1
|
Han IH, Choi I, Choi H, Kim S, Jeong C, Yang J, Cao Y, Choi J, Lee H, Shin JS, Yeom HD, Lee EJ, Cha N, Go H, Lim SE, Chae S, Lee WJ, Kwon M, Kim H, Choi H, Pak S, Park N, Ko E, Hwang DS, Lee JH, Chung HS, Kang SH, Bae H. Conformation-sensitive targeting of CD18 depletes M2-like tumor-associated macrophages resulting in inhibition of solid tumor progression. J Immunother Cancer 2025; 13:e011422. [PMID: 40187756 PMCID: PMC11973759 DOI: 10.1136/jitc-2024-011422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 03/23/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) primarily exist in the M2-like phenotype in the tumor microenvironment (TME). M2-TAMs contribute to tumor progression by establishing an immunosuppressive environment. However, TAM targeting is hindered, mainly owing to a lack of specific biomarkers for M2-TAMs. Previously, we demonstrated that a novel peptide drug conjugate (TB511) consisting of a TAM-binding peptide and the apoptosis-promoting peptide targets M2-TAMs. This was achieved through M2-TAM targeting, although the target mechanism of action remained elusive. Herein, we elucidate the anticancer efficacy of TB511 by identifying new target proteins that preferentially bind to M2-TAMs and clarifying the apoptosis-inducing mechanism in these cells. METHODS We investigated the target proteins and binding site of TB511 using LC-MS/MS analyses, surface plasmon resonance and peptide-protein interaction 3D modeling. Activated CD18 expression in M2 TAMs was assessed using Quantibrite PE beads in PBMCs. The anticancer efficacy of TB511 was tested using colorectal cancer (CRC) and non-small cell lung cancer (NSCLC) mouse model. The immunotherapeutic effect of TB511 was investigated through spatial transcriptomics in human pancreatic ductal adenocarcinoma (PDAC) model. RESULTS Activated CD18 was highly expressed in human tumor tissues and was significantly higher in M2 TAMs than in other immune cells. TB511 showed high binding affinity to CD18 among the cell membrane proteins of M2 macrophages and appeared to bind to the cysteine-rich domain in the activated form. Moreover, TB511 specifically induced apoptosis in M2 TAMs, but its targeting ability to M2 macrophages was inhibited in CD18 blockade or knockout model. In mouse or humanized mouse models of solid tumors such as CRC, NSCLC, and PDAC, TB511 suppressed tumor growth by targeting M2-TAMs via CD18 and enhancing the presence of CD8+ T cells in the TME. CONCLUSIONS Collectively, our findings suggest that activated CD18 holds promise as a novel target protein for cancer therapy, and TB511 shows potential as a therapeutic agent for tumor treatment.
Collapse
Affiliation(s)
- Ik-Hwan Han
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Korea (the Republic of)
| | - Ilseob Choi
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Korea (the Republic of)
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Korea (the Republic of)
| | - Hongseo Choi
- R&D Center, Twinpig Biolab Inc, Seoul, Korea (the Republic of)
| | - Soyoung Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Korea (the Republic of)
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Korea (the Republic of)
| | - Chanmi Jeong
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Korea (the Republic of)
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Korea (the Republic of)
| | - Juwon Yang
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Korea (the Republic of)
| | - Yingying Cao
- Department of Chemistry, Graduate School, Kyung Hee University, Yongin-si, Gyeonggi-do, Korea (the Republic of)
| | - Jeongyoon Choi
- R&D Center, Twinpig Biolab Inc, Seoul, Korea (the Republic of)
| | - Heekyung Lee
- R&D Center, Twinpig Biolab Inc, Seoul, Korea (the Republic of)
| | - Jin Sun Shin
- R&D Center, Twinpig Biolab Inc, Seoul, Korea (the Republic of)
| | | | - Eun-Ji Lee
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu, Korea (the Republic of)
| | - Nari Cha
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Korea (the Republic of)
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Korea (the Republic of)
| | - Hyemin Go
- Department of Korean Medicine, College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, Korea (the Republic of)
| | - Se Eun Lim
- Department of Korean Medicine, College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, Korea (the Republic of)
| | - Songah Chae
- Department of Korean Medicine, College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, Korea (the Republic of)
| | - Won-Jun Lee
- Department of Korean Medicine, College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, Korea (the Republic of)
| | - Minjin Kwon
- Department of Korean Medicine, College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, Korea (the Republic of)
| | - Hongsung Kim
- Department of Korean Medicine, College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, Korea (the Republic of)
| | - Hyojung Choi
- Department of Korean Medicine, College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, Korea (the Republic of)
| | - Sehyun Pak
- Department of Korean Medicine, College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, Korea (the Republic of)
| | - Namgyeong Park
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Korea (the Republic of)
| | - Eunbin Ko
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Korea (the Republic of)
| | - Deok-Sang Hwang
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Korea (the Republic of)
| | - Junho H Lee
- Department of Biotechnology, Chonnam National University, Gwangju, Korea (the Republic of)
| | - Hwan-Suck Chung
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu, Korea (the Republic of)
| | - Seong Ho Kang
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do, Korea (the Republic of)
| | - Hyunsu Bae
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Korea (the Republic of)
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Korea (the Republic of)
| |
Collapse
|
2
|
Arnaout MA. The Integrin Receptors: From Discovery to Structure to Medicines. Immunol Rev 2025; 329:e13433. [PMID: 39724488 PMCID: PMC11752789 DOI: 10.1111/imr.13433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Innate immune cells perform vital tasks in detecting, seeking, and eliminating invading pathogens, thus ensuring host survival. However, loss of function of these cells or their overactive response to tissue injury often causes serious ailments. It is, therefore, crucial to understand at a basic level how these cells function in health and disease. A major step toward this goal came from studies I conducted in the late 1970s investigating the cause of life-threatening bacterial infections in a pediatric patient. This work led us to trace this disease to the inability of the patient's neutrophils to seek and clear infections due to an inherited deficiency in leukocyte adhesion caused by the loss of a plasma membrane glycoprotein complex now known as CD11/CD18 or β2 integrins. I followed this work by determining the 3-dimensional structures of integrins. These studies provided the foundation for understanding the unique properties of integrins in mediating bidirectional cell adhesion signaling and enabled a structure-guided design of compounds to dial down overactive integrins in common disorders, including thromboinflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- M Amin Arnaout
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Ivanova I, Shen K. Structures and Functions of the Human GATOR1 Complex. Subcell Biochem 2024; 104:269-294. [PMID: 38963491 PMCID: PMC11997690 DOI: 10.1007/978-3-031-58843-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Eukaryotic cells coordinate available nutrients with their growth through the mechanistic target of rapamycin complex 1 (mTORC1) pathway, in which numerous evolutionarily conserved protein complexes survey and transmit nutrient inputs toward mTORC1. mTORC1 integrates these inputs and activates downstream anabolic or catabolic programs that are in tune with cellular needs, effectively maintaining metabolic homeostasis. The GAP activity toward Rags-1 (GATOR1) protein complex is a critical negative regulator of the mTORC1 pathway and, in the absence of amino acid inputs, is activated to turn off mTORC1 signaling. GATOR1-mediated inhibition of mTORC1 signaling is tightly regulated by an ensemble of protein complexes that antagonize or promote its activity in response to the cellular nutrient environment. Structural, biochemical, and biophysical studies of the GATOR1 complex and its interactors have advanced our understanding of how it regulates cellular metabolism when amino acids are limited. Here, we review the current research with a focus on GATOR1 structure, its enzymatic mechanism, and the growing group of proteins that regulate its activity. Finally, we discuss the implication of GATOR1 dysregulation in physiology and human diseases.
Collapse
Affiliation(s)
- Ilina Ivanova
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kuang Shen
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
4
|
Chiu YH, Liang YH, Hwang JJ, Wang HS. IL-1β stimulated human umbilical cord mesenchymal stem cells ameliorate rheumatoid arthritis via inducing apoptosis of fibroblast-like synoviocytes. Sci Rep 2023; 13:15344. [PMID: 37714911 PMCID: PMC10504325 DOI: 10.1038/s41598-023-42585-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023] Open
Abstract
Rheumatoid arthritis (RA) is characterized by synovial proliferation and lymphocyte accumulation leading to progressive damage of the periarticular bone and the articular cartilage. The hyperplasia of the synovial intima lining mainly consists of fibroblast-like synoviocytes-rheumatoid arthritis (HFLS-RA) which exhibit apoptosis-resistance, hyper-proliferation, and high invasiveness. The therapeutic efficacy of mesenchymal stem cells (MSCs) treatment in RA has been shown to be due to its immuno-regulatory ability. However, the exact factors and mechanisms involved in MSCs treatment in RA remain unclear. In this study, TRAIL receptor-Death receptor 4 (DR4), DR5, and LFA-1 ligand-intercellular adhesion molecule-1 (ICAM-1) were upregulated in IL-1β-stimulated HFLS-RA. We demonstrated that the total cell number of IL-1β-stimulated hUCMSCs adhering to IL-1β-stimulated HFLA-RA increased via LFA-1/ICAM-1 interaction. Direct co-culture of IL-1β-stimulated hUCMSCs with IL-1β-stimulated HFLS-RA increased the apoptosis of HFLS-RA. RA symptoms in the CIA mouse model improved after administration of IL-1β-stimulated hUCMSCs. In conclusion, IL-1β-stimulated hUCMSCs adhering to HFLS-RA occurred via LFA-1/ICAM-1 interaction, apoptosis of HFLS-RA was induced via TRAIL/DR4, DR5 contact, and RA symptoms and inflammation were significantly improved in a CIA mouse model. The results of this study suggest that IL-1β-stimulated hUCMSCs have therapeutic potential in RA treatment.
Collapse
Affiliation(s)
- Yun-Hsuan Chiu
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Peitou, Taipei, 112, Taiwan, ROC
| | - Ya-Han Liang
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Peitou, Taipei, 112, Taiwan, ROC
| | - Jeng-Jong Hwang
- Department of Medical Imaging, Chung Shan Medical University Hospital affiliated with Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, 402, Taiwan, ROC
| | - Hwai-Shi Wang
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Peitou, Taipei, 112, Taiwan, ROC.
| |
Collapse
|
5
|
Arnaout MA. INTEGRINS: A BEDSIDE TO BENCH TO BEDSIDE STORY. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2023; 133:34-55. [PMID: 37701613 PMCID: PMC10493766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
I provide a narrative of the path I took to discover the membrane receptors that mediate leukocyte adhesion, now known as β2 integrins or CD11/CD18. We followed this discovery with the first determination of the 3-D structures of integrins. The latter advance provided the foundation for understanding the unique features of integrins as divalent cation-dependent signaling receptors and as mechanosensitive conduits between the extracellular matrix and the intracellular cytoskeleton. Our structural studies are now opening new paths for taming overactive integrins in disease while minimizing the collateral damage associated with the faulty pharmacodynamics of current integrin inhibitory drugs.
