1
|
Bukkuri A. Modeling stress-induced responses: plasticity in continuous state space and gradual clonal evolution. Theory Biosci 2024; 143:63-77. [PMID: 38289469 DOI: 10.1007/s12064-023-00410-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/13/2023] [Indexed: 03/01/2024]
Abstract
Mathematical models of cancer and bacterial evolution have generally stemmed from a gene-centric framework, assuming clonal evolution via acquisition of resistance-conferring mutations and selection of their corresponding subpopulations. More recently, the role of phenotypic plasticity has been recognized and models accounting for phenotypic switching between discrete cell states (e.g., epithelial and mesenchymal) have been developed. However, seldom do models incorporate both plasticity and mutationally driven resistance, particularly when the state space is continuous and resistance evolves in a continuous fashion. In this paper, we develop a framework to model plastic and mutational mechanisms of acquiring resistance in a continuous gradual fashion. We use this framework to examine ways in which cancer and bacterial populations can respond to stress and consider implications for therapeutic strategies. Although we primarily discuss our framework in the context of cancer and bacteria, it applies broadly to any system capable of evolving via plasticity and genetic evolution.
Collapse
Affiliation(s)
- Anuraag Bukkuri
- Cancer Biology and Evolution Program and Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, USA.
- Tissue Development and Evolution Research Group, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
2
|
Ghasemi F, Tirandaz A. Environment assisted quantum model for studying RNA-DNA-error correlation created due to the base tautomery. Sci Rep 2023; 13:10788. [PMID: 37402822 PMCID: PMC10319750 DOI: 10.1038/s41598-023-38019-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/30/2023] [Indexed: 07/06/2023] Open
Abstract
The adaptive mutation phenomenon has been drawing the attention of biologists for several decades in evolutionist community. In this study, we propose a quantum mechanical model of adaptive mutation based on the implications of the theory of open quantum systems. We survey a new framework that explain how random point mutations can be stabilized and directed to be adapted with the stresses introduced by the environments according to the microscopic rules dictated by constraints of quantum mechanics. We consider a pair of entangled qubits consist of DNA and mRNA pair, each coupled to a distinct reservoir for analyzing the spreed of entanglement using time-dependent perturbation theory. The reservoirs are physical demonstrations of the cytoplasm and nucleoplasm and surrounding environments of mRNA and DNA, respectively. Our predictions confirm the role of the environmental-assisted quantum progression of adaptive mutations. Computing the concurrence as a measure that determines to what extent the bipartite DNA-mRNA can be correlated through entanglement, is given. Preventing the entanglement loss is crucial for controlling unfavorable point mutations under environmental influences. We explore which physical parameters may affect the preservation of entanglement between DNA and mRNA pair systems, despite the destructive role of interaction with the environments.
Collapse
Affiliation(s)
- Fatemeh Ghasemi
- Department of Energy Engineering, Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran.
| | - Arash Tirandaz
- Department of Chemistry, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
3
|
Santiago-Alarcon D, Tapia-McClung H, Lerma-Hernández S, Venegas-Andraca SE. Quantum aspects of evolution: a contribution towards evolutionary explorations of genotype networks via quantum walks. J R Soc Interface 2020; 17:20200567. [PMID: 33171071 PMCID: PMC7729038 DOI: 10.1098/rsif.2020.0567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022] Open
Abstract
Quantum biology seeks to explain biological phenomena via quantum mechanisms, such as enzyme reaction rates via tunnelling and photosynthesis energy efficiency via coherent superposition of states. However, less effort has been devoted to study the role of quantum mechanisms in biological evolution. In this paper, we used transcription factor networks with two and four different phenotypes, and used classical random walks (CRW) and quantum walks (QW) to compare network search behaviour and efficiency at finding novel phenotypes between CRW and QW. In the network with two phenotypes, at temporal scales comparable to decoherence time TD, QW are as efficient as CRW at finding new phenotypes. In the case of the network with four phenotypes, the QW had a higher probability of mutating to a novel phenotype than the CRW, regardless of the number of mutational steps (i.e. 1, 2 or 3) away from the new phenotype. Before quantum decoherence, the QW probabilities become higher turning the QW effectively more efficient than CRW at finding novel phenotypes under different starting conditions. Thus, our results warrant further exploration of the QW under more realistic network scenarios (i.e. larger genotype networks) in both closed and open systems (e.g. by considering Lindblad terms).
