1
|
Alexander MR, Edwards TL, Harrison DG. GWAS for Defining the Pathogenesis of Hypertension: Have They Delivered? Hypertension 2025; 82:573-582. [PMID: 39936322 PMCID: PMC11922662 DOI: 10.1161/hypertensionaha.124.23451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Genome-wide association studies have identified >3500 associated single nucleotide polymorphisms and over 1000 independent loci associated with hypertension. These individually have small effect sizes, and few associated loci have been experimentally tested for causal roles in hypertension using animal models or in humans. Thus, methods to prioritize and maximize the relevance of identified single nucleotide polymorphisms and associated loci are critical to determine their importance in hypertension. We propose several approaches to aid in these efforts, including: (1) integration of genome-wide association study data with multiomic data sets, including proteomics, transcriptomics, and epigenomics, (2) utilizing linked clinical and genetic data sets to determine genetic contributions to hypertension subphenotypes with distinct drivers, and (3) performing whole exome/genome sequencing on cohorts of individuals with severe hypertension to enrich for rare variants with larger effect sizes. Rather than creating longer lists of hypertension-associated single nucleotide polymorphisms, these approaches are needed to identify key mediators of hypertension pathophysiology.
Collapse
Affiliation(s)
- Matthew R Alexander
- Department of Medicine, Division of Clinical Pharmacology (M.R.A., D.G.H.), Vanderbilt University Medical Center, Nashville, TN
- Division of Cardiovascular Medicine (M.R.A., D.G.H.), Vanderbilt University Medical Center, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN (M.R.A., D.G.H.)
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN (M.R.A., D.G.H.)
| | - Todd L Edwards
- Division of Epidemiology, Department of Medicine (T.L.E.), Vanderbilt University Medical Center, Nashville, TN
| | - David G Harrison
- Department of Medicine, Division of Clinical Pharmacology (M.R.A., D.G.H.), Vanderbilt University Medical Center, Nashville, TN
- Division of Cardiovascular Medicine (M.R.A., D.G.H.), Vanderbilt University Medical Center, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN (M.R.A., D.G.H.)
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN (M.R.A., D.G.H.)
| |
Collapse
|
2
|
Zhang Y, Morris R, Brown GJ, Lorenzo AMD, Meng X, Kershaw NJ, Kiridena P, Burgio G, Gross S, Cappello JY, Shen Q, Wang H, Turnbull C, Lea-Henry T, Stanley M, Yu Z, Ballard FD, Chuah A, Lee JC, Hatch AM, Enders A, Masters SL, Headley AP, Trnka P, Mallon D, Fletcher JT, Walters GD, Šestan M, Jelušić M, Cook MC, Athanasopoulos V, Fulcher DA, Babon JJ, Vinuesa CG, Ellyard JI. Rare SH2B3 coding variants in lupus patients impair B cell tolerance and predispose to autoimmunity. J Exp Med 2024; 221:e20221080. [PMID: 38417019 PMCID: PMC10901239 DOI: 10.1084/jem.20221080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 03/14/2023] [Accepted: 01/17/2024] [Indexed: 03/01/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease with a clear genetic component. While most SLE patients carry rare gene variants in lupus risk genes, little is known about their contribution to disease pathogenesis. Amongst them, SH2B3-a negative regulator of cytokine and growth factor receptor signaling-harbors rare coding variants in over 5% of SLE patients. Here, we show that unlike the variant found exclusively in healthy controls, SH2B3 rare variants found in lupus patients are predominantly hypomorphic alleles, failing to suppress IFNGR signaling via JAK2-STAT1. The generation of two mouse lines carrying patients' variants revealed that SH2B3 is important in limiting the number of immature and transitional B cells. Furthermore, hypomorphic SH2B3 was shown to impair the negative selection of immature/transitional self-reactive B cells and accelerate autoimmunity in sensitized mice, at least in part due to increased IL-4R signaling and BAFF-R expression. This work identifies a previously unappreciated role for SH2B3 in human B cell tolerance and lupus risk.
Collapse
Affiliation(s)
- Yaoyuan Zhang
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Rhiannon Morris
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Grant J. Brown
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Ayla May D. Lorenzo
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Xiangpeng Meng
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Nadia J. Kershaw
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Pamudika Kiridena
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Gaétan Burgio
- Division of Genome Sciences and Cancer, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Simon Gross
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Jean Y. Cappello
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Qian Shen
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Francis Crick Institute, London, UK
| | - Hao Wang
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Francis Crick Institute, London, UK
| | - Cynthia Turnbull
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Tom Lea-Henry
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- The Canberra Hospital, Garran, Australia
| | - Maurice Stanley
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Zhijia Yu
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Fiona D. Ballard
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Aaron Chuah
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - James C. Lee
- Francis Crick Institute, London, UK
- Department of Gastroenterology, Division of Medicine, Institute for Liver and Digestive Health, University College London, London, UK
| | - Ann-Maree Hatch
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- The Canberra Hospital, Garran, Australia
| | - Anselm Enders
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Seth L. Masters
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | | | - Peter Trnka
- Queensland Children’s Hospital, South Brisbane, Australia
| | | | | | | | - Mario Šestan
- Department of Pediatrics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Marija Jelušić
- Department of Pediatrics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Matthew C. Cook
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- The Canberra Hospital, Garran, Australia
- Cambridge Institute for Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK
| | - Vicki Athanasopoulos
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - David A. Fulcher
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Jeffrey J. Babon
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Carola G. Vinuesa
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Francis Crick Institute, London, UK
| | - Julia I. Ellyard
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| |
Collapse
|
3
|
López-Mejía JA, Mantilla-Ollarves JC, Rocha-Zavaleta L. Modulation of JAK-STAT Signaling by LNK: A Forgotten Oncogenic Pathway in Hormone Receptor-Positive Breast Cancer. Int J Mol Sci 2023; 24:14777. [PMID: 37834225 PMCID: PMC10573125 DOI: 10.3390/ijms241914777] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Breast cancer remains the most frequently diagnosed cancer in women worldwide. Tumors that express hormone receptors account for 75% of all cases. Understanding alternative signaling cascades is important for finding new therapeutic targets for hormone receptor-positive breast cancer patients. JAK-STAT signaling is commonly activated in hormone receptor-positive breast tumors, inducing inflammation, proliferation, migration, and treatment resistance in cancer cells. In hormone receptor-positive breast cancer, the JAK-STAT cascade is stimulated by hormones and cytokines, such as prolactin and IL-6. In normal cells, JAK-STAT is inhibited by the action of the adaptor protein, LNK. However, the role of LNK in breast tumors is not fully understood. This review compiles published reports on the expression and activation of the JAK-STAT pathway by IL-6 and prolactin and potential inhibition of the cascade by LNK in hormone receptor-positive breast cancer. Additionally, it includes analyses of available datasets to determine the level of expression of LNK and various members of the JAK-STAT family for the purpose of establishing associations between expression and clinical outcomes. Together, experimental evidence and in silico studies provide a better understanding of the potential implications of the JAK-STAT-LNK loop in hormone receptor-positive breast cancer progression.
Collapse
Affiliation(s)
- José A. López-Mejía
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 03100, Mexico; (J.A.L.-M.); (J.C.M.-O.)
| | - Jessica C. Mantilla-Ollarves
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 03100, Mexico; (J.A.L.-M.); (J.C.M.-O.)
| | - Leticia Rocha-Zavaleta
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 03100, Mexico; (J.A.L.-M.); (J.C.M.-O.)
- Programa Institucional de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 03100, Mexico
| |
Collapse
|
4
|
Esmaeilzadeh H, Chavoshzadeh Z, Nabavizadeh SH, Alyasin S, Amanati A, Askarisarvestani A. Systemic aspergillosis in a patient with interferon gamma receptor 1 deficiency; a case report. BMC Pediatr 2023; 23:278. [PMID: 37277724 DOI: 10.1186/s12887-023-04093-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/25/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Interferon-gamma receptor deficiency is a heterogeneous spectrum of disease which involves mutations in IFNGR1, IFNGR2 genes, and the downstream signaling proteins such as STAT1. These mutations are associated with immunodeficiency 27 A and 27B, making the patient prone to mycobacterial infections. Patients with this condition are also at increased risk for affliction with viral and bacterial infections, such as with the Herpesviridae family, Listeria, and Salmonella. Moreover, SH2B3 mutation is associated with autoimmune and lymphoproliferative conditions. CASE PRESENTATION the patient was a 19-month-old infant girl who presented with a two-week history of fever. She had near-normal flowcytometry with high IgM and IgE. She had pneumonic infiltration in her chest and right hilar and para-aortic lymphadenopathy. PCR of whole blood for Aspergillus fumigatus came back positive. In her Whole Exome Sequencing she had IFNGR1 and SH2B3 mutations. CONCLUSION systemic fungal infections such as Aspergillosis can occur in patients with interferon-gamma receptor one deficiency. This type of immunodeficiency should be considered in treating patients with systemic Aspergillosis.
Collapse
Affiliation(s)
- Hossein Esmaeilzadeh
- Division of Allergy and Clinical Immunology, Department of Pediatrics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Allergy Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Chavoshzadeh
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Mofid Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Hesamedin Nabavizadeh
- Division of Allergy and Clinical Immunology, Department of Pediatrics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Allergy Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soheila Alyasin
- Division of Allergy and Clinical Immunology, Department of Pediatrics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Allergy Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Amanati
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Askarisarvestani
- Division of Allergy and Clinical Immunology, Department of Pediatrics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Morris R, Butler L, Perkins A, Kershaw NJ, Babon JJ. The Role of LNK (SH2B3) in the Regulation of JAK-STAT Signalling in Haematopoiesis. Pharmaceuticals (Basel) 2021; 15:ph15010024. [PMID: 35056081 PMCID: PMC8781068 DOI: 10.3390/ph15010024] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 01/05/2023] Open
Abstract
LNK is a member of the SH2B family of adaptor proteins and is a non-redundant regulator of cytokine signalling. Cytokines are secreted intercellular messengers that bind to specific receptors on the surface of target cells to activate the Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) signalling pathway. Activation of the JAK-STAT pathway leads to proliferative and often inflammatory effects, and so the amplitude and duration of signalling are tightly controlled. LNK binds phosphotyrosine residues to signalling proteins downstream of cytokines and constrains JAK-STAT signalling. Mutations in LNK have been identified in a range of haematological and inflammatory diseases due to increased signalling following the loss of LNK function. Here, we review the regulation of JAK-STAT signalling via the adaptor protein LNK and discuss the role of LNK in haematological diseases.
Collapse
Affiliation(s)
- Rhiannon Morris
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; (R.M.); (N.J.K.)
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Liesl Butler
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3001, Australia; (L.B.); (A.P.)
- Alfred Health, Melbourne, VIC 3001, Australia
| | - Andrew Perkins
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3001, Australia; (L.B.); (A.P.)
- Alfred Health, Melbourne, VIC 3001, Australia
| | - Nadia J. Kershaw
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; (R.M.); (N.J.K.)
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Jeffrey J. Babon
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; (R.M.); (N.J.K.)
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
- Correspondence: ; Tel.: +61-3-9345-2960; Fax: +61-3-9347-0852
| |
Collapse
|
6
|
Morris R, Zhang Y, Ellyard JI, Vinuesa CG, Murphy JM, Laktyushin A, Kershaw NJ, Babon JJ. Structural and functional analysis of target recognition by the lymphocyte adaptor protein LNK. Nat Commun 2021; 12:6110. [PMID: 34671038 PMCID: PMC8528861 DOI: 10.1038/s41467-021-26394-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/30/2021] [Indexed: 01/17/2023] Open
Abstract
The SH2B family of adaptor proteins, SH2-B, APS, and LNK are key modulators of cellular signalling pathways. Whilst SH2-B and APS have been partially structurally and biochemically characterised, to date there has been no such characterisation of LNK. Here we present two crystal structures of the LNK substrate recognition domain, the SH2 domain, bound to phosphorylated motifs from JAK2 and EPOR, and biochemically define the basis for target recognition. The LNK SH2 domain adopts a canonical SH2 domain fold with an additional N-terminal helix. Targeted analysis of binding to phosphosites in signalling pathways indicated that specificity is conferred by amino acids one- and three-residues downstream of the phosphotyrosine. Several mutations in LNK showed impaired target binding in vitro and a reduced ability to inhibit signalling, allowing an understanding of the molecular basis of LNK dysfunction in variants identified in patients with myeloproliferative disease.
