprehensive analysis to investigate the coordination of the SAS, BAS, and MAS-type SWI/SNF chromatin-remodeling complexes with transcription factors to regulate chromatin accessibility and gene transcription during flower development in Arabidopsis thaliana. Our findings indicate that the SAS complex binds to numerous genes related to flower development and is responsible for establishing chromatin accessibility of these genes in inflorescences. In contrast, the BAS and MAS complexes exhibit minimal involvement in regulating the accessibility of these genes. The SAS-bound genomic regions and the SAS-dependent accessible regions in infloresences are enriched with sites occupied by multiple MADS family transcription factors involved in flower development. Furthermore, we found that the SAS-dependent accessibility facilitates the binding of the MADS transcription factor AP1 to a subset of its target loci. This study highlights the dynamic role of the SAS complex in modulating the chromatin accessibility and genomic binding of transcription factors during plant development.
Collapse
Affiliation(s)
- Jing Guo
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhen-Zhen Liu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xiao-Min Su
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yin-Na Su
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
2
|
Zhang D, Gan Y, Le L, Pu L. Epigenetic variation in maize agronomical traits for breeding and trait improvement. J Genet Genomics 2025; 52:307-318. [PMID: 38310944 DOI: 10.1016/j.jgg.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024]
Abstract
Epigenetics-mediated breeding (epibreeding) involves engineering crop traits and stress responses through the targeted manipulation of key epigenetic features to enhance agricultural productivity. While conventional breeding methods raise concerns about reduced genetic diversity, epibreeding propels crop improvement through epigenetic variations that regulate gene expression, ultimately impacting crop yield. Epigenetic regulation in crops encompasses various modes, including histone modification, DNA modification, RNA modification, non-coding RNA, and chromatin remodeling. This review summarizes the epigenetic mechanisms underlying major agronomic traits in maize and identifies candidate epigenetic landmarks in the maize breeding process. We propose a valuable strategy for improving maize yield through epibreeding, combining CRISPR/Cas-based epigenome editing technology and Synthetic Epigenetics (SynEpi). Finally, we discuss the challenges and opportunities associated with maize trait improvement through epibreeding.
Collapse
Affiliation(s)
- Daolei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; School of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021, China
| | - Yujun Gan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Le
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
3
|
He L, Moon J, Cai C, Hao Y, Lee H, Kim W, Zhao F, Lou Z. The interplay between chromatin remodeling and DNA double-strand break repair: Implications for cancer biology and therapeutics. DNA Repair (Amst) 2025; 146:103811. [PMID: 39848026 DOI: 10.1016/j.dnarep.2025.103811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 01/25/2025]
Abstract
Proper chromatin remodeling is crucial for many cellular physiological processes, including the repair of DNA double-strand break (DSB). While the mechanism of DSB repair is well understood, the connection between chromatin remodeling and DSB repair remains incompletely elucidated. In this review, we aim to highlight recent studies demonstrating the close relationship between chromatin remodeling and DSB repair. We summarize the impact of DSB repair on chromatin, including nucleosome arrangement, chromatin organization, and dynamics, and conversely, the role of chromatin architecture in regulating DSB repair. Additionally, we also summarize the contribution of chromatin remodeling complexes to cancer biology through DNA repair and discuss their potential as therapeutic targets for cancer.
Collapse
Affiliation(s)
- Liujun He
- College of Biology, Hunan University, Changsha 410082, China
| | - Jaeyoung Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Chungcheongnam-do 31151, Republic of Korea
| | - Chenghui Cai
- College of Biology, Hunan University, Changsha 410082, China
| | - Yalan Hao
- Analytical Instrumentation Center, Hunan University, Changsha 410082, China
| | - Hyorin Lee
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Chungcheongnam-do 31151, Republic of Korea
| | - Wootae Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Chungcheongnam-do 31151, Republic of Korea.
| | - Fei Zhao
- College of Biology, Hunan University, Changsha 410082, China.
| | - Zhenkun Lou
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
4
|
Chen L, Cheng Z, Xu Y, Fang G, Fang H. A case report of SMARCA4-deficient gastric cancer and review of the literature. SAGE Open Med Case Rep 2024; 12:2050313X241290971. [PMID: 39524495 PMCID: PMC11549697 DOI: 10.1177/2050313x241290971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024] Open
Abstract
We report the case of a 50-year-old female with gastric carcinoma. The tumor was positive for epithelial and other immunological markers; however, SMARCA4 was completely inactivated. The histological and immunophenotypic findings were consistent with a diagnosis of SMARCA4-DTS. Next-generation sequencing identified a frameshift mutation in SMARCA4. The pathological diagnosis was SMARCA4-deficient gastric carcinoma. The tumor exhibits a poor response to conventional chemotherapy and has a poor prognosis; therefore, correct diagnosis is necessary. Moreover, new therapies such as EZH2 inhibitors and etoposide should be considered in cases where conventional chemotherapy is ineffective.
Collapse
Affiliation(s)
- Lin Chen
- Department of Pathology, Shaanxi Provincial People’s Hospital, The Third Affiliated Hospital of the School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Zhengyi Cheng
- Department of Pathology, Xi’an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi’an, China
| | - Yuqiao Xu
- Department of Pathology, The First Affiliated Hospital, Air Force Medical University, Xi’an, China
| | - Guodong Fang
- Department of Pathology, Shaanxi Provincial People’s Hospital, The Third Affiliated Hospital of the School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Hangrong Fang
- Department of Pathology, Xi’an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi’an, China
| |
Collapse
|
5
|
Church MC, Workman JL. The SWI/SNF chromatin remodeling complex: a critical regulator of metabolism. Biochem Soc Trans 2024; 52:1327-1337. [PMID: 38666605 PMCID: PMC11346436 DOI: 10.1042/bst20231141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 06/27/2024]
Abstract
The close relationship between chromatin and metabolism has been well-studied in recent years. Many metabolites have been found to be cofactors used to modify chromatin, and these modifications can in turn affect gene transcription. One chromatin-associated factor responsible for regulating transcription is the SWI/SNF complex, an ATP-dependent chromatin remodeler conserved throughout eukaryotes. SWI/SNF was originally described in yeast as regulating genes involved in carbon source metabolism and mating type switching, and its mammalian counterpart has been extensively studied for its role in diseases such as cancer. The yeast SWI/SNF complex is closely associated with activation of stress response genes, many of which have metabolic functions. It is now recognized that this is a conserved function of the complex, and recent work has shown that mammalian SWI/SNF is also a key regulator of metabolic transcription. Emerging evidence suggests that loss of SWI/SNF introduces vulnerabilities to cells due to this metabolic influence, and that this may present opportunities for treatment of SWI/SNF-deficient cancers.
Collapse
Affiliation(s)
- Michael C. Church
- Stowers Institute of Medical Research, 1000 E 50th Street, Kansas City, MO 64118, U.S.A
| | - Jerry L. Workman
- Stowers Institute of Medical Research, 1000 E 50th Street, Kansas City, MO 64118, U.S.A
| |
Collapse
|
6
|
Lehtinen N, Suhonen J, Rice K, Välimäki E, Toriseva M, Routila J, Halme P, Rahi M, Irjala H, Leivo I, Kallajoki M, Nees M, Kuopio T, Ventelä S, Rantala JK. Assessment of targeted therapy opportunities in sinonasal cancers using patient-derived functional tumor models. Transl Oncol 2024; 44:101935. [PMID: 38522153 PMCID: PMC10973676 DOI: 10.1016/j.tranon.2024.101935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Malignant tumors derived from the epithelium lining the nasal cavity region are termed sinonasal cancers, a highly heterogeneous group of rare tumors accounting for 3 - 5 % of all head and neck cancers. Progress with next-generation molecular profiling has improved our understanding of the complexity of sinonasal cancers and resulted in the identification of an increasing number of distinct tumor entities. Despite these significant developments, the treatment of sinonasal cancers has hardly evolved since the 1980s, and an advanced sinonasal cancer presents a poor prognosis as targeted therapies are usually not available. To gain insights into potential targeted therapeutic opportunities, we performed a multiomics profiling of patient-derived functional tumor models to identify molecular characteristics associated with pharmacological responses in the different subtypes of sinonasal cancer. METHODS Patient-derived ex vivo tumor models representing four distinct sinonasal cancer subtypes: sinonasal intestinal-type adenocarcinoma, sinonasal neuroendocrine carcinoma, sinonasal undifferentiated carcinoma and SMARCB1 deficient sinonasal carcinoma were included in the analyses. Results of functional drug screens of 160 anti-cancer therapies were integrated with gene panel sequencing and histological analyses of the tumor tissues and the ex vivo cell cultures to establish associations between drug sensitivity and molecular characteristics including driver mutations. RESULTS The different sinonasal cancer subtypes display considerable differential drug sensitivity. Underlying the drug sensitivity profiles, each subtype was associated with unique molecular features. The therapeutic vulnerabilities correlating with specific genomic background were extended and validated with in silico analyses of cancer cell lines representing different human cancers and with reported case studies of sinonasal cancers treated with targeted therapies. CONCLUSION The results demonstrate the importance of understanding the differential biology and the molecular features associated with the different subtypes of sinonasal cancers. Patient-derived ex vivo tumor models can be a powerful tool for investigating these rare cancers and prioritizing targeted therapeutic strategies for future clinical development and personalized medicine.