Collapse
Affiliation(s)
- Diego Santiago-Alarcon
- Red de Biología y Conservación de Vertebrados, Instituto de Ecología, A.C. Carr. Antigua a Coatepec 351, Col. El Haya, C.P. 91070, Xalapa, Veracruz, Mexico
| | - Horacio Tapia-McClung
- Centro de Investigación en Inteligencia Artificial, Universidad Veracruzana, Sebastián Camacho 5, Centro, Xalapa-Enríquez, Veracruz, Mexico
| | - Sergio Lerma-Hernández
- Facultad de Física, Universidad Veracruzana, Circuito Aguirre Beltrán s/n, Xalapa, Veracruz 91000, Mexico
| | - Salvador E. Venegas-Andraca
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Avenue Eugenio Garza Sada 2501, Monterrey 64849, Nuevo Leon, Mexico
| |
Collapse
|
4
|
Quantum biology and human carcinogenesis. Biosystems 2019; 178:16-24. [DOI: 10.1016/j.biosystems.2019.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/21/2019] [Accepted: 01/25/2019] [Indexed: 01/02/2023]
|
5
|
Abstract
The classical experiments of Luria and Delbrück showed convincingly that mutations exist before selection and do not contribute to the creation of mutations when selection is lethal. In contrast, when nonlethal selections are used,measuring mutation rates and separating the effects of mutation and selection are difficult and require methods to fully exclude growth after selection has been applied. Although many claims of stress-induced mutagenesis have been made, it is difficult to exclude the influence of growth under nonlethal selection conditions in accounting for the observed increases in mutant frequency. Instead, for many of the studied experimental systems the increase in mutant frequency can be explainedbetter by the ability of selection to detect small differences in growth rate caused by common small effect mutations. A verycommon mutant class,found in response to many different types of selective regimensin which increased gene dosage can resolve the problem, is gene amplification. In the well-studiedlac system of Cairns and Foster, the apparent increase in Lac+revertants can be explained by high-level amplification of the lac operon and the increased probability for a reversion mutation to occur in any one of the amplified copies. The associated increase in general mutation rate observed in revertant cells in that system is an artifact caused by the coincidental co-amplification of the nearby dinB gene (encoding the error-prone DNA polymerase IV) on the particular plasmid used for these experiments. Apart from the lac system, similar gene amplification processes have been described for adaptation to toxic drugs, growth in host cells, and various nutrient limitations.
Collapse
|
6
|
Bordonaro M, Chiaro CR, May T. Experimental design to evaluate directed adaptive mutation in Mammalian cells. JMIR Res Protoc 2014; 3:e74. [PMID: 25491410 PMCID: PMC4275479 DOI: 10.2196/resprot.3860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/04/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND We describe the experimental design for a methodological approach to determine whether directed adaptive mutation occurs in mammalian cells. Identification of directed adaptive mutation would have profound practical significance for a wide variety of biomedical problems, including disease development and resistance to treatment. In adaptive mutation, the genetic or epigenetic change is not random; instead, the presence and type of selection influences the frequency and character of the mutation event. Adaptive mutation can contribute to the evolution of microbial pathogenesis, cancer, and drug resistance, and may become a focus of novel therapeutic interventions. OBJECTIVE Our experimental approach was designed to distinguish between 3 types of mutation: (1) random mutations that are independent of selective pressure, (2) undirected adaptive mutations that arise when selective pressure induces a general increase in the mutation rate, and (3) directed adaptive mutations that arise when selective pressure induces targeted mutations that specifically influence the adaptive response. The purpose of this report is to introduce an experimental design and describe limited pilot experiment data (not to describe a complete set of experiments); hence, it is an early report. METHODS An experimental design based on immortalization of mouse embryonic fibroblast cells is presented that links clonal cell growth to reversal of an inactivating polyadenylation site mutation. Thus, cells exhibit growth only in the presence of both the countermutation and an inducing agent (doxycycline). The type and frequency of mutation in the presence or absence of doxycycline will be evaluated. Additional experimental approaches would determine whether the cells exhibit a generalized increase in mutation rate and/or whether the cells show altered expression of error-prone DNA polymerases or of mismatch repair proteins. RESULTS We performed the initial stages of characterizing our system and have limited preliminary data from several pilot experiments. Cell growth and DNA sequence data indicate that we have identified a cell clone that exhibits several suitable characteristics, although further study is required to identify a more optimal cell clone. CONCLUSIONS The experimental approach is based on a quantum biological model of basis-dependent selection describing a novel mechanism of adaptive mutation. This project is currently inactive due to lack of funding. However, consistent with the objective of early reports, we describe a proposed study that has not produced publishable results, but is worthy of report because of the hypothesis, experimental design, and protocols. We outline the project's rationale and experimental design, with its strengths and weaknesses, to stimulate discussion and analysis, and lay the foundation for future studies in this field.
