1
|
La Chica Lhoëst MT, Martinez A, Claudi L, Garcia E, Benitez-Amaro A, Polishchuk A, Piñero J, Vilades D, Guerra JM, Sanz F, Rotllan N, Escolà-Gil JC, Llorente-Cortés V. Mechanisms modulating foam cell formation in the arterial intima: exploring new therapeutic opportunities in atherosclerosis. Front Cardiovasc Med 2024; 11:1381520. [PMID: 38952543 PMCID: PMC11215187 DOI: 10.3389/fcvm.2024.1381520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/28/2024] [Indexed: 07/03/2024] Open
Abstract
In recent years, the role of macrophages as the primary cell type contributing to foam cell formation and atheroma plaque development has been widely acknowledged. However, it has been long recognized that diffuse intimal thickening (DIM), which precedes the formation of early fatty streaks in humans, primarily consists of lipid-loaded smooth muscle cells (SMCs) and their secreted proteoglycans. Recent studies have further supported the notion that SMCs constitute the majority of foam cells in advanced atherosclerotic plaques. Given that SMCs are a major component of the vascular wall, they serve as a significant source of microvesicles and exosomes, which have the potential to regulate the physiology of other vascular cells. Notably, more than half of the foam cells present in atherosclerotic lesions are of SMC origin. In this review, we describe several mechanisms underlying the formation of intimal foam-like cells in atherosclerotic plaques. Based on these mechanisms, we discuss novel therapeutic approaches that have been developed to regulate the generation of intimal foam-like cells. These innovative strategies hold promise for improving the management of atherosclerosis in the near future.
Collapse
Affiliation(s)
- M. T. La Chica Lhoëst
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - A. Martinez
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - L. Claudi
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - E. Garcia
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - A. Benitez-Amaro
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - A. Polishchuk
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - J. Piñero
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences (DCEXS), Hospital del Mar Medical Research Institute (IMIM), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - D. Vilades
- Department of Cardiology, Hospital de la Santa Creu I Sant Pau, Biomedical Research Institute Sant Pau (IIB-SANTPAU), Universitat Autonoma de Barcelona, Barcelona, Spain
- Department of Cardiovascular, CIBERCV, Institute of Health Carlos III, Madrid, Spain
| | - J. M. Guerra
- Department of Cardiology, Hospital de la Santa Creu I Sant Pau, Biomedical Research Institute Sant Pau (IIB-SANTPAU), Universitat Autonoma de Barcelona, Barcelona, Spain
- Department of Cardiovascular, CIBERCV, Institute of Health Carlos III, Madrid, Spain
| | - F. Sanz
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences (DCEXS), Hospital del Mar Medical Research Institute (IMIM), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - N. Rotllan
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Department of Cardiovascular, CIBERDEM, Institute of Health Carlos III, Madrid, Spain
| | - J. C. Escolà-Gil
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Department of Cardiovascular, CIBERDEM, Institute of Health Carlos III, Madrid, Spain
| | - V. Llorente-Cortés
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Department of Cardiovascular, CIBERCV, Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Arribas AJ, Napoli S, Cascione L, Barnabei L, Sartori G, Cannas E, Gaudio E, Tarantelli C, Mensah AA, Spriano F, Zucchetto A, Rossi FM, Rinaldi A, Castro de Moura M, Jovic S, Bordone Pittau R, Stathis A, Stussi G, Gattei V, Brown JR, Esteller M, Zucca E, Rossi D, Bertoni F. ERBB4-Mediated Signaling Is a Mediator of Resistance to PI3K and BTK Inhibitors in B-cell Lymphoid Neoplasms. Mol Cancer Ther 2024; 23:368-380. [PMID: 38052765 DOI: 10.1158/1535-7163.mct-23-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/28/2023] [Accepted: 10/11/2023] [Indexed: 12/07/2023]
Abstract
BTK and PI3K inhibitors are among the drugs approved for the treatment of patients with lymphoid neoplasms. Although active, their ability to lead to long-lasting complete remission is rather limited, especially in the lymphoma setting. This indicates that tumor cells often develop resistance to the drugs. We started from a marginal zone lymphoma cell line, Karpas-1718, kept under prolonged exposure to the PI3Kδ inhibitor idelalisib until acquisition of resistance, or with no drug. Cells underwent transcriptome, miRNA and methylation profiling, whole-exome sequencing, and pharmacologic screening, which led to the identification of the overexpression of ERBB4 and its ligands HBEGF and NRG2 in the resistant cells. Cellular and genetic experiments demonstrated the involvement of this axis in blocking the antitumor activity of various BTK/PI3K inhibitors, currently used in the clinical setting. Addition of recombinant HBEGF induced resistance to BTK/PI3K inhibitors in parental cells and in additional lymphoma models. Combination with the ERBB inhibitor lapatinib was beneficial in resistant cells and in other lymphoma models already expressing the identified resistance factors. An epigenetic reprogramming sustained the expression of the resistance-related factors, and pretreatment with demethylating agents or EZH2 inhibitors overcame the resistance. Resistance factors were also shown to be expressed in clinical specimens. In conclusion, we showed that the overexpression of ERBB4 and its ligands represents a novel mechanism of resistance for lymphoma cells to bypass the antitumor activity of BTK and PI3K inhibitors and that targeted pharmacologic interventions can restore sensitivity to the small molecules.
Collapse
Affiliation(s)
- Alberto J Arribas
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sara Napoli
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Luciano Cascione
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Laura Barnabei
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Giulio Sartori
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Eleonora Cannas
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Eugenio Gaudio
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Chiara Tarantelli
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Afua A Mensah
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Filippo Spriano
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | | | | | - Andrea Rinaldi
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Manuel Castro de Moura
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Sandra Jovic
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | | | - Anastasios Stathis
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Georg Stussi
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Valter Gattei
- Centro di Riferimento Oncologico di Aviano - CRO, Aviano, Italy
| | - Jennifer R Brown
- Chronic Lymphocytic Leukemia Center, Division of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Emanuele Zucca
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Davide Rossi
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| |
Collapse
|
3
|
Arribas AJ, Napoli S, Cascione L, Barnabei L, Sartori G, Cannas E, Gaudio E, Tarantelli C, Mensah AA, Spriano F, Zucchetto A, Rossi FM, Rinaldi A, de Moura MC, Jovic S, Pittau RB, Stathis A, Stussi G, Gattei V, Brown JR, Esteller M, Zucca E, Rossi D, Bertoni F. ERBB4-mediated signaling is a mediator of resistance to BTK and PI3K inhibitors in B cell lymphoid neoplasms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.01.522017. [PMID: 36711490 PMCID: PMC9881865 DOI: 10.1101/2023.01.01.522017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BTK and PI3K inhibitors are among the drugs approved for the treatment of patients with lymphoid neoplasms. Although active, their ability to lead as single agents to long-lasting complete remission is rather limited especially in the lymphoma setting. This indicates that tumor cells often develop resistance to the drugs. Here, we show that the overexpression of ERBB4 and its ligands represents a modality for B cell neoplastic cells to bypass the anti-tumor activity of BTK and PI3K inhibitors and that targeted pharmacological interventions can restore sensitivity to the small molecules. We started from a marginal zone lymphoma (MZL) cell line, Karpas-1718, kept under prolonged exposure to the PI3Kδ inhibitor idelalisib until acquisition of resistance, or with no drug. Cells underwent transcriptome, miRNA and methylation profiling, whole exome sequencing, and pharmacological screening which led to the identification of the overexpression of ERBB4 and its ligands HBEGF and NRG2 in the resistant cells. Cellular and genetic experiments demonstrated the involvement of this axis in blocking the anti-tumor activity of various BTK and PI3K inhibitors, currently used in the clinical setting. Addition of recombinant HBEGF induced resistance to BTK and PI3K inhibitors in parental cells but also in additional lymphoma models. Combination with the ERBB inhibitor lapatinib was beneficial in resistant cells and in other lymphoma models already expressing the identified resistance factors. Multi-omics analysis underlined that an epigenetic reprogramming affected the expression of the resistance-related factors, and pretreatment with demethylating agents or EZH2 inhibitors overcame the resistance. Resistance factors were shown to be expressed in clinical samples, further extending the findings of the study. In conclusions, we identified a novel ERBB4-driven mechanism of resistance to BTK and PI3K inhibitors and treatments that appear to overcome it. Key points A mechanism of secondary resistance to the PI3Kδ and BTK inhibitors in B cell neoplasms driven by secreted factors.Resistance can be reverted by targeting ERBB signaling.
Collapse
|
4
|
Van Hiep N, Sun WL, Feng PH, Lin CW, Chen KY, Luo CS, Dung LN, Van Quyet H, Wu SM, Lee KY. Heparin binding epidermal growth factor-like growth factor is a prognostic marker correlated with levels of macrophages infiltrated in lung adenocarcinoma. Front Oncol 2022; 12:963896. [PMID: 36439487 PMCID: PMC9686304 DOI: 10.3389/fonc.2022.963896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
Background The interactions between tumor cells and the host immune system play a crucial role in lung cancer progression and resistance to treatment. The alterations of EGFR signaling have the potential to produce an ineffective tumor-associated immune microenvironment by upregulating a series of immune suppressors, including inhibitory immune checkpoints, immunosuppressive cells, and cytokines. Elevated Heparin-binding EGF-like growth factor (HB-EGF) expression, one EGFR ligand correlated with higher histology grading, worse patient prognosis, and lower overall survival rate, acts as a chemotactic factor. However, the role of heparin-binding epidermal growth factor-like growth factor (HB-EGF) in the accumulation of immune cells in the tumor microenvironment remains unclear. Methods The clinical association of HB-EGF expression in lung cancer was examined using the Gene Expression Omnibus (GEO) repository. HB-EGF expression in different cell types was determined using single-cell RNA sequencing (scRNA-seq) dataset. The correlation between HB-EGF expression and cancer-immune infiltrated cells was investigated by performing TIMER and ClueGo pathways analysis from TCGA database. The chemotaxis of HB-EGF and macrophage infiltration was investigated using migration and immunohistochemical staining. Results The high HB-EGF expression was significantly correlated with poor overall survival in patients with lung adenocarcinoma (LUAD) but not lung squamous cell carcinoma (LUSC). Moreover, HB-EGF expression was correlated with the infiltration of monocytes, macrophages, neutrophils, and dendritic cells in LUAD but not in LUSC. Analysis of scRNA-seq data revealed high HB-EGF expression in lung cancer cells and myeloid cells. Results from the pathway analysis and cell-based experiment indicated that elevated HB-EGF expression was associated with the presence of macrophage and lung cancer cell migration. HB-EGF was highly expressed in tumors and correlated with M2 macrophage infiltration in LUAD. Conclusions HB-EGF is a potential prognostic marker and therapeutic target for lung cancer progression, particularly in LUAD.