Collapse
|
6
|
Machine learning/molecular dynamic protein structure prediction approach to investigate the protein conformational ensemble. Sci Rep 2022; 12:10018. [PMID: 35705565 PMCID: PMC9200820 DOI: 10.1038/s41598-022-13714-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/11/2022] [Indexed: 11/25/2022] Open
Abstract
Proteins exist in several different conformations. These structural changes are often associated with fluctuations at the residue level. Recent findings show that co-evolutionary analysis coupled with machine-learning techniques improves the precision by providing quantitative distance predictions between pairs of residues. The predicted statistical distance distribution from Multi Sequence Analysis reveals the presence of different local maxima suggesting the flexibility of key residue pairs. Here we investigate the ability of the residue-residue distance prediction to provide insights into the protein conformational ensemble. We combine deep learning approaches with mechanistic modeling to a set of proteins that experimentally showed conformational changes. The predicted protein models were filtered based on energy scores, RMSD clustering, and the centroids selected as the lowest energy structure per cluster. These models were compared to the experimental-Molecular Dynamics (MD) relaxed structure by analyzing the backbone residue torsional distribution and the sidechain orientations. Our pipeline allows to retrieve the experimental structural dynamics experimentally represented by different X-ray conformations for the same sequence as well the conformational space observed with the MD simulations. We show the potential correlation between the experimental structure dynamics and the predicted model ensemble demonstrating the susceptibility of the current state-of-the-art methods in protein folding and dynamics prediction and pointing out the areas of improvement.
Collapse
|
7
|
Blythe EN, Weaver LC, Brown A, Dekaban GA. β2 Integrin CD11d/CD18: From Expression to an Emerging Role in Staged Leukocyte Migration. Front Immunol 2021; 12:775447. [PMID: 34858434 PMCID: PMC8630586 DOI: 10.3389/fimmu.2021.775447] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
CD11d/CD18 is the most recently discovered and least understood β2 integrin. Known CD11d adhesive mechanisms contribute to both extravasation and mesenchymal migration – two key aspects for localizing peripheral leukocytes to sites of inflammation. Differential expression of CD11d induces differences in monocyte/macrophage mesenchymal migration including impacts on macrophage sub-set migration. The participation of CD11d/CD18 in leukocyte localization during atherosclerosis and following neurotrauma has sparked interest in the development of CD11d-targeted therapeutic agents. Whereas the adhesive properties of CD11d have undergone investigation, the signalling pathways induced by ligand binding remain largely undefined. Underlining each adhesive and signalling function, CD11d is under unique transcriptional control and expressed on a sub-set of predominately tissue-differentiated innate leukocytes. The following review is the first to capture the nearly three decades of CD11d research and discusses the emerging role of CD11d in leukocyte migration and retention during the progression of a staged immune response.
Collapse
Affiliation(s)
- Eoin N Blythe
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Lynne C Weaver
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Arthur Brown
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Gregory A Dekaban
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
8
|
PilB from Streptococcus sanguinis is a bimodular type IV pilin with a direct role in adhesion. Proc Natl Acad Sci U S A 2021; 118:2102092118. [PMID: 34031252 PMCID: PMC8179133 DOI: 10.1073/pnas.2102092118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Type IV pili (T4P) are functionally versatile filaments widespread in prokaryotes, composed of type IV pilins and assembled by conserved multiprotein machineries. It remains unclear how such rather simple filaments can be so versatile. Our structure/function analysis of PilB, a minor pilin of Streptococcus sanguinis T4P, offers an elegant explanation for this paradox. We show that PilB is a modular pilin with a bulky module “grafted” onto a small pilin module, which directly mediates adhesion of S. sanguinis to host cells/proteins. This evolutionary tinkering strategy appears to be prevalent in bacteria since a global analysis reveals that modular pilins are widespread and exhibit an astonishing variety of architectures. Type IV pili (T4P) are functionally versatile filamentous nanomachines, nearly ubiquitous in prokaryotes. They are predominantly polymers of one major pilin but also contain minor pilins whose functions are often poorly defined and likely to be diverse. Here, we show that the minor pilin PilB from the T4P of Streptococcus sanguinis displays an unusual bimodular three-dimensional structure with a bulky von Willebrand factor A–like (vWA) module “grafted” onto a small pilin module via a short loop. Structural modeling suggests that PilB is only compatible with a localization at the tip of T4P. By performing a detailed functional analysis, we found that 1) the vWA module contains a canonical metal ion–dependent adhesion site, preferentially binding Mg2+ and Mn2+, 2) abolishing metal binding has no impact on the structure of PilB or piliation, 3) metal binding is important for S. sanguinis T4P–mediated twitching motility and adhesion to eukaryotic cells, and 4) the vWA module shows an intrinsic binding ability to several host proteins. These findings reveal an elegant yet simple evolutionary tinkering strategy to increase T4P functional versatility by grafting a functional module onto a pilin for presentation by the filaments. This strategy appears to have been extensively used by bacteria, in which modular pilins are widespread and exhibit an astonishing variety of architectures.
Collapse
|
9
|
Shannon MJ, Mace EM. Natural Killer Cell Integrins and Their Functions in Tissue Residency. Front Immunol 2021; 12:647358. [PMID: 33777044 PMCID: PMC7987804 DOI: 10.3389/fimmu.2021.647358] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Integrins are transmembrane receptors associated with adhesion and migration and are often highly differentially expressed receptors amongst natural killer cell subsets in microenvironments. Tissue resident natural killer cells are frequently defined by their differential integrin expression compared to other NK cell subsets, and integrins can further localize tissue resident NK cells to tissue microenvironments. As such, integrins play important roles in both the phenotypic and functional identity of NK cell subsets. Here we review the expression of integrin subtypes on NK cells and NK cell subsets with the goal of better understanding how integrin selection can dictate tissue residency and mediate function from the nanoscale to the tissue environment.
Collapse
Affiliation(s)
| | - Emily M. Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| |
Collapse
|
10
|
Jezela-Stanek A, Walczak A, Łaźniewski M, Kosińska J, Stawiński P, Murcia Pienkowski V, Biernacka A, Rydzanicz M, Kostrzewa G, Krajewski P, Plewczyński D, Płoski R. Novel COL12A1 variant as a cause of mild familial extracellular matrix-related myopathy. Clin Genet 2019; 95:736-738. [PMID: 30920656 DOI: 10.1111/cge.13534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/01/2019] [Accepted: 03/12/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Anna Walczak
- Department of Medical Genetics, Warsaw Medical University, Warsaw, Poland
| | | | - Joanna Kosińska
- Department of Medical Genetics, Warsaw Medical University, Warsaw, Poland
| | - Piotr Stawiński
- Department of Medical Genetics, Warsaw Medical University, Warsaw, Poland
| | - Victor Murcia Pienkowski
- Department of Medical Genetics, Warsaw Medical University, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Warsaw Medical University, Warsaw, Poland
| | - Anna Biernacka
- Department of Medical Genetics, Warsaw Medical University, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Warsaw Medical University, Warsaw, Poland
| | | | - Grażyna Kostrzewa
- Department of Forensic Medicine, Warsaw Medical University, Warsaw, Poland
| | - Paweł Krajewski
- Postgraduate School of Molecular Medicine, Warsaw Medical University, Warsaw, Poland
| | - Dariusz Plewczyński
- Centre of New Technologies, University of Warsaw, Warsaw, Poland.,Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Warsaw Medical University, Warsaw, Poland
| |
Collapse
|
11
|
Vorup-Jensen T, Jensen RK. Structural Immunology of Complement Receptors 3 and 4. Front Immunol 2018; 9:2716. [PMID: 30534123 PMCID: PMC6275225 DOI: 10.3389/fimmu.2018.02716] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 11/05/2018] [Indexed: 01/10/2023] Open
Abstract
Complement receptors (CR) 3 and 4 belong to the family of beta-2 (CD18) integrins. CR3 and CR4 are often co-expressed in the myeloid subsets of leukocytes, but they are also found in NK cells and activated T and B lymphocytes. The heterodimeric ectodomain undergoes considerable conformational change in order to switch the receptor from a structurally bent, ligand-binding in-active state into an extended, ligand-binding active state. CR3 binds the C3d fragment of C3 in a way permitting CR2 also to bind concomitantly. This enables a hand-over of complement-opsonized antigens from the cell surface of CR3-expressing macrophages to the CR2-expressing B lymphocytes, in consequence acting as an antigen presentation mechanism. As a more enigmatic part of their functions, both CR3 and CR4 bind several structurally unrelated proteins, engineered peptides, and glycosaminoglycans. No consensus motif in the proteinaceous ligands has been established. Yet, the experimental evidence clearly suggest that the ligands are primarily, if not entirely, recognized by a single site within the receptors, namely the metal-ion dependent adhesion site (MIDAS). Comparison of some recent identified ligands points to CR3 as inclined to bind positively charged species, while CR4, by contrast, binds strongly negative-charged species, in both cases with the critical involvement of deprotonated, acidic groups as ligands for the Mg2+ ion in the MIDAS. These properties place CR3 and CR4 firmly within the realm of modern molecular medicine in several ways. The expression of CR3 and CR4 in NK cells was recently demonstrated to enable complement-dependent cell cytotoxicity toward antibody-coated cancer cells as part of biological therapy, constituting a significant part of the efficacy of such treatment. With the flexible principles of ligand recognition, it is also possible to propose a response of CR3 and CR4 to existing medicines thereby opening a possibility of drug repurposing to influence the function of these receptors. Here, from advances in the structural and cellular immunology of CR3 and CR4, we review insights on their biochemistry and functions in the immune system.