Collapse
Affiliation(s)
- Michael Bordonaro
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA, United States.
| | | | | |
Collapse
|
7
|
Quantum biology at the cellular level--elements of the research program. Biosystems 2013; 112:11-30. [PMID: 23470561 DOI: 10.1016/j.biosystems.2013.02.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 02/18/2013] [Accepted: 02/22/2013] [Indexed: 12/31/2022]
Abstract
Quantum biology is emerging as a new field at the intersection between fundamental physics and biology, promising novel insights into the nature and origin of biological order. We discuss several elements of QBCL (quantum biology at cellular level) - a research program designed to extend the reach of quantum concepts to higher than molecular levels of biological organization. We propose a new general way to address the issue of environmentally induced decoherence and macroscopic superpositions in biological systems, emphasizing the 'basis-dependent' nature of these concepts. We introduce the notion of 'formal superposition' and distinguish it from that of Schroedinger's cat (i.e., a superposition of macroscopically distinct states). Whereas the latter notion presents a genuine foundational problem, the former one contradicts neither common sense nor observation, and may be used to describe cellular 'decision-making' and adaptation. We stress that the interpretation of the notion of 'formal superposition' should involve non-classical correlations between molecular events in a cell. Further, we describe how better understanding of the physics of Life can shed new light on the mechanism driving evolutionary adaptation (viz., 'Basis-Dependent Selection', BDS). Experimental tests of BDS and the potential role of synthetic biology in closing the 'evolvability mechanism' loophole are also discussed.
Collapse
|
8
|
Adamo GM, Lotti M, Tamás MJ, Brocca S. Amplification of the CUP1 gene is associated with evolution of copper tolerance in Saccharomyces cerevisiae. MICROBIOLOGY-SGM 2012; 158:2325-2335. [PMID: 22790396 DOI: 10.1099/mic.0.058024-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In living organisms, copper (Cu) contributes to essential functions but at high concentrations it may elicit toxic effects. Cu-tolerant yeast strains are of relevance for both biotechnological applications and studying physiological and molecular mechanisms involved in stress resistance. One way to obtain tolerant strains is to exploit experimental methods that rely on the principles of natural evolution (evolutionary engineering) and allow for the development of complex phenotypic traits. However, in most cases, the molecular and physiological basis of the phenotypic changes produced have not yet been unravelled. We investigated the determinants of Cu resistance in a Saccharomyces cerevisiae strain that was evolved to tolerate up to 2.5 g CuSO(4) l(-1) in the culture medium. We found that the content of intracellular Cu and the expression levels of several genes encoding proteins involved in Cu metabolism and oxidative stress response were similar in the Cu-tolerant (evolved) and the Cu-sensitive (non-evolved) strain. The major difference detected in the two strains was the copy number of the gene CUP1, which encodes a metallothionein. In evolved cells, a sevenfold amplification of CUP1 was observed, accounting for its strongly and steadily increased expression. Our results implicate CUP1 in protection of the evolved S. cerevisiae cells against Cu toxicity. In these cells, robustness towards Cu is stably inheritable and can be reproducibly selected by controlling environmental conditions. This finding corroborates the effectiveness of laboratory evolution of whole cells as a tool to develop microbial strains for biotechnological applications.