Collapse
Affiliation(s)
- Nguyen Van Hiep
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan,Oncology Center, Bai Chay Hospital, Quang Ninh, Ha Long, Vietnam,Department of Thoracic and Neurological Surgery, Bai Chay Hospital, Quang Ninh, Ha Long, Vietnam
| | - Wei-Lun Sun
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan,TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Hao Feng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan,TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Wei Lin
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan,TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei, Taiwan,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Yuan Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan,TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei, Taiwan,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Shan Luo
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan,TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei, Taiwan
| | - Le Ngoc Dung
- Department of Thoracic and Neurological Surgery, Bai Chay Hospital, Quang Ninh, Ha Long, Vietnam
| | - Hoang Van Quyet
- Department of Thoracic and Neurological Surgery, Bai Chay Hospital, Quang Ninh, Ha Long, Vietnam
| | - Sheng-Ming Wu
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan,TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei, Taiwan,*Correspondence: Kang-Yun Lee, ; Sheng-Ming Wu,
| | - Kang-Yun Lee
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan,TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei, Taiwan,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan,*Correspondence: Kang-Yun Lee, ; Sheng-Ming Wu,
| |
Collapse
|
5
|
Ray PE, Li J, Das JR, Yu J. Association of circulating fibroblast growth factor-2 with progression of HIV-chronic kidney diseases in children. Pediatr Nephrol 2021; 36:3933-3944. [PMID: 34125285 PMCID: PMC8602783 DOI: 10.1007/s00467-021-05075-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/08/2021] [Accepted: 03/26/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Children living with HIV frequently show high plasma levels of fibroblast growth factor-2 (FGF-2/bFGF). FGF-2 accelerates the progression of several experimental kidney diseases; however, the role of circulating FGF-2 in childhood HIV-chronic kidney diseases (HIV-CKDs) is unknown. We carried out this study to determine whether high plasma FGF-2 levels were associated with the development of HIV-CKDs in children. METHODS The plasma and urine FGF-2 levels were measured in 84 children (< 12 years of age) living with HIV during the pre-modern antiretroviral era, and followed for at least 3 years to determine the prevalence of proteinuria and HIV-CKDs. We also assessed the distribution of the kidney FGF-2 binding sites by autoradiography and Alcian blue staining, and explored potential mechanisms by which circulating FGF-2 may precipitate HIV-CKDs in cultured kidney epithelial and mononuclear cells derived from children with HIV-CKDs. RESULTS High plasma FGF-2 levels were associated with a high viral load. Thirteen children (~ 15%) developed HIV-CKDs and showed a large reservoir of FGF-2 low-affinity binding sites in the kidney, which can facilitate the recruitment of circulating FGF-2. Children with high plasma and urine FGF-2 levels had 73-fold increased odds (95% CI 9-791) of having HIV-CKDs relative to those with normal FGF-2 values. FGF-2 induced the proliferation and decreased the expression of APOL-1 mRNA in podocytes, and increased the attachment and survival of infected mononuclear cells cultured from children with HIV-CKDs. CONCLUSIONS High plasma FGF-2 levels appear to be an additional risk factor for developing progressive childhood HIV-CKDs.
Collapse
Affiliation(s)
- Patricio E Ray
- Child Health Research Center, Department of Pediatrics, School of Medicine, University of Virginia, Room 2120, MR4 Building, 409 Lane Road, Charlottesville, VA, 22908, USA.
| | - Jinliang Li
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, The George Washington University School of Medicine, Washington, DC, USA
| | - Jharna R Das
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, The George Washington University School of Medicine, Washington, DC, USA
| | - Jing Yu
- Child Health Research Center, Department of Pediatrics, School of Medicine, University of Virginia, Room 2120, MR4 Building, 409 Lane Road, Charlottesville, VA, 22908, USA
| |
Collapse
|
6
|
Khosravi F, Ahmadvand N, Bellusci S, Sauer H. The Multifunctional Contribution of FGF Signaling to Cardiac Development, Homeostasis, Disease and Repair. Front Cell Dev Biol 2021; 9:672935. [PMID: 34095143 PMCID: PMC8169986 DOI: 10.3389/fcell.2021.672935] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
The current focus on cardiovascular research reflects society’s concerns regarding the alarming incidence of cardiac-related diseases and mortality in the industrialized world and, notably, an urgent need to combat them by more efficient therapies. To pursue these therapeutic approaches, a comprehensive understanding of the mechanism of action for multifunctional fibroblast growth factor (FGF) signaling in the biology of the heart is a matter of high importance. The roles of FGFs in heart development range from outflow tract formation to the proliferation of cardiomyocytes and the formation of heart chambers. In the context of cardiac regeneration, FGFs 1, 2, 9, 16, 19, and 21 mediate adaptive responses including restoration of cardiac contracting rate after myocardial infarction and reduction of myocardial infarct size. However, cardiac complications in human diseases are correlated with pathogenic effects of FGF ligands and/or FGF signaling impairment. FGFs 2 and 23 are involved in maladaptive responses such as cardiac hypertrophic, fibrotic responses and heart failure. Among FGFs with known causative (FGFs 2, 21, and 23) or protective (FGFs 2, 15/19, 16, and 21) roles in cardiac diseases, FGFs 15/19, 21, and 23 display diagnostic potential. The effective role of FGFs on the induction of progenitor stem cells to cardiac cells during development has been employed to boost the limited capacity of postnatal cardiac repair. To renew or replenish damaged cardiomyocytes, FGFs 1, 2, 10, and 16 were tested in (induced-) pluripotent stem cell-based approaches and for stimulation of cell cycle re-entry in adult cardiomyocytes. This review will shed light on the wide range of beneficiary and detrimental actions mediated by FGF ligands and their receptors in the heart, which may open new therapeutic avenues for ameliorating cardiac complications.
Collapse
Affiliation(s)
- Farhad Khosravi
- Department of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Negah Ahmadvand
- Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Saverio Bellusci
- Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Heinrich Sauer
- Department of Physiology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
7
|
Placental growth factor regulates the generation of T H17 cells to link angiogenesis with autoimmunity. Nat Immunol 2019; 20:1348-1359. [PMID: 31406382 DOI: 10.1038/s41590-019-0456-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
Helper T cells actively communicate with adjacent cells by secreting soluble mediators, yet crosstalk between helper T cells and endothelial cells remains poorly understood. Here we found that placental growth factor (PlGF), a homolog of the vascular endothelial growth factor that enhances an angiogenic switch in disease, was selectively secreted by the TH17 subset of helper T cells and promoted angiogenesis. Interestingly, the 'angio-lymphokine' PlGF, in turn, specifically induced the differentiation of pathogenic TH17 cells by activating the transcription factor STAT3 via binding to its receptors and replaced the activity of interleukin-6 in the production of interleukin-17, whereas it suppressed the generation of regulatory T cells. Moreover, T cell-derived PlGF was required for the progression of autoimmune diseases associated with TH17 differentiation, including experimental autoimmune encephalomyelitis and collagen-induced arthritis, in mice. Collectively, our findings provide insights into the PlGF-dictated links among angiogenesis, TH17 cell development and autoimmunity.
Collapse
|
8
|
Presta M, Foglio E, Churruca Schuind A, Ronca R. Long Pentraxin-3 Modulates the Angiogenic Activity of Fibroblast Growth Factor-2. Front Immunol 2018; 9:2327. [PMID: 30349543 PMCID: PMC6187966 DOI: 10.3389/fimmu.2018.02327] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/19/2018] [Indexed: 12/15/2022] Open
Abstract
Angiogenesis, the process of new blood vessel formation from pre-existing ones, plays a key role in various physiological and pathological conditions. Alteration of the angiogenic balance, consequent to the deranged production of angiogenic growth factors and/or natural angiogenic inhibitors, is responsible for angiogenesis-dependent diseases, including cancer. Fibroblast growth factor-2 (FGF2) represents the prototypic member of the FGF family, able to induce a complex “angiogenic phenotype” in endothelial cells in vitro and a potent neovascular response in vivo as the consequence of a tight cross talk between pro-inflammatory and angiogenic signals. The soluble pattern recognition receptor long pentraxin-3 (PTX3) is a member of the pentraxin family produced locally in response to inflammatory stimuli. Besides binding features related to its role in innate immunity, PTX3 interacts with FGF2 and other members of the FGF family via its N-terminal extension, thus inhibiting FGF-mediated angiogenic responses in vitro and in vivo. Accordingly, PTX3 inhibits the growth and vascularization of FGF-dependent tumors and FGF2-mediated smooth muscle cell proliferation and artery restenosis. Recently, the characterization of the molecular bases of FGF2/PTX3 interaction has allowed the identification of NSC12, the first low molecular weight pan-FGF trap able to inhibit FGF-dependent tumor growth and neovascularization. The aim of this review is to provide an overview of the impact of PTX3 and PTX3-derived molecules on the angiogenic, inflammatory, and tumorigenic activity of FGF2 and their potential implications for the development of more efficacious anti-FGF therapeutic agents to be used in those clinical settings in which FGFs play a pathogenic role.
Collapse
Affiliation(s)
- Marco Presta
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Eleonora Foglio
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Ander Churruca Schuind
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
9
|
Bradykinin B2 Receptor Contributes to Inflammatory Responses in Human Endothelial Cells by the Transactivation of the Fibroblast Growth Factor Receptor FGFR-1. Int J Mol Sci 2018; 19:ijms19092638. [PMID: 30200598 PMCID: PMC6163484 DOI: 10.3390/ijms19092638] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 12/19/2022] Open
Abstract
Elevated levels of bradykinin (BK) and fibroblast growth factor-2 (FGF-2) have been implicated in the pathogenesis of inflammatory and angiogenic disorders. In angiogenesis, both stimuli induce a pro-inflammatory signature in endothelial cells, activating an autocrine/paracrine amplification loop that sustains the neovascularization process. Here we investigated the contribution of the FGF-2 pathway in the BK-mediated human endothelial cell permeability and migration, and the role of the B2 receptor (B2R) of BK in this cross-talk. BK (1 µM) upregulated the FGF-2 expression and promoted the FGF-2 signaling, both in human umbilical vein endothelial cells (HUVEC) and in retinal capillary endothelial cells (HREC) by the activation of Fibroblast growth factor receptor-1 (FGFR-1) and its downstream signaling (fibroblast growth factor receptor substrate: FRSα, extracellular signal–regulated kinases1/2: ERK1/2, and signal transducer and activator of transcription 3: STAT3 phosphorylation). FGFR-1 phosphorylation triggered by BK was c-Src mediated and independent from FGF-2 upregulation. Either HUVEC and HREC exposed to BK showed increased permeability, disassembly of adherens and tight-junction, and increased cell migration. B2R blockade by the selective antagonist, fasitibant, significantly inhibited FGF-2/FGFR-1 signaling, and in turn, BK-mediated endothelial cell permeability and migration. Similarly, the FGFR-1 inhibitor, SU5402, and the knock-down of the receptor prevented the BK/B2R inflammatory response in endothelial cells. In conclusion, this work demonstrates the existence of a BK/B2R/FGFR-1/FGF-2 axis in endothelial cells that might be implicated in propagation of angiogenic/inflammatory responses. A B2R blockade, by abolishing the initial BK stimulus, strongly attenuated FGFR-1-driven cell permeability and migration.