Collapse
Affiliation(s)
- Rhiannon Morris
- grid.1042.7Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Royal Parade, Parkville, VIC 3052 Australia
| | - Yaoyuan Zhang
- grid.1001.00000 0001 2180 7477Australia Department of Immunology and Infectious Diseases, Australian National University, Canberra, ACT Australia ,grid.1001.00000 0001 2180 7477Australia Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT Australia
| | - Julia I. Ellyard
- grid.1001.00000 0001 2180 7477Australia Department of Immunology and Infectious Diseases, Australian National University, Canberra, ACT Australia ,grid.1001.00000 0001 2180 7477Australia Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT Australia
| | - Carola G. Vinuesa
- grid.1001.00000 0001 2180 7477Australia Department of Immunology and Infectious Diseases, Australian National University, Canberra, ACT Australia ,grid.1001.00000 0001 2180 7477Australia Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT Australia
| | - James M. Murphy
- grid.1042.7Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Royal Parade, Parkville, VIC 3052 Australia
| | - Artem Laktyushin
- grid.1042.7Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Royal Parade, Parkville, VIC 3052 Australia
| | - Nadia J. Kershaw
- grid.1042.7Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Royal Parade, Parkville, VIC 3052 Australia
| | - Jeffrey J. Babon
- grid.1042.7Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Royal Parade, Parkville, VIC 3052 Australia
| |
Collapse
|
7
|
Cielo D, Galatola M, Fernandez-Jimenez N, De Leo L, Garcia-Etxebarria K, Loganes C, Tommasini A, Not T, Auricchio R, Greco L, Bilbao JR. Combined Analysis of Methylation and Gene Expression Profiles in Separate Compartments of Small Bowel Mucosa Identified Celiac Disease Patients' Signatures. Sci Rep 2019; 9:10020. [PMID: 31292504 PMCID: PMC6620355 DOI: 10.1038/s41598-019-46468-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 06/14/2019] [Indexed: 02/07/2023] Open
Abstract
By GWAS studies on celiac disease, gene expression was studied at the level of the whole intestinal mucosa, composed by two different compartments: epithelium and lamina propria. Our aim is to analyse the gene-expression and DNA methylation of candidate genes in each of these compartments. Epithelium was separated from lamina propria in biopsies of CeD patients and CTRs using magnetic beads. Gene-expression was analysed by RT-PC; methylation analysis required bisulfite conversion and NGS. Reverse modulation of gene-expression and methylation in the same cellular compartment was observed for the IL21 and SH2B3 genes in CeD patients relative to CTRs. Bioinformatics analysis highlighted the regulatory elements in the genomic region of SH2B3 that altered methylation levels. The cREL and TNFAIP3 genes showed methylation patterns that were significantly different between CeD patients and CTRs. In CeD, the genes linked to inflammatory processes are up-regulated, whereas the genes involved in the cell adhesion/integrity of the intestinal barrier are down-regulated. These findings suggest a correlation between gene-expression and methylation profile for the IL21 and SH2B3 genes. We identified a “gene-expression phenotype” of CeD and showed that the abnormal response to dietary antigens in CeD might be related not to abnormalities of gene structure but to the regulation of molecular pathways.
Collapse
Affiliation(s)
- D Cielo
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy.,European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples "Federico II", Naples, Italy
| | - M Galatola
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy. .,European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples "Federico II", Naples, Italy.
| | - N Fernandez-Jimenez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV-EHU), BioCruces Health Research Institute, Leioa, Spain
| | - L De Leo
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - K Garcia-Etxebarria
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV-EHU), BioCruces Health Research Institute, Leioa, Spain
| | - C Loganes
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - A Tommasini
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - T Not
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV-EHU), BioCruces Health Research Institute, Leioa, Spain.,Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - R Auricchio
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy.,European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples "Federico II", Naples, Italy
| | - L Greco
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy.,European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples "Federico II", Naples, Italy
| | - J R Bilbao
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV-EHU), BioCruces Health Research Institute, Leioa, Spain
| |
Collapse
|
8
|
Phosphorylation of the Unique C-Terminal Tail of the Alpha Isoform of the Scaffold Protein SH2B1 Controls the Ability of SH2B1α To Enhance Nerve Growth Factor Function. Mol Cell Biol 2018; 38:MCB.00277-17. [PMID: 29229648 DOI: 10.1128/mcb.00277-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 12/06/2017] [Indexed: 11/20/2022] Open
Abstract
The scaffold protein SH2B1, a major regulator of body weight, is recruited to the receptors of multiple cytokines and growth factors, including nerve growth factor (NGF). The β isoform but not the α isoform of SH2B1 greatly enhances NGF-dependent neurite outgrowth of PC12 cells. Here, we asked how the unique C-terminal tails of the α and β isoforms modulate SH2B1 function. We compared the actions of SH2B1α and SH2B1β to those of the N-terminal 631 amino acids shared by both isoforms. In contrast to the β tail, the α tail inhibited the ability of SH2B1 to both cycle through the nucleus and enhance NGF-mediated neurite outgrowth, gene expression, phosphorylation of Akt and phospholipase C-gamma (PLC-γ), and autophosphorylation of the NGF receptor TrkA. These functions were restored when Tyr753 in the α tail was mutated to phenylalanine. We provide evidence that TrkA phosphorylates Tyr753 in SH2B1α, as well as tyrosines 439 and 55 in both SH2B1α and SH2B1β. Finally, coexpression of SH2B1α but not SH2B1α with a mutation of Y to F at position 753 (Y753F) inhibited the ability of SH2B1β to enhance neurite outgrowth. These results suggest that the C-terminal tails of SH2B1 isoforms are key determinants of the cellular role of SH2B1. Furthermore, the function of SH2B1α is regulated by phosphorylation of the α tail.
Collapse
|
9
|
Naudin C, Chevalier C, Roche S. The role of small adaptor proteins in the control of oncogenic signalingr driven by tyrosine kinases in human cancer. Oncotarget 2017; 7:11033-55. [PMID: 26788993 PMCID: PMC4905456 DOI: 10.18632/oncotarget.6929] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/01/2016] [Indexed: 12/15/2022] Open
Abstract
Protein phosphorylation on tyrosine (Tyr) residues has evolved as an important mechanism to coordinate cell communication in multicellular organisms. The importance of this process has been revealed by the discovery of the prominent oncogenic properties of tyrosine kinases (TK) upon deregulation of their physiological activities, often due to protein overexpression and/or somatic mutation. Recent reports suggest that TK oncogenic signaling is also under the control of small adaptor proteins. These cytosolic proteins lack intrinsic catalytic activity and signal by linking two functional members of a catalytic pathway. While most adaptors display positive regulatory functions, a small group of this family exerts negative regulatory functions by targeting several components of the TK signaling cascade. Here, we review how these less studied adaptor proteins negatively control TK activities and how their loss of function induces abnormal TK signaling, promoting tumor formation. We also discuss the therapeutic consequences of this novel regulatory mechanism in human oncology.
Collapse
Affiliation(s)
- Cécile Naudin
- CNRS UMR5237, University Montpellier, CRBM, Montpellier, France.,Present address: INSERM U1016, CNRS UMR8104, Institut Cochin, Paris, France
| | - Clément Chevalier
- CNRS UMR5237, University Montpellier, CRBM, Montpellier, France.,Present address: SFR Biosit (UMS CNRS 3480/US INSERM 018), MRic Photonics Platform, University Rennes, Rennes, France
| | - Serge Roche
- CNRS UMR5237, University Montpellier, CRBM, Montpellier, France.,Equipe Labellisée LIGUE 2014, Ligue Contre le Cancer, Paris, France
| |
Collapse
|
10
|
Maslah N, Cassinat B, Verger E, Kiladjian JJ, Velazquez L. The role of LNK/SH2B3 genetic alterations in myeloproliferative neoplasms and other hematological disorders. Leukemia 2017; 31:1661-1670. [PMID: 28484264 DOI: 10.1038/leu.2017.139] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/10/2017] [Accepted: 04/24/2017] [Indexed: 12/11/2022]
Abstract
Malignant hematological diseases are mainly because of the occurrence of molecular abnormalities leading to the deregulation of signaling pathways essential for precise cell behavior. High-resolution genome analysis using microarray and large-scale sequencing have helped identify several important acquired gene mutations that are responsible for such signaling deregulations across different hematological malignancies. In particular, the genetic landscape of classical myeloproliferative neoplasms (MPNs) has been in large part completed with the identification of driver mutations (targeting the cytokine receptor/Janus-activated kinase 2 (JAK2) pathway) that determine MPN phenotype, as well as additional mutations mainly affecting the regulation of gene expression (epigenetics or splicing regulators) and signaling. At present, most efforts concentrate in understanding how all these genetic alterations intertwine together to influence disease evolution and/or dictate clinical phenotype in order to use them to personalize diagnostic and clinical care. However, it is now evident that factors other than somatic mutations also play an important role in MPN disease initiation and progression, among which germline predisposition (single-nucleotide polymorphisms and haplotypes) may strongly influence the occurrence of MPNs. In this context, the LNK inhibitory adaptor protein encoded by the LNK/SH2B adaptor protein 3 (SH2B3) gene is the target of several genetic variations, acquired or inherited in MPNs, lymphoid leukemia and nonmalignant hematological diseases, underlying its importance in these pathological processes. As LNK adaptor is a key regulator of normal hematopoiesis, understanding the consequences of LNK variants on its protein functions and on driver or other mutations could be helpful to correlate genotype and phenotype of patients and to develop therapeutic strategies to target this molecule. In this review we summarize the current knowledge of LNK function in normal hematopoiesis, the different SH2B3 mutations reported to date and discuss how these genetic variations may influence the development of hematological malignancies.