Collapse
Affiliation(s)
- Thomas Vorup-Jensen
- Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Rasmus Kjeldsen Jensen
- Department of Molecular Biology and Genetics-Structural Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Monteil CL, Perrière G, Menguy N, Ginet N, Alonso B, Waisbord N, Cruveiller S, Pignol D, Lefèvre CT. Genomic study of a novel magnetotactic Alphaproteobacteria uncovers the multiple ancestry of magnetotaxis. Environ Microbiol 2018; 20:4415-4430. [PMID: 30043533 DOI: 10.1111/1462-2920.14364] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/19/2018] [Indexed: 01/06/2023]
Abstract
Ecological and evolutionary processes involved in magnetotactic bacteria (MTB) adaptation to their environment have been a matter of debate for many years. Ongoing efforts for their characterization are progressively contributing to understand these processes, including the genetic and molecular mechanisms responsible for biomineralization. Despite numerous culture-independent MTB characterizations, essentially within the Proteobacteria phylum, only few species have been isolated in culture because of their complex growth conditions. Here, we report a newly cultivated magnetotactic, microaerophilic and chemoorganoheterotrophic bacterium isolated from the Mediterranean Sea in Marseille, France: Candidatus Terasakiella magnetica strain PR-1 that belongs to an Alphaproteobacteria genus with no magnetotactic relative. By comparing the morphology and the whole genome shotgun sequence of this MTB with those of closer relatives, we brought further evidence that the apparent vertical ancestry of magnetosome genes suggested by previous studies within Alphaproteobacteria hides a more complex evolutionary history involving horizontal gene transfers and/or duplication events before and after the emergence of Magnetospirillum, Magnetovibrio and Magnetospira genera. A genome-scale comparative genomics analysis identified several additional candidate functions and genes that could be specifically associated to MTB lifestyle in this class of bacteria.
Collapse
Affiliation(s)
- Caroline L Monteil
- Institute of Biosciences and Biotechnologies of Aix Marseille (BIAM), UMR7265 CEA - CNRS - Aix Marseille University, CEA Cadarache, 13108, Saint-Paul-lez-Durance, France
| | - Guy Perrière
- Laboratoire de Biométrie et Biologie Evolutive, CNRS, UMR5558, Université Claude Bernard - Lyon 1, 69622, Villeurbanne, France
| | - Nicolas Menguy
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD - IMPMC, 4 place Jussieu, 75005, Paris, France
| | - Nicolas Ginet
- Laboratoire de Chimie Bactérienne, UMR 7283 CNRS, Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, 13402, Marseille, France
| | - Béatrice Alonso
- Institute of Biosciences and Biotechnologies of Aix Marseille (BIAM), UMR7265 CEA - CNRS - Aix Marseille University, CEA Cadarache, 13108, Saint-Paul-lez-Durance, France
| | - Nicolas Waisbord
- Department of Mechanical Engineering, Tufts University, 200 College Avenue, Medford, MA, 02155, USA
| | - Stéphane Cruveiller
- Commissariat à l'Energie Atomique et aux Energies Alternatives - Institut de Biologie François Jacob - Genoscope - Laboratoire d'Analyses Bioinformatiques pour la Génomique et le Métabolisme, UMR - CNRS 8030 Génomique Métabolique, Université d'Evry, Université Paris-Saclay, 91057 Evry, France
| | - David Pignol
- Institute of Biosciences and Biotechnologies of Aix Marseille (BIAM), UMR7265 CEA - CNRS - Aix Marseille University, CEA Cadarache, 13108, Saint-Paul-lez-Durance, France
| | - Christopher T Lefèvre
- Institute of Biosciences and Biotechnologies of Aix Marseille (BIAM), UMR7265 CEA - CNRS - Aix Marseille University, CEA Cadarache, 13108, Saint-Paul-lez-Durance, France
| |
Collapse
|
13
|
Shen K, Huang RK, Brignole EJ, Condon KJ, Valenstein ML, Chantranupong L, Bomaliyamu A, Choe A, Hong C, Yu Z, Sabatini DM. Architecture of the human GATOR1 and GATOR1-Rag GTPases complexes. Nature 2018; 556:64-69. [PMID: 29590090 PMCID: PMC5975964 DOI: 10.1038/nature26158] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 02/16/2018] [Indexed: 12/22/2022]
Abstract
Nutrients, such as amino acids and glucose, signal through the Rag GTPases to activate mTORC1. The GATOR1 protein complex-comprising DEPDC5, NPRL2 and NPRL3-regulates the Rag GTPases as a GTPase-activating protein (GAP) for RAGA; loss of GATOR1 desensitizes mTORC1 signalling to nutrient starvation. GATOR1 components have no sequence homology to other proteins, so the function of GATOR1 at the molecular level is currently unknown. Here we used cryo-electron microscopy to solve structures of GATOR1 and GATOR1-Rag GTPases complexes. GATOR1 adopts an extended architecture with a cavity in the middle; NPRL2 links DEPDC5 and NPRL3, and DEPDC5 contacts the Rag GTPase heterodimer. Biochemical analyses reveal that our GATOR1-Rag GTPases structure is inhibitory, and that at least two binding modes must exist between the Rag GTPases and GATOR1. Direct interaction of DEPDC5 with RAGA inhibits GATOR1-mediated stimulation of GTP hydrolysis by RAGA, whereas weaker interactions between the NPRL2-NPRL3 heterodimer and RAGA execute GAP activity. These data reveal the structure of a component of the nutrient-sensing mTORC1 pathway and a non-canonical interaction between a GAP and its substrate GTPase.
Collapse
Affiliation(s)
- Kuang Shen
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA02139, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Rick K. Huang
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Edward J. Brignole
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Kendall J. Condon
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA02139, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Max L. Valenstein
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA02139, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Lynne Chantranupong
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA02139, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Aimaiti Bomaliyamu
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Abigail Choe
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Chuan Hong
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Zhiheng Yu
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - David M. Sabatini
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA02139, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| |
Collapse
|
14
|
Brown KL, Banerjee S, Feigley A, Abe H, Blackwell TS, Pozzi A, Hudson BG, Zent R. Salt-bridge modulates differential calcium-mediated ligand binding to integrin α1- and α2-I domains. Sci Rep 2018; 8:2916. [PMID: 29440721 PMCID: PMC5811549 DOI: 10.1038/s41598-018-21231-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/31/2018] [Indexed: 11/11/2022] Open
Abstract
Integrins are transmembrane cell-extracellular matrix adhesion receptors that impact many cellular functions. A subgroup of integrins contain an inserted (I) domain within the α–subunits (αI) that mediate ligand recognition where function is contingent on binding a divalent cation at the metal ion dependent adhesion site (MIDAS). Ca2+ is reported to promote α1I but inhibit α2I ligand binding. We co-crystallized individual I-domains with MIDAS-bound Ca2+ and report structures at 1.4 and 2.15 Å resolution, respectively. Both structures are in the “closed” ligand binding conformation where Ca2+ induces minimal global structural changes. Comparisons with Mg2+-bound structures reveal Mg2+ and Ca2+ bind α1I in a manner sufficient to promote ligand binding. In contrast, Ca2+ is displaced in the α2I domain MIDAS by 1.4 Å relative to Mg2+ and unable to directly coordinate all MIDAS residues. We identified an E152-R192 salt bridge hypothesized to limit the flexibility of the α2I MIDAS, thus, reducing Ca2+ binding. A α2I E152A construct resulted in a 10,000-fold increase in Mg2+ and Ca2+ binding affinity while increasing binding to collagen ligands 20%. These data indicate the E152-R192 salt bridge is a key distinction in the molecular mechanism of differential ion binding of these two I domains.
Collapse
Affiliation(s)
- Kyle L Brown
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232-2372, USA. .,Center for Structural Biology, Vanderbilt University Medical Center, Nashville, TN, 37232-2372, USA. .,Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, 37232-2372, USA.
| | - Surajit Banerjee
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.,Northeastern Collaborative Access Team, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Andrew Feigley
- Leadership Alliance, Vanderbilt University Medical Center, Nashville, TN, 37232-2372, USA
| | - Hanna Abe
- Aspirnaut Summer research program, Vanderbilt University Medical Center, Nashville, TN, 37232-2372, USA
| | - Timothy S Blackwell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232-2372, USA.,Veterans Affairs Hospital, Nashville, TN, 37232, USA
| | - Ambra Pozzi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232-2372, USA.,Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, 37232-2372, USA.,Veterans Affairs Hospital, Nashville, TN, 37232, USA
| | - Billy G Hudson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232-2372, USA.,Center for Structural Biology, Vanderbilt University Medical Center, Nashville, TN, 37232-2372, USA.,Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, 37232-2372, USA.,Aspirnaut Summer research program, Vanderbilt University Medical Center, Nashville, TN, 37232-2372, USA.,Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232-2372, USA
| | - Roy Zent
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232-2372, USA.,Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, 37232-2372, USA.,Veterans Affairs Hospital, Nashville, TN, 37232, USA
| |
Collapse
|
15
|
Pfleger C, Minges A, Boehm M, McClendon CL, Torella R, Gohlke H. Ensemble- and Rigidity Theory-Based Perturbation Approach To Analyze Dynamic Allostery. J Chem Theory Comput 2017; 13:6343-6357. [PMID: 29112408 DOI: 10.1021/acs.jctc.7b00529] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Allostery describes the functional coupling between sites in biomolecules. Recently, the role of changes in protein dynamics for allosteric communication has been highlighted. A quantitative and predictive description of allostery is fundamental for understanding biological processes. Here, we integrate an ensemble-based perturbation approach with the analysis of biomolecular rigidity and flexibility to construct a model of dynamic allostery. Our model, by definition, excludes the possibility of conformational changes, evaluates static, not dynamic, properties of molecular systems, and describes allosteric effects due to ligand binding in terms of a novel free-energy measure. We validated our model on three distinct biomolecular systems: eglin c, protein tyrosine phosphatase 1B, and the lymphocyte function-associated antigen 1 domain. In all cases, it successfully identified key residues for signal transmission in very good agreement with the experiment. It correctly and quantitatively discriminated between positively or negatively cooperative effects for one of the systems. Our model should be a promising tool for the rational discovery of novel allosteric drugs.