Collapse
Affiliation(s)
- Giusy M Adamo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan IT-20126, Italy
| | - Marina Lotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan IT-20126, Italy
| | - Markus J Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - Stefania Brocca
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan IT-20126, Italy
| |
Collapse
|
9
|
Broger T, Odermatt RP, Huber P, Sonnleitner B. Real-time on-line flow cytometry for bioprocess monitoring. J Biotechnol 2011; 154:240-7. [DOI: 10.1016/j.jbiotec.2011.05.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 05/05/2011] [Accepted: 05/09/2011] [Indexed: 11/16/2022]
|
10
|
Heidenreich E, Eisler H, Lengheimer T, Dorninger P, Steinboeck F. A mutation-promotive role of nucleotide excision repair in cell cycle-arrested cell populations following UV irradiation. DNA Repair (Amst) 2010; 9:96-100. [DOI: 10.1016/j.dnarep.2009.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 09/22/2009] [Accepted: 10/13/2009] [Indexed: 11/29/2022]
|
11
|
Abstract
Adaptive mutation is a generic term for processes that allow individual cells of nonproliferating cell populations to acquire advantageous mutations and thereby to overcome the strong selective pressure of proliferation-limiting environmental conditions. Prerequisites for an occurrence of adaptive mutation are that the selective conditions are nonlethal and that a restart of proliferation may be accomplished by some genetic change in principle. The importance of adaptive mutation is derived from the assumption that it may, on the one hand, result in an accelerated evolution of microorganisms and, on the other, in multicellular organisms may contribute to a breakout of somatic cells from negative growth regulation, i.e., to cancerogenesis. Most information on adaptive mutation in eukaryotes has been gained with the budding yeast Saccharomyces cerevisiae. This review focuses comprehensively on adaptive mutation in this organism and summarizes our current understanding of this issue.
Collapse
Affiliation(s)
- Erich Heidenreich
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
12
|
Karpinets TV, Foy BD. Model of the developing tumorigenic phenotype in mammalian cells and the roles of sustained stress and replicative senescence. J Theor Biol 2004; 227:253-64. [PMID: 14990389 DOI: 10.1016/j.jtbi.2003.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2003] [Revised: 10/24/2003] [Accepted: 11/04/2003] [Indexed: 12/22/2022]
Abstract
The molecular mechanisms that drive mammalian cells to the development of cancer are the subject of intense biochemical, genetic and medical studies. But for the present, there is no comprehensive model that might serve as a general framework for the interpretation of experimental data. This paper is an attempt to create a conceptual model of the mechanism of the developing tumorigenic phenotype in mammalian cells, defined as having high genomic instability and proliferative activity. The basic statement in the model is that mutations acquired by tumor cells are not caused directly by external DNA damaging agents, but instead are produced by the cell itself as an output of a Mutator Response similar to the bacterial "SOS response" and characterized by the initiation of error-prone cell cycle progression and an elevated rate of mutation. This response may be induced in arrested mammalian cells by intracellular and extracellular proliferative signals combined with blocked apoptosis. The mutant cells originated by this response are subjected to natural selection via apoptosis and turnover. This selection process favors the survival of cells with high proliferative activity and the suppression of apoptosis resulting in the long run in the appearance of immortalized cells with high proliferative activity. Either a sustained stressful environment accompanied by continuing apoptotic cell death, or replicative senescence, provides conditions suitable for activation of the Mutator Response, namely the emergence of arrested cells with blocked apoptosis and the induction of proliferative signal. It also accelerates the selection process by providing continuing cell turnover. The proposed mechanism is described at the level of involved metabolic pathways and proteins and substantiated by the related experimental data available in the literature.
Collapse
Affiliation(s)
- Tatiana V Karpinets
- Department of Physics, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA.
| | | |
Collapse
|
13
|
Hersh MN, Ponder RG, Hastings PJ, Rosenberg SM. Adaptive mutation and amplification in Escherichia coli: two pathways of genome adaptation under stress. Res Microbiol 2004; 155:352-9. [PMID: 15207867 DOI: 10.1016/j.resmic.2004.01.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Accepted: 01/20/2004] [Indexed: 10/26/2022]
Abstract
The neo-Darwinists suggested that evolution is constant and gradual, and thus that genetic changes that drive evolution should be too. However, more recent understanding of phenomena called adaptive mutation in microbes indicates that mutation rates can be elevated in response to stress, producing beneficial and other mutations. We review evidence that, in Escherichia coli, two separate mechanisms of stress-induced genetic change occur that revert a lac frameshift allele allowing growth on lactose medium. First, compensatory frameshift ("point") mutations occur by a mechanism that includes DNA double-strand breaks and (we have suggested) their error-prone repair. Point mutation requires induction of the RpoS-dependent general stress response, and the SOS DNA damage response leading to upregulation of the error-prone DNA polymerase DinB (Pol IV), and occurs during a transient limitation of post-replicative mismatch repair activity. A second mechanism, adaptive amplification, entails amplification of the leaky lac allele to 20-50 tandem repeats. These provide sufficient beta-galactosidase activity for growth, thereby apparently deflecting cells from the point mutation pathway. Unlike point mutation, amplification neither occurs in hypermutating cells nor requires SOS or DinB, but like point mutation, amplification requires the RpoS-dependent stress response. Similar processes are being found in other bacterial systems and yeast. Stress-induced genetic changes may underlie much of microbial evolution, pathogenesis and antibiotic resistance, and also cancer formation, progression and drug resistance.