Collapse
Affiliation(s)
| | | | | | | | - Mervi Toriseva
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; FICAN West Cancer Centre, Turku, Finland
| | - Johannes Routila
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; Department for Otorhinolaryngology - Head and Neck Surgery, University of Turku and Turku University Hospital, Turku, Finland
| | - Perttu Halme
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; Department for Otorhinolaryngology - Head and Neck Surgery, University of Turku and Turku University Hospital, Turku, Finland
| | - Melissa Rahi
- Department of Neurosurgery, Neurocenter, Turku University Hospital, Turku, Finland; Clinical Neurosciences, University of Turku, Turku, Finland
| | - Heikki Irjala
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; Department for Otorhinolaryngology - Head and Neck Surgery, University of Turku and Turku University Hospital, Turku, Finland
| | - Ilmo Leivo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
| | - Markku Kallajoki
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
| | - Matthias Nees
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; FICAN West Cancer Centre, Turku, Finland; Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Teijo Kuopio
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland; Wellbeing Services County of Central Finland, Jyväskylä, Finland
| | - Sami Ventelä
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; FICAN West Cancer Centre, Turku, Finland; Department for Otorhinolaryngology - Head and Neck Surgery, University of Turku and Turku University Hospital, Turku, Finland
| | | |
Collapse
|
7
|
Libri D, Mellor J, Stutz F, Palancade B. Gene transcription in yeasts: From molecules to integrated processes. Yeast 2024; 41:133-134. [PMID: 38587014 DOI: 10.1002/yea.3936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 04/09/2024] Open
Affiliation(s)
- Domenico Libri
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Jane Mellor
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Françoise Stutz
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Benoit Palancade
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| |
Collapse
|
8
|
Zhang L, Gao AX, He YL, Xu MJ, Lu HJ. Immunotherapy in SMARCB1 (INI-1)-deficient sinonasal carcinoma: Two case reports. World J Clin Cases 2023; 11:7911-7919. [DOI: 10.12998/wjcc.v11.i32.7911] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND SMARCB1/INI-1 deficient sinonasal carcinoma (SDSC) is a rare subset of sinonasal undifferentiated carcinoma with a poor prognosis. Here, we present two case reports of SDSC patients. We also review the literature on this tumor. This is the first published report of SDSC treatment with immunotherapy.
CASE SUMMARY Here we present two patient cases of SDSC in which initial consultation and diagnosis were complicated but SDSC was ultimately diagnosed. One patient received a traditional treatment of surgery and adjuvant chemoradiotherapy, while the other patient received additional immunotherapy; the prognoses of these two patients differed. We review previous diagnostic literature reports and SDSC treatments and provide a unique perspective on this rare type of tumor.
CONCLUSION SDSC is a rare, diagnostically challenging carcinoma with a consistently poor prognosis, early distant metastases, and frequent recurrence. Timely diagnosis and intervention are critical for treatment, for which the standard of care is surgery followed by adjuvant chemoradiotherapy, though immunotherapy may be an effective new treatment for SDSC.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Ai-Xin Gao
- Department of Radiology, The Affiliated hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Yu-Lu He
- Department of Pathology, Peking University People's Hospital, Qingdao 266003, Shandong Province, China
| | - Ming-Jin Xu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Hai-Jun Lu
- Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| |
Collapse
|
9
|
Wiggans M, Zhu SJ, Molinaro AM, Pearson BJ. The BAF chromatin remodeling complex licenses planarian stem cells access to ectodermal and mesodermal cell fates. BMC Biol 2023; 21:227. [PMID: 37864247 PMCID: PMC10589948 DOI: 10.1186/s12915-023-01730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND The flatworm planarian, Schmidtea mediterranea, has a large population of adult stem cells (ASCs) that replace any cell type during tissue turnover or regeneration. How planarian ASCs (called neoblasts) manage self-renewal with the ability to produce daughter cells of different cell lineages (multipotency) is not well understood. Chromatin remodeling complexes ultimately control access to DNA regions of chromosomes and together with specific transcription factors determine whether a gene is transcribed in a given cell type. Previous work in planarians determined that RNAi of core components of the BAF chromatin remodeling complex, brg1 and smarcc2, caused increased ASCs and failed regeneration, but how these cellular defects arise at the level of gene regulation in neoblasts is unknown. RESULTS Here, we perform ATAC and RNA sequencing on purified neoblasts, deficient for the BAF complex subunits brg-1 and smarcc2. The data demonstrate that the BAF complex promotes chromatin accessibility and facilitates transcription at target loci, as in other systems. Interestingly, we find that the BAF complex enables access to genes known to be required for the generation of mesoderm- and ectoderm-derived lineages, including muscle, parenchymal cathepsin, neural, and epithelial lineages. BAF complex knockdowns result in disrupted differentiation into these cell lineages and functional consequences on planarian regeneration and tissue turnover. Notably, we did not detect a role for the BAF complex in neoblasts making endodermal lineages. CONCLUSIONS Our study provides functional insights into how the BAF complex contributes to cell fate decisions in planarian ASCs in vivo.
Collapse
Affiliation(s)
- Mallory Wiggans
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON, M5G0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Shu Jun Zhu
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON, M5G0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Alyssa M Molinaro
- Present address: Oregon Health & Science University, Portland, OR, 97239, USA
| | - Bret J Pearson
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON, M5G0A4, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada.
- Present address: Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
10
|
Reddy D, Bhattacharya S, Workman JL. (mis)-Targeting of SWI/SNF complex(es) in cancer. Cancer Metastasis Rev 2023; 42:455-470. [PMID: 37093326 PMCID: PMC10349013 DOI: 10.1007/s10555-023-10102-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/05/2023] [Indexed: 04/25/2023]
Abstract
The ATP-dependent chromatin remodeling complex SWI/SNF (also called BAF) is critical for the regulation of gene expression. During the evolution from yeast to mammals, the BAF complex has evolved an enormous complexity that contains a high number of subunits encoded by various genes. Emerging studies highlight the frequent involvement of altered mammalian SWI/SNF chromatin-remodeling complexes in human cancers. Here, we discuss the recent advances in determining the structure of SWI/SNF complexes, highlight the mechanisms by which mutations affecting these complexes promote cancer, and describe the promising emerging opportunities for targeted therapies.
Collapse
Affiliation(s)
- Divya Reddy
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | | | - Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA.
| |
Collapse
|
11
|
Agaimy A. SWI/SNF-deficient Malignancies: Optimal Candidates for Immune-oncological Therapy? Adv Anat Pathol 2023; 30:211-217. [PMID: 36069856 DOI: 10.1097/pap.0000000000000366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Inactivation of different subunits of the SWItch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complex has emerged as one of the most frequent genetic pathways driving a variety of neoplasms of diverse histogenesis, originating in different organs. With few exceptions, most SWI/SNF-deficient malignancies pursue a highly aggressive clinical course resulting in widespread disease dissemination either at or soon after diagnosis, ultimately causing patients' death soon after diagnosis, despite the apparently curative treatment intention. To date, no satisfactorily effective systemic chemotherapy has been established for treating these diseases. This disappointing finding underlines the urgent need for an effective systemic therapy that would enable sufficient intermediate to long-term disease control. Recently, SWI/SNF-deficiency has increasingly emerged as pivotal in cancer immunogenicity and hence a promising biomarker predicting response to immune-checkpoint inhibition therapy utilizing several recently established drugs. This review summarizes the most recent literature on this topic with emphasis on the entities that most likely represent suitable candidates for immune therapy.
Collapse
Affiliation(s)
- Abbas Agaimy
- Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
12
|
Klein DC, Troy K, Tripplehorn SA, Hainer SJ. The esBAF and ISWI nucleosome remodeling complexes influence occupancy of overlapping dinucleosomes and fragile nucleosomes in murine embryonic stem cells. BMC Genomics 2023; 24:201. [PMID: 37055726 PMCID: PMC10103515 DOI: 10.1186/s12864-023-09287-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/30/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Nucleosome remodeling factors regulate the occupancy and positioning of nucleosomes genome-wide through ATP-driven DNA translocation. While many nucleosomes are consistently well-positioned, some nucleosomes and alternative nucleosome structures are more sensitive to nuclease digestion or are transitory. Fragile nucleosomes are nucleosome structures that are sensitive to nuclease digestion and may be composed of either six or eight histone proteins, making these either hexasomes or octasomes. Overlapping dinucleosomes are composed of two merged nucleosomes, lacking one H2A:H2B dimer, creating a 14-mer wrapped by ~ 250 bp of DNA. In vitro studies of nucleosome remodeling suggest that the collision of adjacent nucleosomes by sliding stimulates formation of overlapping dinucleosomes. RESULTS To better understand how nucleosome remodeling factors regulate alternative nucleosome structures, we depleted murine embryonic stem cells of the transcripts encoding remodeler ATPases BRG1 or SNF2H, then performed MNase-seq. We used high- and low-MNase digestion to assess the effects of nucleosome remodeling factors on nuclease-sensitive or "fragile" nucleosome occupancy. In parallel we gel-extracted MNase-digested fragments to enrich for overlapping dinucleosomes. We recapitulate prior identification of fragile nucleosomes and overlapping dinucleosomes near transcription start sites, and identify enrichment of these features around gene-distal DNaseI hypersensitive sites, CTCF binding sites, and pluripotency factor binding sites. We find that BRG1 stimulates occupancy of fragile nucleosomes but restricts occupancy of overlapping dinucleosomes. CONCLUSIONS Overlapping dinucleosomes and fragile nucleosomes are prevalent within the ES cell genome, occurring at hotspots of gene regulation beyond their characterized existence at promoters. Although neither structure is fully dependent on either nucleosome remodeling factor, both fragile nucleosomes and overlapping dinucleosomes are affected by knockdown of BRG1, suggesting a role for the complex in creating or removing these structures.
Collapse
Affiliation(s)
- David C Klein
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Kris Troy
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Quantitative and Systems Biology, University of California, 95343, Merced, Merced, CA, USA
| | - Sarah A Tripplehorn
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Sarah J Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
13
|
MoSnf5 Regulates Fungal Virulence, Growth, and Conidiation in Magnaporthe oryzae. J Fungi (Basel) 2022; 9:jof9010018. [PMID: 36675839 PMCID: PMC9861326 DOI: 10.3390/jof9010018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Snf5 (sucrose nonfermenting) is a core component of the SWI/SNF complexes and regulates diverse cellular processes in model eukaryotes. In plant pathogenic fungi, its biological function and underlying mechanisms remain unexplored. In this study, we investigated the biological roles of MoSnf5 in plant infection and fungal development in the rice blast pathogen Magnaporthe oryzae. The gene deletion mutants of MoSNF5 exhibited slower vegetative hyphal growth, severe defects in conidiogenesis, and impaired virulence and galactose utilization capacities. Domain dissection assays showed that the Snf5 domain and the N- and C-termini of MoSnf5 were all required for its full functions. Co-immunoprecipitation and yeast two-hybrid assays showed that MoSnf5 physically interacts with four proteins, including a transcription initiation factor MoTaf14. Interestingly, the ∆MoTaf14 mutants showed similar phenotypes as the ∆Mosnf5 mutants on fungal virulence and development. Moreover, assays on GFP-MoAtg8 expression and localization showed that both the ∆Mosnf5 and ∆MoTaf14 mutants were defective in autophagy. Taken together, MoSnf5 regulates fungal virulence, growth, and conidiation, possibly through regulating galactose utilization and autophagy in M. oryzae.