Collapse
Affiliation(s)
- Christopher Pfleger
- Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf , Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Alexander Minges
- Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf , Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Markus Boehm
- Medicinal Sciences, Pfizer, Inc. , 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Christopher L McClendon
- Medicinal Sciences, Pfizer, Inc. , 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Rubben Torella
- Medicinal Sciences, Pfizer, Inc. , 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Holger Gohlke
- Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf , Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
16
|
Swaim CD, Scott AF, Canadeo LA, Huibregtse JM. Extracellular ISG15 Signals Cytokine Secretion through the LFA-1 Integrin Receptor. Mol Cell 2017; 68:581-590.e5. [PMID: 29100055 DOI: 10.1016/j.molcel.2017.10.003] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/31/2017] [Accepted: 10/03/2017] [Indexed: 12/30/2022]
Abstract
ISG15 is a ubiquitin-like protein that functions in innate immunity both as an intracellular protein modifier and as an extracellular signaling molecule that stimulates IFN-γ secretion. The extracellular function, important for resistance to mycobacterial disease, has remained biochemically uncharacterized. We have established an NK-92 cell-based assay for IFN-γ release, identified residues critical for ISG15 signaling, and identified the cell surface receptor as LFA-1 (CD11a/CD18; αLβ2 integrin). LFA-1 inhibition blocked IFN-γ secretion, splenocytes from CD11a-/- mice did not respond to ISG15, and ISG15 bound directly to the αI domain of CD11a in vitro. ISG15 also enhanced secretion of IL-10, indicating a broader role for ISG15 in cytokine signaling. ISG15 engagement of LFA-1 led to the activation of SRC family kinases (SFKs) and SFK inhibition blocked cytokine secretion. These findings establish the molecular basis of the extracellular function of ISG15 and the initial outside-in signaling events that drive ISG15-dependent cytokine secretion.
Collapse
Affiliation(s)
- Caleb D Swaim
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Ariella F Scott
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Larissa A Canadeo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Jon M Huibregtse
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
17
|
Abdullahi M, Olotu FA, Soliman ME. Dynamics of allosteric modulation of lymphocyte function associated antigen-1 closure-open switch: unveiling the structural mechanisms associated with outside-in signaling activation. Biotechnol Lett 2017; 39:1843-1851. [PMID: 28918491 DOI: 10.1007/s10529-017-2432-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/31/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVES To provide insight into the dynamics of the shape-shifting mechanistic events associated with the opening (activation) of Lymphocyte Function Associated Antigen-1 upon allosteric modulation by an activator, ICAM Binding Enhancer-667 (IBE-667), using molecular dynamics simulation. RESULTS Various parameters were used to appropriately describe and understand the sequence of events that characterized its activation across the simulation period such as residual distances, TriCα angles; as well as the dihedral angle. Our findings revealed a significant residual fluctuation and stability difference between both systems. Also, there was a synergistic coordination of the active MIDAS site by the downward pull of the α7 helix upon ligand binding, which appeared to be directly proportional to each other. CONCLUSION Allosteric binding of IBE-667, activated LFA-1 integrin as evidenced by residual motion at the MIDAS region which appears to be synergistically coordinated by the downward pull of the α7 helix.
Collapse
Affiliation(s)
- Maryam Abdullahi
- Molecular Modeling and Drug Design Research, Group School of Health Sciences, University of KwaZulu- Natal, Westville Campus, Durban, 4001, South Africa
| | - Fisayo A Olotu
- Molecular Modeling and Drug Design Research, Group School of Health Sciences, University of KwaZulu- Natal, Westville Campus, Durban, 4001, South Africa
| | - Mahmoud E Soliman
- Molecular Modeling and Drug Design Research, Group School of Health Sciences, University of KwaZulu- Natal, Westville Campus, Durban, 4001, South Africa. .,College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University (FAMU), Tallahassee, FL, 32307, USA. .,Department of Pharmaceutical Organic Chemistry Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
18
|
Abstract
Integrins comprise a large family of αβ heterodimeric cell adhesion receptors that are expressed on all cells except red blood cells and that play essential roles in the regulation of cell growth and function. The leukocyte integrins, which include members of the β
1, β
2, β
3, and β
7 integrin family, are critical for innate and adaptive immune responses but also can contribute to many inflammatory and autoimmune diseases when dysregulated. This review focuses on the β
2 integrins, the principal integrins expressed on leukocytes. We review their discovery and role in host defense, the structural basis for their ligand recognition and activation, and their potential as therapeutic targets.
Collapse
Affiliation(s)
- M Amin Arnaout
- Leukocyte Biology & Inflammation Program, Structural Biology Program, Nephrology, Center for Regenerative Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Nunes AM, Zhu J, Jezioro J, Minetti CASA, Remeta DP, Farndale RW, Hamaia SW, Baum J. Intrinsic local destabilization of the C-terminus predisposes integrin α1 I domain to a conformational switch induced by collagen binding. Protein Sci 2016; 25:1672-81. [PMID: 27342747 DOI: 10.1002/pro.2972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 11/08/2022]
Abstract
Integrin-collagen interactions play a critical role in a myriad of cellular functions that include immune response, and cell development and differentiation, yet their mechanism of binding is poorly understood. There is increasing evidence that conformational flexibility assumes a central role in the molecular mechanisms of protein-protein interactions and here we employ NMR hydrogen-deuterium exchange (HDX) experiments to explore the impact of slower timescale dynamic events. To gain insight into the mechanisms underlying collagen-induced conformational switches, we have undertaken a comparative study between the wild type integrin α1 I and a gain-of-function E317A mutant. NMR HDX results suggest a relationship between regions exhibiting a reduced local stability in the unbound I domain and those that undergo significant conformational changes upon binding. Specifically, the αC and α7 helices within the C-terminus are at the center of such major perturbations and present reduced local stabilities in the unbound state relative to other structural elements. Complementary isothermal titration calorimetry experiments have been performed to derive complete thermodynamic binding profiles for association of the collagen-like triple-helical peptide with wild type α1 I and E317A mutant. The differential energetics observed for E317A are consistent with the HDX experiments and support a model in which intrinsically destabilized regions predispose conformational rearrangement in the integrin I domain. This study highlights the importance of exploring different timescales to delineate allosteric and binding events.
Collapse
Affiliation(s)
- Ana Monica Nunes
- Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854.,Center for Integrative Proteomics Research, Rutgers University, Piscataway, New Jersey, 08854
| | - Jie Zhu
- Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854.,Center for Integrative Proteomics Research, Rutgers University, Piscataway, New Jersey, 08854
| | - Jacqueline Jezioro
- Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854.,Center for Integrative Proteomics Research, Rutgers University, Piscataway, New Jersey, 08854
| | - Conceição A S A Minetti
- Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854
| | - David P Remeta
- Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854
| | - Richard W Farndale
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, United Kingdom
| | - Samir W Hamaia
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, United Kingdom
| | - Jean Baum
- Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854.,Center for Integrative Proteomics Research, Rutgers University, Piscataway, New Jersey, 08854
| |
Collapse
|
20
|
Leukocyte integrin αLβ2 headpiece structures: The αI domain, the pocket for the internal ligand, and concerted movements of its loops. Proc Natl Acad Sci U S A 2016; 113:2940-5. [PMID: 26936951 DOI: 10.1073/pnas.1601379113] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
High-resolution crystal structures of the headpiece of lymphocyte function-associated antigen-1 (integrin αLβ2) reveal how the αI domain interacts with its platform formed by the α-subunit β-propeller and β-subunit βI domains. The αLβ2 structures compared with αXβ2 structures show that the αI domain, tethered through its N-linker and a disulfide to a stable β-ribbon pillar near the center of the platform, can undergo remarkable pivoting and tilting motions that appear buffered by N-glycan decorations that differ between αL and αX subunits. Rerefined β2 integrin structures reveal details including pyroglutamic acid at the β2 N terminus and bending within the EGF1 domain. Allostery is relayed to the αI domain by an internal ligand that binds to a pocket at the interface between the β-propeller and βI domains. Marked differences between the αL and αX subunit β-propeller domains concentrate near the binding pocket and αI domain interfaces. Remarkably, movement in allostery in the βI domain of specificity determining loop 1 (SDL1) causes concerted movement of SDL2 and thereby tightens the binding pocket for the internal ligand.
Collapse
|
21
|
Chouhan BS, Käpylä J, Denessiouk K, Denesyuk A, Heino J, Johnson MS. Early chordate origin of the vertebrate integrin αI domains. PLoS One 2014; 9:e112064. [PMID: 25409021 PMCID: PMC4237329 DOI: 10.1371/journal.pone.0112064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/11/2014] [Indexed: 12/17/2022] Open
Abstract
Half of the 18 human integrins α subunits have an inserted αI domain yet none have been observed in species that have diverged prior to the appearance of the urochordates (ascidians). The urochordate integrin αI domains are not human orthologues but paralogues, but orthologues of human αI domains extend throughout later-diverging vertebrates and are observed in the bony fish with duplicate isoforms. Here, we report evidence for orthologues of human integrins with αI domains in the agnathostomes (jawless vertebrates) and later diverging species. Sequence comparisons, phylogenetic analyses and molecular modeling show that one nearly full-length sequence from lamprey and two additional fragments include the entire integrin αI domain region, have the hallmarks of collagen-binding integrin αI domains, and we show that the corresponding recombinant proteins recognize the collagen GFOGER motifs in a metal dependent manner, unlike the α1I domain of the ascidian C. intestinalis. The presence of a functional collagen receptor integrin αI domain supports the origin of orthologues of the human integrins with αI domains prior to the earliest diverging extant vertebrates, a domain that has been conserved and diversified throughout the vertebrate lineage.
Collapse
Affiliation(s)
- Bhanupratap Singh Chouhan
- Structural Bioinformatics Laboratory, Biochemistry, Department of Biosciences, Åbo Akademi University, Turku, Finland
| | - Jarmo Käpylä
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Konstantin Denessiouk
- Structural Bioinformatics Laboratory, Biochemistry, Department of Biosciences, Åbo Akademi University, Turku, Finland
| | - Alexander Denesyuk
- Structural Bioinformatics Laboratory, Biochemistry, Department of Biosciences, Åbo Akademi University, Turku, Finland
| | - Jyrki Heino
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Mark S. Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Department of Biosciences, Åbo Akademi University, Turku, Finland
| |
Collapse
|
22
|
Leung HTA, Kukic P, Camilloni C, Bemporad F, De Simone A, Aprile FA, Kumita JR, Vendruscolo M. NMR characterization of the conformational fluctuations of the human lymphocyte function-associated antigen-1 I-domain. Protein Sci 2014; 23:1596-606. [PMID: 25147050 DOI: 10.1002/pro.2538] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/13/2014] [Accepted: 08/19/2014] [Indexed: 01/13/2023]
Abstract
Lymphocyte function-associated antigen-1 (LFA-1) is an integrin protein that transmits information across the plasma membrane through the so-called inside-out and outside-in signaling mechanisms. To investigate these mechanisms, we carried out an NMR analysis of the dynamics of the LFA-1 I-domain, which has enabled us to characterize the motions of this domain on a broad range of timescales. We studied first the internal motions on the nanosecond timescale by spin relaxation measurements and model-free analysis. We then extended this analysis to the millisecond timescale motions by measuring (15) N-(1) H residual dipolar couplings of the backbone amide groups. We analyzed these results in the context of the three major conformational states of the I-domain using their corresponding X-ray crystallographic structures. Our results highlight the importance of the low-frequency motions of the LFA-1 I-domain in the inactive apo-state. We found in particular that α-helix 7 is in a position in the apo-closed state that cannot be fully described by any of the existing X-ray structures, as it appears to be in dynamic exchange between different conformations. This type of motion seems to represent an inherent property of the LFA-1 I-domain and might be relevant for controlling the access to the allosteric binding pocket, as well as for the downward displacement of α-helix 7 that is required for the activation of LFA-1.