Collapse
|
10
|
Kim S, Yang L, Kim S, Lee RG, Graham MJ, Berliner JA, Lusis AJ, Cai L, Temel RE, Rateri DL, Lee S. Targeting hepatic heparin-binding EGF-like growth factor (HB-EGF) induces anti-hyperlipidemia leading to reduction of angiotensin II-induced aneurysm development. PLoS One 2017; 12:e0182566. [PMID: 28792970 PMCID: PMC5549937 DOI: 10.1371/journal.pone.0182566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/20/2017] [Indexed: 01/02/2023] Open
Abstract
Objective The upregulated expression of heparin binding EGF-like growth factor (HB-EGF) in the vessel and circulation is associated with risk of cardiovascular disease. In this study, we tested the effects of HB-EGF targeting using HB-EGF-specific antisense oligonucleotide (ASO) on the development of aortic aneurysm in a mouse aneurysm model. Approach and results Low-density lipoprotein receptor (LDLR) deficient mice (male, 16 weeks of age) were injected with control and HB-EGF ASOs for 10 weeks. To induce aneurysm, the mice were fed a high fat diet (22% fat, 0.2% cholesterol; w/w) at 5 week point of ASO administration and infused with angiotensin II (AngII, 1,000ng/kg/min) for the last 4 weeks of ASO administration. We confirmed that the HB-EGF ASO administration significantly downregulated HB-EGF expression in multiple tissues including the liver. Importantly, the HB-EGF ASO administration significantly suppressed development of aortic aneurysms including thoracic and abdominal types. Interestingly, the HB-EGF ASO administration induced a remarkable anti-hyperlipidemic effect by suppressing very low density lipoprotein (VLDL) level in the blood. Mechanistically, the HB-EGF targeting suppressed hepatic VLDL secretion rate without changing heparin-releasable plasma triglyceride (TG) hydrolytic activity or fecal neutral cholesterol excretion rate. Conclusion This result suggested that the HB-EGF targeting induced protection against aneurysm development through anti-hyperlipidemic effects. Suppression of hepatic VLDL production process appears to be a key mechanism for the anti-hyperlipidemic effects by the HB-EGF targeting.
Collapse
Affiliation(s)
- Seonwook Kim
- Saha Cardiovascular Research Center at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Lihua Yang
- Saha Cardiovascular Research Center at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Seongu Kim
- Saha Cardiovascular Research Center at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Richard G. Lee
- Cardiovascular Antisense Drug Discovery Group at the Ionis Pharmaceuticals, Inc., Carlsbad, California, United States of America
| | - Mark J. Graham
- Cardiovascular Antisense Drug Discovery Group at the Ionis Pharmaceuticals, Inc., Carlsbad, California, United States of America
| | - Judith A. Berliner
- Department of Medicine-Cardiology, University of California-Los Angeles School of Medicine, Los Angeles, California, United States of America
| | - Aldons J. Lusis
- Department of Medicine-Cardiology, University of California-Los Angeles School of Medicine, Los Angeles, California, United States of America
| | - Lei Cai
- Saha Cardiovascular Research Center at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Ryan E. Temel
- Saha Cardiovascular Research Center at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- Department of Pharmacology & Nutritional Sciences at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Debra L. Rateri
- Saha Cardiovascular Research Center at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Sangderk Lee
- Saha Cardiovascular Research Center at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- Department of Pharmacology & Nutritional Sciences at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
11
|
Abstract
BACKGROUND Corneal neovascularization increases the risk of T cell-mediated allograft rejection. Here, we investigate whether T cells promote angiogenesis in transplantation. METHODS Conventional effector T cells were collected from draining lymph nodes of allogeneic or syngeneic corneal transplanted BALB/c mice. T cells were either cocultured with vascular endothelial cells (VECs) to assess VEC proliferation or used in a mixed lymphocyte reaction assay. Messenger RNA (mRNA) expression of vascular endothelial growth factor (VEGF)-A, -C, and VEGF receptor 2 (VEGF-R2) in VECs was assessed by real-time PCR. VEGF-A protein expression was determined by enzyme-linked immunosorbent assay. Flow cytometry was used to analyze VEGF-R2 expression in corneal CD31 cells, and VEGF-A and IFNγ expression in corneal CD4 T cells. RESULTS Allogeneic T cells from high-risk (HR) grafted mice induced more VEC proliferation than those from syngeneic transplant recipients (P = 0.03). Vascular endothelial growth factor-A mRNA and protein expression were higher in T cells from draining lymph nodes (P = 0.03 and P = 0.04, respectively) and cornea (protein; P = 0.04) of HR compared with low-risk (LR) grafted hosts. Vascular endothelial growth factor-A, VEGF-C, and VEGF-R2 mRNA expression were increased in VECs when cocultured with T cells from HR transplants compared with LR transplants and naive mice. In addition, IFNγ blockade in T cell/VEC coculture increased VEC proliferation and VEGF-A protein expression, whereas blocking VEGF-A significantly reduced VEC proliferation (P = 0.04). CONCLUSIONS Allogeneic T cells from corneal transplant hosts promote VEC proliferation, probably via VEGF-A signaling, whereas IFNγ shows an antiangiogenic effect. Our data suggest that T cells are critical mediators of angiogenesis in transplantation.
Collapse
|
12
|
A Comparative Approach of Tumor-Associated Inflammation in Mammary Cancer between Humans and Dogs. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4917387. [PMID: 28053982 PMCID: PMC5178344 DOI: 10.1155/2016/4917387] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/24/2016] [Accepted: 11/03/2016] [Indexed: 12/20/2022]
Abstract
Infiltrating cells of the immune system are widely accepted to be generic constituents of tumor microenvironment. It has been well established that the development of mammary cancer, both in humans and in dogs, is associated with alterations in numbers and functions of immune cells at the sites of tumor progression. These tumor infiltrating immune cells seem to exhibit exclusive phenotypic and functional characteristics and mammary cancer cells can take advantage of signaling molecules released by them. Cancer related inflammation has an important role in mammary carcinogenesis, contributing to the acquisition of core hallmark capabilities that allow cancer cells to survive, proliferate, and disseminate. Indeed, recent studies in human breast cancer and in canine mammary tumors have identified a growing list of signaling molecules released by inflammatory cells that serve as effectors of their tumor-promoting actions. These include the COX-2, the tumor EGF, the angiogenic VEGF, other proangiogenic factors, and a large variety of chemokines and cytokines that amplify the inflammatory state. This review describes the intertwined signaling pathways shared by T-lymphocytic/macrophage infiltrates and important tissue biomarkers in both human and dog mammary carcinogenesis.
Collapse
|
13
|
Therapeutic inhibition of breast cancer bone metastasis progression and lung colonization: breaking the vicious cycle by targeting α5β1 integrin. Breast Cancer Res Treat 2016; 157:489-501. [PMID: 27255534 DOI: 10.1007/s10549-016-3844-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/24/2016] [Indexed: 10/21/2022]
Abstract
At diagnosis, 10 % of breast cancer patients already have locally advanced or metastatic disease; moreover, metastasis eventually develops in at least 40 % of early breast cancer patients. Osteolytic bone colonization occurs in 80-85 % of metastatic breast cancer patients and is thought to be an early step in metastatic progression. Thus, breast cancer displays a strong preference for metastasis to bone, and most metastatic breast cancer patients will experience its complications. Our prior research has shown that the α5β1 integrin fibronectin receptor mediates both metastatic and angiogenic invasion. We invented a targeted peptide inhibitor of activated α5β1, Ac-PHSCN-NH2 (PHSCN), as a validated lead compound to impede both metastatic invasion and neovascularization. Systemic PHSCN monotherapy prevented disease progression for up to 14 months in Phase I clinical trial. Here, we report that the next-generation construct, Ac-PhScN-NH2 (PhScN), which contains D-isomers of histidine (h) and cysteine (c), is greater than 100,000-fold more potent than PHSCN at blocking basement membrane invasion. Moreover, PhScN is also up to 10,000-fold more potent than PHSCN at inhibiting lung extravasation and colonization in athymic mice for both MDA-MB-231 metastatic and SUM149PT inflammatory breast cancer cells. Furthermore, we show that systemic treatment with 50 mg/kg PhScN monotherapy reduces established intratibial MDA-MB-231 bone colony progression by 80 %. Thus, PhScN is a highly potent, well-tolerated inhibitor of both lung colonization and bone colony progression.
Collapse
|
14
|
Ceafalan LC, Manole E, Tanase CP, Codrici E, Mihai S, Gonzalez A, Popescu BO. Interstitial Outburst of Angiogenic Factors During Skeletal Muscle Regeneration After Acute Mechanical Trauma. Anat Rec (Hoboken) 2015; 298:1864-79. [PMID: 26260512 DOI: 10.1002/ar.23254] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 06/01/2015] [Accepted: 06/12/2015] [Indexed: 11/09/2022]
Abstract
Angiogenesis is a key event during tissue regeneration, but the intimate mechanisms controlling this process are still largely unclear. Therefore, the cellular and molecular interplay along normal tissue regeneration should be carefully unveiled. To this matter, we investigated by xMAP assay the dynamics of some angiogenic factors known to be involved in tissue repair, such as follistatin (FST), Placental Growth Factor-2 (PLGF-2), epidermal growth factor (EGF), betacellulin (BTC), and amphiregulin (AREG) using an animal model that mimics acute muscle contusion injuries. In situ immunofluorescence was used for the evaluation and tissue distribution of their cellular sources. Tissue levels of explored factors increased significantly during degeneration and inflammatory stage of regeneration, peaking first week postinjury. However, except for PLGF-2 and EGF, their levels remained significantly elevated after the inflammatory process started to fade. Serum levels were significantly increased only after 24 h for AREG and EGF. Though, for all factors except FST, the levels in injured samples did not correlate with serum or contralateral tissue levels, excluding the systemic influence. We found significant correlations between the levels of EGF and AREG, BTC, FST and FST and AREG in injured samples. Interstitial cells expressing these factors were highlighted by in situ immunolabeling and their number correlated with measured levels dynamics. Our study provides evidence of a dynamic level variation along the regeneration process and a potential interplay between selected angiogenic factors. They are synthesized, at least partially, by cell populations residing in skeletal muscle interstitium during regeneration after acute muscle trauma.