Collapse
Affiliation(s)
- N Maslah
- APHP, Laboratoire de Biologie Cellulaire, Hôpital Saint-Louis, Paris, France.,Inserm UMRS 1131, IUH, Université Paris-Diderot, Paris, France
| | - B Cassinat
- APHP, Laboratoire de Biologie Cellulaire, Hôpital Saint-Louis, Paris, France.,Inserm UMRS 1131, IUH, Université Paris-Diderot, Paris, France
| | - E Verger
- APHP, Laboratoire de Biologie Cellulaire, Hôpital Saint-Louis, Paris, France.,Inserm UMRS 1131, IUH, Université Paris-Diderot, Paris, France
| | - J-J Kiladjian
- Inserm UMRS 1131, IUH, Université Paris-Diderot, Paris, France.,APHP, Centre d'investigations Cliniques, Hôpital Saint-Louis, Paris, France
| | - L Velazquez
- INSERM UMRS-MD1197, Institut André Lwoff/Université Paris XI, Hôpital Paul Brousse, Villejuif, France
| |
Collapse
|
11
|
Olivos DJ, Alvarez M, Cheng YH, Hooker RA, Ciovacco WA, Bethel M, McGough H, Yim C, Chitteti BR, Eleniste PP, Horowitz MC, Srour EF, Bruzzaniti A, Fuchs RK, Kacena MA. Lnk Deficiency Leads to TPO-Mediated Osteoclastogenesis and Increased Bone Mass Phenotype. J Cell Biochem 2017; 118:2231-2240. [PMID: 28067429 DOI: 10.1002/jcb.25874] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/06/2017] [Indexed: 11/11/2022]
Abstract
The Lnk adapter protein negatively regulates the signaling of thrombopoietin (TPO), the main megakaryocyte (MK) growth factor. Lnk-deficient (-/-) mice have increased TPO signaling and increased MK number. Interestingly, several mouse models exist in which increased MK number leads to a high bone mass phenotype. Here we report the bone phenotype of these mice. MicroCT and static histomorphometric analyses at 20 weeks showed the distal femur of Lnk-/- mice to have significantly higher bone volume fraction and trabecular number compared to wild-type (WT) mice. Notably, despite a significant increase in the number of osteoclasts (OC), and decreased bone formation rate in Lnk-/- mice compared to WT mice, Lnk-/- mice demonstrated a 2.5-fold greater BV/TV suggesting impaired OC function in vivo. Additionally, Lnk-/- mouse femurs exhibited non-significant increases in mid-shaft cross-sectional area, yet increased periosteal BFR compared to WT femurs was observed. Lnk-/- femurs also had non-significant increases in polar moment of inertia and decreased cortical bone area and thickness, resulting in reduced bone stiffness, modulus, and strength compared to WT femurs. Of note, Lnk is expressed by OC lineage cells and when Lnk-/- OC progenitors are cultured in the presence of TPO, significantly more OC are observed than in WT cultures. Lnk is also expressed in osteoblast (OB) cells and in vitro reduced alkaline phosphatase activity was observed in Lnk-/- cultures. These data suggest that both direct effects on OB and OC as well as indirect effects of MK in regulating OB contributes to the observed high bone mass. J. Cell. Biochem. 118: 2231-2240, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Olivos
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Marta Alvarez
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ying-Hua Cheng
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Richard Adam Hooker
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Wendy A Ciovacco
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut
| | - Monique Bethel
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Haley McGough
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Christopher Yim
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Pierre P Eleniste
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, Indiana
| | - Mark C Horowitz
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut
| | - Edward F Srour
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Angela Bruzzaniti
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, Indiana
| | - Robyn K Fuchs
- Department of Physical Therapy, Indiana University School of Health and Rehabilitation Sciences, Indianapolis, Indiana
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
12
|
Hao M, Yuan F, Jin C, Zhou Z, Cao Q, Xu L, Wang G, Huang H, Yang D, Xie M, Zhao X. Overexpression of Lnk in the Ovaries Is Involved in Insulin Resistance in Women With Polycystic Ovary Syndrome. Endocrinology 2016; 157:3709-3718. [PMID: 27459314 PMCID: PMC5045500 DOI: 10.1210/en.2016-1234] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Polycystic ovary syndrome (PCOS) progression involves abnormal insulin signaling. SH2 domain-containing adaptor protein (Lnk) may be an important regulator of the insulin signaling pathway. We investigated whether Lnk was involved in insulin resistance (IR). Thirty-seven women due to receive laparoscopic surgery from June 2011 to February 2012 were included from the gynecologic department of the Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University. Samples of polycystic and normal ovary tissues were examined by immunohistochemistry. Ovarian cell lines underwent insulin stimulation and Lnk overexpression. Expressed Lnk underwent coimmunoprecipitation tests with green fluorescent protein-labeled insulin receptor and His-tagged insulin receptor substrate 1 (IRS1), and their colocalization in HEK293T cells was examined. Ovarian tissues from PCOS patients with IR exhibited higher expression of Lnk than ovaries from normal control subjects and PCOS patients without IR; mainly in follicular granulosa cells, the follicular fluid and plasma of oocytes in secondary follicles, and atretic follicles. Lnk was coimmunoprecipitated with insulin receptor and IRS1. Lnk and insulin receptor/IRS1 locations overlapped around the nucleus. IR, protein kinase B (Akt), and ERK1/2 activities were inhibited by Lnk overexpression and inhibited further after insulin stimulation, whereas IRS1 serine activity was increased. Insulin receptor (Tyr1150/1151), Akt (Thr308), and ERK1/2 (Thr202/Tyr204) phosphorylation was decreased, whereas IRS1 (Ser307) phosphorylation was increased with Lnk overexpression. In conclusion, Lnk inhibits the phosphatidylinositol 3 kinase-AKT and MAPK-ERK signaling response to insulin. Higher expression of Lnk in PCOS suggests that Lnk probably plays a role in the development of IR.
Collapse
Affiliation(s)
- Meihua Hao
- Department of Obstetrics and Gynecology (M.H., H.H., D.Y., M.X., X.Z.), Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Pharmacology (F.Y., C.J., G.W.), Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Obstetrics and Gynecology (Z.Z.), Reproductive Medical Center, Peking University Third Hospital, Haidian District, Beijing, China; Division of Hematology/Oncology (Q.C.), Cedar-Sinai Medical Center, University of California, Los Angeles School of Medicine, Los Angeles, California; and Cedar-Sinai Medical Center (L.X.), University of California, Los Angeles School of Medicine, Los Angeles, California
| | - Feng Yuan
- Department of Obstetrics and Gynecology (M.H., H.H., D.Y., M.X., X.Z.), Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Pharmacology (F.Y., C.J., G.W.), Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Obstetrics and Gynecology (Z.Z.), Reproductive Medical Center, Peking University Third Hospital, Haidian District, Beijing, China; Division of Hematology/Oncology (Q.C.), Cedar-Sinai Medical Center, University of California, Los Angeles School of Medicine, Los Angeles, California; and Cedar-Sinai Medical Center (L.X.), University of California, Los Angeles School of Medicine, Los Angeles, California
| | - Chenchen Jin
- Department of Obstetrics and Gynecology (M.H., H.H., D.Y., M.X., X.Z.), Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Pharmacology (F.Y., C.J., G.W.), Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Obstetrics and Gynecology (Z.Z.), Reproductive Medical Center, Peking University Third Hospital, Haidian District, Beijing, China; Division of Hematology/Oncology (Q.C.), Cedar-Sinai Medical Center, University of California, Los Angeles School of Medicine, Los Angeles, California; and Cedar-Sinai Medical Center (L.X.), University of California, Los Angeles School of Medicine, Los Angeles, California
| | - Zehong Zhou
- Department of Obstetrics and Gynecology (M.H., H.H., D.Y., M.X., X.Z.), Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Pharmacology (F.Y., C.J., G.W.), Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Obstetrics and Gynecology (Z.Z.), Reproductive Medical Center, Peking University Third Hospital, Haidian District, Beijing, China; Division of Hematology/Oncology (Q.C.), Cedar-Sinai Medical Center, University of California, Los Angeles School of Medicine, Los Angeles, California; and Cedar-Sinai Medical Center (L.X.), University of California, Los Angeles School of Medicine, Los Angeles, California
| | - Qi Cao
- Department of Obstetrics and Gynecology (M.H., H.H., D.Y., M.X., X.Z.), Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Pharmacology (F.Y., C.J., G.W.), Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Obstetrics and Gynecology (Z.Z.), Reproductive Medical Center, Peking University Third Hospital, Haidian District, Beijing, China; Division of Hematology/Oncology (Q.C.), Cedar-Sinai Medical Center, University of California, Los Angeles School of Medicine, Los Angeles, California; and Cedar-Sinai Medical Center (L.X.), University of California, Los Angeles School of Medicine, Los Angeles, California
| | - Ling Xu
- Department of Obstetrics and Gynecology (M.H., H.H., D.Y., M.X., X.Z.), Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Pharmacology (F.Y., C.J., G.W.), Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Obstetrics and Gynecology (Z.Z.), Reproductive Medical Center, Peking University Third Hospital, Haidian District, Beijing, China; Division of Hematology/Oncology (Q.C.), Cedar-Sinai Medical Center, University of California, Los Angeles School of Medicine, Los Angeles, California; and Cedar-Sinai Medical Center (L.X.), University of California, Los Angeles School of Medicine, Los Angeles, California
| | - Guanlei Wang
- Department of Obstetrics and Gynecology (M.H., H.H., D.Y., M.X., X.Z.), Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Pharmacology (F.Y., C.J., G.W.), Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Obstetrics and Gynecology (Z.Z.), Reproductive Medical Center, Peking University Third Hospital, Haidian District, Beijing, China; Division of Hematology/Oncology (Q.C.), Cedar-Sinai Medical Center, University of California, Los Angeles School of Medicine, Los Angeles, California; and Cedar-Sinai Medical Center (L.X.), University of California, Los Angeles School of Medicine, Los Angeles, California
| | - Hui Huang
- Department of Obstetrics and Gynecology (M.H., H.H., D.Y., M.X., X.Z.), Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Pharmacology (F.Y., C.J., G.W.), Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Obstetrics and Gynecology (Z.Z.), Reproductive Medical Center, Peking University Third Hospital, Haidian District, Beijing, China; Division of Hematology/Oncology (Q.C.), Cedar-Sinai Medical Center, University of California, Los Angeles School of Medicine, Los Angeles, California; and Cedar-Sinai Medical Center (L.X.), University of California, Los Angeles School of Medicine, Los Angeles, California
| | - Dongzi Yang
- Department of Obstetrics and Gynecology (M.H., H.H., D.Y., M.X., X.Z.), Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Pharmacology (F.Y., C.J., G.W.), Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Obstetrics and Gynecology (Z.Z.), Reproductive Medical Center, Peking University Third Hospital, Haidian District, Beijing, China; Division of Hematology/Oncology (Q.C.), Cedar-Sinai Medical Center, University of California, Los Angeles School of Medicine, Los Angeles, California; and Cedar-Sinai Medical Center (L.X.), University of California, Los Angeles School of Medicine, Los Angeles, California
| | - Meiqing Xie
- Department of Obstetrics and Gynecology (M.H., H.H., D.Y., M.X., X.Z.), Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Pharmacology (F.Y., C.J., G.W.), Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Obstetrics and Gynecology (Z.Z.), Reproductive Medical Center, Peking University Third Hospital, Haidian District, Beijing, China; Division of Hematology/Oncology (Q.C.), Cedar-Sinai Medical Center, University of California, Los Angeles School of Medicine, Los Angeles, California; and Cedar-Sinai Medical Center (L.X.), University of California, Los Angeles School of Medicine, Los Angeles, California
| | - Xiaomiao Zhao
- Department of Obstetrics and Gynecology (M.H., H.H., D.Y., M.X., X.Z.), Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Pharmacology (F.Y., C.J., G.W.), Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510120 China; Department of Obstetrics and Gynecology (Z.Z.), Reproductive Medical Center, Peking University Third Hospital, Haidian District, Beijing, China; Division of Hematology/Oncology (Q.C.), Cedar-Sinai Medical Center, University of California, Los Angeles School of Medicine, Los Angeles, California; and Cedar-Sinai Medical Center (L.X.), University of California, Los Angeles School of Medicine, Los Angeles, California
| |
Collapse
|
13
|
Blass G, Mattson DL, Staruschenko A. The function of SH2B3 (LNK) in the kidney. Am J Physiol Renal Physiol 2016; 311:F682-F685. [PMID: 27440780 DOI: 10.1152/ajprenal.00373.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 07/13/2016] [Indexed: 01/11/2023] Open
Abstract
Recent evidence indicates the adaptor protein SH2B3 has a major role in the progression of renal diseases. SH2B3 is highly expressed by hematopoietic cells and regulates cytokine signaling, inducing cell-specific effects. Additionally, its expression in other cell types suggests that SH2B3 may have a more extensive role within the kidney. Ex vivo studies have determined targets of SH2B3 cell-specific signaling, while in vivo studies have observed the SH2B3 overall affects in the progression of renal diseases. This mini-review covers the function of SH2B3-expressing cell types that contribute to renal pathologies and their regulation by SH2B3.
Collapse
Affiliation(s)
- Gregory Blass
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - David L Mattson
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | |
Collapse
|
14
|
Li X, Jung JJ, Nie L, Razavian M, Zhang J, Samuel V, Sadeghi MM. The neuropilin-like protein ESDN regulates insulin signaling and sensitivity. Am J Physiol Heart Circ Physiol 2016; 310:H1184-93. [PMID: 26921437 DOI: 10.1152/ajpheart.00782.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/11/2016] [Indexed: 02/01/2023]
Abstract
Insulin effects on cell metabolism, growth, and survival are mediated by its binding to, and activation of, insulin receptor. With increasing prevalence of insulin resistance and diabetes there is considerable interest in identifying novel regulators of insulin signal transduction. The transmembrane protein endothelial and smooth muscle cell-derived neuropilin-like protein (ESDN) is a novel regulator of vascular remodeling and angiogenesis. Here, we investigate a potential role of ESDN in insulin signaling, demonstrating that Esdn gene deletion promotes insulin-induced vascular smooth muscle cell proliferation and migration. This is associated with enhanced protein kinase B and mitogen-activated protein kinase activation as well as insulin receptor phosphorylation. Likewise, insulin signaling in the liver, muscle, and adipose tissue is enhanced in Esdn(-/-) mice, and these animals exhibit improved insulin sensitivity and glucose homeostasis in vivo. The effect of ESDN on insulin signaling is traced back to its interaction with insulin receptor, which alters the receptor interaction with regulatory adaptor protein-E3 ubiquitin ligase pairs, adaptor protein with pleckstrin homology and Src homology 2 domain-c-Cbl and growth factor receptor bound protein 10-neuronal precursor cell-expressed developmentally downregulated 4. In conclusion, our findings establish ESDN as an inhibitor of insulin receptor signal transduction through a novel regulatory mechanism. Loss of ESDN potentiates insulin's metabolic and mitotic effects and provides insights into a novel therapeutic avenue.