Collapse
|
14
|
Zhang FL, Li DQ. Targeting Chromatin-Remodeling Factors in Cancer Cells: Promising Molecules in Cancer Therapy. Int J Mol Sci 2022; 23:12815. [PMID: 36361605 PMCID: PMC9655648 DOI: 10.3390/ijms232112815] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 03/28/2024] Open
Abstract
ATP-dependent chromatin-remodeling complexes can reorganize and remodel chromatin and thereby act as important regulator in various cellular processes. Based on considerable studies over the past two decades, it has been confirmed that the abnormal function of chromatin remodeling plays a pivotal role in genome reprogramming for oncogenesis in cancer development and/or resistance to cancer therapy. Recently, exciting progress has been made in the identification of genetic alteration in the genes encoding the chromatin-remodeling complexes associated with tumorigenesis, as well as in our understanding of chromatin-remodeling mechanisms in cancer biology. Here, we present preclinical evidence explaining the signaling mechanisms involving the chromatin-remodeling misregulation-induced cancer cellular processes, including DNA damage signaling, metastasis, angiogenesis, immune signaling, etc. However, even though the cumulative evidence in this field provides promising emerging molecules for therapeutic explorations in cancer, more research is needed to assess the clinical roles of these genetic cancer targets.
Collapse
Affiliation(s)
- Fang-Lin Zhang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Da-Qiang Li
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
15
|
Morrison AJ. Cancer cell metabolism connects epigenetic modifications to transcriptional regulation. FEBS J 2022; 289:1302-1314. [PMID: 34036737 PMCID: PMC8613311 DOI: 10.1111/febs.16032] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/12/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022]
Abstract
Adaptation of cellular function with the nutrient environment is essential for survival. Failure to adapt can lead to cell death and/or disease. Indeed, energy metabolism alterations are a major contributing factor for many pathologies, including cancer, cardiovascular disease, and diabetes. In particular, a primary characteristic of cancer cells is altered metabolism that promotes survival and proliferation even in the presence of limited nutrients. Interestingly, recent studies demonstrate that metabolic pathways produce intermediary metabolites that directly influence epigenetic modifications in the genome. Emerging evidence demonstrates that metabolic processes in cancer cells fuel malignant growth, in part, through epigenetic regulation of gene expression programs important for proliferation and adaptive survival. In this review, recent progress toward understanding the relationship of cancer cell metabolism, epigenetic modification, and transcriptional regulation will be discussed. Specifically, the need for adaptive cell metabolism and its modulation in cancer cells will be introduced. Current knowledge on the emerging field of metabolite production and epigenetic modification will also be reviewed. Alterations of DNA (de)methylation, histone modifications, such as (de)methylation and (de)acylation, as well as chromatin remodeling, will be discussed in the context of cancer cell metabolism. Finally, how these epigenetic alterations contribute to cancer cell phenotypes will be summarized. Collectively, these studies reveal that both metabolic and epigenetic pathways in cancer cells are closely linked, representing multiple opportunities to therapeutically target the unique features of malignant growth.
Collapse
|
16
|
Haraguchi M, Nagano H. Two cases of SMARCB1-deficient sinonasal undifferentiated carcinoma. OTOLARYNGOLOGY CASE REPORTS 2022. [DOI: 10.1016/j.xocr.2022.100427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
17
|
Gutierrez JI, Brittingham GP, Karadeniz YB, Tran KD, Dutta A, Holehouse AS, Peterson CL, Holt LJ. SWI/SNF senses carbon starvation with a pH-sensitive low complexity sequence. eLife 2022; 11:70344. [PMID: 35129437 PMCID: PMC8890752 DOI: 10.7554/elife.70344] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 02/06/2022] [Indexed: 11/16/2022] Open
Abstract
It is increasingly appreciated that intracellular pH changes are important biological signals. This motivates the elucidation of molecular mechanisms of pH sensing. We determined that a nucleocytoplasmic pH oscillation was required for the transcriptional response to carbon starvation in Saccharomyces cerevisiae. The SWI/SNF chromatin remodeling complex is a key mediator of this transcriptional response. A glutamine-rich low-complexity domain (QLC) in the SNF5 subunit of this complex, and histidines within this sequence, was required for efficient transcriptional reprogramming. Furthermore, the SNF5 QLC mediated pH-dependent recruitment of SWI/SNF to an acidic transcription factor in a reconstituted nucleosome remodeling assay. Simulations showed that protonation of histidines within the SNF5 QLC leads to conformational expansion, providing a potential biophysical mechanism for regulation of these interactions. Together, our results indicate that pH changes are a second messenger for transcriptional reprogramming during carbon starvation and that the SNF5 QLC acts as a pH sensor.
Collapse
Affiliation(s)
| | - Gregory P Brittingham
- Institute for Systems Genetics, New York University Langone Health, New York, United States
| | - Yonca B Karadeniz
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Kathleen D Tran
- Department of Cell and Molecular Biology, University of Rhode Island, South Kingstown, United States
| | - Arnob Dutta
- Department of Cell and Molecular Biology, University of Rhode Island, South Kingstown, United States
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St Louis, United States
| | - Craig L Peterson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Liam J Holt
- Institute for Systems Genetics, New York University Langone Health, New York, United States
| |
Collapse
|
18
|
Balachandra VK, Ghosh SK. Emerging roles of SWI/SNF remodelers in fungal pathogens. Curr Genet 2022; 68:195-206. [PMID: 35001152 DOI: 10.1007/s00294-021-01219-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/20/2021] [Accepted: 10/16/2021] [Indexed: 11/30/2022]
Abstract
Fungal pathogens constantly sense and respond to the environment they inhabit, and this interaction is vital for their survival inside hosts and exhibiting pathogenic traits. Since such responses often entail specific patterns of gene expression, regulators of chromatin structure contribute to the fitness and virulence of the pathogens by modulating DNA accessibility to the transcriptional machinery. Recent studies in several human and plant fungal pathogens have uncovered the SWI/SNF group of chromatin remodelers as an important determinant of pathogenic traits and provided insights into their mechanism of function. Here, we review these studies and highlight the differential functions of these remodeling complexes and their subunits in regulating fungal fitness and pathogenicity. As an extension of our previous study, we also show that loss of specific RSC subunits can predispose the human fungal pathogen Candida albicans cells to filamentous growth in a context-dependent manner. Finally, we consider the potential of targeting the fungal SWI/SNF remodeling complexes for antifungal interventions.
Collapse
Affiliation(s)
- Vinutha K Balachandra
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai, India
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Santanu K Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
19
|
Pasricha S, Kamboj M, Jajodia A, Aggarwal M, Gupta G, Sharma A, Durga G, Mehta A. High Grade Myoepithelial Carcinoma of Maxillary Sinus with Extensive Rhabdoid Differentiation and INI-1 Loss: Expanding the Histopathological Spectrum of Sinonasal Carcinoma. Head Neck Pathol 2021; 16:876-880. [PMID: 34878636 PMCID: PMC9424476 DOI: 10.1007/s12105-021-01397-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022]
Abstract
Myoepithelial carcinoma (MEC) of salivary gland is an uncommon tumor with no specific age or sex predilection. Most of the cases (~90%) arise in parotid and submandibular glands followed by palate. MEC of maxillary sinus is rare. We describe an extremely rare case of high grade MEC with rhabdoid differentiation and INI-1 loss involving maxillary sinus of an elderly male.
Collapse
Affiliation(s)
- Sunil Pasricha
- grid.418913.60000 0004 1767 8280Department of Histopathology and Cytopathology, Rajiv Gandhi Cancer Institute & Research Centre, Delhi, 110085 India
| | - Meenakshi Kamboj
- grid.418913.60000 0004 1767 8280Department of Histopathology and Cytopathology, Rajiv Gandhi Cancer Institute & Research Centre, Delhi, 110085 India
| | - Ankush Jajodia
- grid.418913.60000 0004 1767 8280Department of Radiology, Rajiv Gandhi Cancer Institute & Research Centre, Delhi, 110085 India
| | - Mudit Aggarwal
- grid.418913.60000 0004 1767 8280Department of Head & Neck Surgical Oncology, Rajiv Gandhi Cancer Institute & Research Centre, Delhi, 110085 India
| | - Gurudutt Gupta
- grid.418913.60000 0004 1767 8280Department of Histopathology and Cytopathology, Rajiv Gandhi Cancer Institute & Research Centre, Delhi, 110085 India
| | - Anila Sharma
- grid.418913.60000 0004 1767 8280Department of Histopathology and Cytopathology, Rajiv Gandhi Cancer Institute & Research Centre, Delhi, 110085 India
| | - Garima Durga
- grid.418913.60000 0004 1767 8280Department of Histopathology and Cytopathology, Rajiv Gandhi Cancer Institute & Research Centre, Delhi, 110085 India
| | - Anurag Mehta
- grid.418913.60000 0004 1767 8280Director Laboratory Services & Molecular Diagnostics, Rajiv Gandhi Cancer Institute & Research Centre, Delhi, 110085 India
| |
Collapse
|
20
|
Evolutionary Morphogenesis of Sexual Fruiting Bodies in Basidiomycota: Toward a New Evo-Devo Synthesis. Microbiol Mol Biol Rev 2021; 86:e0001921. [PMID: 34817241 DOI: 10.1128/mmbr.00019-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The development of sexual fruiting bodies is one of the most complex morphogenetic processes in fungi. Mycologists have long been fascinated by the morphological and developmental diversity of fruiting bodies; however, evolutionary developmental biology of fungi still lags significantly behind that of animals or plants. Here, we summarize the current state of knowledge on fruiting bodies of mushroom-forming Basidiomycota, focusing on phylogenetic and developmental biology. Phylogenetic approaches have revealed a complex history of morphological transformations and convergence in fruiting body morphologies. Frequent transformations and convergence is characteristic of fruiting bodies in contrast to animals or plants, where main body plans are highly conserved. At the same time, insights into the genetic bases of fruiting body development have been achieved using forward and reverse genetic approaches in selected model systems. Phylogenetic and developmental studies of fruiting bodies have each yielded major advances, but they have produced largely disjunct bodies of knowledge. An integrative approach, combining phylogenetic, developmental, and functional biology, is needed to achieve a true fungal evolutionary developmental biology (evo-devo) synthesis for fungal fruiting bodies.