Collapse
Affiliation(s)
- Laura Cristina Ceafalan
- Department of Cellular and Molecular Biology and Histology, School of Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,Department of Molecular Medicine and Neuroscience, "Victor Babes" Institute of Pathology, Bucharest, Romania
| | - Emilia Manole
- Department of Molecular Medicine and Neuroscience, "Victor Babes" Institute of Pathology, Bucharest, Romania
| | - Cristiana Pistol Tanase
- Biochemistry/Proteomics Department, "Victor Babes" Institute of Pathology, Bucharest, Romania
| | - Elena Codrici
- Biochemistry/Proteomics Department, "Victor Babes" Institute of Pathology, Bucharest, Romania
| | - Simona Mihai
- Biochemistry/Proteomics Department, "Victor Babes" Institute of Pathology, Bucharest, Romania
| | - Aldebarani Gonzalez
- Department of Cellular and Molecular Biology and Histology, School of Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Bogdan Ovidiu Popescu
- Department of Molecular Medicine and Neuroscience, "Victor Babes" Institute of Pathology, Bucharest, Romania.,Department of Neurology, Colentina Clinical Hospital-Colentina Research Center, School of Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
15
|
Cancer stem cells and tumor-associated macrophages: a roadmap for multitargeting strategies. Oncogene 2015; 35:671-82. [PMID: 25961921 DOI: 10.1038/onc.2015.132] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 03/16/2015] [Accepted: 03/20/2015] [Indexed: 12/12/2022]
Abstract
The idea that tumor initiation and progression are driven by a subset of cells endowed with stem-like properties was first described by Rudolf Virchow in 1855. 'Cancer stem cells', as they were termed more than a century later, represent a subset of tumor cells that are able to generate all tumorigenic and nontumorigenic cell types within the malignancy. Although their existence was hypothesized >150 years ago, it was only recently that stem-like cells started to be isolated from different neoplastic malignancies. Interestingly, Virchow, in suggesting a correlation between cancer and the inflammatory microenvironment, also paved the way for the 'Seed and Soil' theory proposed by Paget a few years later. Despite the time that has passed since these two important concepts were suggested, the relationships between Virchow's 'stem-like cells' and Paget's 'soil' are far from being fully understood. One emerging topic is the importance of a stem-like niche in modulating the biological properties of stem-like cancer cells and thus in affecting the response of the tumor to drugs. This review aims to summarize the recent molecular data concerning the multilayered relationship between cancer stem cells and tumor-associated macrophages that form a key component of the tumor microenvironment. We also discuss the therapeutic implications of targeting this synergistic interplay.
Collapse
|
16
|
Wei LQ, Liang HT, Qin DC, Jin HF, Zhao Y, She MC. MiR-212 exerts suppressive effect on SKOV3 ovarian cancer cells through targeting HBEGF. Tumour Biol 2014; 35:12427-34. [PMID: 25201063 DOI: 10.1007/s13277-014-2560-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 08/26/2014] [Indexed: 01/27/2023] Open
Abstract
MicroRNAs (miRNAs) play critical roles in the development and progression of ovarian cancer. We found that miR-212 was significantly downregulated in serum and tissues from epithelial ovarian cancer (EOC) patients. Overexpression of miR-212 in ovarian cancer cells inhibited cell proliferation, migration, and invasion. Luciferase reporter assay confirmed HBEGF as a direct target of miR-212. Overexpression of miR-212 decreased HBEGF expression at both the protein and messenger RNA (mRNA) levels. Knockdown of HBEGF expression in SKOV3 cell line significantly inhibited cell growth, migration, and invasion. HBEGF mRNA level was upregulated in EOC tissues and inversely correlated with miR-212 expression in tissues. Upregulation of HBEGF could attenuate the effect induced by miR-212. These findings indicate that miR-212 displays a tumor-suppressive effect in human ovarian cancer. And miR-212 suppresses cell proliferation, migration, and invasion by targeting the HBEGF transcript, highlighting the therapeutic potential of miR-212 and HBEGF in epithelial ovarian cancer treatment.
Collapse
Affiliation(s)
- Li-Qiang Wei
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe Road, Zhengzhou, 450052, Henan, China
| | | | | | | | | | | |
Collapse
|
17
|
Pucci S, Fisco T, Zonetti MJ, Bonanno E, Mazzarelli P, Mauriello A. PTX3: a modulator of human coronary plaque vulnerability acting by macrophages type 2. Int J Cardiol 2014; 176:710-7. [PMID: 25131923 DOI: 10.1016/j.ijcard.2014.07.109] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 07/10/2014] [Accepted: 07/26/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Acute myocardial infarction (AMI), is related to a diffuse active inflammation of the coronary tree associated with rupture of one of the multiple vulnerable plaques. The presence of soluble mediators of inflammation with their synergic or antagonistic actions coordinates the physiological response determining the plaque fate and the fatal event. The present study focus on the cytokines network operating in human coronary plaques of patients died from AMI and controls, pointing out that coronaries of AMI patients produce PTX3 protein twice as that of controls and express high level of PTX3 mRNA. RESULTS The presence of CX3CR1 polymorphisms is significantly correlated with the incidence and the outcome of acute myocardial infarction inducing in the whole coronary tree a strong recruitment of Th1 polarized inflammation that is directly correlated to PTX3 expression. CONCLUSIONS Moreover we found a positive correlation between the expression of PTX3 in the plaque and the content of macrophage cells showing a M2 polarization indicating the possible role of this chemokine as mediator of immune response that would orchestrate plaque evolution and inflammatory cell type activation.
Collapse
Affiliation(s)
- S Pucci
- Dept. Biomedicine and Prevention, Tor Vergata University of Rome, Italy.
| | - T Fisco
- Dept. Biomedicine and Prevention, Tor Vergata University of Rome, Italy
| | - M J Zonetti
- Dept. Biomedicine and Prevention, Tor Vergata University of Rome, Italy
| | - E Bonanno
- Dept. Biomedicine and Prevention, Tor Vergata University of Rome, Italy
| | - P Mazzarelli
- Dept. Biomedicine and Prevention, Tor Vergata University of Rome, Italy
| | - A Mauriello
- Dept. Biomedicine and Prevention, Tor Vergata University of Rome, Italy
| |
Collapse
|
18
|
Kong DCH, Chew KYC, Tan EL, Khoo SP. The effect of epiregulin on epidermal growth factor receptor expression and proliferation of oral squamous cell carcinoma cell lines. Cancer Cell Int 2014; 14:65. [PMID: 25866477 PMCID: PMC4392732 DOI: 10.1186/1475-2867-14-65] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 02/18/2014] [Indexed: 11/23/2022] Open
Abstract
Background Epiregulin (EPR) is a novel member of the epidermal growth factor (EGF) family. It has been shown to promote wound healing in oral epithelium, enhance proliferation of other epithelial tissues, and is involved in several epithelial-related malignancies such as colorectal, lung, and bladder carcinoma. More recently, EPR transcripts were found to be high in a study on archival oral squamous cell carcinoma (OSCC) specimens. This implies that EPR may be responsible for the progression of OSCC. The aim of this was to elucidate the effects of EPR on (i) cell morphological changes, (ii) cell proliferation and (iii) receptor expression of the H-series OSCC cell lines. Methods The clinicopathological origin and the expression of the epidermal growth factor receptor (EGFR) and ErbB4 receptors of the H-series cell lines were initially characterised. Based on these parameters, two of the H-series cell lines, namely H103 and H357 were selected for downstream experiments. The cell lines were treated with 1 ng/ml, 10 ng/ml, and 20 ng/ml of EPR for 24 and 48 hours in all subsequent experiments. Untreated cells acted as the control which was used for comparison with each treated group. The cell morphological changes, cell proliferation and receptor expression of the OSCC cell lines were evaluated using phase contrast microscopy, 5-bromo-2’-deoxy-uridine (BrdU) assays and flow cytometry respectively. The results were compared and analysed using the student t-test. Results There were no appreciable morphological changes in the cells regardless of the dose of EPR tested nor between the different timelines. There were no significant changes in cell proliferation after EPR treatment. As for the effect of EPR on receptor expression, 20 ng/ml of EPR significantly reduced the density of EGFR expression (p value = 0.049) in the H103 cell line after the 24-hour treatment. No other statistically significant changes were detected. Conclusions The results show that EPR had no effect on the morphology and proliferativity of OSCC cells. However, the significant decline in EGFR expression after EPR treatment suggests that EPR might play an important role in the regulation of EGFR expression and hence OSCC progression.
Collapse
Affiliation(s)
| | | | - Eng Lai Tan
- School of Pharmacy, International Medical University (IMU), Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Suan Phaik Khoo
- School of Dentistry, International Medical University (IMU), Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Heparin-binding epidermal growth factor-like growth factor/diphtheria toxin receptor in normal and neoplastic hematopoiesis. Toxins (Basel) 2013; 5:1180-1201. [PMID: 23888518 PMCID: PMC3717776 DOI: 10.3390/toxins5061180] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Heparin-binding EGF-like growth factor (HB-EGF) belongs to the EGF family of growth factors. It is biologically active either as a molecule anchored to the membrane or as a soluble form released by proteolytic cleavage of the extracellular domain. HB-EGF is involved in relevant physiological and pathological processes spanning from proliferation and apoptosis to morphogenesis. We outline here the main activities of HB-EGF in connection with normal or neoplastic differentiative or proliferative events taking place primitively in the hematopoietic microenvironment.
Collapse
|
20
|
Ota I, Higashiyama S, Masui T, Yane K, Hosoi H, Matsuura N. Heparin-binding EGF-like growth factor enhances the activity of invasion and metastasis in thyroid cancer cells. Oncol Rep 2013; 30:1593-600. [PMID: 23917679 PMCID: PMC3810215 DOI: 10.3892/or.2013.2659] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/18/2013] [Indexed: 12/16/2022] Open
Abstract
Thyroid cancer sometimes contains poorly differentiated components, which have the potential of invasion and metastasis. We evaluated the possible roles of heparin-binding EGF-like growth factor (HB-EGF), a member of the epidermal growth factor (EGF) family, in cell growth and invasion of thyroid cancer cells, and demonstrated that HB-EGF is not only a potent mitogen but also a chemotactic factor in the thyroid cancer cells 8305C and SW579. The HB-EGF-mediated chemotaxis was inhibited by neutralizing antibody against the EGF receptor (EGFR/HER1/ErbB1) or tyrphostin AG1478, a specific inhibitor of the EGFR tyrosine kinase. The HB-EGF mRNA and protein expression was also analyzed using RT-PCR and immunofluorescence methods, respectively. In addition, in clinical immunohistochemical study, increased expression of HB-EGF and its receptors, HER1 and EGFR4 (HER4/ErbB4), was observed in thyroid carcinoma cells. Our findings suggest that HB-EGF acts as a potent paracrine and/or autocrine chemotactic factor as well as a mitogen that mediates HER1 and/or HER4 in the invasion and metastasis of thyroid carcinoma cells, including poorly differentiated papillary carcinomas or undifferentiated/anaplastic carcinomas. These data may aid in the development of novel therapeutic strategies for thyroid cancer.