Collapse
Affiliation(s)
- Xuan Li
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, Connecticut; Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jae-Joon Jung
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, Connecticut; Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Lei Nie
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, Connecticut; Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut; Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China; and
| | - Mahmoud Razavian
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, Connecticut; Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Jiasheng Zhang
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, Connecticut; Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Varman Samuel
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut; Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Mehran M Sadeghi
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, Connecticut; Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut;
| |
Collapse
|
15
|
McMullin MF, Cario H. LNK mutations and myeloproliferative disorders. Am J Hematol 2016; 91:248-51. [PMID: 26660394 DOI: 10.1002/ajh.24259] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/25/2015] [Accepted: 11/27/2015] [Indexed: 12/15/2022]
Abstract
The lymphocyte adaptor protein (LNK) is one of a family of adaptor proteins involved cell signaling and control of B cell populations. It has a critical role in regulation of signaling in hematopoiesis. Lnk negatively regulates cytokine initiated cell signaling and it functions as a negative regulator of the mutant protein in myeloproliferative neoplasms JAK2V617F. A number of mutations in LNK have been described in a variety of myeloproliferative neoplasms some of which have been demonstrated to cause increased cellular proliferation. The majority of mutations occur in exon 2. In a small number of cases idiopathic erythrocytosis with subnormal erythropoietin levels LNK mutations have been found which may account for the clinical phenotype. Thus investigation for LNK mutations should be considered in the investigation of idiopathic erythrocytosis and perhaps other myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Mary Frances McMullin
- Centre for Cancer Research and Cell Biology, Queen's University; Belfast Northern Ireland
| | - Holger Cario
- Department of Pediatrics and Adolescent Medicine; University Medical Center Ulm; Ulm Germany
| |
Collapse
|
16
|
Zhu X, Fang J, Jiang DS, Zhang P, Zhao GN, Zhu X, Yang L, Wei X, Li H. Exacerbating Pressure Overload-Induced Cardiac Hypertrophy: Novel Role of Adaptor Molecule Src Homology 2-B3. Hypertension 2015; 66:571-581. [PMID: 26101343 DOI: 10.1161/hypertensionaha.115.05183] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/29/2015] [Indexed: 12/22/2022]
Abstract
The adaptor protein Src homology 2-B3 (SH2B3), which belongs to a subfamily of Src homology 2 proteins, is a broad inhibitor of growth factors and cytokine signaling in hematopoietic cells. However, the role of SH2B3 in nonhematopoietic systems, particularly cardiomyocytes, has not been defined. In this study, we observed noticeable increase in SH2B3 protein expression during pathological cardiac remodeling in both humans and rodents. Follow-up in vitro gain- and loss-of-function studies suggested that SH2B3 promotes the cardiomyocyte hypertrophy response. Consistent with the cell phenotype, SH2B3 knockout (SH2B3(-/-)) mice exhibited attenuated cardiac remodeling with preserved cardiac function after chronic pressure overload. Conversely, cardiac-specific SH2B3 overexpression aggravated pressure overload-triggered cardiac hypertrophy, fibrosis, and dysfunction. Mechanistically, SH2B3 accelerates and exacerbates cardiac remodeling through the activation of focal adhesion kinase, which, in turn, activates the prohypertrophic downstream phosphoinositide 3-kinase-AKT-mammalian target of rapamycin/glycogen synthase kinase 3β signaling pathway. Finally, we generated a novel SH2B3 knockout rat line and further confirmed the protective effects of SH2B3 deficiency on cardiac remodeling across species. Collectively, our data indicate that SH2B3 functions as a novel and effective modulator of cardiac remodeling and failure.
Collapse
Affiliation(s)
- Xuehai Zhu
- From the Division of Cardiothoracic and Vascular Surgery, Heart-Lung Transplantation Center, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.Z., J.F., X.W.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.)
| | - Jing Fang
- From the Division of Cardiothoracic and Vascular Surgery, Heart-Lung Transplantation Center, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.Z., J.F., X.W.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.)
| | - Ding-Sheng Jiang
- From the Division of Cardiothoracic and Vascular Surgery, Heart-Lung Transplantation Center, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.Z., J.F., X.W.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.)
| | - Peng Zhang
- From the Division of Cardiothoracic and Vascular Surgery, Heart-Lung Transplantation Center, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.Z., J.F., X.W.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.)
| | - Guang-Nian Zhao
- From the Division of Cardiothoracic and Vascular Surgery, Heart-Lung Transplantation Center, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.Z., J.F., X.W.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.)
| | - Xueyong Zhu
- From the Division of Cardiothoracic and Vascular Surgery, Heart-Lung Transplantation Center, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.Z., J.F., X.W.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.)
| | - Ling Yang
- From the Division of Cardiothoracic and Vascular Surgery, Heart-Lung Transplantation Center, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.Z., J.F., X.W.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.)
| | - Xiang Wei
- From the Division of Cardiothoracic and Vascular Surgery, Heart-Lung Transplantation Center, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.Z., J.F., X.W.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.).
| | - Hongliang Li
- From the Division of Cardiothoracic and Vascular Surgery, Heart-Lung Transplantation Center, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.Z., J.F., X.W.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.).
| |
Collapse
|
17
|
Chen CJ, Shih CH, Chang YJ, Hong SJ, Li TN, Wang LHC, Chen L. SH2B1 and IRSp53 proteins promote the formation of dendrites and dendritic branches. J Biol Chem 2015; 290:6010-21. [PMID: 25586189 DOI: 10.1074/jbc.m114.603795] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SH2B1 is an adaptor protein known to enhance neurite outgrowth. In this study, we provide evidence suggesting that the SH2B1 level is increased during in vitro culture of hippocampal neurons, and the β isoform (SH2B1β) is the predominant isoform. The fact that formation of filopodia is prerequisite for neurite initiation suggests that SH2B1 may regulate filopodium formation and thus neurite initiation. To investigate whether SH2B1 may regulate filopodium formation, the effect of SH2B1 and a membrane and actin regulator, IRSp53 (insulin receptor tyrosine kinase substrate p53), is investigated. Overexpressing both SH2B1β and IRSp53 significantly enhances filopodium formation, neurite outgrowth, and branching. Both in vivo and in vitro data show that SH2B1 interacts with IRSp53 in hippocampal neurons. This interaction depends on the N-terminal proline-rich domains of SH2B1. In addition, SH2B1 and IRSp53 co-localize at the plasma membrane, and their levels increase in the Triton X-100-insoluble fraction of developing neurons. These findings suggest that SH2B1-IRSp53 complexes promote the formation of filopodia, neurite initiation, and neuronal branching.
Collapse
Affiliation(s)
| | | | | | | | | | - Lily Hui-Ching Wang
- Institute of Molecular and Cellular Biology, Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan 30013, China
| | - Linyi Chen
- From the Institute of Molecular Medicine, Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan 30013, China
| |
Collapse
|
18
|
Abstract
The JAK (Janus kinase) family members serve essential roles as the intracellular signalling effectors of cytokine receptors. This family, comprising JAK1, JAK2, JAK3 and TYK2 (tyrosine kinase 2), was first described more than 20 years ago, but the complexities underlying their activation, regulation and pleiotropic signalling functions are still being explored. Here, we review the current knowledge of their physiological functions and the causative role of activating and inactivating JAK mutations in human diseases, including haemopoietic malignancies, immunodeficiency and inflammatory diseases. At the molecular level, recent studies have greatly advanced our knowledge of the structures and organization of the component FERM (4.1/ezrin/radixin/moesin)-SH2 (Src homology 2), pseudokinase and kinase domains within the JAKs, the mechanism of JAK activation and, in particular, the role of the pseudokinase domain as a suppressor of the adjacent tyrosine kinase domain's catalytic activity. We also review recent advances in our understanding of the mechanisms of negative regulation exerted by the SH2 domain-containing proteins, SOCS (suppressors of cytokine signalling) proteins and LNK. These recent studies highlight the diversity of regulatory mechanisms utilized by the JAK family to maintain signalling fidelity, and suggest alternative therapeutic strategies to complement existing ATP-competitive kinase inhibitors.
Collapse
|
19
|
Rui L. SH2B1 regulation of energy balance, body weight, and glucose metabolism. World J Diabetes 2014; 5:511-526. [PMID: 25126397 PMCID: PMC4127586 DOI: 10.4239/wjd.v5.i4.511] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 03/06/2014] [Accepted: 06/03/2014] [Indexed: 02/05/2023] Open
Abstract
The Src homology 2B (SH2B) family members (SH2B1, SH2B2 and SH2B3) are adaptor signaling proteins containing characteristic SH2 and PH domains. SH2B1 (also called SH2-B and PSM) and SH2B2 (also called APS) are able to form homo- or hetero-dimers via their N-terminal dimerization domains. Their C-terminal SH2 domains bind to tyrosyl phosphorylated proteins, including Janus kinase 2 (JAK2), TrkA, insulin receptors, insulin-like growth factor-1 receptors, insulin receptor substrate-1 (IRS1), and IRS2. SH2B1 enhances leptin signaling by both stimulating JAK2 activity and assembling a JAK2/IRS1/2 signaling complex. SH2B1 promotes insulin signaling by both enhancing insulin receptor catalytic activity and protecting against dephosphorylation of IRS proteins. Accordingly, genetic deletion of SH2B1 results in severe leptin resistance, insulin resistance, hyperphagia, obesity, and type 2 diabetes in mice. Neuron-specific overexpression of SH2B1β transgenes protects against diet-induced obesity and insulin resistance. SH2B1 in pancreatic β cells promotes β cell expansion and insulin secretion to counteract insulin resistance in obesity. Moreover, numerous SH2B1 mutations are genetically linked to leptin resistance, insulin resistance, obesity, and type 2 diabetes in humans. Unlike SH2B1, SH2B2 and SH2B3 are not required for the maintenance of normal energy and glucose homeostasis. The metabolic function of the SH2B family is conserved from insects to humans.
Collapse
|
20
|
Mori T, Iwasaki Y, Seki Y, Iseki M, Katayama H, Yamamoto K, Takatsu K, Takaki S. Lnk/Sh2b3 controls the production and function of dendritic cells and regulates the induction of IFN-γ-producing T cells. THE JOURNAL OF IMMUNOLOGY 2014; 193:1728-36. [PMID: 25024389 DOI: 10.4049/jimmunol.1303243] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dendritic cells (DCs) are proficient APCs that play crucial roles in the immune responses to various Ags and pathogens and polarize Th cell immune responses. Lnk/SH2B adaptor protein 3 (Sh2b3) is an intracellular adaptor protein that regulates B lymphopoiesis, megakaryopoiesis, and expansion of hematopoietic stem cells by constraining cytokine signals. Recent genome-wide association studies have revealed a link between polymorphism in this adaptor protein and autoimmune diseases, including type 1 diabetes and celiac disease. We found that Lnk/Sh2b3 was also expressed in DCs and investigated its role in the production and function of DC lineage cells. In Lnk(-/-) mice, DC numbers were increased in the spleen and lymph nodes, and growth responses of bone marrow-derived DCs to GM-CSF were augmented. Mature DCs from Lnk(-/-) mice were hypersensitive and showed enhanced responses to IL-15 and GM-CSF. Compared to normal DCs, Lnk(-/-) DCs had enhanced abilities to support the differentiation of IFN-γ-producing Th1 cells from naive CD4(+) T cells. This was due to their elevated expression of IL-12Rβ1 and increased production of IFN-γ. Lnk(-/-) DCs supported the appearance of IFN-γ-producing T cells even under conditions in which normal DCs supported induction of regulatory T cells. These results indicated that Lnk/Sh2b3 plays a regulatory role in the expansion of DCs and might influence inflammatory immune responses in peripheral lymphoid tissues.