Collapse
|
21
|
Rashid MM, Vaishnav A, Verma RK, Sharma P, Suprasanna P, Gaur RK. Epigenetic regulation of salinity stress responses in cereals. Mol Biol Rep 2021; 49:761-772. [PMID: 34773178 DOI: 10.1007/s11033-021-06922-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/30/2021] [Indexed: 10/19/2022]
Abstract
Cereals are important crops and are exposed to various types of environmental stresses that affect the overall growth and yield. Among the various abiotic stresses, salt stress is a major environmental factor that influences the genetic, physiological, and biochemical responses of cereal crops. Epigenetic regulation which includes DNA methylation, histone modification, and chromatin remodelling plays an important role in salt stress tolerance. Recent studies in rice genomics have highlighted that the epigenetic changes are heritable and therefore can be considered as molecular signatures. An epigenetic mechanism under salinity induces phenotypic responses involving modulations in gene expression. Association between histone modification and altered DNA methylation patterns and differential gene expression has been evidenced for salt sensitivity in rice and other cereal crops. In addition, epigenetics also creates stress memory that helps the plant to better combat future stress exposure. In the present review, we have discussed epigenetic influences in stress tolerance, adaptation, and evolution processes. Understanding the epigenetic regulation of salinity could help for designing salt-tolerant varieties leading to improved crop productivity.
Collapse
Affiliation(s)
- Md Mahtab Rashid
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India.,Department of Plant Pathology, Bihar Agricultural University, Sabour, Bhagalpur, Bihar, India
| | - Anukool Vaishnav
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, 281121, India.,Agroecology and Environment, Agroscope (Reckenholz), 8046, Zürich, Switzerland
| | - Rakesh Kumar Verma
- Department of Biosciences, Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
| | - Pradeep Sharma
- Department of Biotechnology, ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - P Suprasanna
- Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - R K Gaur
- Department of Biotechnology, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh, India.
| |
Collapse
|
22
|
Wang FJ, Jing YH, Cheng CS, Cao ZQ, Jiao JY, Chen Z. HELLS serves as a poor prognostic biomarker and its downregulation reserves the malignant phenotype in pancreatic cancer. BMC Med Genomics 2021; 14:189. [PMID: 34315468 PMCID: PMC8314468 DOI: 10.1186/s12920-021-01043-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/22/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND SMARCAs, belonged to SWI/SNF2 subfamilies, are critical to cellular processes due to their modulation of chromatin remodeling processes. Although SMARCAs are implicated in the tumor progression of various cancer types, our understanding of how those members affect pancreatic carcinogenesis is quite limited and improving this requires bioinformatics analysis and biology approaches. METHODS To address this issue, we investigated the transcriptional and survival data of SMARCAs in patients with pancreatic cancer using ONCOMINE, GEPIA, Human Protein Atlas, and Kaplan-Meier plotter. We further verified the effect of significant biomarker on pancreatic cancer in vitro through functional experiment. RESULTS The Kaplan-Meier curve and log-rank test analyses showed a positive correlation between SMARCA1/2/3/SMARCAD1 and patients' overall survival (OS). On the other hand, mRNA expression of SMARCA6 (also known as HELLS) showed a negative correlation with OS. Meanwhile, no significant correlation was found between SMARCA4/5/SMARCAL1 and tumor stages and OS. The knockdown of HELLS impaired the colony formation ability, and inhibited pancreatic cancer cell proliferation by arresting cells at S phase. CONCLUSIONS Data mining analysis and cell function research demonstrated that HELLS played oncogenic roles in the development and progression of pancreatic cancer, and serve as a poor prognostic biomarker for pancreatic cancer. Our work laid a foundation for further clinical applications of HELLS in pancreatic cancer.
Collapse
Affiliation(s)
- Feng-Jiao Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Yan-Hua Jing
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Chien-Shan Cheng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Zhang-Qi Cao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Ju-Ying Jiao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| |
Collapse
|
23
|
Jian Y, Liu Z, Wang H, Chen Y, Yin Y, Zhao Y, Ma Z. Interplay of two transcription factors for recruitment of the chromatin remodeling complex modulates fungal nitrosative stress response. Nat Commun 2021; 12:2576. [PMID: 33958593 PMCID: PMC8102577 DOI: 10.1038/s41467-021-22831-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 03/25/2021] [Indexed: 02/03/2023] Open
Abstract
Nitric oxide (NO) is a diffusible signaling molecule that modulates animal and plant immune responses. In addition, reactive nitrogen species derived from NO can display antimicrobial activities by reacting with microbial cellular components, leading to nitrosative stress (NS) in pathogens. Here, we identify FgAreB as a regulator of the NS response in Fusarium graminearum, a fungal pathogen of cereal crops. FgAreB serves as a pioneer transcription factor for recruitment of the chromatin-remodeling complex SWI/SNF at the promoters of genes involved in the NS response, thus promoting their transcription. FgAreB plays important roles in fungal infection and growth. Furthermore, we show that a transcription repressor (FgIxr1) competes with the SWI/SNF complex for FgAreB binding, and negatively regulates the NS response. NS, in turn, promotes the degradation of FgIxr1, thus enhancing the recruitment of the SWI/SNF complex by FgAreB.
Collapse
Affiliation(s)
- Yunqing Jian
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| | - Zunyong Liu
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Haixia Wang
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| | - Yun Chen
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yanni Yin
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China.
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
24
|
Sirohi D, Ohe C, Smith SC, Amin MB. SWI/SNF-deficient neoplasms of the genitourinary tract. Semin Diagn Pathol 2021; 38:212-221. [PMID: 33840529 DOI: 10.1053/j.semdp.2021.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/13/2022]
Abstract
Since the discovery of association of SMARCB1 mutations with malignant rhabdoid tumors and renal medullary carcinoma, mutations in genes of the SWI/SNF chromatin remodeling complex have been increasingly identified across a diverse spectrum of neoplasms. As a group, SWI/SNF complex subunit mutations are now recognized to be the second most frequent type of mutations across tumors. SMARCB1 mutations were originally reported in malignant rhabdoid tumors of the kidney and thought to be pathognomonic for this tumor. However, more broadly, recognition of typical rhabdoid cytomorphology and SMARCB1 mutations beyond rhabdoid tumors has changed our understanding of the pathobiology of these tumors. While mutations of SWI/SNF complex are diagnostic of rhabdoid tumors and renal medullary carcinoma, their clinical relevance extends to potential prognostic and predictive utility in other tumors as well. Beyond SMARCB1, the PBRM1 and ARID1A genes are the most frequently altered members of the SWI/SNF complex in genitourinary neoplasms, especially in clear cell renal cell carcinoma and urothelial carcinoma. In this review, we provide an overview of alterations in the SWI/SNF complex encountered in genitourinary neoplasms and discuss their increasing clinical importance.
Collapse
Affiliation(s)
- Deepika Sirohi
- Department of Pathology, University of Utah and ARUP Laboratories, Salt Lake City, UT, USA
| | - Chisato Ohe
- Department of Pathology, Kansai Medical University, Osaka, Japan
| | - Steven C Smith
- Departments of Pathology and Urology, Virginia Commonwealth University, School of Medicine, PO Box 980662, Richmond, VA 23298, USA.
| | - Mahul B Amin
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Sciences, Memphis, TN, USA; Department of Urology, USC Keck School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
25
|
Agaimy A. Moving from "single gene" concept to "functionally homologous multigene complex": The SWI/SNF paradigm. Semin Diagn Pathol 2021; 38:165-166. [PMID: 33712319 DOI: 10.1053/j.semdp.2021.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Abbas Agaimy
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital, Erlangen, Germany.
| |
Collapse
|
26
|
Nowak KM, Chetty R. SWI/SNF-deficient cancers of the Gastroenteropancreatic tract: an in-depth review of the literature and pathology. Semin Diagn Pathol 2020; 38:195-198. [PMID: 33288347 DOI: 10.1053/j.semdp.2020.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/16/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022]
Abstract
The SWItch Sucrose non-fermentable (SWI/SNF) complex is a large, multi-subunit ATP-dependent nucleosome remodeling complex that acts as a tumor suppressor by modulating transcription. Mutations of SWI/SNF subunits have been described in relation to developmental disorders, hereditary SWI/SNF deficiency syndromes, as well as malignancies. In this review we summarize the current literature in regards to SWI/SNF-deficient tumors of the luminal gastrointestinal tract (GIT) and pancreas. As a group they range from moderately to undifferentiated tumors composed of monotonous anaplastic cells, prominent macronucleoli and a variable rhabdoid cell component. Deficiency of a SWI/SNF subunit is typified by complete loss of nuclear staining by immunohistochemistry for respective subunit.
Collapse
Affiliation(s)
- Klaudia M Nowak
- Division of Anatomical Pathology, Laboratory Medicine Programme, University Health Network, Toronto, Canada
| | - Runjan Chetty
- Department of Histopathology, Brighton and Sussex University Hospitals, Brighton; United Kingdom and Deciphex Ltd, Ireland.
| |
Collapse
|
27
|
Magaña-Acosta M, Valadez-Graham V. Chromatin Remodelers in the 3D Nuclear Compartment. Front Genet 2020; 11:600615. [PMID: 33329746 PMCID: PMC7673392 DOI: 10.3389/fgene.2020.600615] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022] Open
Abstract
Chromatin remodeling complexes (CRCs) use ATP hydrolysis to maintain correct expression profiles, chromatin stability, and inherited epigenetic states. More than 20 CRCs have been described to date, which encompass four large families defined by their ATPase subunits. These complexes and their subunits are conserved from yeast to humans through evolution. Their activities depend on their catalytic subunits which through ATP hydrolysis provide the energy necessary to fulfill cellular functions such as gene transcription, DNA repair, and transposon silencing. These activities take place at the first levels of chromatin compaction, and CRCs have been recognized as essential elements of chromatin dynamics. Recent studies have demonstrated an important role for these complexes in the maintenance of higher order chromatin structure. In this review, we present an overview of the organization of the genome within the cell nucleus, the different levels of chromatin compaction, and importance of the architectural proteins, and discuss the role of CRCs and how their functions contribute to the dynamics of the 3D genome organization.