Collapse
Affiliation(s)
- Ichiro Ota
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Kashihara, Nara, Japan.
| | | | | | | | | | | |
Collapse
|
21
|
CD4⁺CD28⁻ lymphocytes and cerebral ischaemic stroke. Part II: CD4⁺CD28⁻ lymphocytes and carotid artery atherosclerotic plaque characteristics. Neurol Neurochir Pol 2013; 47:208-13. [PMID: 23821417 DOI: 10.5114/ninp.2013.35574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND PURPOSE CD4⁺CD28⁻ lymphocytes can directly contribute to the instability of atherosclerotic plaque. This paper attempts to answer the question of the potential influence of the CD4⁺CD28⁻ lymphocyte population on the ultrasound image of atherosclerotic plaque in the common carotid artery (CCA) wall. MATERIAL AND METHODS The study involved a group of 109 patients, aged 45 to 65 years, including 42 patients with first ever ischaemic stroke, experiencing symptoms resulting from disturbances of the anterior area of cerebral circulation, arterial hypertension and/or type 2 diabetes mellitus (group 1). Group 2 consisted of 34 patients with mentioned risk factors, without ischaemic stroke. The control group comprised 33 heal-thy individuals. The percentage of CD4⁺CD28⁻ lymphocytes was assessed with flow cytometry. RESULTS A significant difference in the incidence of heterogeneous plaques was noted between groups 1 and 3 (p = 0.0023) as well as between group 2 and 3 (p = 0.0005), whereas groups 1 and 2 did not differ from each other. The proportion of CD4⁺CD28⁻ lymphocytes was similar in groups 1 and 2 (p = 0.97), but it differed between groups 1 and 3 (p < 0.0001) and between groups 2 and 3 (p < 0.001). A correlation was found between the proportion of CD4⁺CD28⁻ lymphocytes in the blood and the number of CCA atherosclerotic plaques (Rs = 0.191, p = 0.046). The proportion of CD4⁺CD28⁻ lymphocytes in peripheral blood did not correlate with the ultrasound types of atherosclerotic plaques. No correlation between the proportion of CD4⁺CD28 ⁻lymphocytes and the area of atherosclerotic plaques was found. CONCLUSIONS The correlation between the proportion of CD4⁺CD28⁻ lymphocytes and the number of atherosclerotic plaques within the CCA suggests that the cells are involved in the mechanism of carotid plaque formation. There is no proof of the involvement of the above-mentioned cells in the mechanism of plaque destabilization in those arteries.
Collapse
|
22
|
A potent anti-HB-EGF monoclonal antibody inhibits cancer cell proliferation and multiple angiogenic activities of HB-EGF. PLoS One 2012; 7:e51964. [PMID: 23251664 PMCID: PMC3522611 DOI: 10.1371/journal.pone.0051964] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 11/09/2012] [Indexed: 11/22/2022] Open
Abstract
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a member of the epidermal growth factor family and has a variety of physiological and pathological functions. Modulation of HB-EGF activity might have a therapeutic potential in the oncology area. We explored the therapeutic possibilities by characterizing the in vitro biological activity of anti-HB-EGF monoclonal antibody Y-142. EGF receptor (EGFR) ligand and species specificities of Y-142 were tested. Neutralizing activities of Y-142 against HB-EGF were evaluated in EGFR and ERBB4 signaling. Biological activities of Y-142 were assessed in cancer cell proliferation and angiogenesis assays and compared with the anti-EGFR antibody cetuximab, the HB-EGF inhibitor CRM197, and the anti-vascular endothelial growth factor (VEGF) antibody bevacizumab. The binding epitope was determined with alanine scanning. Y-142 recognized HB-EGF as well as the EGFR ligand amphiregulin, and bound specifically to human HB-EGF, but not to rodent HB-EGF. In addition, Y-142 neutralized HB-EGF-induced phosphorylation of EGFR and ERBB4, and blocked their downstream ERK1/2 and AKT signaling. We also found that Y-142 inhibited HB-EGF-induced cancer cell proliferation, endothelial cell proliferation, tube formation, and VEGF production more effectively than cetuximab and CRM197 and that Y-142 was superior to bevacizumab in the inhibition of HB-EGF-induced tube formation. Six amino acids in the EGF-like domain were identified as the Y-142 binding epitope. Among the six amino acids, the combination of F115 and Y123 determined the amphiregulin cross-reactivity and that F115 accounted for the species selectivity. Furthermore, it was suggested that the potent neutralizing activity of Y-142 was derived from its recognition of R142 and Y123 and its high affinity to HB-EGF. Y-142 has a potent HB-EGF neutralizing activity that modulates multiple biological activities of HB-EGF including cancer cell proliferation and angiogenic activities. Y-142 may have a potential to be developed into a therapeutic agent for the treatment of HB-EGF-dependent cancers.
Collapse
|
23
|
Cytokines in pericardial effusion of patients with inflammatory pericardial disease. Mediators Inflamm 2012; 2012:382082. [PMID: 22577248 PMCID: PMC3337692 DOI: 10.1155/2012/382082] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 02/01/2012] [Accepted: 02/02/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The role of inflammatory and angiogenic cytokines in patients with inflammatory pericardial effusion still remains uncertain. METHODS We assessed pericardial and serum levels of VEGF, bFGF, IL-1β and TNF-α by ELISA in patients with inflammatory pericardial effusion (PE) of autoreactive (n = 22) and viral (n = 11) origin, and for control in pericardial fluid (PF) and serum (n = 26) of patients with coronary artery disease (CAD) undergoing coronary artery bypass graft surgery. RESULTS VEGF levels were significantly higher in patients with autoreactive and viral PE than in patients with CAD in both PE (P = 0.006 for autoreactive and P < 0.001 for viral PE) and serum (P < 0.001 for autoreactive and P < 0.001 for viral PE). Pericardial bFGF levels were higher compared to serum levels in patients with inflammatory PE and patients with CAD (P ≤ 0.001 for CAD; P ≤ 0.001 for autoreactive PE; P = 0, 005 for viral PE). Pericardial VEGF levels correlated positively with markers of pericardial inflammation, whereas pericardial bFGF levels showed a negative correlation. IL-1β and TNF-α were detectable only in few PE and serum samples. CONCLUSIONS VEGF and bFGF levels in pericardial effusion are elevated in patients with inflammatory PE. It is thus possible that VEGF and bFGF participate in the pathogenesis of inflammatory pericardial disease.
Collapse
|
24
|
Flamant M, Bollee G, Henique C, Tharaux PL. Epidermal growth factor: a new therapeutic target in glomerular disease. Nephrol Dial Transplant 2012; 27:1297-304. [DOI: 10.1093/ndt/gfs030] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
25
|
Nakayama-Ichiyama S, Yokote T, Hiraoka N, Iwaki K, Takayama A, Hirata Y, Miyoshi T, Oka S, Akioka T, Makino S, Tsuji M, Hanafusa T. Matrix metalloproteinase-3 producing diffuse large B-cell lymphoma, not otherwise specified associated with rheumatoid arthritis. J Clin Oncol 2011; 29:e731-2. [PMID: 21876082 DOI: 10.1200/jco.2011.36.4687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
26
|
Epidermal growth factor receptor promotes glomerular injury and renal failure in rapidly progressive crescentic glomerulonephritis. Nat Med 2011; 17:1242-50. [PMID: 21946538 PMCID: PMC3198052 DOI: 10.1038/nm.2491] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 08/11/2011] [Indexed: 12/16/2022]
Abstract
Rapidly progressive glomerulonephritis (RPGN) is a clinical a morphological expression of severe glomerular injury. Glomerular injury manifests as a proliferative histological pattern (“crescents”) with accumulation of T cells and macrophages, and proliferation of intrinsic glomerular cells. We show de novo induction of heparin-binding epidermal growth factor-like growth factor (HB-EGF) in intrinsic glomerular epithelial cells (podocytes) from both mice and humans with RPGN. HB-EGF induction increases phosphorylation of the EGFR/ErbB1 receptor in mice with RPGN. In HB-EGF-deficient mice, EGFR activation in glomeruli is absent and the course of RPGN is improved. Autocrine HB-EGF induces a phenotypic switch in podocytes in vitro. Conditional deletion of the Egfr gene from podocytes of mice alleviates the severity of RPGN. Pharmacological blockade of EGFR also improves the course of RPGN, even when started 4 days after the induction of experimental RPGN. This suggests that targeting the HB-EGF/EGFR pathway could also be beneficial for treatment of human RPGN.
Collapse
|
27
|
Quaglino E, Riccardo F, Macagno M, Bandini S, Cojoca R, Ercole E, Amici A, Cavallo F. Chimeric DNA Vaccines against ErbB2+ Carcinomas: From Mice to Humans. Cancers (Basel) 2011; 3:3225-41. [PMID: 24212954 PMCID: PMC3759195 DOI: 10.3390/cancers3033225] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 08/02/2011] [Accepted: 08/03/2011] [Indexed: 01/10/2023] Open
Abstract
DNA vaccination exploits a relatively simple and flexible technique to generate an immune response against microbial and tumor-associated antigens (TAAs). Its effectiveness is enhanced by the application of an electrical shock in the area of plasmid injection (electroporation). In our studies we exploited a sophisticated electroporation device approved for clinical use (Cliniporator, IGEA, Carpi, Italy). As the target antigen is an additional factor that dramatically modulates the efficacy of a vaccine, we selected ErbB2 receptor as a target since it is an ideal oncoantigen. It is overexpressed on the cell membrane by several carcinomas for which it plays an essential role in driving their progression. Most oncoantigens are self-tolerated molecules. To circumvent immune tolerance we generated two plasmids (RHuT and HuRT) coding for chimeric rat/human ErbB2 proteins. Their immunogenicity was compared in wild type mice naturally tolerant for mouse ErbB2, and in transgenic mice that are also tolerant for rat or human ErbB2. In several of these mice, RHuT and HuRT elicited a stronger anti-tumor response than plasmids coding for fully human or fully rat ErbB2. The ability of heterologous moiety to blunt immune tolerance could be exploited to elicit a significant immune response in patients. A clinical trial to delay the recurrence of ErbB2+ carcinomas of the oral cavity, oropharynx and hypopharynx is awaiting the approval of the Italian authorities.
Collapse
Affiliation(s)
- Elena Quaglino
- Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Turin, 10126 Turin, Italy; E-Mails: (E.Q.); (F.R.); (M.M.); (S.B.); (R.C.); (E.E.)
| | - Federica Riccardo
- Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Turin, 10126 Turin, Italy; E-Mails: (E.Q.); (F.R.); (M.M.); (S.B.); (R.C.); (E.E.)
| | - Marco Macagno
- Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Turin, 10126 Turin, Italy; E-Mails: (E.Q.); (F.R.); (M.M.); (S.B.); (R.C.); (E.E.)
| | - Silvio Bandini
- Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Turin, 10126 Turin, Italy; E-Mails: (E.Q.); (F.R.); (M.M.); (S.B.); (R.C.); (E.E.)
| | - Rodica Cojoca
- Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Turin, 10126 Turin, Italy; E-Mails: (E.Q.); (F.R.); (M.M.); (S.B.); (R.C.); (E.E.)
| | - Elisabetta Ercole
- Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Turin, 10126 Turin, Italy; E-Mails: (E.Q.); (F.R.); (M.M.); (S.B.); (R.C.); (E.E.)
| | - Augusto Amici
- Department of Molecular Cellular and Animal Biology, University of Camerino, 62032 Camerino, Italy; E-Mail:
| | - Federica Cavallo
- Department of Molecular Cellular and Animal Biology, University of Camerino, 62032 Camerino, Italy; E-Mail:
| |
Collapse
|
28
|
De Caterina R, Massaro M, Scoditti E, Annunziata Carluccio M. Pharmacological modulation of vascular inflammation in atherothrombosis. Ann N Y Acad Sci 2010; 1207:23-31. [PMID: 20955422 DOI: 10.1111/j.1749-6632.2010.05784.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vascular inflammation, especially at the level of endothelial cells, has been shown to play a pivotal role in the inception, progression, and clinical complications of atherosclerosis. The common denominators for the activation of inflammatory genes appear to be a small subset of transcription factors--among which include nuclear factor-κB, activator protein-1 (AP-1), and GATA--that function as the central hub of vascular inflammation. Strategies directed to inhibit both the secondary mediators and the primary triggers (atherosclerosis risk factors) appear viable to inhibit atherosclerosis. However, attempts have now been made to address the central hub of vascular inflammation. "Old" drugs, such as dipyridamole, can also now be revisited for properties related to inhibition of vascular inflammation, probably by acting on the common hub of inflammation.