Collapse
Affiliation(s)
- Megan N Hersh
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm S809, Mail Stop 225, Houston, TX 77030-3411, USA
| | | | | | | |
Collapse
|
14
|
Kivisaar M. Stationary phase mutagenesis: mechanisms that accelerate adaptation of microbial populations under environmental stress. Environ Microbiol 2004; 5:814-27. [PMID: 14510835 DOI: 10.1046/j.1462-2920.2003.00488.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microorganisms are exposed to constantly changing environmental conditions. In a growth-restricting environment (e.g. during starvation), mutants arise that are able to take over the population by a process known as stationary phase mutation. Genetic adaptation of a microbial population under environmental stress involves mechanisms that lead to an elevated mutation rate. Under stressful conditions, DNA synthesis may become more erroneous because of the induction of error-prone DNA polymerases, resulting in a situation in which DNA repair systems are unable to cope with increasing amounts of DNA lesions. Transposition may also increase genetic variation. One may ask whether the rate of mutation under stressful conditions is elevated as a result of malfunctioning of systems responsible for accuracy or are there specific mechanisms that regulate the rate of mutations under stress. Evidence for the presence of mutagenic pathways that have probably been evolved to control the mutation rate in a cell will be discussed.
Collapse
Affiliation(s)
- Maia Kivisaar
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 51010 Tartu, Estonia.
| |
Collapse
|
15
|
Uys P, van Helden PD. On the nature of genetic changes required for the development of esophageal cancer. Mol Carcinog 2003; 36:82-9. [PMID: 12557264 DOI: 10.1002/mc.10100] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It is clear that genetic mutations are necessary for the development of cancer, but the exact number required is not clear, with estimates ranging from one critical hit (e.g., p53) to dozens or perhaps even hundreds of expression changes (by microarray analysis) or chromosomal aberrations. We have used a mathematical model to estimate the critical number of mutations required for the development of esophageal cancer (EC) and to test for the likelihood of an EC major susceptibility gene. Our results suggest that six or seven mutations are required for the development of EC and that there is no evidence of a major susceptibility gene. This does not exclude the possibility that gene-environment interactions may not confer susceptibility or risk. The gradual accumulation of aberrant gene function also can explain the progression of pathologic states seen in the esophagus, from early dysplasia through mild to severe dysplasia and, finally, to cancer, as illustrated in our model.
Collapse
Affiliation(s)
- Pieter Uys
- MRC Centre for Molecular and Cellular Biology and Department of Medical Biochemistry, University of Stellenbosch, Tygerberg, South Africa
| | | |
Collapse
|
16
|
Abstract
BACKGROUND The homing of prostate carcinoma to bone is a nonrandom, multistep process. Previous studies have revealed significant insights into how tumor cells can interact with the host microenvironment. In this communication, the author summarizes recent studies from his institution and draws conclusions from data published by others pertaining to the biologic and therapeutic implications of bone metastasis from prostate carcinoma. METHODS Tumor models have been established to study cellular interaction between human prostate carcinoma cells and bone stroma under two-dimensional and three-dimensional conditions. At the author's institution, experiments were conducted to show that prostate carcinoma cell growth and survival are enhanced in coculture with pleuripotent bone stromal cells. A cotargeting concept for the treatment of patients with prostate carcinoma bone metastasis is introduced. RESULTS Both genotypical and phenotypical responses were observed to tumor epithelium when it was cocultured under three-dimensional conditions. A "vicious cycle" that was mediated by soluble and insoluble molecules secreted by tumor and bone may be the key to supporting and sustaining tumor colonization in bone. Cotargeting tumor and stroma has yielded promising results, both in preclinical models of prostate carcinoma bone metastasis and in the clinic with patients who were treated with a dual tumor-targeting and bone-targeting strategy. CONCLUSIONS Understanding and targeting the interaction of tumor cells and bone stroma may improve the prognosis, reduce the suffering, and increase the survival of patients with advanced bone metastasis as a consequence of prostate carcinoma.