Collapse
Affiliation(s)
- Mauro Magaña-Acosta
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Viviana Valadez-Graham
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
28
|
Kornberg RD, Lorch Y. Primary Role of the Nucleosome. Mol Cell 2020; 79:371-375. [PMID: 32763226 DOI: 10.1016/j.molcel.2020.07.020] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 12/16/2019] [Accepted: 03/10/2020] [Indexed: 11/18/2022]
Abstract
Whereas the core nucleosome is thought to serve as a packaging device for the coiling and contraction in length of genomic DNA, we suggest that it serves primarily in the regulation of transcription. A nucleosome on a promoter prevents the initiation of transcription. The association of nucleosomes with most genomic DNA prevents initiation from cryptic promoters. The nucleosome thus serves not only as a general gene repressor, but also as a repressor of all transcription (genic, intragenic, and intergenic). The core nucleosome performs a fundamental regulatory role, apart from the histone "tails," which modulate gene activity.
Collapse
Affiliation(s)
- Roger D Kornberg
- Department of Structural Biology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Yahli Lorch
- Department of Structural Biology, Stanford School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
29
|
Wang C, Guo Z, Zhan X, Yang F, Wu M, Zhang X. Structure of the yeast Swi/Snf complex in a nucleosome free state. Nat Commun 2020; 11:3398. [PMID: 32636384 PMCID: PMC7340788 DOI: 10.1038/s41467-020-17229-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/15/2020] [Indexed: 11/09/2022] Open
Abstract
SWI/SNF remodelers play a key role in regulating chromatin architecture and gene expression. Here, we report the cryo-EM structure of the Saccharomyces cerevisiae Swi/Snf complex in a nucleosome-free state. The structure consists of a stable triangular base module and a flexible Arp module. The conserved subunits Swi1 and Swi3 form the backbone of the complex and closely interact with other components. Snf6, which is specific for yeast Swi/Snf complex, stabilizes the binding of the ATPase-containing subunit Snf2 to the base module. Comparison of the yeast Swi/Snf and RSC complexes reveals conserved structural features that govern the assembly and function of these two subfamilies of chromatin remodelers. Our findings complement those from recent structures of the yeast and human chromatin remodelers and provide further insights into the assembly and function of the SWI/SNF remodelers.
Collapse
Affiliation(s)
- Chengcheng Wang
- Key Laboratory of Structural Biology of Zhejiang Province, Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, 310024, Hangzhou, Zhejiang Province, China. .,School of Life Sciences, Westlake University, 18 Shilongshan Road, 310024, Hangzhou, Zhejiang Province, China.
| | - Zhouyan Guo
- Key Laboratory of Structural Biology of Zhejiang Province, Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, 310024, Hangzhou, Zhejiang Province, China.,School of Life Sciences, Westlake University, 18 Shilongshan Road, 310024, Hangzhou, Zhejiang Province, China.,College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xiechao Zhan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Fenghua Yang
- Key Laboratory of Structural Biology of Zhejiang Province, Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, 310024, Hangzhou, Zhejiang Province, China.,School of Life Sciences, Westlake University, 18 Shilongshan Road, 310024, Hangzhou, Zhejiang Province, China
| | - Mingxuan Wu
- School of Science, Westlake University, 18 Shilongshan Road, 310024, Hangzhou, Zhejiang Province, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, 310024, Hangzhou, Zhejiang Province, China
| | - Xiaofeng Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, 310024, Hangzhou, Zhejiang Province, China. .,School of Life Sciences, Westlake University, 18 Shilongshan Road, 310024, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
30
|
Zhou H, Chen G, Dong C, Zhao X, Shen Z, Chen F, Liu B, Long J. Snf5 and Swi3 subcomplex formation is required for SWI/SNF complex function in yeast. Biochem Biophys Res Commun 2020; 526:934-940. [PMID: 32284172 DOI: 10.1016/j.bbrc.2020.03.169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 03/29/2020] [Indexed: 01/18/2023]
Abstract
The SWI/SNF chromatin remodeling complex, which alters nucleosome positions by either evicting histones or sliding nucleosomes on DNA, is highly conserved from yeast to humans, and 20% of all human cancers have mutations in various subunits of the SWI/SNF complex. Here, we reported the crystal structure of the yeast Snf5-Swi3 subcomplex at a resolution of 2.65 Å. Our results showed that the Snf5-Swi3 subcomplex assembles into a heterotrimer with one Snf5 molecule bound to two distinct Swi3 molecules. In addition, we demonstrated that Snf5-Swi3 subcomplex formation is required for SWI/SNF function in yeast. These findings shed light on the important role of the Snf5-Swi3 subcomplex in the assembly and functional integrity of the SWI/SNF complex.
Collapse
Affiliation(s)
- Hao Zhou
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| | - Guidong Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Chunming Dong
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xiaozhou Zhao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zhongtian Shen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Feilong Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Beibei Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Jiafu Long
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
31
|
Morrison AJ. Chromatin-remodeling links metabolic signaling to gene expression. Mol Metab 2020; 38:100973. [PMID: 32251664 PMCID: PMC7300377 DOI: 10.1016/j.molmet.2020.100973] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND ATP-dependent chromatin remodelers are evolutionarily conserved complexes that alter nucleosome positioning to influence many DNA-templated processes, such as replication, repair, and transcription. In particular, chromatin remodeling can dynamically regulate gene expression by altering accessibility of chromatin to transcription factors. SCOPE OF REVIEW This review provides an overview of the importance of chromatin remodelers in the regulation of metabolic gene expression. Particular emphasis is placed on the INO80 and SWI/SNF (BAF/PBAF) chromatin remodelers in both yeast and mammals. This review details discoveries from the initial identification of chromatin remodelers in Saccharomyces cerevisiae to recent discoveries in the metabolic requirements of developing embryonic tissues in mammals. MAJOR CONCLUSIONS INO80 and SWI/SNF (BAF/PBAF) chromatin remodelers regulate the expression of energy metabolism pathways in S. cerevisiae and mammals in response to diverse nutrient environments. In particular, the INO80 complex organizes the temporal expression of gene expression in the metabolically synchronized S. cerevisiae system. INO80-mediated chromatin remodeling is also needed to constrain cell division during metabolically favorable conditions. Conversely, the BAF/PBAF remodeler regulates tissue-specific glycolytic metabolism and is disrupted in cancers that are dependent on glycolysis for proliferation. The role of chromatin remodeling in metabolic gene expression is downstream of the metabolic signaling pathways, such as the TOR pathway, a critical regulator of metabolic homeostasis. Furthermore, the INO80 and BAF/PBAF chromatin remodelers have both been shown to regulate heart development, the tissues of which have unique requirements for energy metabolism during development. Collectively, these results demonstrate that chromatin remodelers communicate metabolic status to chromatin and are a central component of homeostasis pathways that optimize cell fitness, organismal development, and prevent disease.
Collapse
Affiliation(s)
- Ashby J Morrison
- Department of Biology, Stanford University, Stanford CA 94305, USA.
| |
Collapse
|
32
|
SMARCB1-Deficient Sinonasal Carcinoma: Systematic Review and Case Report. World Neurosurg 2020; 136:305-310. [PMID: 32001406 DOI: 10.1016/j.wneu.2020.01.130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION To describe the current state of literature involving SMARCB1/INI-1 deficient sinonasal carcinoma (SDSC) and examine a case at our institution. METHODS A systematic search was performed using the Population, Intervention, Comparator, Outcome, and Study Design approach. Search criteria included all occurrences in the title or abstract of the terms: "integrase interactor 1 deficient," "INI1 deficient," or "SMARCB1 deficient" and "sinonasal carcinoma." The main outcomes were disease-free survival, all-cause mortality, rates of recurrence, or metastases. RESULTS Systematic search yielded 13 studies for final review. All studies were either case series or case reports with 82 cases of SDSC published since 2014. Age on presentation ranged from 19 to 75 years, with the majority of patients being male. Surgical resection was the primary modality of treatment with adjuvant radiation or chemoradiation therapy. Overall, the prognosis was poor, with most tumors presenting at advanced stages with an overall median (range) survival of 22 (12-44) months with an average (standard deviation) of 45.3% (33.1%) of patients dying of the disease. An average (standard deviation) of 38.2% (34.0%) of patients had no evidence of disease at follow-up. Studies comparing sinonasal undifferentiated carcinoma to SDSC reported worse prognosis for SDSC and increased risk for locoregional recurrence in the latter cohort. CONCLUSIONS SDSC represents a highly aggressive tumor presenting at advanced stage with propensity of metastasis. More research is necessary to determine the optimal treatment modality and management.
Collapse
|
33
|
Fazlollahi L, Hsiao SJ, Kochhar M, Mansukhani MM, Yamashiro DJ, Remotti HE. Malignant Rhabdoid Tumor, an Aggressive Tumor Often Misclassified as Small Cell Variant of Hepatoblastoma. Cancers (Basel) 2019; 11:cancers11121992. [PMID: 31835848 PMCID: PMC6966472 DOI: 10.3390/cancers11121992] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/09/2019] [Indexed: 11/17/2022] Open
Abstract
The clinical management of pediatric liver tumors involves stratification into risk groups. One previously defined, high-risk group of hepatoblastomas is the small cell undifferentiated variant. In light of molecular studies showing SMARCB1 deletion in these tumors, it is now recognized that most small cell, undifferentiated liver tumors represent an aggressive unrelated tumor—the malignant rhabdoid tumor (MRT). SMARCB1 is a member of the chromatin remodeling SWI/SNF complex and encodes the INI1 protein. The histologic diagnosis of MRT is currently based on INI1 negative immunoreactivity and the presence of rhabdoid morphology. INI1-negative small cell liver tumors lacking classic rhabdoid morphology are often misclassified as small cell undifferentiated hepatoblastomas (SCUD-HB), according to the current classification. Pediatric liver tumors diagnosed between 2003–2017 as SCUD-HB (four cases) or MRT (two cases) were identified from the Columbia University Pathology Department Archives. All tumors were associated with normal or low serum alpha fetoprotein levels, and showed an absence of immunohistochemical staining of hepatocellular markers (Hep-par1, Arginase) and loss of INI1 staining. Two cases were initially diagnosed as MRT, one with prominent rhabdoid morphology, the other with predominant small cell morphology. The remaining four cases with small cell morphology were classified as SCUD-HB. Ancillary molecular studies confirmed the loss of SMARCB1, supporting the diagnosis of MRT in all cases, proving morphology an unreliable criterion. It is critical to eliminate the term INI1-negative hepatoblastoma from the current classification scheme, and classify INI1-negative tumors as MRT, particularly since high-risk HB-chemotherapy regimens are not effective for treating MRT.