Collapse
|
29
|
Uberti B, Dentelli P, Rosso A, Defilippi P, Brizzi MF. Inhibition of β1 integrin and IL-3Rβ common subunit interaction hinders tumour angiogenesis. Oncogene 2010; 29:6581-90. [DOI: 10.1038/onc.2010.384] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Barillari G, Iovane A, Bonuglia M, Albonici L, Garofano P, Di Campli E, Falchi M, Condò I, Manzari V, Ensoli B. Fibroblast growth factor-2 transiently activates the p53 oncosuppressor protein in human primary vascular smooth muscle cells: Implications for atherogenesis. Atherosclerosis 2010; 210:400-6. [DOI: 10.1016/j.atherosclerosis.2010.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 12/31/2009] [Accepted: 01/06/2010] [Indexed: 10/19/2022]
|
31
|
Sánchez-Vizcaíno E, Vehí C, Campreciós G, Morcillo C, Soley M, Ramírez I. Heparin-binding EGF-like growth factor in human serum. Association with high blood cholesterol and heart hypertrophy. Growth Factors 2010; 28:98-103. [PMID: 19961362 DOI: 10.3109/08977190903443030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) belongs to the EGF family of growth factors which are ligands of the ErbB receptors. Studies in animals suggest the role of HB-EGF in several pathogenic processes such as atherosclerosis and heart hypertrophy. Here, we set up an assay to measure HB-EGF in human serum. Our ELISA determined serum HB-EGF in the range of 0.03-3 nM. It did not cross-react with EGF or with transforming growth factor-alpha. The mean serum HB-EGF was 0.26 nM (confidence interval: 0.13-0.39) in women and 0.28 nM (confidence interval: 0.09-0.47) in men. In a cohort of 121 healthy volunteers, we identified nine individuals with high serum HB-EGF (above 0.47 nM). These individuals had higher left ventricle mass (determined by Colour Doppler echocardiography) and greater total and low density lipoprotein cholesterol than control. On the basis of our results, we propose that increased serum HB-EGF is associated with heart hypertrophy and elevated blood cholesterol.
Collapse
Affiliation(s)
- Elena Sánchez-Vizcaíno
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
32
|
Edwards JP, Zhang X, Mosser DM. The expression of heparin-binding epidermal growth factor-like growth factor by regulatory macrophages. THE JOURNAL OF IMMUNOLOGY 2009; 182:1929-39. [PMID: 19201846 DOI: 10.4049/jimmunol.0802703] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We previously described a population of regulatory macrophages that produced high levels of IL-10 and low levels of IL-12/23. We now describe and characterize the expression of heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF) by these macrophages. HB-EGF has previously been associated with a number of physiological and pathological conditions, including tumor growth and angiogenesis. The induction of HB-EGF in regulatory macrophages is due to new transcription and not to increased mRNA stability. The transcription factor Sp1 is a major factor in HB-EGF production, and knockdown of Sp1 substantially diminishes HB-EGF production. Sp1 was recruited to three sites within the first 2 kb of the HB-EGF promoter following stimulation, and the site located at -83/-54 was required for HB-EGF promoter activity. These regions of the promoter become more accessible to endonuclease activity following macrophage activation, and this accessibility was contingent on activation of the MAPK, ERK. We show that several experimental manipulations that give rise to regulatory macrophages also result in HB-EGF production. These observations indicate that in addition to the secretion of the anti-inflammatory cytokine IL-10, another novel characteristic of regulatory macrophages is the production of angiogenic HB-EGF.
Collapse
Affiliation(s)
- Justin P Edwards
- Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
33
|
Simon AD, Yazdani S, Wang W, Schwartz A, Rabbani LE. Elevated plasma levels of interleukin-2 and soluble IL-2 receptor in ischemic heart disease. Clin Cardiol 2009; 24:253-6. [PMID: 11288973 PMCID: PMC6654814 DOI: 10.1002/clc.4960240315] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND T-lymphocytes are present in significant numbers in the atherosclerotic plaque, but their role in the progression and pathogenesis of coronary syndromes remains poorly understood. HYPOTHESIS We sought to determine the relationship between T-lymphocyte activation and ischemic heart disease by measuring plasma levels of cytokines related to T-lymphocyte function in patients with stable and unstable angina. METHODS Plasma levels of interleukin-2 (IL-2) and soluble IL-2 receptor (sIL-2R) were measured in 105 patients: 66 with stable angina, 24 with unstable angina, and 15 healthy controls. Patients who presented to the cardiac catheterization laboratory with unstable or stable anginal syndromes for coronary angiography or percutaneous coronary intervention enrolled in the study. RESULTS Mean levels of IL-2 were significantly higher in patients with stable angina than in those with unstable angina. The differences between stable angina and control groups, or between unstable angina and control groups, were not statistically significant. Mean levels of slL-2R were significantly higher in patients with stable angina than in either patients with unstable angina or control patients. CONCLUSIONS Levels of IL-2 and sIL-2 receptor are significantly elevated in patients with stable angina, but not in patients with unstable angina. The contribution of T-lymphocytes to the development of both stable and unstable angina requires further investigation.
Collapse
Affiliation(s)
- A D Simon
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
34
|
Tsunoda S, Sakurai H, Saito Y, Ueno Y, Koizumi K, Saiki I. Massive T-lymphocyte infiltration into the host stroma is essential for fibroblast growth factor-2-promoted growth and metastasis of mammary tumors via neovascular stability. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 174:671-83. [PMID: 19116363 DOI: 10.2353/ajpath.2009.080471] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Inflammation in the tumor stroma greatly influences tumor development. In the present study, we investigated the roles of fibroblast growth factor (FGF)-2-induced chronic inflammation in the development of 4T1 murine mammary tumors. Administration of FGF-2 into the tumor inoculation site during the initial phase of tumor growth enhanced tumor growth and pulmonary metastasis as well as microvessel density in tumor tissues in normal but not in nude mice. Infiltration of T lymphocytes and macrophages, recruitment of pericytes/vascular mural cells in neovascular walls, and the expression levels of cyclooxygenase (COX)-2 and vascular endothelial growth factor A (VEGFA) were also enhanced in the FGF-2-activated host stroma of normal mice. In addition, FGF-2-induced tumor growth and metastasis was abrogated by administration of either an immunosuppressant, FK506, or a COX-2 inhibitor. FGF-2 enhanced prostaglandin E(2) secretion in cultured T lymphocytes. In addition, VEGFA secretion was increased in a co-culture of T lymphocytes and fibroblasts in vitro. These results indicate that the massive infiltration of T lymphocytes into FGF-2-activated host stroma during the initial phase of tumor growth enhances neovascular stability by regulating endogenous COX-2 and VEGFA levels because both compounds are known to play important roles in marked 4T1 mammary tumor development via FGF-2-induced inflammatory reactions.
Collapse
Affiliation(s)
- Satoshi Tsunoda
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Toyama, Japan.
| | | | | | | | | | | |
Collapse
|
35
|
Interleukin-3 promotes expansion of hemopoietic-derived CD45+ angiogenic cells and their arterial commitment via STAT5 activation. Blood 2008; 112:350-61. [DOI: 10.1182/blood-2007-12-128215] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abstract
Interleukin-3 (IL-3) released by infiltrating inflammatory cells in different pathologic settings contributes to organ and tumor angiogenesis. Here we demonstrate that IL-3 expands a subset of CD45+ circulating angiogenic cells clonally derived from the hemopoietic progenitors. Moreover, CD45+ cells exposed to IL-3 acquire arterial specification and contribute to the formation of vessels in vivo. Depletion of signal transducer and activator of transcription 5 (STAT5) provides evidence that IL-3–mediated cell expansion and arterial morphogenesis rely on STAT5 activation. In addition, by means of Tie2-transgenic mice, we demonstrate that STAT5 also regulates IL-3–induced expansion and arterial specification of bonemarrow–derived CD45+ cells. Thus, our data provide the first evidence that, in inflammatory microenvironments containing IL-3, angiogenic cells derived from hemopoietic precursors can act as adult vasculogenic cells. Moreover, the characterization of the signaling pathway regulating these events provides the rationale for therapeutically targeting STAT5 in these pathologic settings.
Collapse
|
36
|
van Beem RT, Noort WA, Voermans C, Kleijer M, ten Brinke A, van Ham SM, van der Schoot CE, Zwaginga JJ. The Presence of Activated CD4+ T Cells Is Essential for the Formation of Colony-Forming Unit-Endothelial Cells by CD14+ Cells. THE JOURNAL OF IMMUNOLOGY 2008; 180:5141-8. [DOI: 10.4049/jimmunol.180.7.5141] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Presta M, Camozzi M, Salvatori G, Rusnati M. Role of the soluble pattern recognition receptor PTX3 in vascular biology. J Cell Mol Med 2007; 11:723-38. [PMID: 17760835 PMCID: PMC3823252 DOI: 10.1111/j.1582-4934.2007.00061.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pentraxins act as soluble pattern recognition receptors with a wide range of functions in various pathophysiological conditions. The long-pentraxin PTX3 shares the C-terminal pentraxin-domain with short-pentraxins C-reactive protein and serum amyloid P component and possesses an unique N-terminal domain. These structural features suggest that PTX3 may have both overlapping and distinct biological/ligand recognition properties when compared to short-pentraxins. PTX3 serves as a mechanism of amplification of inflammation and innate immunity. Indeed, vessel wall elements produce high amounts of PTX3 during inflammation and the levels of circulating PTX3 increase in several pathological conditions affecting the cardiovascular system. PTX3 exists as a free or extracellular matrix-associated molecule and it binds the complement fraction C1q. PTX3 binds also apoptotic cells and selected pathogens, playing a role in innate immunity processes. In endothelial cells and macrophages, PTX3 upregulates tissue factor expression, suggesting its action as a regulator of endothelium during thrombogenesis and ischaemic vascular disease. Finally, PTX3 binds the angiogenic fibroblast growth factor-2, thus inhibiting its biological activity. Taken together, these properties point to a role for PTX3 during vascular damage, angiogenesis, atherosclerosis, and restenosis.
Collapse
Affiliation(s)
- Marco Presta
- Unit of General Pathology and Immunology, Department of Biomedical Sciences and Biotechnology, School of Medicine, University of Brescia, viale Europa 11, 25123 Brescia, Italy.
| | | | | | | |
Collapse
|
38
|
Doyle B, Caplice N. Plaque neovascularization and antiangiogenic therapy for atherosclerosis. J Am Coll Cardiol 2007; 49:2073-80. [PMID: 17531655 DOI: 10.1016/j.jacc.2007.01.089] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 12/12/2006] [Accepted: 01/18/2007] [Indexed: 10/23/2022]
Abstract
The concept that neovascularization of the vessel wall may play a fundamental role in the pathophysiology of atherosclerosis was proposed more than a century ago. In recent years, supportive experimental evidence for this hypothesis (such as the finding that neointimal microvessels may increase delivery of cellular and soluble lesion components to the vessel wall) has been underscored by clinical studies associating plaque angiogenesis with more rapidly progressive high-grade disease. Attention has also focused on a possible role for microvessel-derived intraplaque hemorrhage in the development of acute lesion instability. The interest of clinicians in this phenomenon has been spurred by the potential to target vessel wall neovascularization with angiogenesis inhibitors, a therapeutic approach that has been associated with impressive reductions in plaque progression in animal models of vascular disease. The rationale for pursuing an "antiangiogenic" strategy in the treatment of patients with vascular disease, and a framework for further preclinical evaluation of such therapy, is presented here.