Collapse
Affiliation(s)
- Taizo Mori
- Department of Immune Regulation, Research Institute, National Center for Global Health and Medicine, Chiba 272-8516, Japan
| | - Yukiko Iwasaki
- Department of Immune Regulation, Research Institute, National Center for Global Health and Medicine, Chiba 272-8516, Japan; Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Yoichi Seki
- Department of Immune Regulation, Research Institute, National Center for Global Health and Medicine, Chiba 272-8516, Japan
| | - Masanori Iseki
- Department of Immune Regulation, Research Institute, National Center for Global Health and Medicine, Chiba 272-8516, Japan
| | - Hiroko Katayama
- Department of Immune Regulation, Research Institute, National Center for Global Health and Medicine, Chiba 272-8516, Japan
| | - Kazuhiko Yamamoto
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Kiyoshi Takatsu
- Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama 930-0194, Japan; and Prefectural Institute for Pharmaceutical Research, Toyama 939-0363, Japan
| | - Satoshi Takaki
- Department of Immune Regulation, Research Institute, National Center for Global Health and Medicine, Chiba 272-8516, Japan;
| |
Collapse
|
21
|
Aghabozorg Afjeh SS, Ghaderian SMH, Mirfakhraie R, Piryaei M, Zaim Kohan H. Association Study of rs3184504 C>T Polymorphism in Patients With Coronary Artery Disease. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2014; 3:157-65. [PMID: 25317402 PMCID: PMC4170489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/21/2014] [Accepted: 07/12/2014] [Indexed: 10/31/2022]
Abstract
Cardiovascular disease has become the main factor of death and birth defects in the world and also in Iran. New clinical studies have shown that early diagnosis of patients with coronary artery disease (CAD) can contribute to effective prevention or therapeutic structures, which reduce mortality or the next chance of cardiovascular events, and increase the quality of life. Most studies on CAD disease and its genetic risk factors so far, have been done excluding the Iranian population. PubMed was used to search for all relevant studies published on or before 2013 and rs3184504 was selected for association study for CAD. A total of 200 subjects with 100 cases and 100 controls were ultimately included in the analysis. Blood samples were collected and after DNA extraction the DNA analysis was performed by TaqMan Probe Real Time PCR to evaluate the association between candidate variant with the disease and some blood biochemical factors. Our study demonstrated that there was not a direct association between rs3184504 C>T variant with risk of CAD in Iranian population, whereas, there is a significant association between this variant with increased blood LDL and diastolic blood pressure. Further molecular analysis and other disease association studies are necessary in the Iranian population.
Collapse
Affiliation(s)
| | - Sayyed Mohammad Hossein Ghaderian
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Corresponding author: Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Mirfakhraie
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Piryaei
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hooshang Zaim Kohan
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Kawakami Y, Ii M, Matsumoto T, Kawamoto A, Kuroda R, Akimaru H, Mifune Y, Shoji T, Fukui T, Asahi M, Kurosaka M, Asahara T. A small interfering RNA targeting Lnk accelerates bone fracture healing with early neovascularization. J Transl Med 2013; 93:1036-53. [PMID: 23897412 DOI: 10.1038/labinvest.2013.93] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/03/2013] [Accepted: 07/07/2013] [Indexed: 12/14/2022] Open
Abstract
Lnk, an intracellular adapter protein, is expressed in hematopoietic cell lineages, which has recently been proved as an essential inhibitory signaling molecule for stem cell self-renewal in the stem cell factor-c-Kit signaling pathway with enhanced hematopoietic and osteogenic reconstitution in Lnk-deficient mice. Moreover, the therapeutic potential of hematopoietic stem/endothelial progenitor cells (EPCs) for fracture healing has been demonstrated with mechanistic insight into vasculogenesis/angiogenesis and osteogenesis enhancement in the fracture sites. We report here, Lnk siRNA-transfected endothelial commitment of c-kit+/Sca-1+/lineage- subpopulations of bone marrow cells have high EPC colony-forming capacity exhibiting endothelial markers, VE-Cad, VEGF and Ang-1. Lnk siRNA-transfected osteoblasts also show highly osteoblastic capacity. In vivo, locally transfected Lnk siRNA could successfully downregulate the expression of Lnk at the fracture site up to 1 week, and radiological and histological examination showed extremely accelerated fracture healing in Lnk siRNA-transfected mice. Moreover, Lnk siRNA-transfected mice exhibited sufficient therapeutic outcomes with intrinstic enhancement of angiogenesis and osteogenesis, specifically, the mice demonstrated better blood flow recovery in the sites of fracture. In our series of experiments, we clarified that a negatively regulated Lnk system contributed to a favorable circumstance for fracture healing by enhancing vasculogenesis/angiogenesis and osteogenesis. These findings suggest that downregulation of Lnk system may have the clinical potential for faster fracture healing, which contributes to the reduction of delayed unions or non-unions.
Collapse
Affiliation(s)
- Yohei Kawakami
- Group of Vascular Regeneration, Institute of Biomedical Research and Innovation, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The SH2B adaptor protein 3 (SH2B3) gene encodes a negative regulator of cytokine signaling with a critical role in the homeostasis of hematopoietic stem cells and lymphoid progenitors. Here, we report the identification of germline homozygous SH2B3 mutations in 2 siblings affected with developmental delay and autoimmunity, one in whom B-precursor acute lymphoblastic leukemia (ALL) developed. Mechanistically, loss of SH2B3 increases Janus kinase-signal transducer and activator of transcription signaling, promotes lymphoid cell proliferation, and accelerates leukemia development in a mouse model of NOTCH1-induced ALL. Moreover, extended mutation analysis showed homozygous somatic mutations in SH2B3 in 2 of 167 ALLs analyzed. Overall, these results demonstrate a Knudson tumor suppressor role for SH2B3 in the pathogenesis of ALL and highlight a possible link between genetic predisposition factors in the pathogenesis of autoimmunity and leukemogenesis.
Collapse
|
24
|
Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat Genet 2013; 45:730-8. [PMID: 23749187 DOI: 10.1038/ng.2667] [Citation(s) in RCA: 662] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 05/15/2013] [Indexed: 02/07/2023]
Abstract
Ankylosing spondylitis is a common, highly heritable inflammatory arthritis affecting primarily the spine and pelvis. In addition to HLA-B*27 alleles, 12 loci have previously been identified that are associated with ankylosing spondylitis in populations of European ancestry, and 2 associated loci have been identified in Asians. In this study, we used the Illumina Immunochip microarray to perform a case-control association study involving 10,619 individuals with ankylosing spondylitis (cases) and 15,145 controls. We identified 13 new risk loci and 12 additional ankylosing spondylitis-associated haplotypes at 11 loci. Two ankylosing spondylitis-associated regions have now been identified encoding four aminopeptidases that are involved in peptide processing before major histocompatibility complex (MHC) class I presentation. Protective variants at two of these loci are associated both with reduced aminopeptidase function and with MHC class I cell surface expression.
Collapse
|
25
|
Koren-Michowitz M, Gery S, Tabayashi T, Lin D, Alvarez R, Nagler A, Koeffler HP. SH2B3 (LNK) mutations from myeloproliferative neoplasms patients have mild loss of function against wild type JAK2 and JAK2 V617F. Br J Haematol 2013; 161:811-20. [PMID: 23590807 PMCID: PMC3672250 DOI: 10.1111/bjh.12327] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 02/26/2013] [Indexed: 12/17/2022]
Abstract
Somatic point mutations in the PH domain of SH2B3 (LNK), an adaptor protein that is highly expressed in haematopoietic cells, were recently described in patients with myeloproliferative neoplasms. We studied the effect of these mutations on the JAK2 signalling pathway in cells expressing either wild type JAK2 or the JAK2 V617F mutation. Compared to wild type SH2B3, PH domain mutants have mild loss of function, with no evidence for a dominant-negative effect. Mutants retain binding capacity for JAK2, an established SH2B3 target, as well as for the adaptor proteins 14-3-3 and CBL. Our data suggest that the loss of SH2B3 inhibitory function conferred by the PH domain mutations is mild and may collaborate with JAK2 V617F and CBL mutations in order to promote either the development or the progression of myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Maya Koren-Michowitz
- Hematology/Oncology, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA 90048, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Almudi I, Poernbacher I, Hafen E, Stocker H. The Lnk/SH2B adaptor provides a fail-safe mechanism to establish the Insulin receptor-Chico interaction. Cell Commun Signal 2013; 11:26. [PMID: 23590848 PMCID: PMC3637499 DOI: 10.1186/1478-811x-11-26] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 04/06/2013] [Indexed: 12/14/2022] Open
Abstract
Background Insulin/insulin-like growth factor signalling (IIS) has been described as one of the major pathways involved in growth control and homeostasis in multicellular organisms. Whereas its core components are well established, less is known about the molecular functions of IIS regulators. The adaptor molecule Lnk/SH2B has been implicated in IIS but the mechanism by which it promotes IIS activity has remained enigmatic. Results In this study, we analyse genetic and physical interactions among InR, Chico and Lnk in Drosophila tissues. FRET analysis reveals in vivo binding between all three molecules. Genetically, Lnk acts upstream of Chico. We demonstrate that Chico’s plasma membrane localisation is ensured by both its PH domain and by the interaction with Lnk. Furthermore, Lnk is able to recruit an intracellular InR fragment to the membrane. Conclusions Thus, by acting as a scaffolding molecule that ensures InR and Chico enrichment at the membrane, Lnk provides a fail-safe mechanism for IIS activation.
Collapse
Affiliation(s)
- Isabel Almudi
- Institute of Molecular Systems Biology, ETH Zürich, Wolfgang-Pauli-Strasse 16, Zürich 8093, Switzerland.
| | | | | | | |
Collapse
|
27
|
Oh ST. When the Brakes are Lost: LNK Dysfunction in Mice, Men, and Myeloproliferative Neoplasms. Ther Adv Hematol 2013; 2:11-9. [PMID: 23556072 DOI: 10.1177/2040620710393391] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aberrant JAK-STAT signaling is a hallmark of myeloproliferative neoplasms (MPNs). These hyperproliferative disorders are classically associated with activating mutations in tyrosine kinases such as JAK2 and the thrombopoietin (TPO) receptor MPL. Activation of JAK-STAT signaling and responses to JAK2 inhibitors have been observed in MPN patients lacking JAK2 or MPL mutations, suggesting that other regulatory elements in the JAK-STAT pathway are altered. However, the molecular basis for this observation has been unclear. Recently, the role of inhibitory regulators of JAK-STAT signaling in MPN pathogenesis has been increasingly recognized. LNK is an adaptor protein that forms a negative feedback loop by binding to MPL and JAK2 and inhibiting downstream STAT activation. Murine models indicate that loss of LNK function can promote the development of a MPN phenotype. Several recent studies have identified novel LNK mutations in MPNs, thus validating this notion in humans. These findings represent a novel genetic paradigm of loss of negative feedback regulation of JAK-STAT activation in MPNs and have implications for the future development of targeted therapies in MPNs.