Collapse
Affiliation(s)
- Leland W K Chung
- Department of Urology and Biochemistry, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| |
Collapse
|
17
|
Hall BG. The EBG system of E. coli: origin and evolution of a novel ß-galactosidase for the metabolism of lactose. ACTA ACUST UNITED AC 2003. [DOI: 10.1007/978-94-010-0229-5_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
18
|
Abstract
"Adaptive" or "stationary-phase" mutation is a collection of apparent stress responses in which cells exposed to a growth-limiting environment generate genetic changes, some of which can allow resumption of rapid growth. In the well-characterized Lac system of Escherichia coli, reversions of a lac frameshift allele give rise to adaptive point mutations. Also in this system, adaptive gene amplification has been documented as a separate and parallel response that allows growth on lactose medium without acquisition of a compensatory frameshift mutation. In amplification, the DNA region containing the weakly functional lac allele becomes amplified to multiple copies, which produce sufficient enzyme activity to allow growth on the otherwise growth-limiting lactose medium. The amplifications are "adaptive" in that they occur after cells encounter the growth-limiting environment. Adaptive amplification is a reversible genetic change that allows adaptation and growth. It may be similar to chromosomal instability observed in the origins and progression of many cancers. We explore possible molecular mechanisms of adaptive amplification in the bacterial system and note parallels to chromosomal instability in other systems.
Collapse
Affiliation(s)
- P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room T809 Mail Stop 225, Houston, TX 77030-3411, USA.
| | | |
Collapse
|
19
|
Abstract
A basic principle of genetics is that the likelihood that a particular mutation occurs is independent of its phenotypic consequences. The concept of adaptive mutation seemed to challenge this principle with the discoveries of mutations stimulated by stress, some of which allow adaptation to the stress. The emerging mechanisms of adaptive genetic change cast evolution, development and heredity into a new perspective, indicating new models for the genetic changes that fuel these processes.
Collapse
Affiliation(s)
- S M Rosenberg
- Departments of Molecular and Human Genetics, Biochemistry, and Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030-3411, USA.
| |
Collapse
|
20
|
Abstract
The principle that mutations occur randomly with respect to the direction of evolutionary change has been challenged by the phenomenon of adaptive mutations. There is currently no entirely satisfactory theory to account for how a cell can selectively mutate certain genes in response to environmental signals. However, spontaneous mutations are initiated by quantum events such as the shift of a single proton (hydrogen atom) from one site to an adjacent one. We consider here the wave function describing the quantum state of the genome as being in a coherent linear superposition of states describing both the shifted and unshifted protons. Quantum coherence will be destroyed by the process of decoherence in which the quantum state of the genome becomes correlated (entangled) with its surroundings. Using a very simple model we estimate the decoherence times for protons within DNA and demonstrate that quantum coherence may be maintained for biological time-scales. Interaction of the coherent genome wave function with environments containing utilisable substrate will induce rapid decoherence and thereby destroy the superposition of mutant and non-mutant states. We show that this accelerated rate of decoherence may significantly increase the rate of production of the mutated state.
Collapse
Affiliation(s)
- J McFadden
- Molecular Microbiology Group, School of Biological Sciences, University of Surrey, Guildford, UK.
| | | |
Collapse
|
21
|
Hamada K, Kumazaki T, Satoh S. Effect of transforming RNA on the synthesis of a protein with a secretory signal sequence in vitro. J Biol Chem 1999; 274:15786-96. [PMID: 10336481 DOI: 10.1074/jbc.274.22.15786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
U5 small nuclear RNA itself can act as a clastogenic and transforming agent when transfected into cells. In the previous work, the 3' half of the U5 small nuclear RNA first stem structure (designated RNA3S) was capable of driving normal cells into tumorigenic cells when expressed with a poly(A) tail (RNA3S+). This transformation critically depended upon the polypurine sequence GGAGAGGAA in RNA3S+. In this work, we first examined the pre-beta-lactamase and luciferase (model secretory and nonsecretory proteins) translation with the in vitro synthesized RNA3S in rabbit reticulocyte lysate. The capped RNA3S with a poly(A) tail suppressed the translation. In addition, the polypurine sequence played a crucial role in affecting the secretory protein synthesis, indicating a primary action of RNA3S+. Further studies revealed that the oligodeoxynucleotides, corresponding to the polypurine and its antisense sequences, directly contacted 28 S rRNA in ribosome and 7SL RNA in signal recognition particle, respectively, and differentially affected the nascent chain elongation of secretory protein synthesis. These results suggest that RNA3S+ blocks a physiological regulatory function played by signal recognition particle and the ribosome in the secretory protein synthesis and support the idea that the transformation might result from a repressed cellular activity.