Collapse
Affiliation(s)
- Ladan Fazlollahi
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY 10032, USA; (S.J.H.); (M.M.M.); (D.J.Y.); (H.E.R.)
- Correspondence: ; Tel.: +1-212-305-6719
| | - Susan J. Hsiao
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY 10032, USA; (S.J.H.); (M.M.M.); (D.J.Y.); (H.E.R.)
| | - Manpreet Kochhar
- Department of Pediatrics, Division of Pediatric Hematology, Oncology, Stem Cell Transplantation, Columbia University Irving Medical Center; New York, NY 10032, USA;
| | - Mahesh M. Mansukhani
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY 10032, USA; (S.J.H.); (M.M.M.); (D.J.Y.); (H.E.R.)
| | - Darrell J. Yamashiro
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY 10032, USA; (S.J.H.); (M.M.M.); (D.J.Y.); (H.E.R.)
- Department of Pediatrics, Division of Pediatric Hematology, Oncology, Stem Cell Transplantation, Columbia University Irving Medical Center; New York, NY 10032, USA;
| | - Helen E. Remotti
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY 10032, USA; (S.J.H.); (M.M.M.); (D.J.Y.); (H.E.R.)
| |
Collapse
|
34
|
Alfert A, Moreno N, Kerl K. The BAF complex in development and disease. Epigenetics Chromatin 2019; 12:19. [PMID: 30898143 PMCID: PMC6427853 DOI: 10.1186/s13072-019-0264-y] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/13/2019] [Indexed: 01/16/2023] Open
Abstract
The ATP-dependent chromatin remodelling complex BAF (= mammalian SWI/SNF complex) is crucial for the regulation of gene expression and differentiation. In the course of evolution from yeast to mammals, the BAF complex evolved an immense complexity with a high number of subunits encoded by gene families. In this way, tissue-specific BAF function and regulation of development begin with the combinatorial assembly of distinct BAF complexes such as esBAF, npBAF and nBAF. Furthermore, whole-genome sequencing reveals the tremendous role BAF complex mutations have in both neurodevelopmental disorders and human malignancies. Therefore, gaining a more elaborate insight into how BAF complex assembly influences its function and which role distinct subunits play, will hopefully give rise to a better understanding of disease pathogenesis and ultimately to new treatments for many human diseases.
Collapse
Affiliation(s)
- Amelie Alfert
- Department of Paediatric Haematology and Oncology, University Children’s Hospital Muenster, Domagkstraße 24, 48149 Muenster, Germany
| | - Natalia Moreno
- Department of Paediatric Haematology and Oncology, University Children’s Hospital Muenster, Domagkstraße 24, 48149 Muenster, Germany
| | - Kornelius Kerl
- Department of Paediatric Haematology and Oncology, University Children’s Hospital Muenster, Domagkstraße 24, 48149 Muenster, Germany
| |
Collapse
|
35
|
Agaimy A. SWI/SNF Complex-Deficient Soft Tissue Neoplasms: A Pattern-Based Approach to Diagnosis and Differential Diagnosis. Surg Pathol Clin 2019; 12:149-163. [PMID: 30709441 DOI: 10.1016/j.path.2018.10.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Loss of different components of the Switch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complex has been increasingly recognized as a central molecular event driving the initiation and/or dedifferentiation of mostly lethal but histogenetically diverse neoplasms in different body organs. This review summarizes and discusses the morphologic and phenotypic diversity of primary soft tissue neoplasms characterized by SWI/SNF complex deficiency with an emphasis on convergent and divergent cytoarchitectural patterns.
Collapse
Affiliation(s)
- Abbas Agaimy
- Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), University Hospital, Krankenhausstrasse 8-10, 91054 Erlangen, Germany.
| |
Collapse
|
36
|
Synergy of Hir1, Ssn6, and Snf2 global regulators is the functional determinant of a Mac1 transcriptional switch in S. cerevisiae copper homeostasis. Curr Genet 2019; 65:799-816. [DOI: 10.1007/s00294-019-00935-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/21/2018] [Accepted: 01/11/2019] [Indexed: 12/15/2022]
|
37
|
Golas MM, Jayaprakash S, Le LTM, Zhao Z, Heras Huertas V, Jensen IS, Yuan J, Sander B. Modulating the Expression Strength of the Baculovirus/Insect Cell Expression System: A Toolbox Applied to the Human Tumor Suppressor SMARCB1/SNF5. Mol Biotechnol 2018; 60:820-832. [DOI: 10.1007/s12033-018-0107-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
38
|
Jordán-Pla A, Yu S, Waldholm J, Källman T, Östlund Farrants AK, Visa N. SWI/SNF regulates half of its targets without the need of ATP-driven nucleosome remodeling by Brahma. BMC Genomics 2018; 19:367. [PMID: 29776334 PMCID: PMC5960078 DOI: 10.1186/s12864-018-4746-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/30/2018] [Indexed: 12/14/2022] Open
Abstract
Background Brahma (BRM) is the only catalytic subunit of the SWI/SNF chromatin-remodeling complex of Drosophila melanogaster. The function of SWI/SNF in transcription has long been attributed to its ability to remodel nucleosomes, which requires the ATPase activity of BRM. However, recent studies have provided evidence for a non-catalytic function of BRM in the transcriptional regulation of a few specific genes. Results Here we have used RNA-seq and ChIP-seq to identify the BRM target genes in S2 cells, and we have used a catalytically inactive BRM mutant (K804R) that is unable to hydrolyze ATP to investigate the magnitude of the non-catalytic function of BRM in transcription regulation. We show that 49% of the BRM target genes in S2 cells are regulated through mechanisms that do not require BRM to have an ATPase activity. We also show that the catalytic and non-catalytic mechanisms of SWI/SNF regulation operate on two subsets of genes that differ in promoter architecture and are linked to different biological processes. Conclusions This study shows that the non-catalytic role of SWI/SNF in transcription regulation is far more prevalent than previously anticipated and that the genes that are regulated by SWI/SNF through ATPase-dependent and ATPase-independent mechanisms have specialized roles in different cellular and developmental processes. Electronic supplementary material The online version of this article (10.1186/s12864-018-4746-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Antonio Jordán-Pla
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Simei Yu
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Johan Waldholm
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Thomas Källman
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23, Uppsala, Sweden
| | - Ann-Kristin Östlund Farrants
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Neus Visa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
39
|
Abstract
The nucleosome serves as a general gene repressor, preventing all initiation of transcription except that which is brought about by specific positive regulatory mechanisms. The positive mechanisms begin with chromatin-remodeling by complexes that slide, disrupt, or otherwise alter the structure and organization of nucleosomes. RSC in yeast and its counterpart PBAF in human cells are the major remodeling complexes for transcription. RSC creates a nucleosome-free region in front of a gene, flanked by strongly positioned +1 and -1 nucleosomes, with the transcription start site typically 10-15 bp inside the border of the +1 nucleosome. RSC also binds stably to nucleosomes harboring regulatory elements and to +1 nucleosomes, perturbing their structures in a manner that partially exposes their DNA sequences. The cryo-electron microscope structure of a RSC-nucleosome complex reveals such a structural perturbation, with the DNA largely unwrapped from the nucleosome and likely interacting with a positively charged surface of RSC. Such unwrapping both exposes the DNA and enables its translocation across the histone octamer of the nucleosome by an ATP-dependent activity of RSC. Genetic studies have revealed additional roles of RSC in DNA repair, chromosome segregation, and other chromosomal DNA transactions. These functions of RSC likely involve the same fundamental activities, DNA unwrapping and DNA translocation.
Collapse
|
40
|
Abstract
The SWItch Sucrose non-fermentable (SWI/SNF) complex is a highly conserved multi-subunit complex of proteins encoded by numerous genes mapped to different chromosomal regions. The complex regulates the process of chromatin remodelling and hence plays a central role in the epigenetic regulation of gene expression, cell proliferation and differentiation. During the last three decades, the SWI/SNF complex has been increasingly recognized as a central molecular event driving the initiation and/or progression of several benign and malignant neoplasms of different anatomic origin and having diverse histomorphological appearance. Atypical teratoid/rhabdoid tumors (AT/RT) and renal/extrarenal malignant rhabdoid tumors of childhood, epithelioid sarcoma and small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) represent the most commonly recognized SWI/SNF-driven neoplasms. Approximately one-third of pediatric malignant rhabdoid tumors are linked to germline SWI/SNF alterations (SMARCB1/INI1, rarely SMARCA4) resulting in occasional familial clustering of these highly aggressive malignancies (so-called rhabdoid tumor predisposition syndrome, RTPS, types 1 and 2, respectively). However, more recently, inherited SWI/SNF-deficiency has been linked to several benign syndromic tumors including a subset of familial schwannomatosis (linked to SMARCB1) and multiple meningiomas (linked to SMARCE1) as well as others. Beyond neoplasms, several congenital developmental functional disorders such as Coffin-Siris syndrome and intellectual disability are now known to be SWI/SNF-related. The latter are essentially not associated with SWI/SNF-driven neoplasms, although at least anecdotal cases have documented concurrence of both neoplastic and developmental disorders. This review summarizes the most important SWI/SNF-driven diseases with a main focus on neoplasms.
Collapse
Affiliation(s)
- Abbas Agaimy
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital Erlangen, Germany.
| | - William D Foulkes
- Departments of Human Genetics, Medicine and Oncology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
41
|
Hepatic SMARCA4 predicts HCC recurrence and promotes tumour cell proliferation by regulating SMAD6 expression. Cell Death Dis 2018; 9:59. [PMID: 29352111 PMCID: PMC5833410 DOI: 10.1038/s41419-017-0090-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/29/2017] [Accepted: 10/23/2017] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common form of liver cancer and is typically diagnosed at advanced stages. Identification and characterisation of genes within amplified and deleted chromosomal loci can provide new insights into the pathogenesis of cancer and lead to new approaches for diagnosis and therapy. In our previous study, we found a recurrent region of copy number amplification at 19p13.2 in hepatocellular carcinoma (HCC). In the present study, we performed integrated copy number analysis and expression profiling at this locus and a putative cancer gene, SMARCA4/BRG1, was uncovered in this region. BRG1 is a part of the large ATP-dependent chromatin remodelling complex SWI/SNF. The function of BRG1 in various cancers is unclear, including its role in HCC tumorigenesis. Here, we found that BRG1 is upregulated in HCC and that its level significantly correlates with cancer progression in HCC patients. Importantly, we also found that nuclear expression of BRG1 predicts early recurrence for HCC patients. Furthermore, we demonstrated that BRG1 promotes HCC cell proliferation in vitro and in vivo. BRG1 was observed not only to facilitate S-phase entry but also to attenuate cell apoptosis. Finally, we discovered that one of the mechanisms by which BRG1 promotes cell proliferation is the upregulation of SMAD6. These findings highlight the important role of BRG1 in the regulation of HCC proliferation and provide valuable information for cancer prognosis and treatment.