Collapse
|
28
|
Gery S, Koeffler HP. Role of the adaptor protein LNK in normal and malignant hematopoiesis. Oncogene 2012; 32:3111-8. [DOI: 10.1038/onc.2012.435] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Velazquez L. The Lnk adaptor protein: a key regulator of normal and pathological hematopoiesis. Arch Immunol Ther Exp (Warsz) 2012; 60:415-29. [PMID: 22990499 DOI: 10.1007/s00005-012-0194-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 08/06/2012] [Indexed: 01/24/2023]
Abstract
The development and function of blood cells are regulated by specific growth factors/cytokines and their receptors' signaling pathways. In this way, these factors influence cell survival, proliferation and differentiation of hematopoietic cells. Central to this positive and/or negative control are the adaptor proteins. Since their identification 10 years ago, members of the Lnk adaptor protein family have proved to be important activators and/or inhibitors in the hematopoietic, immune and vascular system. In particular, the generation of animal and cellular models for the Lnk and APS proteins has helped establish the physiological role of these molecules through the identification of their specific signaling pathways and the characterization of their binding partners. Moreover, the recent identification of mutations in the LNK gene in myeloproliferative disorders, as well as the correlation of a single nucleotide polymorphism on LNK with hematological, immune and vascular diseases have suggested its involvement in the pathophysiology of these malignancies. The latter findings have thus raised the possibility of addressing Lnk signaling for the treatment of certain human diseases. This review therefore describes the pathophysiological role of this adaptor protein in hematological malignancies and the potential benefits of Lnk therapeutic targeting.
Collapse
Affiliation(s)
- Laura Velazquez
- UMR U978 Inserm/Université Paris 13, UFR SMBH, Bobigny, France.
| |
Collapse
|
30
|
Devallière J, Chatelais M, Fitau J, Gérard N, Hulin P, Velazquez L, Turner CE, Charreau B. LNK (SH2B3) is a key regulator of integrin signaling in endothelial cells and targets α-parvin to control cell adhesion and migration. FASEB J 2012; 26:2592-606. [PMID: 22441983 DOI: 10.1096/fj.11-193383] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Focal adhesion (FA) formation and disassembly play an essential role in adherence and migration of endothelial cells. These processes are highly regulated and involve various signaling molecules that are not yet completely identified. Lnk [Src homology 2-B3 (SH2B3)] belongs to a family of SH2-containing proteins with important adaptor functions. In this study, we showed that Lnk distribution follows that of vinculin, localizing Lnk in FAs. Inhibition of Lnk by RNA interference resulted in decreased spreading, whereas sustained expression dramatically increases the number of focal and cell-matrix adhesions. We demonstrated that Lnk expression impairs FA turnover and cell migration and regulates β1-integrin-mediated signaling via Akt and GSK3β phosphorylation. Moreover, the α-parvin protein was identified as one of the molecular targets of Lnk responsible for impaired FA dynamics and cell migration. Finally, we established the ILK protein as a new molecular partner for Lnk and proposed a model in which Lnk regulates α-parvin expression through its interaction with ILK. Collectively, our results underline the adaptor Lnk as a novel and effective key regulator of integrin-mediated signaling controlling endothelial cell adhesion and migration.
Collapse
Affiliation(s)
- Julie Devallière
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) 643, Nantes, France
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Devallière J, Charreau B. The adaptor Lnk (SH2B3): an emerging regulator in vascular cells and a link between immune and inflammatory signaling. Biochem Pharmacol 2011; 82:1391-402. [PMID: 21723852 DOI: 10.1016/j.bcp.2011.06.023] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/15/2011] [Accepted: 06/16/2011] [Indexed: 12/20/2022]
Abstract
A better knowledge of the process by which inflammatory extracellular signals are relayed from the plasma membrane to specific intracellular sites is a key step to understand how inflammation develops and how it is regulated. This review focuses on Lnk (SH2B3) a member, with SH2B1 and SH2B2, of the SH2B family of adaptor proteins that influences a variety of signaling pathways mediated by Janus kinase and receptor tyrosine kinases. SH2B adaptor proteins contain conserved dimerization, pleckstrin homology, and SH2 domains. Initially described as a regulator of hematopoiesis and lymphocyte differentiation, Lnk now emerges as a key regulator in hematopoeitic and non hematopoeitic cells such as endothelial cells (EC) moderating growth factor and cytokine receptor-mediated signaling. In EC, Lnk is a negative regulator of TNF signaling that reduce proinflammatory phenotype and prevent EC from apoptosis. Lnk is a modulator in integrin signaling and actin cytoskeleton organization in both platelets and EC with an impact on cell adhesion, migration and thrombosis. In this review, we discuss some recent insights proposing Lnk as a key regulator of bone marrow-endothelial progenitor cell kinetics, including the ability to cell growth, endothelial commitment, mobilization, and recruitment for vascular regeneration. Finally, novel findings also provided evidences that mutations in Lnk gene are strongly linked to myeloproliferative disorders but also autoimmune and inflammatory syndromes where both immune and vascular cells display a role. Overall, these studies emphasize the importance of the Lnk adaptor molecule not only as prognostic marker but also as potential therapeutic target.
Collapse
|
32
|
Chatelais M, Devallière J, Galli C, Charreau B. Gene transfer of the adaptor Lnk (SH2B3) prevents porcine endothelial cell activation and apoptosis: implication for xenograft’s cytoprotection. Xenotransplantation 2011; 18:108-20. [DOI: 10.1111/j.1399-3089.2011.00629.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Kemppinen A, Sawcer S, Compston A. Genome-wide association studies in multiple sclerosis: lessons and future prospects. Brief Funct Genomics 2011; 10:61-70. [PMID: 21310812 DOI: 10.1093/bfgp/elr004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory neurodegenerative disease with complex aetiology. A haplotype within the major histocompatibility region is the major risk factor for MS, but despite clear evidence for a genetic component additional risk variants were not identified until the recent advent of genome-wide association studies (GWAS). At present, 10 GWAS have been conducted in MS, and together with follow-up studies these have confirmed 16 loci with genome-wide significance. Many of these common risk variants are located at or near genes with central immunological functions and the majority are associated with other autoimmune diseases. However, evidence from pathway analyses on more modestly associated variants also supports the involvement of neurological genes. Although the mechanisms by which the associated variants exert their effects are still poorly understood, some have been shown to correlate with expression of nearby genes. Further studies are required to define the functionally relevant variants in the identified regions and to investigate their effects at the molecular and cellular level. Finally, many genetic risk variants for MS remain to be identified. In order to expose some of the loci with more modest effects, a GWAS in nearly 10,000 MS patients has recently been completed.
Collapse
Affiliation(s)
- Anu Kemppinen
- Neurology Unit, Department of Clinical Neurosciences, University of Cambridge, UK.
| | | | | |
Collapse
|
34
|
Matsumoto T, Ii M, Nishimura H, Shoji T, Mifune Y, Kawamoto A, Kuroda R, Fukui T, Kawakami Y, Kuroda T, Kwon SM, Iwasaki H, Horii M, Yokoyama A, Oyamada A, Lee SY, Hayashi S, Kurosaka M, Takaki S, Asahara T. Lnk-dependent axis of SCF-cKit signal for osteogenesis in bone fracture healing. ACTA ACUST UNITED AC 2010; 207:2207-23. [PMID: 20855498 PMCID: PMC2947078 DOI: 10.1084/jem.20100321] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The therapeutic potential of hematopoietic stem cells/endothelial progenitor cells (HSCs/EPCs) for fracture healing has been demonstrated with evidence for enhanced vasculogenesis/angiogenesis and osteogenesis at the site of fracture. The adaptor protein Lnk has recently been identified as an essential inhibitor of stem cell factor (SCF)–cKit signaling during stem cell self-renewal, and Lnk-deficient mice demonstrate enhanced hematopoietic reconstitution. In this study, we investigated whether the loss of Lnk signaling enhances the regenerative response during fracture healing. Radiological and histological examination showed accelerated fracture healing and remodeling in Lnk-deficient mice compared with wild-type mice. Molecular, physiological, and morphological approaches showed that vasculogenesis/angiogenesis and osteogenesis were promoted in Lnk-deficient mice by the mobilization and recruitment of HSCs/EPCs via activation of the SCF–cKit signaling pathway in the perifracture zone, which established a favorable environment for bone healing and remodeling. In addition, osteoblasts (OBs) from Lnk-deficient mice had a greater potential for terminal differentiation in response to SCF–cKit signaling in vitro. These findings suggest that inhibition of Lnk may have therapeutic potential by promoting an environment conducive to vasculogenesis/angiogenesis and osteogenesis and by facilitating OB terminal differentiation, leading to enhanced fracture healing.
Collapse
Affiliation(s)
- Tomoyuki Matsumoto
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation, Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, 565-8686, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Affiliation(s)
- Streamson Chua
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA.
| |
Collapse
|
36
|
Flesher DLT, Sun X, Behrens TW, Graham RR, Criswell LA. Recent advances in the genetics of systemic lupus erythematosus. Expert Rev Clin Immunol 2010; 6:461-79. [PMID: 20441431 PMCID: PMC2897739 DOI: 10.1586/eci.10.8] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by the production of antinuclear autoantibodies and the inflammatory infiltration of many organ systems. SLE is a complex disorder in which multiple genetic variants, together with environmental and hormonal factors, contribute to disease risk. In this article, we summarize our current understanding of the genetic contribution to SLE in light of recent genome-wide association studies, which have brought the total number of confirmed SLE susceptibility loci to 29. In the second section, we explore the functional implications of these risk loci and, in particular, highlight the role that many of these genes play in the Toll-like receptor and type I interferon signaling pathways. Finally, we discuss the genetic overlap between SLE and other autoimmune and inflammatory conditions as several risk loci are shared among multiple disorders, suggesting common underlying pathogenic mechanisms.
Collapse
Affiliation(s)
- Donna L Thibault Flesher
- ITGR Human Genetics, Genentech Research & Early Development, 1 DNA Way, South San Francisco, CA 94080-94990, USA
| | - Xin Sun
- ITGR Human Genetics, Genentech Research & Early Development, 1 DNA Way, South San Francisco, CA 94080-94990, USA
| | - Timothy W Behrens
- ITGR Human Genetics, Genentech Research & Early Development, 1 DNA Way, South San Francisco, CA 94080-94990, USA
| | - Robert R Graham
- ITGR Human Genetics, Genentech Research & Early Development, 1 DNA Way, South San Francisco, CA 94080-94990, USA
| | - Lindsey A Criswell
- University of California San Francisco, Division of Rheumatology, 374 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
37
|
Slack C, Werz C, Wieser D, Alic N, Foley A, Stocker H, Withers DJ, Thornton JM, Hafen E, Partridge L. Regulation of lifespan, metabolism, and stress responses by the Drosophila SH2B protein, Lnk. PLoS Genet 2010; 6:e1000881. [PMID: 20333234 PMCID: PMC2841611 DOI: 10.1371/journal.pgen.1000881] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 02/12/2010] [Indexed: 12/19/2022] Open
Abstract
Drosophila Lnk is the single ancestral orthologue of a highly conserved family of structurally-related intracellular adaptor proteins, the SH2B proteins. As adaptors, they lack catalytic activity but contain several protein-protein interaction domains, thus playing a critical role in signal transduction from receptor tyrosine kinases to form protein networks. Physiological studies of SH2B function in mammals have produced conflicting data. However, a recent study in Drosophila has shown that Lnk is an important regulator of the insulin/insulin-like growth factor (IGF)-1 signaling (IIS) pathway during growth, functioning in parallel to the insulin receptor substrate, Chico. As this pathway also has an evolutionary conserved role in the determination of organism lifespan, we investigated whether Lnk is required for normal lifespan in Drosophila. Phenotypic analysis of mutants for Lnk revealed that loss of Lnk function results in increased lifespan and improved survival under conditions of oxidative stress and starvation. Starvation resistance was found to be associated with increased metabolic stores of carbohydrates and lipids indicative of impaired metabolism. Biochemical and genetic data suggest that Lnk functions in both the IIS and Ras/Mitogen activated protein Kinase (MapK) signaling pathways. Microarray studies support this model, showing transcriptional feedback onto genes in both pathways as well as indicating global changes in both lipid and carbohydrate metabolism. Finally, our data also suggest that Lnk itself may be a direct target of the IIS responsive transcription factor, dFoxo, and that dFoxo may repress Lnk expression. We therefore describe novel functions for a member of the SH2B protein family and provide the first evidence for potential mechanisms of SH2B regulation. Our findings suggest that IIS signaling in Drosophila may require the activity of a second intracellular adaptor, thereby yielding fundamental new insights into the functioning and role of the IIS pathway in ageing and metabolism.