Collapse
Affiliation(s)
- K Hamada
- Division of Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-0037, Japan
| | | | | |
Collapse
|
22
|
Abstract
For direct and on-line study of the physiological states of cell cultures, a robust flow injection system has been designed and interfaced with flow cytometry (FI-FCM). The core of the flow injection system includes a microchamber designed for sample processing. The design of this microchamber allows not only an accurate on-line dilution but also on-line cell fixation, staining, and washing. The flow injection part of the system was tested by monitoring the optical density of a growing E.coli culture on-line using a spectrophotometer. The entire growth curve, from lag phase to stationary phase, was obtained with frequent sampling. The performance of the entire FI-FCM system is demonstrated in three applications. The first is the monitoring of green fluorescent protein fluorophore formation kinetics in E.coli by visualizing the fluorescence evolution after protein synthesis is inhibited. The data revealed a subpopulation of cells that do not become fluorescent. In addition, the data show that single-cell fluorescence is distributed over a wide range and that the fluorescent population contains cells that are capable of reaching significantly higher expression levels than that indicated by the population average. The second application is the detailed flow cytometric evaluation of the batch growth dynamics of E.coli expressing Gfp. The collected single-cell data visualize the batch growth phases and it is shown that a state of balanced growth is never reached by the culture. The third application is the determination of distribution of DNA content of a S. cerevisiae population by automatically staining cells using a DNA-specific stain. Reproducibility of the on-line staining reaction shows that the system is not restricted to measuring the native properties of cells; rather, a wider range of cellular components could be monitored after appropriate sample processing. The system is thus particularly useful because it operates automatically without direct operator supervision for extended time periods.
Collapse
Affiliation(s)
- R Zhao
- Department of Chemical Engineering and Materials Science, Biological Process Technology Institute, University of Minnesota, 240 Gortner Lab, 1479 Gortner Avenue, St. Paul, MN 55108, USA
| | | | | |
Collapse
|
23
|
Abstract
A comparison of the spectra of spontaneous growth-dependent and adaptive mutations in ebgR shows that both spectra are dominated by insertion sequence (IS)-mediated mutations. The difference between growth-dependent mutations (61% IS mediated) and adaptive mutations (80% IS mediated) is highly significant (P < 0.0001). In contrast, the spectra of growth-dependent and adaptive non-IS-mediated mutations do not differ from each other and therefore do not provide support for the hypothesis that adaptive and growth-dependent mutations arise by substantially different mechanisms.
Collapse
Affiliation(s)
- B G Hall
- University of Rochester, Rochester, New York.
| |
Collapse
|
24
|
Stark AA. Transient appearance of the mutator phenotype during carcinogenesis as a possible explanation for the lack of mini/microsatellite instability in many late stage tumors. Mutat Res 1998; 421:221-5. [PMID: 9852996 DOI: 10.1016/s0027-5107(98)00209-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A A Stark
- Department of Biochemistry, Tel-Aviv University, Ramat-Aviv, Israel.
| |
Collapse
|
25
|
Faderl S, Estrov Z. The clinical significance of detection of residual disease in childhood ALL. Crit Rev Oncol Hematol 1998; 28:31-55. [PMID: 9715769 DOI: 10.1016/s1040-8428(98)00008-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- S Faderl
- Department of Bioimmunotherapy, University of Texas MD Anderson Cancer Center, Houston, USA
| | | |
Collapse
|
26
|
Abstract
Adaptive mutations are mutations that occur in nondividing or very slowly dividing microbial cells during prolonged nonlethal selection and that are specific to the challenge of the selection in the sense that the only mutations that can be detected are those that provide a growth advantage to the cell. The phoPQ genes encode a two-component positively acting regulatory system that controls expression of at least 25 to 30 genes in Escherichia coli and Salmonella typhimurium. PhoPQ responds to a variety of environmental stress signals including Mg2+ starvation and nutritional deprivation. Here I show that disruption of phoP or phoQ by Tn10dCam significantly reduces the adaptive mutation rate to ebgR, indicating that the adaptive mutagenesis machinery is regulated, directly or indirectly, by phoPQ. The finding that it is regulated implies that adaptive mutagenesis does not simply result from a failure of various error correction mechanisms during prolonged starvation.