Collapse
|
42
|
Ojolo SP, Cao S, Priyadarshani SVGN, Li W, Yan M, Aslam M, Zhao H, Qin Y. Regulation of Plant Growth and Development: A Review From a Chromatin Remodeling Perspective. FRONTIERS IN PLANT SCIENCE 2018; 9:1232. [PMID: 30186301 PMCID: PMC6113404 DOI: 10.3389/fpls.2018.01232] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 08/03/2018] [Indexed: 05/04/2023]
Abstract
In eukaryotes, genetic material is packaged into a dynamic but stable nucleoprotein structure called chromatin. Post-translational modification of chromatin domains affects the expression of underlying genes and subsequently the identity of cells by conveying epigenetic information from mother to daughter cells. SWI/SNF chromatin remodelers are ATP-dependent complexes that modulate core histone protein polypeptides, incorporate variant histone species and modify nucleotides in DNA strands within the nucleosome. The present review discusses the SWI/SNF chromatin remodeler family, its classification and recent advancements. We also address the involvement of SWI/SNF remodelers in regulating vital plant growth and development processes such as meristem establishment and maintenance, cell differentiation, organ initiation, flower morphogenesis and flowering time regulation. Moreover, the role of chromatin remodelers in key phytohormone signaling pathways is also reviewed. The information provided in this review may prompt further debate and investigations aimed at understanding plant-specific epigenetic regulation mediated by chromatin remodeling under continuously varying plant growth conditions and global climate change.
Collapse
Affiliation(s)
- Simon P. Ojolo
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shijiang Cao
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - S. V. G. N. Priyadarshani
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weimin Li
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Maokai Yan
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohammad Aslam
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Heming Zhao
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Qin
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Yuan Qin, ;
| |
Collapse
|
43
|
The SWI/SNF subunit Bcl7a contributes to motor coordination and Purkinje cell function. Sci Rep 2017; 7:17055. [PMID: 29213114 PMCID: PMC5719005 DOI: 10.1038/s41598-017-17284-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/23/2017] [Indexed: 12/19/2022] Open
Abstract
Chromatin remodelers have emerged as prominent regulators of epigenetic processes and potential drivers of various human pathologies. The multi-subunit chromatin-remodeling SWI/SNF complex determines gene expression programs and, consequently, contributes to the differentiation, maturation and plasticity of neurons. Here, we investigate the elusive biological function of Bcl7a and Bcl7b, two newly identified subunits of the SWI/SNF complex that are highly expressed throughout the brain. We generated ubiquitous and neuron-specific Bcl7a and Bcl7b single and double knockout mice. We provide evidence that Bcl7b is dispensable for animal survival as well as behavioral plasticity. Conversely, ubiquitous Bcl7a knockout results in perinatal lethality, while genetic deletion of Bcl7a in postmitotic neurons elicits motor abnormalities and affects dendritic branching of Purkinje cells, with no obvious synergistic relationship with Bcl7b. Collectively, our findings reveal novel insights into the cellular processes linked to BCL7-containing SWI/SNF complexes and their unrecognized roles in the brain.
Collapse
|
44
|
SMARCA4-deficient thoracic sarcoma: a distinctive clinicopathological entity with undifferentiated rhabdoid morphology and aggressive behavior. Mod Pathol 2017; 30:1422-1432. [PMID: 28643792 DOI: 10.1038/modpathol.2017.61] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 01/19/2023]
Abstract
A distinct subset of thoracic sarcomas with undifferentiated rhabdoid morphology and SMARCA4 inactivation has recently been described, and potential targeted therapy for SMARC-deficient tumors is emerging. We sought to validate the clinicopathological features of SMARCA4-deficient thoracic sarcomas. Clinicopathological information was gathered for 40 undifferentiated thoracic tumors with rhabdoid morphology (mediastinum (n=18), lung (n=14), pleura (n=8)). Thymic carcinomas (n=11) were used as a comparison group. Immunohistochemistry included BRG1 (SMARCA4), BRM (SMARCA2), INI-1 (SMARCB1), pan-cytokeratin, desmin, NUT, S-100 protein, TTF1, CD34, and SOX2. BRG1 loss was present in 12 of 40 rhabdoid thoracic tumors (30%): 7 of 18 in mediastinum (39%), 2 of 8 in pleura (25%), and 3 of 14 in lung (21%). All BRG1-deficient tumors tested for BRM (n=8) showed concomitant loss. All thymic carcinomas showed retained BRG1 and INI-1. Morphologically, tumors with BRG1 loss showed sheets of monotonous ovoid cells with indistinct cell borders, abundant eosinophilic cytoplasm, and prominent nucleoli. Scattered areas with rhabdoid morphology (ie, eccentric nuclei, dense eosinophilic cytoplasm, discohesion) were present in all the cases. SMARCA4/BRG1-deficient sarcomas showed rare cells positive for cytokeratin in 10 cases (83%). One showed rare TTF1-positive cells. All were negative for desmin, NUT, and S-100 protein. CD34 was positive in three of five (60%) BRG1-deficient tumors tested. SOX2 was positive in all four BRG1-deficient tumors tested, and negative in all seven tested cases with retained BRG1. SMARCA4/BRG1-deficient sarcomas occurred at median age of 59 years (range 44-76) with male predominance (9:3) and had worse 2-year survival compared with BRG1-retained tumors (12.5% vs 64.4%, P=0.02). SMARCA4-deficient thoracic sarcomas can be identified based on their distinctive high-grade rhabdoid morphology, and the diagnosis can be confirmed by immunohistochemistry. Identification of these tumors is clinically relevant due to their aggressive behavior, poor prognosis, and potential targeted therapy.
Collapse
|
45
|
Wiest NE, Houghtaling S, Sanchez JC, Tomkinson AE, Osley MA. The SWI/SNF ATP-dependent nucleosome remodeler promotes resection initiation at a DNA double-strand break in yeast. Nucleic Acids Res 2017; 45:5887-5900. [PMID: 28398510 PMCID: PMC5449591 DOI: 10.1093/nar/gkx221] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/06/2017] [Indexed: 12/27/2022] Open
Abstract
DNA double-strand breaks (DSBs) are repaired by either the non-homologous end joining (NHEJ) or homologous recombination (HR) pathway. Pathway choice is determined by the generation of 3΄ single-strand DNA overhangs at the break that are initiated by the action of the Mre11-Rad50-Xrs2 (MRX) complex to direct repair toward HR. DSB repair occurs in the context of chromatin, and multiple chromatin regulators have been shown to play important roles in the repair process. We have investigated the role of the SWI/SNF ATP-dependent nucleosome-remodeling complex in the repair of a defined DNA DSB. SWI/SNF was previously shown to regulate presynaptic events in HR, but its function in these events is unknown. We find that in the absence of functional SWI/SNF, the initiation of DNA end resection is significantly delayed. The delay in resection initiation is accompanied by impaired recruitment of MRX to the DSB, and other functions of MRX in HR including the recruitment of long-range resection factors and activation of the DNA damage response are also diminished. These phenotypes are correlated with a delay in the eviction of nucleosomes surrounding the DSB. We propose that SWI/SNF orchestrates the recruitment of a pool of MRX that is specifically dedicated to HR.
Collapse
Affiliation(s)
- Nathaniel E Wiest
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.,Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Scott Houghtaling
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Joseph C Sanchez
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Alan E Tomkinson
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.,Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Mary Ann Osley
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
46
|
Dewhurst-Maridor G, Abegg D, David FPA, Rougemont J, Scott CC, Adibekian A, Riezman H. The SAGA complex, together with transcription factors and the endocytic protein Rvs167p, coordinates the reprofiling of gene expression in response to changes in sterol composition in Saccharomyces cerevisiae. Mol Biol Cell 2017; 28:2637-2649. [PMID: 28768829 PMCID: PMC5620372 DOI: 10.1091/mbc.e17-03-0169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/21/2017] [Accepted: 07/28/2017] [Indexed: 01/26/2023] Open
Abstract
The SAGA complex, together with transcription factors and Rvs167p, coordinates sterol-dependent transcription changes. In ergosterol mutants the SAGA complex increases its occupancy on ergosterol biosynthesis and anaerobic gene promoters, recruits the SWI/SNF complex, and binds to transcription factors and Rvs167p. Genes encoding stress proteins and basic amino acid synthesis are also affected even though promoter occupancy is not changed. Changes in cellular sterol species and concentrations can have profound effects on the transcriptional profile. In yeast, mutants defective in sterol biosynthesis show a wide range of changes in transcription, including a coinduction of anaerobic genes and ergosterol biosynthesis genes, biosynthesis of basic amino acids, and several stress genes. However the mechanisms underlying these changes are unknown. We identified mutations in the SAGA complex, a coactivator of transcription, which abrogate the ability to carry out most of these sterol-dependent transcriptional changes. In the erg3 mutant, the SAGA complex increases its occupancy time on many of the induced ergosterol and anaerobic gene promoters, increases its association with several relevant transcription factors and the SWI/SNF chromatin remodeling complex, and surprisingly, associates with an endocytic protein, Rvs167p, suggesting a moonlighting function for this protein in the sterol-regulated induction of the heat shock protein, HSP42 and HSP102, mRNAs.