Collapse
Affiliation(s)
- Hoi Tik Alvin Leung
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom; Biozentrum, University of Basel, Basel, CH-4056, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Hamblin MJ, Eberlein M, Black K, Hallowell R, Collins S, Chan-Li Y, Horton MR. Lovastatin Inhibits Low Molecular Weight Hyaluronan Induced Chemokine Expression via LFA-1 and Decreases Bleomycin-Induced Pulmonary Fibrosis. INTERNATIONAL JOURNAL OF BIOMEDICAL SCIENCE : IJBS 2014; 10:146-57. [PMID: 25324695 PMCID: PMC4199473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/13/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND Lovastatin has a unique ability to bind Leukocyte Function Antigen-1 (LFA-1), an integrin necessary for the full expression of inflammatory cytokines induced by the low molecular weight form of the extracellular matrix glycosaminoglycan hyaluronan (LMW HA). We hypothesized that lovastatin could inhibit LMW HA inflammatory signals via interaction with LFA-1, and attenuate bleomycin induced pulmonary fibrosis. METHODS We evaluated the effects of lovastatin, pravastatin, LFA-1 blocking antibodies, and a novel LFA-1 inhibitor LFA 878 on LMW HA induced cytokine production in alveolar macrophages. We evaluated the effect of lovastatin in a bleomycin model of lung injury. RESULTS Lovastatin immediately inhibited the LMW HA induced cytokine MIP 1-α (p=0.001) independent of HMG CoA reductase. Pravastatin showed no inhibitory profile when administered simultaneously with LMW HA. LFA-1 blocking antibodies and the small molecule statin derivative LFA 878 showed an inhibitory profile similar to lovastatin. Lovastatin showed decreased fibrosis on histopathology and improved survival at day 14, with a decrease in fibrocytes noted at day 8. CONCLUSION Lovastatin and LFA 878 inhibit LMW HA inflammatory signaling independent of HMG-CoA decreasing the chemotactic cytokine MIP 1-α. Lovastatin treatment improves survival in bleomycin lung injury with decreased fibrocytes and fibrosis.
Collapse
Affiliation(s)
| | | | | | | | - Samuel Collins
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yee Chan-Li
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
24
|
Chakraborty S, Núñez D, Hu SY, Domingo MP, Pardo J, Karmenyan A, Eva M a Gálvez, Chiou A. FRET based quantification and screening technology platform for the interactions of leukocyte function-associated antigen-1 (LFA-1) with intercellular adhesion molecule-1 (ICAM-1). PLoS One 2014; 9:e102572. [PMID: 25032811 PMCID: PMC4102529 DOI: 10.1371/journal.pone.0102572] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/19/2014] [Indexed: 11/29/2022] Open
Abstract
The interaction between leukocyte function-associated antigen-1(LFA-1) and intercellular adhesion molecule-1 (ICAM-1) plays a pivotal role in cellular adhesion including the extravasation and inflammatory response of leukocytes, and also in the formation of immunological synapse. However, irregular expressions of LFA-1 or ICAM-1 or both may lead to autoimmune diseases, metastasis cancer, etc. Thus, the LFA-1/ICAM-1 interaction may serve as a potential therapeutic target for the treatment of these diseases. Here, we developed one simple 'in solution' steady state fluorescence resonance energy transfer (FRET) technique to obtain the dissociation constant (Kd) of the interaction between LFA-1 and ICAM-1. Moreover, we developed the assay into a screening platform to identify peptides and small molecules that inhibit the LFA-1/ICAM-1 interaction. For the FRET pair, we used Alexa Fluor 488-LFA-1 conjugate as donor and Alexa Fluor 555-human recombinant ICAM-1 (D1-D2-Fc) as acceptor. From our quantitative FRET analysis, the Kd between LFA-1 and D1-D2-Fc was determined to be 17.93±1.34 nM. Both the Kd determination and screening assay were performed in a 96-well plate platform, providing the opportunity to develop it into a high-throughput assay. This is the first reported work which applies FRET based technique to determine Kd as well as classifying inhibitors of the LFA-1/ICAM-1 interaction.
Collapse
Affiliation(s)
| | - David Núñez
- Instituto de Carboquímica, CSIC, Zaragoza, Spain
- Immune Effector Cells Group, Aragón Health Research Institute, Biomedical Research Centre of Aragón, Zaragoza, Spain
| | - Shih-Yang Hu
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - María Pilar Domingo
- Instituto de Carboquímica, CSIC, Zaragoza, Spain
- Immune Effector Cells Group, Aragón Health Research Institute, Biomedical Research Centre of Aragón, Zaragoza, Spain
| | - Julian Pardo
- Immune Effector Cells Group, Aragón Health Research Institute, Biomedical Research Centre of Aragón, Zaragoza, Spain
- Department of Biochemistry and Molecular and Cell Biology, Facultad de Ciencias, University of Zaragoza, Zaragoza, Spain
- Aragón I+D Foundation, Government of Aragon, Zaragoza, Spain
- Nanoscience Institute of Aragón, Aragón I+D Foundation, University of Zaragoza, Zaragoza, Spain
| | - Artashes Karmenyan
- Biophotonics & Molecular Imaging Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Eva Ma Gálvez
- Instituto de Carboquímica, CSIC, Zaragoza, Spain
- Immune Effector Cells Group, Aragón Health Research Institute, Biomedical Research Centre of Aragón, Zaragoza, Spain
| | - Arthur Chiou
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
- Biophotonics & Molecular Imaging Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
25
|
Eble JA, de Rezende FF. Redox-relevant aspects of the extracellular matrix and its cellular contacts via integrins. Antioxid Redox Signal 2014; 20:1977-93. [PMID: 24040997 PMCID: PMC3993061 DOI: 10.1089/ars.2013.5294] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 08/29/2013] [Accepted: 09/16/2013] [Indexed: 12/30/2022]
Abstract
SIGNIFICANCE The extracellular matrix (ECM) fulfills essential functions in multicellular organisms. It provides the mechanical scaffold and environmental cues to cells. Upon cell attachment, the ECM signals into the cells. In this process, reactive oxygen species (ROS) are physiologically used as signalizing molecules. RECENT ADVANCES ECM attachment influences the ROS-production of cells. In turn, ROS affect the production, assembly and turnover of the ECM during wound healing and matrix remodeling. Pathological changes of ROS levels lead to excess ECM production and increased tissue contraction in fibrotic disorders and desmoplastic tumors. Integrins are cell adhesion molecules which mediate cell adhesion and force transmission between cells and the ECM. They have been identified as a target of redox-regulation by ROS. Cysteine-based redox-modifications, together with structural data, highlighted particular regions within integrin heterodimers that may be subject to redox-dependent conformational changes along with an alteration of integrin binding activity. CRITICAL ISSUES In a molecular model, a long-range disulfide-bridge within the integrin β-subunit and disulfide bridges within the genu and calf-2 domains of the integrin α-subunit may control the transition between the bent/inactive and upright/active conformation of the integrin ectodomain. These thiol-based intramolecular cross-linkages occur in the stalk domain of both integrin subunits, whereas the ligand-binding integrin headpiece is apparently unaffected by redox-regulation. FUTURE DIRECTIONS Redox-regulation of the integrin activation state may explain the effect of ROS in physiological processes. A deeper understanding of the underlying mechanism may open new prospects for the treatment of fibrotic disorders.
Collapse
Affiliation(s)
- Johannes A. Eble
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
- Excellence Cluster Cardio-Pulmonary System, Center for Molecular Medicine, Vascular Matrix Biology, Frankfurt University Hospital, Frankfurt/Main, Germany
| | - Flávia Figueiredo de Rezende
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
- Excellence Cluster Cardio-Pulmonary System, Center for Molecular Medicine, Vascular Matrix Biology, Frankfurt University Hospital, Frankfurt/Main, Germany
| |
Collapse
|
26
|
Suhre MH, Scheibel T. Structural diversity of a collagen-binding matrix protein from the byssus of blue mussels upon refolding. J Struct Biol 2014; 186:75-85. [DOI: 10.1016/j.jsb.2014.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/14/2014] [Accepted: 02/20/2014] [Indexed: 01/11/2023]
|
27
|
Liddington RC. Structural aspects of integrins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 819:111-26. [PMID: 25023171 DOI: 10.1007/978-94-017-9153-3_8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Structural studies on integrins have recently made great strides in recent years. Crystal structures of the complete extracellular fragments of three integrins in open and closed conformations, 6 α-I domains in complex with ligands, and at least 20 intracellular proteins in complex with cytosolic tails have been obtained; and several transmembrane and cytosolic complexes have been determined by NMR. High resolution EM studies complement these atomic resolution techniques by studying the integrin in different activation states. Although we still have only a few experimental examples among integrin family members, the high level of sequence homology between integrins means that reliable models can be built for the other members of the integrin family. These structures make sense of a lot of preceding biochemical, biophysical and mutagenesis studies, and generate many new testable hypotheses of integrin function. This chapter emphasizes new structural insights applicable to all integrins, with an emphasis on those integrins that contain an α-I domain. The structural data reinforce the notion of the integrin as a molecule in dynamic equilibrium at the cell surface, regulated by binding both to extracellular and intracellular ligands.