Collapse
Affiliation(s)
- Cathy Slack
- Institute of Healthy Ageing, Department of Genes, Evolution, and Environment, University College London, London, United Kingdom
| | - Christian Werz
- ETH Zurich, Institute of Molecular Systems Biology, Zurich, Switzerland
| | - Daniela Wieser
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Nazif Alic
- Institute of Healthy Ageing, Department of Genes, Evolution, and Environment, University College London, London, United Kingdom
| | - Andrea Foley
- Institute of Healthy Ageing, Department of Genes, Evolution, and Environment, University College London, London, United Kingdom
| | - Hugo Stocker
- ETH Zurich, Institute of Molecular Systems Biology, Zurich, Switzerland
| | - Dominic J. Withers
- Centre for Diabetes and Endocrinology, Rayne Institute, University College London, London, United Kingdom
| | - Janet M. Thornton
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Ernst Hafen
- ETH Zurich, Institute of Molecular Systems Biology, Zurich, Switzerland
| | - Linda Partridge
- Institute of Healthy Ageing, Department of Genes, Evolution, and Environment, University College London, London, United Kingdom
| |
Collapse
|
38
|
Onnockx S, Xie J, Degraef C, Erneux C, Pirson I. Insulin increase in MAP kinase phosphorylation is shifted to early time-points by overexpressing APS, while Akt phosphorylation is not influenced. Exp Cell Res 2009; 315:2479-86. [DOI: 10.1016/j.yexcr.2009.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 06/05/2009] [Accepted: 06/09/2009] [Indexed: 12/31/2022]
|
39
|
Werz C, Köhler K, Hafen E, Stocker H. The Drosophila SH2B family adaptor Lnk acts in parallel to chico in the insulin signaling pathway. PLoS Genet 2009; 5:e1000596. [PMID: 19680438 PMCID: PMC2716533 DOI: 10.1371/journal.pgen.1000596] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 07/13/2009] [Indexed: 12/27/2022] Open
Abstract
Insulin/insulin-like growth factor signaling (IIS) plays a pivotal role in the regulation of growth at the cellular and the organismal level during animal development. Flies with impaired IIS are developmentally delayed and small due to fewer and smaller cells. In the search for new growth-promoting genes, we identified mutations in the gene encoding Lnk, the single fly member of the SH2B family of adaptor molecules. Flies lacking lnk function are viable but severely reduced in size. Furthermore, lnk mutants display phenotypes reminiscent of reduced IIS, such as developmental delay, female sterility, and accumulation of lipids. Genetic epistasis analysis places lnk downstream of the insulin receptor (InR) and upstream of phosphoinositide 3-kinase (PI3K) in the IIS cascade, at the same level as chico (encoding the single fly insulin receptor substrate [IRS] homolog). Both chico and lnk mutant larvae display a similar reduction in IIS activity as judged by the localization of a PIP(3) reporter and the phosphorylation of protein kinase B (PKB). Furthermore, chico; lnk double mutants are synthetically lethal, suggesting that Chico and Lnk fulfill independent but partially redundant functions in the activation of PI3K upon InR stimulation.
Collapse
Affiliation(s)
- Christian Werz
- Institute of Molecular Systems Biology, Zurich, Switzerland
- PhD Program for Molecular Life Sciences, Life Science Zurich Graduate School, Zurich, Switzerland
| | - Katja Köhler
- Institute of Molecular Systems Biology, Zurich, Switzerland
| | - Ernst Hafen
- Institute of Molecular Systems Biology, Zurich, Switzerland
| | - Hugo Stocker
- Institute of Molecular Systems Biology, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
40
|
Varricchio L, Mancini A, Migliaccio AR. Pathological interactions between hematopoietic stem cells and their niche revealed by mouse models of primary myelofibrosis. Expert Rev Hematol 2009; 2:315-334. [PMID: 20352017 PMCID: PMC2845468 DOI: 10.1586/ehm.09.17] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Primary myelofibrosis (PMF) belongs to the Philadelphia-negative myeloproliferative neoplasms and is a hematological disorder caused by abnormal function of the hematopoietic stem cells. The disease manifests itself with a plethora of alterations, including anemia, splenomegaly and extramedullary hematopoiesis. Its hallmarks are progressive marrow fibrosis and atypical megakaryocytic hyperplasia, two distinctive features used to clinically monitor disease progression. In an attempt to investigate the role of abnormal megakaryocytopoiesis in the pathogenesis of PMF, several transgenic mouse models have been generated. These models are based either on mutations that interfere with the extrinsic (thrombopoietin and its receptor, MPL) and intrinsic (the GATA1 transcription factor) control of normal megakaryocytopoiesis, or on known genetic lesions associated with the human disease. Here we provide an up-to-date review on the insights into the pathobiology of human PMF achieved by studying these animal models, with particular emphasis on results obtained with Gata1(low) mice.
Collapse
Affiliation(s)
- Lilian Varricchio
- Department of Medicine, Division of Hematology/Oncology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1079, New York, NY 10029, USA Tel.: +1 212 241 6974 Fax: +1 212 241 4096
| | - Annalisa Mancini
- Department of Medicine, Division of Hematology/Oncology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1079, New York, NY 10029, USA Tel.: +1 212 241 6974 Fax: +1 212 241 4096
| | - Anna Rita Migliaccio
- Department of Medicine, Division of Hematology/Oncology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1079, New York, NY 10029, USA Tel.: +1 212 241 6974 Fax: +1 212 241 4096
| |
Collapse
|
41
|
Li L, Kong L, Fang X, Jiang C, Wang Y, Zhong Z, Sun Q, Gu G, Zheng D, Meng R, Kang J. SH2-B beta expression in alveolar macrophages in BAL fluid of asthmatic guinea pigs and its role in NGF-TrkA-mediated asthma. Respirology 2009; 14:60-8. [PMID: 19144050 DOI: 10.1111/j.1440-1843.2008.01417.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Nerve growth factor (NGF)/tyrosine kinase receptor A (TrkA) signalling may play an important role in the pathogenesis of asthma, and SH2-B beta, a TrkA-binding protein, modulates the NGF signalling pathway. In this study, SH2-B beta expression in alveolar macrophages (AM) in guinea pig BAL fluid and its role in asthma pathogenesis through the NGF-TrkA signalling pathway were investigated. METHODS Guinea pigs were randomized into five groups: control, a model of asthma, anti-SH2-B beta antibody treatment, anti-NGF antibody treatment and anti-TrkA antibody treatment. The asthmatic model was established in guinea pigs by inhalation of ovalbumin. Specific anti-SH2-B beta, anti-NGF and anti-TrkA antibodies were administered and AM were isolated from BAL fluid to assess SH2-B beta expression using an immunofluorescence assay. SH2-B beta and TrkA protein expression were determined by western blotting, IL-1 beta and IL-4 levels in the BAL fluid supernatants were determined by ELISA, and pathological changes in the bronchi and lung tissues were examined by HE staining. RESULTS Lymphocyte, eosinophil and total inflammatory cell numbers in BAL fluid were significantly higher in the asthma model group than in the other groups (P < 0.01). NGF expression in the asthma model group was significantly higher than that in the PBS control group (P < 0.01). SH2-B beta was expressed in AM of control animals and expression was significantly higher in the asthma model than in the other groups (P < 0.01). TrkA protein expression was significantly higher in the asthma model group than in the PBS group (P < 0.01), and treatment with anti-NGF antibody resulted in significant reduction of TrkA expression (P < 0.01). CONCLUSIONS SH2-B beta is expressed in AM of normal guinea pigs, and SH2-B beta may participate in asthma pathogenesis through the NGF-TrkA signalling pathway.
Collapse
Affiliation(s)
- Li Li
- Institute of Respiratory Diseases, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Gery S, Gueller S, Nowak V, Sohn J, Hofmann WK, Koeffler HP. Expression of the adaptor protein Lnk in leukemia cells. Exp Hematol 2009; 37:585-592.e2. [PMID: 19375649 DOI: 10.1016/j.exphem.2009.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 01/08/2009] [Accepted: 01/28/2009] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Tyrosine kinases are involved in cytokine signaling and are frequently aberrantly activated in hematological malignancies. Lnk, a negative regulator of cytokine signaling, plays critical nonredundant roles in hematopoiesis. By binding to phosphorylated tyrosine kinases, Lnk inhibits major cytokine receptor signaling, including c-KIT; erythropoietin receptor-Janus kinase 2 (JAK2); and MPL-JAK2. In the present study, we investigated Lnk expression and possible function in transformed hematopoietic cells. MATERIALS AND METHODS Coimmunoprecipitations were performed to identify binding between Lnk and mutant tyrosine kinases. Proliferation assays were done to examine the affect of Lnk overexpression on cancer cell growth. Real-time polymerase chain reaction analysis was used to determine Lnk expression in patient samples. RESULTS We show that, in parallel to binding wild-type JAK2 and c-KIT, Lnk associates with and is phosphorylated by mutant alleles of JAK2 and c-KIT. In contrast, Lnk does not bind to and is not phosphorylated by BCR-ABL fusion protein. Ectopic expression of Lnk strongly attenuates growth of some leukemia cell lines, while others as well as most solid tumor cancer cell lines are either moderately inhibited or completely insensitive to Lnk. Furthermore, Lnk-mediated growth inhibition is associated with differential downregulation of phosphatidylinositol 3 kinase/Akt/mammalian target of rapamycin and mitogen-activated protein kinase/extracellular signal-regulated kinase signaling in leukemia cell lines. Surprisingly, analysis of Lnk in a large panel of myelodysplastic syndrome and acute myeloid leukemia patient samples revealed high levels of Lnk in nearly half of the samples. CONCLUSION Although how leukemic cells overcome the antiproliferative effects of Lnk is not yet clear, our data highlight the multifaceted role negative feedback mechanisms play in malignant transformation.
Collapse
Affiliation(s)
- Sigal Gery
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, Calif. 90048, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Maures TJ, Chen L, Carter-Su C. Nucleocytoplasmic shuttling of the adapter protein SH2B1beta (SH2-Bbeta) is required for nerve growth factor (NGF)-dependent neurite outgrowth and enhancement of expression of a subset of NGF-responsive genes. Mol Endocrinol 2009; 23:1077-91. [PMID: 19372237 DOI: 10.1210/me.2009-0011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The adapter protein SH2B1 (SH2-B, PSM) is recruited to multiple ligand-activated receptor tyrosine kinases, including the receptors for nerve growth factor (NGF), insulin, and IGF-I as well as the cytokine receptor-associated Janus kinase family kinases. In this study, we examine SH2B1's function in NGF signaling. We show that depleting endogenous SH2B1 using short hairpin RNA against SH2B1 inhibits NGF-dependent neurite outgrowth, but not NGF-mediated phosphorylation of Akt or ERKs 1/2. SH2B1 has been hypothesized to localize and function at the plasma membrane. We identify a nuclear localization signal within SH2B1 and show that it is required for nuclear translocation of SH2B1beta. Mutation of the nuclear localization signal has no effect on NGF-induced activation of TrkA and ERKs 1/2 but prevents SH2B1beta from enhancing NGF-induced neurite outgrowth. Disruption of SH2B1beta nuclear import also prevents SH2B1beta from enhancing NGF-induced transcription of genes important for neuronal differentiation, including those encoding urokinase plasminogen activator receptor, and matrix metalloproteinases 3 and 10. Disruption of SH2B1beta nuclear export by mutation of its nuclear export sequence similarly prevents SH2B1beta enhancement of NGF-induced transcription of those genes. Nuclear translocation of the highly homologous family member SH2B2(APS) was not observed. Together, these data suggest that rather than simply acting as an adapter protein linking signaling proteins to the activated TrkA receptor at the plasma membrane, SH2B1beta must shuttle between the plasma membrane and nucleus to function as a critical component of NGF-induced gene expression and neuronal differentiation.