Collapse
Affiliation(s)
- Brendan Doyle
- Division of Cardiovascular Diseases, Molecular Medicine Program, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
39
|
Dirkx AEM, Oude Egbrink MGA, Wagstaff J, Griffioen AW. Monocyte/macrophage infiltration in tumors: modulators of angiogenesis. J Leukoc Biol 2006; 80:1183-96. [PMID: 16997855 DOI: 10.1189/jlb.0905495] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The role of a tumor immune infiltrate in cancer progression and metastasis has been debated frequently. Although often considered to be associated with improved prognosis and leading to the enhanced survival of cancer patients, inflammatory cells have also been described to assist the tumor's capabilities to progress, proliferate, and metastasize. Tumor-associated macrophages (TAMs), for example, have been shown to be symbiotically related to tumor cells: Tumor cells recruit TAMs and provide them with survival factors, and TAMs in turn produce a variety of angiogenic factors in response to the tumor microenvironment. This review will describe the composition of an immune infiltrate in tumors and the angiogenic and angiostatic properties of the cells present. Special emphasis will be on the angiogenesis-associated activities of TAMs. The development of immunotherapy and gene therapy using TAMs to mediate tumor cytotoxicity or to deliver gene constructs will be discussed as well. As immunotherapy has so far not been as effective as anticipated, a combination therapy in which angiostatic agents are used as well is put forward as a novel strategy to treat cancer.
Collapse
Affiliation(s)
- Anita E M Dirkx
- Department of Pathology, University Hospital Maastricht, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | | | | | | |
Collapse
|
40
|
Knutson KL, Dang Y, Lu H, Lukas J, Almand B, Gad E, Azeke E, Disis ML. IL-2 immunotoxin therapy modulates tumor-associated regulatory T cells and leads to lasting immune-mediated rejection of breast cancers in neu-transgenic mice. THE JOURNAL OF IMMUNOLOGY 2006; 177:84-91. [PMID: 16785502 DOI: 10.4049/jimmunol.177.1.84] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Studies in cancer patients have suggested that breast tumors recruit regulatory T cells (Tregs) into the tumor microenvironment. The extent to which local Tregs suppress antitumor immunity in breast cancer is unknown. We questioned whether inhibiting systemic Tregs with an IL-2 immunotoxin in a model of neu-mediated breast cancer, the neu-transgenic mouse, could impact disease progression and survival. As in human breast cancer, cancers that develop in these mice attract Tregs into the tumor microenvironment to levels of approximately 10-25% of the total CD4+ T cells. To examine the role of Tregs in blocking immune-mediated rejection of tumor, we depleted CD4+CD25+ T cells with an IL-2 immunotoxin. The treatment depleted Tregs without concomitant lymphopenia and markedly inhibited tumor growth. Depletion of Tregs resulted in a persistent antitumor response that was maintained over a month after the last treatment. The clinical response was immune-mediated because adoptive transfer of Tregs led to a complete abrogation of the therapeutic effects of immunotoxin treatment. Further, Treg down-modulation was accompanied by increased Ag-specific immunity against the neu protein, a self Ag. These results suggest that Tregs play a major role in preventing an effective endogenous immune response against breast cancer and that depletion of Tregs, without any additional immunotherapy, may mediate a significant antitumor response.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/biosynthesis
- Cell Line, Tumor
- Female
- Forkhead Transcription Factors/biosynthesis
- Genes, erbB-2
- Graft Rejection/genetics
- Graft Rejection/immunology
- Immune Tolerance/genetics
- Immunotoxins/therapeutic use
- Interleukin-2/therapeutic use
- Lymphocyte Depletion
- Lymphopenia/immunology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/therapy
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Receptors, Interleukin-2/biosynthesis
- Recombinant Fusion Proteins/therapeutic use
- Ribonuclease, Pancreatic/therapeutic use
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/pathology
Collapse
Affiliation(s)
- Keith L Knutson
- Department of Immunology, Mayo Clinic College of Medicine, 342C Guggenheim, 200 First Street SW, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Camozzi M, Rusnati M, Bugatti A, Bottazzi B, Mantovani A, Bastone A, Inforzato A, Vincenti S, Bracci L, Mastroianni D, Presta M. Identification of an Antiangiogenic FGF2-binding Site in the N Terminus of the Soluble Pattern Recognition Receptor PTX3. J Biol Chem 2006; 281:22605-13. [PMID: 16769728 DOI: 10.1074/jbc.m601023200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Long-pentraxin 3 (PTX3) is a soluble pattern recognition receptor with non-redundant functions in inflammation and innate immunity. PTX3 comprises a pentraxin-like C-terminal domain involved in complement activation via C1q interaction and an N-terminal extension with unknown functions. PTX3 binds fibroblast growth factor-2 (FGF2), inhibiting its pro-angiogenic and pro-restenotic activity. Here, retroviral transduced endothelial cells (ECs) overexpressing the N-terminal fragment PTX3-(1-178) showed reduced mitogenic activity in response to FGF2. Accordingly, purified recombinant PTX3-(1-178) binds FGF2, prevents PTX3/FGF2 interaction, and inhibits FGF2 mitogenic activity in ECs. Also, the monoclonal antibody mAb-MNB4, which recognizes the PTX3-(87-99) epitope, prevents FGF2/PTX3 interaction and abolishes the FGF2 antagonist activity of PTX3. Consistently, the synthetic peptides PTX3-(82-110) and PTX3-(97-110) bind FGF2 and inhibit the interaction of FGF2 with PTX3 immobilized to a BIAcore sensor chip, FGF2-dependent EC proliferation, and angiogenesis in vivo. Thus, the data identify a FGF2-binding domain in the N-terminal extension of PTX3 spanning the PTX3-(97-110) region, pointing to a novel function for the N-terminal extension of PTX3 and underlining the complexity of the PTX3 molecule for modular humoral pattern recognition.
Collapse
Affiliation(s)
- Maura Camozzi
- Unit of General Pathology and Immunology, Department of Biomedical Sciences and Biotechnology, School of Medicine, University of Brescia, 25123 Brescia, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Man YG, Zhao C, Chen X. A subset of prostate basal cells lacks the expression of corresponding phenotypic markers. Pathol Res Pract 2006; 202:651-62. [PMID: 16842934 DOI: 10.1016/j.prp.2006.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Accepted: 05/19/2006] [Indexed: 11/18/2022]
Abstract
Immunohistochemical staining for cytokeratin (CK) 34ssE12 has been routinely used to elucidate prostate basal cells for differentiation between non-invasive and invasive lesions. Our previous studies, however, revealed that some morphologically distinct basal cells observed on H&E-stained sections completely lacked CK34ssE12 expression. Our current study attempted to assess whether these basal cells would also lack the expression of other phenotypic markers, and whether basal cell alterations would affect the proliferation status of the associated tumor cells. Consecutive sections from prostate tumors with large basal cell clusters that were morphologically distinct in H&E sections but were completely negative for CK 34ssE12 were morphologically and immunohistochemically assessed with a panel of basal cell phenotypic and other markers. In addition to CK 34ssE12, these basal cells also completely lacked the expression of other phenotypic markers, including CK5, CK14, p63, and maspin, in contrast to adjacent basal cells, which were strongly positive for these markers. Tumors surrounded by basal cell layers that lack the expression of basal cell phenotypic markers showed a significantly higher rate of cell proliferation and mast cell infiltration than their counterparts. These findings suggest that basal cells might be targets of a variety of pathological alterations, which could significantly impact biological presentations of associated tumor cells.
Collapse
Affiliation(s)
- Yan-gao Man
- Department of Gynecologic and Breast Pathology, Armed Forces Institute of Pathology and American Registry of Pathology, Washington DC 20306-6000, USA.
| | | | | |
Collapse
|
43
|
Isobe M, Kosuge H, Suzuki JI. T Cell Costimulation in the Development of Cardiac Allograft Vasculopathy. Arterioscler Thromb Vasc Biol 2006; 26:1447-56. [PMID: 16627812 DOI: 10.1161/01.atv.0000222906.78307.7b] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cardiac allograft vasculopathy (CAV) is a form of coronary arterial stenosis and a leading cause of death in patients who survive beyond the first year after heart transplantation. Histopathologically, this lesion is concentric diffuse intimal hyperplasia of the arterial wall that is accompanied by extensive infiltration of inflammatory cells, including T cells. Many studies have explored the potential risk factors related to this arterial lesion and its pathogenesis. Continuous minor endothelial cell damage evokes inflammatory processes including T cell activation. Costimulatory molecules play crucial roles in this T cell activation. Many costimulatory pathways have been described, and some are involved in the pathogenesis of CAV, atherogenesis, and subsequent plaque formation. In this review, we summarize the present knowledge of the role of these pathways in CAV development and the possibility of manipulating these pathways as a means to treat heart allograft vascular disease and atherosclerosis.
Collapse
Affiliation(s)
- Mitsuaki Isobe
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo 113-8519, Japan.
| | | | | |
Collapse
|
44
|
Macchetti AH, Marana HRC, Silva JS, de Andrade JM, Ribeiro-Silva A, Bighetti S. Tumor-infiltrating CD4+ T lymphocytes in early breast cancer reflect lymph node involvement. Clinics (Sao Paulo) 2006; 61:203-8. [PMID: 16832552 DOI: 10.1590/s1807-59322006000300004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The role of immune system in the pathogenesis and progression of breast cancer is a subject of controversy, and this stimulated us to investigate the association of the immunophenotype of tumor-infiltrating lymphocytes in early breast cancer with the spread of tumor cells to axillary lymph nodes. METHODS Tumor samples from 23 patients with early breast cancer from the Department of Gynecology and Obstetrics of Ribeirão Preto Medical School (USP) were obtained at the time of biopsy and submitted to an enzyme-digestion procedure for the extraction of tumor-infiltrating lymphocytes. The lymphocytes extracted were analyzed by dual-color flow cytometry with monoclonal antibodies in these combinations: CD3 FITC/CD19 PE, CD3 FITC/CD4 PE, CD3 FITC/CD8 PE, and CD16/56 PerCP, which are specific for immunophenotyping of T and B lymphocytes, helper and cytotoxic T lymphocytes, and natural killer (NK) cells. The mean percentage of these cells was used for comparing groups of patients with or without lymph node metastasis. RESULTS The mean value for T-lymphocyte infiltration was 24.72 +/- 17.37%; for B-lymphocyte infiltration, 4.22 +/- 6.27%; for NK-cell infiltration, 4.41 +/- 5.22%, and for CD4(+) and CD8(+) T-lymphocyte infiltration, 12.43 +/- 10.12% and 11.30 +/- 15.09%, respectively. Only mean values of T- and CD4(+) T-lymphocyte infiltration were higher in the group of patients with lymph node metastasis, while no differences were noted in the other lymphocyte subpopulations. CONCLUSION The association of tumor-infiltrating CD4(+) T lymphocytes with lymph node metastasis suggests a role for these cells in the spread of neoplasia to lymph nodes in patients with early breast cancer.