Collapse
Affiliation(s)
- Robert C Liddington
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA,
| |
Collapse
|
28
|
Abstract
In humans, an ~200-residue "inserted" I domain, a von Willebrand factor A domain (vWFA), buds out from the β-propeller domain in 9 of 18 integrin α subunits. The vWFA domain is not unique to the α subunit as it is an integral part of all integrin β subunits and many other proteins. The βI domain has always been a component of integrins but the αI domain makes its appearance relatively late, in early chordates, since it is found in tunicates and later diverging species. The tunicate αI domains are distinct from the human collagen and leukocyte recognizing integrin α subunits, but fragments of integrins from agnathastomes suggest that the human-type αI domains arose in an ancestor of the very first vertebrate species. The rise of integrins with αI domains parallels the enormous changes in body plan and systemic development of the chordate line that began some 550 million or more years ago.
Collapse
|
29
|
Tokat B, Kurt O, Bugra Z, Ozturk O, Yilmaz-Aydogan H. Investigation of the monocyte diapedesis-related LFA-1 and JAM-A gene variants in Turkish coronary heart disease patients. Meta Gene 2013; 2:1-10. [PMID: 25606383 PMCID: PMC4287794 DOI: 10.1016/j.mgene.2013.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 02/04/2023] Open
Abstract
Background LFA-1/JAM-A interaction plays a significant role in early steps of leukocyte transendothelial migration (diapedesis) which takes part in atherosclerosis pathogenesis. In this population-based case–control study, the frequencies of JAM-A rs790056 and LFA-1 rs8058823 gene polymorphisms in patients with coronary heart disease (CHD) and healthy subjects were investigated and the correlations between the different genotypes and cardiovascular risk factors were analyzed. Methods The JAM-A and LFA-1 genotypes were determined in 153 patients with CHD and 124 controls by PCR–RFLP assay. Results In CHD patient group, the frequency of JAM-A rs790056 TT genotype and the frequency of T allele were higher when compared with the control group (p = 0.03 and p = 0.007,respectively). In patient groups, the frequency of LFA-1 rs8058823 AA genotype was higher (p = 0.000), and the frequency of AG genotype was lower when compared with the control group (p = 0.031). In the control group, LFA-1 rs8058823 G allele carriers had higher SBP than subjects with AA genotype (p = 0.038), whereas in the CHD patient group, G allele carriers had lower DBP than subjects with AA genotype (p = 0.007). The multivariate logistic regression analysis confirmed that the JAM-A rs790056 TT genotype (OR = 2.472, p = 0.045) and LFA-1 rs8058823 AA genotype (OR = 6.751, p = 0.000) were risk factors for CHD development. Conclusion These results suggest that the wild type genotypes and alleles of JAM-A rs790056 (TT genotype and T allele) and LFA-1 rs8058823 (AA genotype and A allele) were found to be risk factors for CHD, whereas rare genotypes and alleles were found to be higher in healthy controls thus being protective. JAM-A common genotype and allele were more frequent in CHD group than controls. LFA-1 common genotype was more frequent in CHD group than controls. LFA-1 rare allele had lower DBP than subjects with common genotype. JAM-A and LFA-1 common genotypes were risk factors for CHD development.
Collapse
Key Words
- 3′UTR, 3′-untranslated region
- BMI, body mass index
- CHD, coronary heart disease
- CI, confidence interval
- Coronary heart disease
- DBP, diastolic blood pressure
- Diapedesis
- HDL-C, high density lipoprotein cholesterol
- HWE, Hardy-Weinberg Equilibrium
- JAM-A
- JAM-A, junctional adhesion molecule-A
- LDL-C, low density lipoprotein cholesterol
- LFA-1
- LFA-1, leukocyte function-associated antigen-1
- LVH, left ventricular hypertrophy
- OR, odds ratio
- PCR-RFLP, polymerase chain reaction–restriction fragment length polymorphism
- Polymorphism
- SBP, systolic blood pressure
- SNP, single nucleotide polymorphism
- T2DM, type 2 diabetes mellitus
- TC, total cholesterol
- TG, triglyceride
- VLDL-C, very low density lipoprotein cholesterol
Collapse
Affiliation(s)
- Bengu Tokat
- Department of Molecular Medicine, Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ozlem Kurt
- Department of Biochemistry, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Zehra Bugra
- Department of Cardiology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Oguz Ozturk
- Department of Molecular Medicine, Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Hulya Yilmaz-Aydogan
- Department of Molecular Medicine, Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
30
|
Li N, Mao D, Lü S, Tong C, Zhang Y, Long M. Distinct binding affinities of Mac-1 and LFA-1 in neutrophil activation. THE JOURNAL OF IMMUNOLOGY 2013; 190:4371-81. [PMID: 23514737 DOI: 10.4049/jimmunol.1201374] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Macrophage-1 Ag (Mac-1) and lymphocyte function-associated Ag-1 (LFA-1), two β2 integrins expressed on neutrophils (PMNs), mediate PMN recruitment cascade by binding to intercellular adhesive molecule 1. Distinct functions of LFA-1-initiating PMN slow rolling and firm adhesion but Mac-1-mediating cell crawling are assumed to be governed by the differences in their binding affinities and kinetic rates. In this study, we applied an adhesion frequency approach to compare their kinetics in the quiescent and activated states using three molecular systems, constitutively expressed receptors on PMNs, wild-type and high-affinity (HA) full-length constructs transfected on 293T cells, and wild-type and HA recombinant extracellular constructs. Data indicate that the difference in binding affinity between Mac-1 and LFA-1 is on-rate dominated with slightly or moderately varied off-rate. This finding was further confirmed when both β2 integrins were activated by chemokines (fMLF or IL-8), divalent cations (Mg(2+) or Mn(2+)), or disulfide bond lockage on an HA state. Structural analyses reveal that such the kinetics difference is likely attributed to the distinct conformations at the interface of Mac-1 or LFA-1 and intercellular adhesive molecule 1. This work furthers the understandings in the kinetic differences between Mac-1 and LFA-1 and in their biological correlations with molecular activation and structural bases.
Collapse
Affiliation(s)
- Ning Li
- Key Laboratory of Microgravity (National Microgravity Laboratory) and Center of Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Chen G, Dimitriou I, Milne L, Lang KS, Lang PA, Fine N, Ohashi PS, Kubes P, Rottapel R. The 3BP2 adapter protein is required for chemoattractant-mediated neutrophil activation. THE JOURNAL OF IMMUNOLOGY 2012; 189:2138-50. [PMID: 22815290 DOI: 10.4049/jimmunol.1103184] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
3BP2 is a pleckstrin homology and Src homology 2 domain-containing adapter protein mutated in cherubism, a rare autosomal-dominant human bone disorder. Previously, we have demonstrated a functional role for 3BP2 in peripheral B cell development and in peritoneal B1 and splenic marginal zone B cell-mediated Ab responses. In this study, we show that 3BP2 is required for G protein-coupled receptor-mediated neutrophil functions. Neutrophils derived from 3BP2-deficient (Sh3bp2-/-) mice failed to polarize their actin cytoskeleton or migrate in response to a gradient of chemotactic peptide, fMLF. Sh3bp2-/- neutrophils failed to adhere, crawl, and emigrate out of the vasculature in response to fMLF superfusion. 3BP2 is required for optimal activation of Src family kinases, small GTPase Rac2, neutrophil superoxide anion production, and for Listeria monocytogenes bacterial clearance in vivo. The functional defects observed in Sh3bp2-/- neutrophils may partially be explained by the failure to fully activate Vav1 guanine nucleotide exchange factor and properly localize P-Rex1 guanine nucleotide exchange factor at the leading edge of migrating cells. Our results reveal an obligate requirement for the adapter protein 3BP2 in G protein-coupled receptor-mediated neutrophil function.
Collapse
Affiliation(s)
- Grace Chen
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 148, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
The leucocyte β2 (CD18) integrins: the structure, functional regulation and signalling properties. Biosci Rep 2012; 32:241-69. [PMID: 22458844 DOI: 10.1042/bsr20110101] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Leucocytes are highly motile cells. Their ability to migrate into tissues and organs is dependent on cell adhesion molecules. The integrins are a family of heterodimeric transmembrane cell adhesion molecules that are also signalling receptors. They are involved in many biological processes, including the development of metazoans, immunity, haemostasis, wound healing and cell survival, proliferation and differentiation. The leucocyte-restricted β2 integrins comprise four members, namely αLβ2, αMβ2, αXβ2 and αDβ2, which are required for a functional immune system. In this paper, the structure, functional regulation and signalling properties of these integrins are reviewed.
Collapse
|
34
|
Lahti M, Bligt E, Niskanen H, Parkash V, Brandt AM, Jokinen J, Patrikainen P, Käpylä J, Heino J, Salminen TA. Structure of collagen receptor integrin α(1)I domain carrying the activating mutation E317A. J Biol Chem 2011; 286:43343-51. [PMID: 22030389 PMCID: PMC3234817 DOI: 10.1074/jbc.m111.261909] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 10/07/2011] [Indexed: 11/06/2022] Open
Abstract
We have analyzed the structure and function of the integrin α(1)I domain harboring a gain-of-function mutation E317A. To promote protein crystallization, a double variant with an additional C139S mutation was used. In cell adhesion assays, the E317A mutation promoted binding to collagen. Similarly, the double mutation C139S/E317A increased adhesion compared with C139S alone. Furthermore, soluble α(1)I C139S/E317A was a higher avidity collagen binder than α(1)I C139S, indicating that the double variant represents an activated form. The crystal structure of the activated variant of α(1)I was solved at 1.9 Å resolution. The E317A mutation results in the unwinding of the αC helix, but the metal ion has moved toward loop 1, instead of loop 2 in the open α(2)I. Furthermore, unlike in the closed αI domains, the metal ion is pentacoordinated and, thus, prepared for ligand binding. Helix 7, which has moved downward in the open α(2)I structure, has not changed its position in the activated α(1)I variant. During the integrin activation, Glu(335) on helix 7 binds to the metal ion at the metal ion-dependent adhesion site (MIDAS) of the β(1) subunit. Interestingly, in our cell adhesion assays E317A could activate collagen binding even after mutating Glu(335). This indicates that the stabilization of helix 7 into its downward position is not required if the α(1) MIDAS is already open. To conclude, the activated α(1)I domain represents a novel conformation of the αI domain, mimicking the structural state where the Arg(287)-Glu(317) ion pair has just broken during the integrin activation.