Collapse
Affiliation(s)
| | - Daniel Abegg
- Department of Organic Chemistry, University of Geneva, 1205 Geneva, Switzerland.,NCCR Chemical Biology, University of Geneva, 1205 Geneva, Switzerland
| | - Fabrice P A David
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jacques Rougemont
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Cameron C Scott
- Department of Biochemistry, University of Geneva, 1205 Geneva, Switzerland.,Department of Biochemistry, University of Geneva, 1205 Geneva, Switzerland
| | - Alexander Adibekian
- Department of Organic Chemistry, University of Geneva, 1205 Geneva, Switzerland.,NCCR Chemical Biology, University of Geneva, 1205 Geneva, Switzerland
| | - Howard Riezman
- Department of Biochemistry, University of Geneva, 1205 Geneva, Switzerland .,NCCR Chemical Biology, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
47
|
SMARCB1 (INI-1)-deficient Sinonasal Carcinoma: A Series of 39 Cases Expanding the Morphologic and Clinicopathologic Spectrum of a Recently Described Entity. Am J Surg Pathol 2017; 41:458-471. [PMID: 28291122 DOI: 10.1097/pas.0000000000000797] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
To more fully characterize the clinical and pathologic spectrum of a recently described tumor entity of the sinonasal tract characterized by loss of nuclear expression of SMARCB1 (INI1), we analyzed 39 SMARCB1-deficient sinonasal carcinomas collected from multiple medical centers. The tumors affected 23 males and 16 females with an age range of 19 to 89 years (median, 52). All patients presented with locally advanced disease (T3, n=5; T4, n=27) involving the sinuses (mainly ethmoid) with variable involvement of the nasal cavity. Thirty patients received surgery and/or radiochemotherapy with curative intent. At last follow-up, 56% of patients died of disease 0 to 102 months after diagnosis (median, 15), 2 were alive with disease, and 1 died of an unrelated cause. Only 9 patients (30%) were alive without disease at last follow-up (range, 11 to 115 mo; median, 26). The original diagnosis of retrospectively identified cases was most often sinonasal undifferentiated carcinoma (n=14) and nonkeratinizing/basaloid squamous cell carcinoma (n=5). Histologically, most tumors displayed either a predominantly basaloid (61%) or plasmacytoid/rhabdoid morphology (36%). The plasmacytoid/rhabdoid form consisted of sheets of tumor cells with abundant, eccentrically placed eosinophilic cytoplasm, whereas similar cells were typically rare and singly distributed in the basaloid variant. Glandular differentiation was seen in a few tumors. None of the cases showed squamous differentiation or surface dysplasia. By immunohistochemistry, the tumors were positive for pancytokeratin (97%), CK5 (64%), p63 (55%), and CK7 (48%); and they were negative for NUT (0%). Epstein-Barr virus and high-risk human papillomavirus was not detected by in situ hybridization. Immunohistochemical loss of SMARCB1 (INI1) expression was confirmed for all 39 tumors. Investigation of other proteins in the SWI/SNF complex revealed co-loss of SMARCA2 in 4 cases, but none were SMARCA4 deficient or ARID1A deficient. Of 27 tumors with SMARCB1 fluorescence in situ hybridization analysis, 14 showed homozygous (biallelic) deletions and 7 showed heterozygous (monoallelic) deletions. SMARCB1-deficient sinonasal carcinoma represents an emerging poorly differentiated/undifferentiated sinonasal carcinoma that (1) cannot be better classified as another specific tumor type, (2) has consistent histopathologic findings (albeit with some variability) with varying proportions of plasmacytoid/rhabdoid cells, and (3) demonstrates an aggressive clinical course. This entity should be considered in any difficult-to-classify sinonasal carcinoma, as correct diagnosis will be mandatory for optimizing therapy and for further delineation of this likely underdiagnosed disease.
Collapse
|
48
|
Claudin-4 expression distinguishes SWI/SNF complex-deficient undifferentiated carcinomas from sarcomas. Mod Pathol 2017; 30:539-548. [PMID: 28084340 DOI: 10.1038/modpathol.2016.230] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/09/2016] [Accepted: 11/23/2016] [Indexed: 12/22/2022]
Abstract
Inactivation of SWI/SNF (switch/sucrose non-fermentable) chromatin remodeling complex subunits is a feature shared by select carcinomas and sarcomas with epithelioid morphology and variable keratin expression, making the distinction between carcinoma and sarcoma challenging in some cases. The tight junction-associated protein claudin-4 is a marker of epithelial differentiation that is expressed in nearly all carcinomas. Claudin-4 expression has been reported in the glandular component of biphasic synovial sarcoma but has not been systematically evaluated in other sarcoma types. In this study we assessed claudin-4 expression in SWI/SNF complex-deficient neoplasms showing loss of SMARCB1 (INI1), SMARCA4 (BRG1), or ARID1A and other sarcomas with epithelioid morphology. Immunohistochemistry for claudin-4 was performed on 130 neoplasms, including 90 soft tissue tumors with epithelioid morphology and/or SMARCB1 deficiency (20 epithelioid sarcomas (10 conventional, 10 proximal-type); 10 epithelioid angiosarcomas; 10 epithelioid hemangioendotheliomas; 15 epithelioid malignant peripheral nerve sheath tumors; 10 malignant rhabdoid tumors; 15 myoepithelial carcinomas; 10 biphasic synovial sarcomas), 10 ovarian clear cell carcinomas, 10 ovarian small cell carcinomas of hypercalcemic type, and 20 SWI/SNF complex-deficient undifferentiated carcinomas (14 SMARCB1 deficient and 6 SMARCA4 deficient, including rhabdoid carcinomas of various sites and sinonasal carcinomas). Membranous expression of claudin-4 (≥5% of cells) was observed in all biphasic synovial sarcomas (epithelial component only), all ovarian clear cell carcinomas, and 16 (80%) SWI/SNF complex-deficient undifferentiated carcinomas. All other soft tissue tumors were negative for claudin-4, with the exception of two myoepithelial carcinomas and one malignant rhabdoid tumor. Interestingly, none of the ovarian small cell carcinomas of hypercalcemic type expressed claudin-4. In summary, expression of claudin-4 is highly specific for true epithelial differentiation and may be useful to distinguish SWI/SNF complex-deficient undifferentiated carcinomas from sarcomas with epithelioid morphology. The lack of claudin-4 expression in ovarian small cell carcinomas of hypercalcemic type suggests that these tumors may be better regarded as sarcomas rather than carcinomas.
Collapse
|
49
|
Tang Y, Wang J, Lian Y, Fan C, Zhang P, Wu Y, Li X, Xiong F, Li X, Li G, Xiong W, Zeng Z. Linking long non-coding RNAs and SWI/SNF complexes to chromatin remodeling in cancer. Mol Cancer 2017; 16:42. [PMID: 28212646 PMCID: PMC5316185 DOI: 10.1186/s12943-017-0612-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 02/06/2017] [Indexed: 02/08/2023] Open
Abstract
Chromatin remodeling controls gene expression and signaling pathway activation, and aberrant chromatin structure and gene dysregulation are primary characteristics of human cancer progression. Recent reports have shown that long non-coding RNAs (lncRNAs) are tightly associated with chromatin remodeling. In this review, we focused on important chromatin remodelers called the switching defective/sucrose nonfermenting (SWI/SNF) complexes, which use the energy of ATP hydrolysis to control gene transcription by altering chromatin structure. We summarize a link between lncRNAs and the SWI/SNF complexes and their role in chromatin remodeling and gene expression regulation in cancer, thereby providing systematic information and a better understanding of carcinogenesis.
Collapse
Affiliation(s)
- Yanyan Tang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinpeng Wang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yu Lian
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Chunmei Fan
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Ping Zhang
- School of Information Science and Engineering, Central South University, Changsha, Hunan, China
| | - Yingfen Wu
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
50
|
Ramalingam P, Croce S, McCluggage WG. Loss of expression of SMARCA4 (BRG1), SMARCA2 (BRM) and SMARCB1 (INI1) in undifferentiated carcinoma of the endometrium is not uncommon and is not always associated with rhabdoid morphology. Histopathology 2016; 70:359-366. [PMID: 27656868 DOI: 10.1111/his.13091] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/18/2016] [Accepted: 09/19/2016] [Indexed: 12/23/2022]
Abstract
AIM Abnormalities of SMARCB1 (INI1), which encodes a member of the SWI/SNF pathway, are found in neoplasms with rhabdoid morphology, such as malignant rhabdoid tumour of the kidney and atypical teratoid/rhabdoid tumour of the central nervous system. SMARCA4 (BRG1), which encodes another member of the SWI/SNF pathway, and which is mutated in almost all small-cell carcinomas of the ovary, hypercalcaemic type, has been investigated in endometrial carcinomas, and mutations with resultant loss of immunohistochemical staining have been demonstrated in some endometrial undifferentiated carcinomas/dedifferentiated carcinomas. The aim of this study was to evaluate immunohistochemical expression of SMARCA4, SMARCB1 and SMARCA2 in a cohort of undifferentiated endometrial carcinomas, and to correlate expression of these markers with rhabdoid morphology and clinical outcome. METHODS AND RESULTS Forty undifferentiated endometrial carcinomas (18 pure and 22 dedifferentiated carcinomas) were stained with SMARCA4 (n = 40), SMARCB1 (n = 27), and SMARCA2 (n = 37). SMARCA4 expression was intact in 26 of 40 (65%) cases, lost in 13 of 40 (32.5%) cases, and unassessable in one case (2.5%). SMARCB1 expression was intact in 26 of 27 (96%) cases and lost in one of 27 (4%) cases. SMARCA2 expression was intact in 23 of 37 (62%) cases, lost in 10 of 37 (27%) cases, and unassessable in four cases. SMARCA2 expression showed corresponding loss in nine of the 13 (69%) SMARCA4-deficient cases. Rhabdoid morphology was present in three of 13 (23%) SMARCA4-deficient cases, in two of 10 (20%) SMARCA2-deficient cases, in four of 26 (15%) SMARCA4-intact cases, and in four of 23 (17%) SMARCA2-intact cases. There was no correlation between SMARCA4 or SMARCA2 expression and clinical outcome. CONCLUSIONS Our study demonstrated that almost one-third of endometrial undifferentiated carcinomas show loss of SMARCA4 and SMARCA2 expression, and that a subset show rhabdoid morphology. The majority of the SMARCA4-deficient cases show concomitant loss of SMARCA2 expression. There is no correlation between SMARCA4 or SMARCA2 expression and outcome. Our results confirm that the SWI/SNF chromatin-remodelling complex is involved in the pathogenesis of endometrial undifferentiated carcinomas.
Collapse
Affiliation(s)
- Preetha Ramalingam
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sabrina Croce
- Department of Pathology, Centre Regional de Lutte Contre Le Cancer Bordeaux, Bordeaux, France
| | - W Glenn McCluggage
- Department of Pathology, Belfast Health and Social Care Trust, Belfast, UK
| |
Collapse
|