Collapse
Affiliation(s)
- Alexandre Henrique Macchetti
- Department of Gynecology and Obstetrics, Breast Service, Ribeirão Preto Medical School, University of São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
45
|
Saadi W, Wang SJ, Lin F, Jeon NL. A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis. Biomed Microdevices 2006; 8:109-18. [PMID: 16688570 DOI: 10.1007/s10544-006-7706-6] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Growth factor-induced chemotaxis of cancer cells is believed to play a critical role in metastasis, directing the spread of cancer from the primary tumor to secondary sites in the body. Understanding the mechanistic and quantitative behavior of cancer cell migration in growth factor gradients would greatly help in future treatment of metastatic cancers. Using a novel microfluidic chemotaxis chamber capable of simultaneously generating multiple growth factor gradients, we examined the migration of the human metastatic breast cancer cell line MDA-MB-231 in various conditions. First, we quantified and compared the migration in two gradients of epidermal growth factor (EGF) spanning different concentrations: 0-50 ng/ml and 0.1-6 ng/ml. Cells showed a stronger response in the 0-50 ng/ml gradient. However, the fact that even a shallow gradient of EGF can induce chemotaxis, and that EGF can direct migration over a large dynamic range of gradients, confirms the potency of EGF as a chemoattractant. Second, we investigated the effect of antibody against the EGF receptor (EGFR) on MDA-MB-231 chemotaxis. Quantitative analysis indicated that anti-EGFR antibody impaired both motility and directional orientation (CI = 0.03, speed = 0.71 microm/min), indicating that cell motility was induced by the activation of EGFR. The ability to compare, in terms of quantitative parameters, the effects of different pharmaceutical inhibitors, as well as subtle differences in experimental conditions, will aid in our understanding of mechanisms that drive metastasis. The microfluidic chamber described in this work will provide a platform for cell-based assays that can be used to compare the effectiveness of different pharmaceutical compounds targeting cell migration and metastasis.
Collapse
Affiliation(s)
- Wajeeh Saadi
- Department of Biomedical Engineering, University of California, Irvine, 3120 Natural Sciences II, 92697, USA
| | | | | | | |
Collapse
|
46
|
Leong PP, Mohammad R, Ibrahim N, Ithnin H, Abdullah M, Davis WC, Seow HF. Phenotyping of lymphocytes expressing regulatory and effector markers in infiltrating ductal carcinoma of the breast. Immunol Lett 2005; 102:229-36. [PMID: 16246429 DOI: 10.1016/j.imlet.2005.09.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Revised: 09/19/2005] [Accepted: 09/21/2005] [Indexed: 12/27/2022]
Abstract
Dysfunction of the host immune system in cancer patients can be due to a number of reasons including suppression of tumour associated antigen reactive lymphocytes by regulatory T (Treg) cells. In this study, we used flow cytometry to determine the phenotype and relative abundance of the tumour infiltrating lymphocytes (TILs) from 47 enzymatically dissociated tumour specimens from patients with infiltrating ductal carcinoma (IDC) of the breast. The expression of both effector and regulatory markers on the TILs were determined by using a panel of monoclonal antibodies. Analysis revealed CD8(+) T cells (23.4+/-2.1%) were predominant in TILs, followed by CD4(+) T cells (12.6+/-1.7%) and CD56(+) natural killer cells (6.4+/-0.7%). The CD4(+)/CD8(+) ratio was 0.8+/-0.9%. Of the CD8(+) cells, there was a higher number (68.4+/-3.5%) that expressed the effector phenotype, namely, CD8(+)CD28(+) and about 46% of this subset expressed the activation marker, CD25. Thus, a lower number of infiltrating CD8(+) T cells (31.6+/-2.8%) expressed the marker for the suppressor phenotype, CD8(+)CD28(-). Of the CD4(+) T cells, 59.6+/-3.9% expressed the marker for the regulatory phenotype, CD4(+)CD25(+). About 43.6+/-3.8% CD4(+)CD25(+) subset co-expressed both the CD152 and FOXP3, the Treg-associated molecules. A positive correlation was found between the presence of CD4(+)CD25(+) subset and age (> or =50 years old) (r=0.51; p=0.045). However, no significant correlation between tumour stage and CD4(+)CD25(+) T cells was found. In addition, we also found that the CD4(+)CD25(-) subset correlated with the expression of the nuclear oestrogen receptor (ER)-alpha in the tumour cells (r=0.45; p=0.040). In conclusion, we detected the presence of cells expressing the markers for Tregs (CD4(+)CD25(+)) and suppressor (CD8(+)CD28(-)) in the tumour microenvironment. This is the first report of the relative abundance of Treg co-expressing CD152 and FOXP3 in breast carcinoma.
Collapse
Affiliation(s)
- Pooi Pooi Leong
- Department of Clinical Laboratory Sciences, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 Seri Kembangan, Selangor, Malaysia
| | | | | | | | | | | | | |
Collapse
|
47
|
Camozzi M, Zacchigna S, Rusnati M, Coltrini D, Ramirez-Correa G, Bottazzi B, Mantovani A, Giacca M, Presta M. Pentraxin 3 Inhibits Fibroblast Growth Factor 2–Dependent Activation of Smooth Muscle Cells In Vitro and Neointima Formation In Vivo. Arterioscler Thromb Vasc Biol 2005; 25:1837-42. [PMID: 16020751 DOI: 10.1161/01.atv.0000177807.54959.7d] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
The fibroblast growth factor (FGF)/FGF receptor system plays an important role in smooth muscle cell (SMC) activation. Long-pentraxin 3 (PTX3) is a soluble pattern recognition receptor with non-redundant functions in inflammation and innate immunity. PTX3 is produced by different cell types of the vessel wall, including SMCs. PTX3 binds FGF2 and inhibits its angiogenic activity on endothelial cells. We investigated the capacity of PTX3 to affect FGF2-dependent SMC activation in vitro and in vivo.
Methods and Results—
When added to human coronary artery SMCs, human PTX3 inhibits cell proliferation driven by endogenous FGF2 and the mitogenic and chemotactic activity exerted by exogenous recombinant FGF2. Accordingly, PTX3 prevents
125
I-FGF2 interaction with FGF receptors on the same cells. Also, PTX3 overexpression after recombinant adeno-associated virus-
PTX3
gene transfer inhibits human coronary artery SMC proliferation and survival promoted by FGF2 in vitro. Consistently, a single local endovascular injection of recombinant adeno-associated virus-
PTX3
gene inhibits intimal thickening after balloon injury in rat carotid arteries.
Conclusions—
PTX3 is a potent inhibitor of the autocrine and paracrine stimulation exerted by FGF2 on SMCs. Local PTX3 upregulation may modulate SMC activation after arterial injury.
Collapse
Affiliation(s)
- Maura Camozzi
- Department of Biomedical Sciences and Biotechnology, School of Medicine, University of Brescia, 25123 Brescia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Goswami S, Sahai E, Wyckoff JB, Cammer M, Cox D, Pixley FJ, Stanley ER, Segall JE, Condeelis JS. Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res 2005; 65:5278-83. [PMID: 15958574 DOI: 10.1158/0008-5472.can-04-1853] [Citation(s) in RCA: 555] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous studies have shown that macrophages and tumor cells are comigratory in mammary tumors and that these cell types are mutually dependent for invasion. Here we show that macrophages and tumor cells are necessary and sufficient for comigration and invasion into collagen I and that this process involves a paracrine loop. Macrophages express epidermal growth factor (EGF), which promotes the formation of elongated protrusions and cell invasion by carcinoma cells. Colony stimulating factor 1 (CSF-1) produced by carcinoma cells promotes the expression of EGF by macrophages. In addition, EGF promotes the expression of CSF-1 by carcinoma cells thereby generating a positive feedback loop. Disruption of this loop by blockade of either EGF receptor or CSF-1 receptor signaling is sufficient to inhibit both macrophage and tumor cell migration and invasion.
Collapse
Affiliation(s)
- Sumanta Goswami
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Krampera M, Pasini A, Rigo A, Scupoli MT, Tecchio C, Malpeli G, Scarpa A, Dazzi F, Pizzolo G, Vinante F. HB-EGF/HER-1 signaling in bone marrow mesenchymal stem cells: inducing cell expansion and reversibly preventing multilineage differentiation. Blood 2005; 106:59-66. [PMID: 15755902 DOI: 10.1182/blood-2004-09-3645] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epidermal growth factor receptor-1 (EGFR-1/HER-1/ErbB-1) regulates proliferation and cell fate during epidermal development. HER-1 is activated by several EGF-family ligands including heparin-binding epidermal growth factor-like growth factor (HB-EGF), a mitogenic and chemotactic molecule that participates in tissue repair, tumor growth, and other tissue-modeling phenomena, such as angiogenesis and fibrogenesis. We found that mesenchymal stem cells (MSCs), the precursors of different mesenchymal tissues with a role in processes in which HB-EGF is often involved, normally express HER-1, but not HB-EGF itself. Under the effect of HB-EGF, MSCs proliferate more rapidly and persistently, without undergoing spontaneous differentiation. This effect occurs in a dose-dependent fashion, and is specific, direct, and HER-1 mediated, as it is inhibited by anti-HER-1 and anti-HB-EGF blocking antibodies. Moreover, HB-EGF reversibly prevents adipogenic, osteogenic, and chondrogenic differentiation induced with specific media. These data show that HB-EGF/HER-1 signaling is relevant to MSC biology, by regulating both proliferation and differentiation.
Collapse
Affiliation(s)
- Mauro Krampera
- Department of Clinical and Experimental Medicine, Section of Haematology, University of Verona, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Presta M, Dell'Era P, Mitola S, Moroni E, Ronca R, Rusnati M. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 2005; 16:159-78. [PMID: 15863032 DOI: 10.1016/j.cytogfr.2005.01.004] [Citation(s) in RCA: 957] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fibroblast growth factors (FGFs) are a family of heparin-binding growth factors. FGFs exert their pro-angiogenic activity by interacting with various endothelial cell surface receptors, including tyrosine kinase receptors, heparan-sulfate proteoglycans, and integrins. Their activity is modulated by a variety of free and extracellular matrix-associated molecules. Also, the cross-talk among FGFs, vascular endothelial growth factors (VEGFs), and inflammatory cytokines/chemokines may play a role in the modulation of blood vessel growth in different pathological conditions, including cancer. Indeed, several experimental evidences point to a role for FGFs in tumor growth and angiogenesis. This review will focus on the relevance of the FGF/FGF receptor system in adult angiogenesis and its contribution to tumor vascularization.
Collapse
Affiliation(s)
- Marco Presta
- Unit of General Pathology and Immunology, Department of Biomedical Sciences and Biotechnology, School of Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | | | | | | | | | | |
Collapse
|