Collapse
Affiliation(s)
- Matti Lahti
- From the Department of Biochemistry and Food Chemistry, University of Turku, Turku FI-20014, Finland and
| | - Eva Bligt
- the Structural Bioinformatics Laboratory, Department of Biosciences, Åbo Akademi University, Turku FI-20520, Finland
| | - Henri Niskanen
- From the Department of Biochemistry and Food Chemistry, University of Turku, Turku FI-20014, Finland and
| | - Vimal Parkash
- the Structural Bioinformatics Laboratory, Department of Biosciences, Åbo Akademi University, Turku FI-20520, Finland
| | - Anna-Maria Brandt
- the Structural Bioinformatics Laboratory, Department of Biosciences, Åbo Akademi University, Turku FI-20520, Finland
| | - Johanna Jokinen
- From the Department of Biochemistry and Food Chemistry, University of Turku, Turku FI-20014, Finland and
| | - Pekka Patrikainen
- From the Department of Biochemistry and Food Chemistry, University of Turku, Turku FI-20014, Finland and
| | - Jarmo Käpylä
- From the Department of Biochemistry and Food Chemistry, University of Turku, Turku FI-20014, Finland and
| | - Jyrki Heino
- From the Department of Biochemistry and Food Chemistry, University of Turku, Turku FI-20014, Finland and
| | - Tiina A. Salminen
- the Structural Bioinformatics Laboratory, Department of Biosciences, Åbo Akademi University, Turku FI-20520, Finland
| |
Collapse
|
35
|
Xiang X, Lee CY, Li T, Chen W, Lou J, Zhu C. Structural basis and kinetics of force-induced conformational changes of an αA domain-containing integrin. PLoS One 2011; 6:e27946. [PMID: 22140490 PMCID: PMC3225382 DOI: 10.1371/journal.pone.0027946] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 10/28/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Integrin α(L)β₂ (lymphocyte function-associated antigen, LFA-1) bears force upon binding to its ligand intercellular adhesion molecule 1 (ICAM-1) when a leukocyte adheres to vascular endothelium or an antigen presenting cell (APC) during immune responses. The ligand binding propensity of LFA-1 is related to its conformations, which can be regulated by force. Three conformations of the LFA-1 αA domain, determined by the position of its α₇-helix, have been suggested to correspond to three different affinity states for ligand binding. METHODOLOGY/PRINCIPAL FINDINGS The kinetics of the force-driven transitions between these conformations has not been defined and dynamically coupled to the force-dependent dissociation from ligand. Here we show, by steered molecular dynamics (SMD) simulations, that the αA domain was successively transitioned through three distinct conformations upon pulling the C-terminus of its α₇-helix. Based on these sequential transitions, we have constructed a mathematical model to describe the coupling between the αA domain conformational changes of LFA-1 and its dissociation from ICAM-1 under force. Using this model to analyze the published data on the force-induced dissociation of single LFA-1/ICAM-1 bonds, we estimated the force-dependent kinetic rates of interstate transition from the short-lived to intermediate-lived and from intermediate-lived to long-lived states. Interestingly, force increased these transition rates; hence activation of LFA-1 was accelerated by pulling it via an engaged ICAM-1. CONCLUSIONS/SIGNIFICANCE Our study defines the structural basis for mechanical regulation of the kinetics of LFA-1 αA domain conformational changes and relates these simulation results to experimental data of force-induced dissociation of single LFA-1/ICAM-1 bonds by a new mathematical model, thus provided detailed structural and kinetic characterizations for force-stabilization of LFA-1/ICAM-1 interaction.
Collapse
Affiliation(s)
- Xue Xiang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Cho-yin Lee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Tian Li
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wei Chen
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Jizhong Lou
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
36
|
Mao D, Lü S, Li N, Zhang Y, Long M. Conformational stability analyses of alpha subunit I domain of LFA-1 and Mac-1. PLoS One 2011; 6:e24188. [PMID: 21909384 PMCID: PMC3164198 DOI: 10.1371/journal.pone.0024188] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 08/02/2011] [Indexed: 12/05/2022] Open
Abstract
β₂ integrin of lymphocyte function-associated antigen-1 (LFA-1) or macrophage-1 antigen (Mac-1) binds to their common ligand of intercellular adhesion molecule-1 (ICAM-1) and mediates leukocyte-endothelial cell (EC) adhesions in inflammation cascade. Although the two integrins are known to have distinct functions, the corresponding micro-structural bases remain unclear. Here (steered-)molecular dynamics simulations were employed to elucidate the conformational stability of α subunit I domains of LFA-1 and Mac-1 in different affinity states and relevant I domain-ICAM-1 interaction features. Compared with low affinity (LA) Mac-1, the LA LFA-1 I domain was unstable in the presence or absence of ICAM-1 ligand, stemming from diverse orientations of its α₇-helix with different motifs of zipper-like hydrophobic junction between α₁- and α₇-helices. Meanwhile, spontaneous transition of LFA-1 I domain from LA state to intermediate affinity (IA) state was first visualized. All the LA, IA, and high affinity (HA) states of LFA-1 I domain and HA Mac-1 I domain were able to bind to ICAM-1 ligand effectively, while LA Mac-1 I domain was unfavorable for binding ligand presumably due to the specific orientation of S144 side-chain that capped the MIDAS ion. These results furthered our understanding in correlating the structural bases with their functions of LFA-1 and Mac-1 integrins from the viewpoint of I domain conformational stability and of the characteristics of I domain-ICAM-1 interactions.
Collapse
Affiliation(s)
- Debin Mao
- Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing, P. R. China
- National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences, Beijing, P. R. China
- Center of Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, P. R. China
| | - Shouqin Lü
- Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing, P. R. China
- National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences, Beijing, P. R. China
- Center of Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, P. R. China
| | - Ning Li
- Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing, P. R. China
- National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences, Beijing, P. R. China
- Center of Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, P. R. China
| | - Yan Zhang
- Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing, P. R. China
- National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences, Beijing, P. R. China
- Center of Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, P. R. China
| | - Mian Long
- Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing, P. R. China
- National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences, Beijing, P. R. China
- Center of Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
37
|
Manikwar P, Zimmerman T, Blanco F, Williams TD, Siahaan TJ. Rapid identification of fluorochrome modification sites in proteins by LC ESI-Q-TOF mass spectrometry. Bioconjug Chem 2011; 22:1330-6. [PMID: 21612301 PMCID: PMC3140556 DOI: 10.1021/bc100560c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conjugation of either a fluorescent dye or a drug molecule to the ε-amino groups of lysine residues of proteins has many applications in biology and medicine. However, this type of conjugation produces a heterogeneous population of protein conjugates. Because conjugation of fluorochrome or drug molecule to a protein may have deleterious effects on protein function, the identification of conjugation sites is necessary. Unfortunately, the identification process can be time-consuming and laborious; therefore, there is a need to develop a rapid and reliable way to determine the conjugation sites of the fluorescent label or drug molecule. In this study, the sites of conjugation of fluorescein-5'-isothiocyanate and rhodamine-B-isothiocyanate to free amino groups on the insert-domain (I-domain) protein derived from the α-subunit of lymphocyte function-associated antigen-1 (LFA-1) were determined by electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOF MS) along with peptide mapping using trypsin digestion. A reporter fragment of the fluorochrome moiety that is generated in the collision cell of the Q-TOF without explicit MS/MS precursor selection was used to identify the conjugation site. Selected ion plots of the reporter ion readily mark modified peptides in chromatograms of the complex digest. Interrogation of theses spectra reveals a neutral loss/precursor pair that identifies the modified peptide. The results show that one to seven fluorescein molecules or one to four rhodamine molecules were attached to the lysine residue(s) of the I-domain protein. No modifications were found in the metal ion-dependent adhesion site (MIDAS), which is an important binding region of the I-domain.
Collapse
Affiliation(s)
- Prakash Manikwar
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Tahl Zimmerman
- Unidad de Biología Estructural, CIC bioGUNE, 48160 Derio, Bizkaia, Spain
| | - Francisco Blanco
- Unidad de Biología Estructural, CIC bioGUNE, 48160 Derio, Bizkaia, Spain
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Todd D. Williams
- Mass Spectrometry Laboratory, University of Kansas, Lawrence, KS 66045, USA
| | - Teruna J. Siahaan
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| |
Collapse
|
38
|
Abstract
Collagen, the most abundant protein in animals, is a key component of extracellular matrices. Not only do collagens provide essential structural support for connective tissues, but they are also intimately involved in controlling a spectrum of cellular functions such as growth, differentiation, and morphogenesis. All collagens possess triple-helical regions through which they interact with a host of other proteins including cell surface receptors. A structurally diverse group of transmembrane receptors mediates the recognition of the collagen triple helix: integrins, discoidin domain receptors, glycoprotein VI, and leukocyte-associated immunoglobulin-like receptor-1. These collagen receptors regulate a wide range of behaviors including cell adhesion and migration, hemostasis, and immune function. Here these collagen receptors are discussed in terms of their molecular basis of collagen recognition, their signaling and developmental functions, and their roles in disease.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cell Membrane/metabolism
- Collagen/chemistry
- Collagen/metabolism
- Evolution, Molecular
- Extracellular Matrix/metabolism
- Humans
- Integrins/chemistry
- Integrins/genetics
- Integrins/metabolism
- Models, Molecular
- Molecular Sequence Data
- Phylogeny
- Platelet Activation
- Platelet Membrane Glycoproteins/chemistry
- Platelet Membrane Glycoproteins/classification
- Platelet Membrane Glycoproteins/genetics
- Platelet Membrane Glycoproteins/metabolism
- Protein Conformation
- Receptor Protein-Tyrosine Kinases/chemistry
- Receptor Protein-Tyrosine Kinases/classification
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptors, Collagen/chemistry
- Receptors, Collagen/classification
- Receptors, Collagen/genetics
- Receptors, Collagen/metabolism
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/classification
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Birgit Leitinger
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom.
| |
Collapse
|
39
|
Manikwar P, Tejo BA, Shinogle H, Moore DS, Zimmerman T, Blanco F, Siahaan TJ. Utilization of I-domain of LFA-1 to Target Drug and Marker Molecules to Leukocytes. Theranostics 2011; 1:277-89. [PMID: 21611107 PMCID: PMC3100608 DOI: 10.7150/thno/v01p0277] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 05/09/2011] [Indexed: 01/02/2023] Open
Abstract
The long-term objective of this project is to utilize the I-domain protein for the α-subunit of LFA-1 to target drugs to lymphocytes by binding to ICAM receptors on the cell surface. The short-term goal is to provide proof-of-concept that I-domain conjugated to small molecules can still bind to and uptake by ICAM-1 on the surface of lymphocytes (i.e., Raji cells). To accomplish this goal, the I-domain protein was labeled with FITC at several lysine residues to produce the FITC-I-domain and CD spectroscopy showed that the FITC-I-domain has a secondary structure similar to that of the parent I-domain. The FITC-I-domain was taken up by Raji cells via receptor-mediated endocytosis and its uptake can be blocked by anti-I-domain mAb but not by its isotype control. Antibodies to ICAM-1 enhance the binding of I-domain to ICAM-1, suggesting it binds to ICAM-1 at different sites than the antibodies. The results indicate that fluorophore modification does not alter the binding and uptake properties of the I-domain protein. Thus, I-domain could be useful as a carrier of drug to target ICAM-1-expressing lymphocytes.