Collapse
Affiliation(s)
- B G Hall
- Biology Department, University of Rochester, Rochester, New York 14627-0211, USA.
| |
Collapse
|
27
|
Abstract
This review analyzes the concept and evidence in support of a mutator phenotype in human cancer. The large number of mutations reported in tumor cells cannot be accounted for by the low mutation rates observed in normal somatic cells; rather, it must be a manifestation of a mutator phenotype present early during the tumorigenic process. The interaction between increased mutagenesis and clonal selection provides a mechanism for the selection of cells with increased proliferative advantage. The concept of a mutator phenotype in cancer has gained considerable support from the findings of enormous numbers of somatic mutations in repetitive sequences in human tumors. Moreover, cell lines exhibiting microsatellite instability demonstrate an increased mutation frequency in expressed genes. A knowledge of mechanisms that generate multiple mutations in cancer cells has important implications for prevention. For many tumors, a delay in the rate of accumulation of mutations by a factor of two could drastically reduce the death rates from these tumors.
Collapse
Affiliation(s)
- L A Loeb
- Joseph Gottstein Memorial Cancer Research Laboratory, Department of Pathology, University of Washington, Seattle 98195-7705, USA
| |
Collapse
|
28
|
Affiliation(s)
- L A Loeb
- Department of Pathology, University of Washington, Seattle, WA 98195-7705, USA.
| |
Collapse
|
29
|
Kasak L, Hõrak R, Kivisaar M. Promoter-creating mutations in Pseudomonas putida: a model system for the study of mutation in starving bacteria. Proc Natl Acad Sci U S A 1997; 94:3134-9. [PMID: 9096358 PMCID: PMC20334 DOI: 10.1073/pnas.94.7.3134] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A novel experimental system to study mutation in starving bacteria was designed, relying on the activation of a promoterless phenol degradation operon of Pseudomonas putida. The Phe+ (phenol-utilizing) mutants accumulated in the starving culture of P. putida in the presence of phenol but not in the absence of it. We ruled out the possibility that the absence of phenol eliminates Phe+ mutants from the starving population. Sequence analysis of the Phe+ mutants revealed that base substitutions, deletions, and insertion of Tn4652 can result in creation of a sequence similar to the sigma70-specific promoter consensus. One particular C --> A transversion was predominant in the Phe+ mutants that arose in the starving population under selection for phenol use. In contrast, various deletions were the most frequent Phe+ mutants occurring in a culture growing without selection. The accumulation rate of the Phe+ mutants on selective plates was found to be higher for bacteria plated from stationary-phase culture than that from exponentially growing cells. This suggests that some specific processes, occurring predominantly in stationary-phase cells, facilitate generation and/or fixation of such mutations.
Collapse
Affiliation(s)
- L Kasak
- Department of Microbiology and Virology, Tartu University and Estonian Biocentre
| | | | | |
Collapse
|
30
|
Davey HM, Kell DB. Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol Rev 1996; 60:641-96. [PMID: 8987359 PMCID: PMC239459 DOI: 10.1128/mr.60.4.641-696.1996] [Citation(s) in RCA: 281] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The most fundamental questions such as whether a cell is alive, in the sense of being able to divide or to form a colony, may sometimes be very hard to answer, since even axenic microbial cultures are extremely heterogeneous. Analyses that seek to correlate such things as viability, which is a property of an individual cell, with macroscopic measurements of culture variables such as ATP content, respiratory activity, and so on, must inevitably fail. It is therefore necessary to make physiological measurements on individual cells. Flow cytometry is such a technique, which allows one to analyze cells rapidly and individually and permits the quantitative analysis of microbial heterogeneity. It therefore offers many advantages over conventional measurements for both routine and more exploratory analyses of microbial properties. While the technique has been widely applied to the study of mammalian cells, is use in microbiology has until recently been much more limited, largely because of the smaller size of microbes and the consequently smaller optical signals obtainable from them. Since these technical barriers no longer hold, flow cytometry with appropriate stains has been used for the rapid discrimination and identification of microbial cells, for the rapid assessment of viability and of the heterogeneous distributions of a wealth of other more detailed physiological properties, for the analysis of antimicrobial drug-cell interactions, and for the isolation of high-yielding strains of biotechnological interest. Flow cytometric analyses provide an abundance of multivariate data, and special methods have been devised to exploit these. Ongoing advances mean that modern flow cytometers may now be used by nonspecialists to effect a renaissance in our understanding of microbial heterogeneity.
Collapse
Affiliation(s)
- H M Davey
- Institute of Biological Sciences, University of Wales, Aberystwyth, Dyfed, United Kingdom
| | | |
Collapse
|