Collapse
Affiliation(s)
- Travis J Maures
- Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109-5622, USA
| | | | | |
Collapse
|
44
|
Kim YJ, Park T. Genes are differentially expressed in the epididymal fat of rats rendered obese by a high-fat diet. Nutr Res 2009; 28:414-22. [PMID: 19083440 DOI: 10.1016/j.nutres.2008.03.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 02/24/2008] [Accepted: 03/14/2008] [Indexed: 02/01/2023]
Abstract
The aim of present study was to identify the visceral adipose tissue genes differentially expressed in a well-characterized rat model of high-fat diet (HFD)-induced obesity. Male Sprague-Dawley rats were fed either the HFD (17 g lard + 3 g corn oil/100 g) or the normal diet (5 g corn oil/100 g) for 9 weeks. The HFD rats weighed 55% more and accumulated 85% to 133% greater visceral fats than did the normal-diet rats (P < .05). Animals given the HFD for 9 weeks acquired dyslipidemia, fatty liver, insulin resistance, and hyperleptinemia along with the overexpression of several obesity-related genes, such as leptin, tumor necrosis factor alpha, resistin, peroxisome proliferator-activated receptor gamma2, CCAAT/enhancer-binding protein alpha, and sterol regulatory element-binding protein-1c, in the epididymal adipose tissue. The differential gene expression profile obtained from the cDNA microarray analysis followed by the real-time polymerase chain reaction confirmation led to a recruitment of several uncharacterized adipose tissue genes responding to the HFD. We report herein, for the first time, that a series of genes which might be implicated in the insulin-stimulated glucose transporter 4 translocation, such as protein phosphatase 2 (formerly 2A), cell division cycle 42-interacting protein 4, syntaxin 6, linker of T-cell receptor pathways 10, as well as the genes which might be involved in cancer development, such as heat shock 10-kd protein 1, and ras-related C3 botulinum toxin substrate 1, were differentially expressed in the epididymal adipose tissue of rats rendered obese by an HFD.
Collapse
Affiliation(s)
- Yun Jung Kim
- Department of Food and Nutrition, Brain Korea 21 Project, Yonsei University, Seoul 120-749, Korea
| | | |
Collapse
|
45
|
Symposium on 'The challenge of translating nutrition research into public health nutrition'. Session 3: Joint Nutrition Society and Irish Nutrition and Dietetic Institute Symposium on 'Nutrition and autoimmune disease'. Recent advances in genetic understanding of coeliac disease. Proc Nutr Soc 2009; 68:122-6. [PMID: 19243665 DOI: 10.1017/s0029665109001074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Over the past 20 years major advances have been made in the diagnosis and understanding of pathogenic mechanisms relating to coeliac disease. Recently-identified genetic markers support the immunological-inflammatory nature of the disease. It is hoped that these newly-identified genes will assist further dissection of the inflammatory pathways in coeliac disease and give insight into why certain individuals develop intolerance to dietary gluten.
Collapse
|
46
|
Takaki S. [Sh2b3/Lnk family adaptor proteins in the regulation of lymphohematopoiesis]. NIHON RINSHO MEN'EKI GAKKAI KAISHI = JAPANESE JOURNAL OF CLINICAL IMMUNOLOGY 2009; 31:440-7. [PMID: 19122374 DOI: 10.2177/jsci.31.440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Sh2b3/Lnk consisting of an N-terminal proline-rich region, PH-, SH2-domains and a tyrosine phosphorylation site, forms an intracellular adaptor protein family conserved from drosophila to mammals, together with Sh2b1/SH2-B and Sh2b2/APS (adaptor protein with PH and SH2 domains). Lnk negatively regulates lymphopoiesis and early hematopoiesis. The lnk-deficiency results in enhanced production of B cells, and expansion as well as enhanced function of hematopoietic stem cells (HSCs), demonstrating negative regulatory functions of Sh2b3/Lnk in cytokine signaling. Our recent studies also revealed that Sh2b3/Lnk functions in responses controlled by cell adhesion and in crosstalk between integrin- and cytokine-mediated signaling. Importantly, recent genome-wide association studies of the autoimmune type 1 diabetes or celiac disease identified risk variants in the SH2B3/LNK region, indicating possible unrevealed functions mediated by this adaptor molecule. This review summarizes roles of Sh2b3/Lnk in the regulation of B-lymphopoiesis and HSCs expansion and function, and briefly introduces our approach for modulating HSCs function by targeting Sh2b3/Lnk-mediated pathways.
Collapse
Affiliation(s)
- Satoshi Takaki
- Research Institute, International Medical Center of Japan
| |
Collapse
|
47
|
Abstract
The adaptor protein Lnk is expressed in haemopoietic cells and plays a critical role in haemopoiesis. Animal model studies demonstrated that Lnk acts as a broad inhibitor of signalling pathways in haemopoietic lineages. Lnk belongs to a family of proteins sharing several structural motifs, including an SH2 (Src homology 2) domain which binds phosphotyrosine residues in various signal-transducing proteins. The SH2 domain is essential for Lnk-mediated negative regulation of several cytokine receptors [e.g. Mpl, EpoR (erythropoietin receptor), c-Kit]. Therefore inhibition of the binding of Lnk to cytokine receptors might lead to enhanced downstream signalling of the receptor and thereby to improved haemopoiesis in response to exposure to cytokines (e.g. erythropoietin in anaemic patients). This hypothesis led us to define the exact binding site of Lnk to the stem cell factor receptor c-Kit. Pull-down experiments using GST (glutathione transferase)-fusion proteins of the different domains of c-Kit showed that Lnk almost exclusively binds to the phosphorylated juxtamembrane domain. Binding of Lnk to the juxtamembrane domain was abolished by point mutation of Tyr568 and was competed by peptides with a phosphotyrosine residue at position 568. Co-immunoprecipitation with full-length wild-type or Y568F mutant c-Kit and Lnk confirmed these results, thus showing the importance of this phosphorylated tyrosine residue. Lnk bound directly to c-Kit without requiring other interacting partners. The identification of the binding site of Lnk to c-Kit will be useful to discover inhibitory molecules that prevent the binding of these two proteins, thus making haemopoietic cells more sensitive to growth factors.
Collapse
|
48
|
Zhang M, Deng Y, Riedel H. PSM/SH2B1 splice variants: critical role in src catalytic activation and the resulting STAT3s-mediated mitogenic response. J Cell Biochem 2008; 104:105-18. [PMID: 18247337 DOI: 10.1002/jcb.21606] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A role of PSM/SH2B1 had been shown in mitogenesis and extending to phenotypic cell transformation, however, the underlying molecular mechanism remained to be established. Here, four alternative PSM splice variants and individual functional protein domains were compared for their role in the regulation of Src activity. We found that elevated cellular levels of PSM variants resulted in phenotypic cell transformation and potentiated cell proliferation and survival in response to serum withdrawal. PSM variant activity presented a consistent signature pattern for any tested response of highest activity observed for gamma, followed by delta, alpha, and beta with decreasing activity. PSM-potentiated cell proliferation was sensitive to Src inhibitor herbimycin and PSM and Src were found in the same immune complex. PSM variants were substrates of the Src Tyr kinase and potentiated Src catalytic activity by increasing the V(max) and decreasing the K(m) for ATP with the signature pattern of variant activity. Dominant-negative PSM peptide mimetics including the SH2 or PH domains inhibited Src catalytic activity as well as Src-mediated phenotypic cell transformation. Activation of major Src substrate STAT3 was similarly potentiated by the PSM variants in a Src-dependent fashion or inhibited by PSM domain-specific peptide mimetics. Expression of a dominant-negative STAT3 mutant blocked PSM variant-mediated phenotypic cell transformation. Our results implicate an essential role of the PSM variants in the activation of the Src kinase and the resulting mitogenic response--extending to phenotypic cell transformation and involving the established Src substrate STAT3.
Collapse
Affiliation(s)
- Manchao Zhang
- Department of Biochemistry, West Virginia University, School of Medicine, Morgantown, West Virginia 26506-9142, USA
| | | | | |
Collapse
|
49
|
Zhang M, Deng Y, Tandon R, Bai C, Riedel H. Essential role of PSM/SH2-B variants in insulin receptor catalytic activation and the resulting cellular responses. J Cell Biochem 2008; 103:162-81. [PMID: 17615553 DOI: 10.1002/jcb.21397] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The positive regulatory role of PSM/SH2-B downstream of various mitogenic receptor tyrosine kinases or gene disruption experiments in mice support a role of PSM in the regulation of insulin action. Here, four alternative PSM splice variants and individual functional domains were compared for their role in the regulation of specific metabolic insulin responses. We found that individual PSM variants in 3T3-L1 adipocytes potentiated insulin-mediated glucose and amino acid transport, glycogenesis, lipogenesis, and key components in the metabolic insulin response including p70 S6 kinase, glycogen synthase, glycogen synthase kinase 3 (GSK3), Akt, Cbl, and IRS-1. Highest activity was consistently observed for PSM alpha, followed by beta, delta, and gamma with decreasing activity. In contrast, dominant-negative peptide mimetics of the PSM Pro-rich, pleckstrin homology (PH), or src homology 2 (SH2) domains inhibited any tested insulin response. Potentiation of the insulin response originated at the insulin receptor (IR) kinase level by PSM variant-specific regulation of the Km (ATP) whereas the Vmax remained unaffected. IR catalytic activation was inhibited by peptide mimetics of the PSM SH2 or dimerization domain (DD). Either peptide should disrupt the complex of a PSM dimer linked to IR via SH2 domains as proposed for PSM activation of tyrosine kinase JAK2. Either peptide abolished downstream insulin responses indistinguishable from PSM siRNA knockdown. Our results implicate an essential role of the PSM variants in the activation of the IR kinase and the resulting metabolic insulin response. PSM variants act as internal IR ligands that in addition to potentiating the insulin response stimulate IR catalytic activation even in the absence of insulin.
Collapse
Affiliation(s)
- Manchao Zhang
- Department of Biochemistry, West Virginia University, School of Medicine, Morgantown, WV 26506-9142, USA
| | | | | | | | | |
Collapse
|
50
|
Chen L, Maures TJ, Jin H, Huo JS, Rabbani SA, Schwartz J, Carter-Su C. SH2B1beta (SH2-Bbeta) enhances expression of a subset of nerve growth factor-regulated genes important for neuronal differentiation including genes encoding urokinase plasminogen activator receptor and matrix metalloproteinase 3/10. Mol Endocrinol 2007; 22:454-76. [PMID: 17947375 DOI: 10.1210/me.2007-0384] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Previous work showed that the adapter protein SH2B adapter protein 1beta (SH2B1) (SH2-B) binds to the activated form of the nerve growth factor (NGF) receptor TrkA and is critical for both NGF-dependent neurite outgrowth and maintenance. To identify SH2B1beta-regulated genes critical for neurite outgrowth, we performed microarray analysis of control PC12 cells and PC12 cells stably overexpressing SH2B1beta (PC12-SH2B1beta) or the dominant-negative SH2B1beta(R555E) [PC12-SH2B1beta(R555E)]. NGF-induced microarray expression of Plaur and Mmp10 genes was greatly enhanced in PC12-SH2B1beta cells, whereas NGF-induced Plaur and Mmp3 expression was substantially depressed in PC12-SH2B1beta(R555E) cells. Plaur, Mmp3, and Mmp10 are among the 12 genes most highly up-regulated after 6 h of NGF. Their protein products [urokinase plasminogen activator receptor (uPAR), matrix metalloproteinase 3 (MMP3), and MMP10] lie in the same pathway of extracellular matrix degradation; uPAR has been shown previously to be critical for NGF-induced neurite outgrowth. Quantitative real-time PCR analysis revealed SH2B1beta enhancement of NGF induction of all three genes and the suppression of NGF induction of all three when endogenous SH2B1 was reduced using short hairpin RNA against SH2B1 and in PC12-SH2B1beta(R555E) cells. NGF-induced levels of uPAR and MMP3/10 and neurite outgrowth through Matrigel (MMP3-dependent) were also increased in PC12-SH2B1beta cells. These results suggest that SH2B1beta stimulates NGF-induced neuronal differentiation at least in part by enhancing expression of a specific subset of NGF-sensitive genes, including Plaur, Mmp3, and/or Mmp10, required for neurite outgrowth.
Collapse
Affiliation(s)
- Linyi Chen
- Department of Molecular and Integrative Physiology, The University of Michigan Medical School, Ann Arbor, MI 48109-0622, USA
| | | | | | | | | | | | | |
Collapse
|