Collapse
|
40
|
Klatt AR, Becker AKA, Neacsu CD, Paulsson M, Wagener R. The matrilins: Modulators of extracellular matrix assembly. Int J Biochem Cell Biol 2011; 43:320-30. [DOI: 10.1016/j.biocel.2010.12.010] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 12/06/2010] [Accepted: 12/07/2010] [Indexed: 01/30/2023]
|
41
|
Surface plasmon resonance biosensing in studies of the binding between β₂ integrin I domains and their ligands. Methods Mol Biol 2011; 757:55-71. [PMID: 21909906 DOI: 10.1007/978-1-61779-166-6_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Measurements on the kinetic aspects of binding between macromolecular species such as proteins have been greatly advanced by the application of surface plasmon resonance (SPR) biosensors. In studies of ligand binding by integrin I domains, technologies such as the BIAcore instruments have provided important insights into the role of conformational regulation. This chapter describes a protocol for studying the binding between the I domain from integrin α(X)β(2) and its ligand iC3b. Also included are topics on the interpretation of data. Integrin I domains appear to support heterogeneous interactions with ligands, which pose significant challenges in deriving valid information on the binding kinetics from the SPR measurements. Fortunately, new algorithms are available that may resolve even complex ligand-binding reactions; with the application to data on the binding between the α(X) I domain, a more consistent and unambiguous result is obtained compared to those obtained by classical approaches for analyzing SPR biosensor data.
Collapse
|
42
|
Zhang RZ, Zou Y, Pan TC, Markova D, Fertala A, Hu Y, Squarzoni S, Reed UC, Marie SKN, Bönnemann CG, Chu ML. Recessive COL6A2 C-globular missense mutations in Ullrich congenital muscular dystrophy: role of the C2a splice variant. J Biol Chem 2010; 285:10005-10015. [PMID: 20106987 DOI: 10.1074/jbc.m109.093666] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ullrich congenital muscular dystrophy (UCMD) is a disabling and life-threatening disorder resulting from either recessive or dominant mutations in genes encoding collagen VI. Although the majority of the recessive UCMD cases have frameshift or nonsense mutations in COL6A1, COL6A2, or COL6A3, recessive structural mutations in the COL6A2 C-globular region are emerging also. However, the underlying molecular mechanisms have remained elusive. Here we identified a homozygous COL6A2 E624K mutation (C1 subdomain) and a homozygous COL6A2 R876S mutation (C2 subdomain) in two UCMD patients. The consequences of the mutations were investigated using fibroblasts from patients and cells stably transfected with the mutant constructs. In contrast to expectations based on the clinical severity of these two patients, secretion and assembly of collagen VI were moderately affected by the E624K mutation but severely impaired by the R876S substitution. The E624K substitution altered the electrostatic potential of the region surrounding the metal ion-dependent adhesion site, resulting in a collagen VI network containing thick fibrils and spots with densely packed microfibrils. The R876S mutation prevented the chain from assembling into triple-helical collagen VI molecules. The minute amount of collagen VI secreted by the R876S fibroblasts was solely composed of a faster migrating chain corresponding to the C2a splice variant with an alternative C2 subdomain. In transfected cells, the C2a splice variant was able to assemble into short microfibrils. Together, the results suggest that the C2a splice variant may functionally compensate for the loss of the normal COL6A2 chain when mutations occur in the C2 subdomain.
Collapse
Affiliation(s)
- Rui-Zhu Zhang
- Departments of Dermatology and Cutaneous Biology, Philadelphia, Pennsylvania 19107
| | - Yaqun Zou
- Division of Neurology, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Te-Cheng Pan
- Departments of Dermatology and Cutaneous Biology, Philadelphia, Pennsylvania 19107
| | - Dessislava Markova
- Departments of Dermatology and Cutaneous Biology, Philadelphia, Pennsylvania 19107
| | - Andrzej Fertala
- Departments of Dermatology and Cutaneous Biology, Philadelphia, Pennsylvania 19107
| | - Ying Hu
- Division of Neurology, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Stefano Squarzoni
- Institute of Molecular Genetics-National Research Council, Unit of Bologna, 40136 Bologna, Italy
| | - Umbertina Conti Reed
- Departamento de Neurologia, Faculdade de Medicina da Universidade de Sao Paulo, O5403-000 Sao Paulo SP, Brazil
| | - Suely K N Marie
- Departamento de Neurologia, Faculdade de Medicina da Universidade de Sao Paulo, O5403-000 Sao Paulo SP, Brazil
| | - Carsten G Bönnemann
- Division of Neurology, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Mon-Li Chu
- Departments of Dermatology and Cutaneous Biology, Philadelphia, Pennsylvania 19107; Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.
| |
Collapse
|
43
|
Izoré T, Contreras-Martel C, El Mortaji L, Manzano C, Terrasse R, Vernet T, Di Guilmi AM, Dessen A. Structural Basis of Host Cell Recognition by the Pilus Adhesin from Streptococcus pneumoniae. Structure 2010; 18:106-15. [DOI: 10.1016/j.str.2009.10.019] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 09/29/2009] [Accepted: 10/22/2009] [Indexed: 12/22/2022]
|
44
|
Hachuła B, Pędras M, Nowak M, Kusz J, Skrzypek D, Borek J, Pentak D. Synthesis, crystal structure, spectroscopic, and magnetic properties of a manganese(II) methoxyacetate complex [Mn(C6O6H10)(H2O)]n. J COORD CHEM 2009. [DOI: 10.1080/00958970903315535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Barbara Hachuła
- a Institute of Chemistry, University of Silesia , 9 Szkolna Street, 40-006 Katowice , Poland
| | - Monika Pędras
- a Institute of Chemistry, University of Silesia , 9 Szkolna Street, 40-006 Katowice , Poland
| | - Maria Nowak
- b Institute of Physics, University of Silesia , 4 Uniwersytecka Street, 40-007 Katowice , Poland
| | - Joachim Kusz
- b Institute of Physics, University of Silesia , 4 Uniwersytecka Street, 40-007 Katowice , Poland
| | - Danuta Skrzypek
- b Institute of Physics, University of Silesia , 4 Uniwersytecka Street, 40-007 Katowice , Poland
| | - Jerzy Borek
- a Institute of Chemistry, University of Silesia , 9 Szkolna Street, 40-006 Katowice , Poland
| | - Danuta Pentak
- a Institute of Chemistry, University of Silesia , 9 Szkolna Street, 40-006 Katowice , Poland
| |
Collapse
|
45
|
Raemer PC, Kohl K, Watzl C. Statins inhibit NK‐cell cytotoxicity by interfering with LFA‐1‐mediated conjugate formation. Eur J Immunol 2009; 39:1456-65. [DOI: 10.1002/eji.200838863] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
46
|
Efalizumab binding to the LFA-1 alphaL I domain blocks ICAM-1 binding via steric hindrance. Proc Natl Acad Sci U S A 2009; 106:4349-54. [PMID: 19258452 DOI: 10.1073/pnas.0810844106] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lymphocyte function-associated antigen 1 (LFA-1) plays important roles in immune cell adhesion, trafficking, and activation and is a therapeutic target for the treatment of multiple autoimmune diseases. Efalizumab is one of the most efficacious antibody drugs for treating psoriasis, a very common skin disease, through inhibition of the binding of LFA-1 to the ligand intercellular adhesion molecule 1 (ICAM-1). We report here the crystal structures of the Efalizumab Fab alone and in complex with the LFA-1 alpha(L) I domain, which reveal the molecular mechanism of inhibition of LFA-1 by Efalizumab. The Fab binds with an epitope on the inserted (I) domain that is distinct from the ligand-binding site. Efalizumab binding blocks the binding of LFA-1 to ICAM-1 via steric hindrance between its light chain and ICAM-1 domain 2 and thus inhibits the activities of LFA-1. These results have important implications for the development of improved antibodies and new therapeutic strategies for the treatment of autoimmune diseases.
Collapse
|
47
|
|
48
|
Hagenau A, Scheidt HA, Serpell L, Huster D, Scheibel T. Structural Analysis of Proteinaceous Components in Byssal Threads of the MusselMytilus galloprovincialis. Macromol Biosci 2009; 9:162-8. [DOI: 10.1002/mabi.200800271] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
49
|
Integrins during evolution: evolutionary trees and model organisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:779-89. [PMID: 19161977 DOI: 10.1016/j.bbamem.2008.12.013] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 12/03/2008] [Accepted: 12/23/2008] [Indexed: 11/23/2022]
Abstract
The integrins form a large family of cell adhesion receptors. All multicellular animals express integrins, indicating that the family evolved relatively early in the history of metazoans, and homologous sequences of the component domains of integrin alpha and beta subunits are seen in prokaryotes. Some integrins, however, seem to be much younger. For example, the alphaI domain containing integrins, including collagen receptors and leukocyte integrins, have been found in chordates only. Here, we will discuss what conclusions can be drawn about integrin function by studying the evolutionary conservation of integrins. We will also look at how studying integrins in organisms such as the fruit fly and mouse has helped our understanding of integrin evolution-function relationships. As an illustration of this, we will summarize the current understanding of integrin involvement in skeletal muscle formation.
Collapse
|
50
|
Chapter 5 Cytoskeletal Interactions with Leukocyte and Endothelial Cell Adhesion Molecules. CURRENT TOPICS IN MEMBRANES 2009. [DOI: 10.1016/s1063-5823(09)64005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|