1
|
IntroSpect: Motif-Guided Immunopeptidome Database Building Tool to Improve the Sensitivity of HLA I Binding Peptide Identification by Mass Spectrometry. Biomolecules 2022; 12:biom12040579. [PMID: 35454168 PMCID: PMC9025654 DOI: 10.3390/biom12040579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 01/02/2023] Open
Abstract
Although database search tools originally developed for shotgun proteome have been widely used in immunopeptidomic mass spectrometry identifications, they have been reported to achieve undesirably low sensitivities or high false positive rates as a result of the hugely inflated search space caused by the lack of specific enzymic digestions in immunopeptidome. To overcome such a problem, we developed a motif-guided immunopeptidome database building tool named IntroSpect, which is designed to first learn the peptide motifs from high confidence hits in the initial search, and then build a targeted database for refined search. Evaluated on 18 representative HLA class I datasets, IntroSpect can improve the sensitivity by an average of 76%, compared to conventional searches with unspecific digestions, while maintaining a very high level of accuracy (~96%), as confirmed by synthetic validation experiments. A distinct advantage of IntroSpect is that it does not depend on any external HLA data, so that it performs equally well on both well-studied and poorly-studied HLA types, unlike the previously developed method SpectMHC. We have also designed IntroSpect to keep a global FDR that can be conveniently controlled, similar to a conventional database search. Finally, we demonstrate the practical value of IntroSpect by discovering neoepitopes from MS data directly, an important application in cancer immunotherapies. IntroSpect is freely available to download and use.
Collapse
|
2
|
Wu Y, Zhang N, Wei X, Lu S, Li S, Hashimoto K, Dijkstra JM, Xia C. The Structure of a Peptide-Loaded Shark MHC Class I Molecule Reveals Features of the Binding between β 2-Microglobulin and H Chain Conserved in Evolution. THE JOURNAL OF IMMUNOLOGY 2021; 207:308-321. [PMID: 34145057 DOI: 10.4049/jimmunol.2001165] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/23/2021] [Indexed: 12/22/2022]
Abstract
Cartilaginous fish are the most primitive extant species with MHC molecules. Using the nurse shark, the current study is, to the best of our knowledge, the first to present a peptide-loaded MHC class I (pMHC-I) structure for this class of animals. The overall structure was found to be similar between cartilaginous fish and bony animals, showing remarkable conservation of interactions between the three pMHC-I components H chain, β2-microglobulin (β2-m), and peptide ligand. In most previous studies, relatively little attention was given to the details of binding between the H chain and β2-m, and our study provides important new insights. A pronounced conserved feature involves the insertion of a large β2-m F56+W60 hydrophobic knob into a pleat of the β-sheet floor of the H chain α1α2 domain, with the knob being surrounded by conserved residues. Another conserved feature is a hydrogen bond between β2-m Y10 and a proline in the α3 domain of the H chain. By alanine substitution analysis, we found that the conserved β2-m residues Y10, D53, F56, and W60-each binding the H chain-are required for stable pMHC-I complex formation. For the β2-m residues Y10 and F56, such observations have not been reported before. The combined data indicate that for stable pMHC-I complex formation β2-m should not only bind the α1α2 domain but also the α3 domain. Knowing the conserved structural features of pMHC-I should be helpful for future elucidations of the mechanisms of pMHC-I complex formation and peptide editing.
Collapse
Affiliation(s)
- Yanan Wu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Nianzhi Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Xiaohui Wei
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Shuangshuang Lu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Shen Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Keiichiro Hashimoto
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| |
Collapse
|
3
|
In-solution enrichment identifies peptide inhibitors of protein-protein interactions. Nat Chem Biol 2019; 15:410-418. [PMID: 30886434 DOI: 10.1038/s41589-019-0245-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/13/2019] [Indexed: 12/14/2022]
Abstract
The use of competitive inhibitors to disrupt protein-protein interactions (PPIs) holds great promise for the treatment of disease. However, the discovery of high-affinity inhibitors can be a challenge. Here we report a platform for improving the affinity of peptide-based PPI inhibitors using non-canonical amino acids. The platform utilizes size exclusion-based enrichment from pools of synthetic peptides (1.5-4 kDa) and liquid chromatography-tandem mass spectrometry-based peptide sequencing to identify high-affinity binders to protein targets, without the need for 'reporter' or 'encoding' tags. Using this approach-which is inherently selective for high-affinity binders-we realized gains in affinity of up to ~100- or ~30-fold for binders to the oncogenic ubiquitin ligase MDM2 or HIV capsid protein C-terminal domain, which inhibit MDM2-p53 interaction or HIV capsid protein C-terminal domain dimerization, respectively. Subsequent macrocyclization of select MDM2 inhibitors rendered them cell permeable and cytotoxic toward cancer cells, demonstrating the utility of the identified compounds as functional PPI inhibitors.
Collapse
|
4
|
Freeman H, Srinivasan S, Das D, Stayton PS, Convertine AJ. Fully synthetic macromolecular prodrug chemotherapeutics with EGFR targeting and controlled camptothecin release kinetics. Polym Chem 2018; 9:5224-5233. [PMID: 36660314 PMCID: PMC9847574 DOI: 10.1039/c8py01047a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Herein, we developed a fully polymerizable, peptide-targeted, camptothecin polymeric prodrug system. Two prodrug monomers were synthesized via esterification of campothecin (20Cam) and 10-hydroxycamptothecin (10Cam) with mono-2-(methacryloyloxy)ethyl succinate (SMA) resulting in polymerizable forms of the aliphatic ester- and aromatic ester-linked drugs respectively. These monomers were then incorporated into zwitterionic polymers via RAFT copolymerization of the prodrug monomers with a tert-butyl ester protected carboxy betaine monomer. Subsequent deprotection of the tert-butyl residues with TFA yielded carboxy betaine methacrylate (CBM) scaffolds with controlled prodrug incorporation. Reverse phase HPLC was then employed to establish drug release kinetics in human serum at 37 oC for the resultant polymeric prodrugs. Copolymers containing 10Cam residues linked via aromatic esters showed faster hydrolysis rates with 59 % drug released at 7 days, while copolymers with Cam residues linked via aliphatic esters showed only 28 % drug release over the same time period. These differences in drug release kinetics were then shown to correlate with large differences in cytotoxic activity in SKOV3 ovarian cancer cell cultures. At 72 hours, the IC50s of aromatic- and aliphatic- ester linked prodrugs were 56 nM and 4776 nM, respectively. An EGFR-targeting peptide sequence, GE11, was then directly incorporated into the polymeric prodrugs via RAFT copolymerization of the polymeric prodrugs with a peptide macronomer. The GE11-targeted polymeric prodrugs showed enhanced targeting and cytotoxic activity in SKOV3 cell cultures relative to untargeted polymers containing the negative control sequence HW12. Following pulse-chase treatment (15 min, 37 °C), the 72 hour IC50 of GE11 targeted prodrug was determined to be 1597 nM, in contrast to 3399 nM for the non-targeted control.
Collapse
Affiliation(s)
- Hanna Freeman
- Molecular Engineering and Sciences Institute, department of BioEngineering, Box 355061, Seattle WA, 98195, USA
| | - Selvi Srinivasan
- Molecular Engineering and Sciences Institute, department of BioEngineering, Box 355061, Seattle WA, 98195, USA
| | - Debobrato Das
- Molecular Engineering and Sciences Institute, department of BioEngineering, Box 355061, Seattle WA, 98195, USA
| | - Patrick S Stayton
- Molecular Engineering and Sciences Institute, department of BioEngineering, Box 355061, Seattle WA, 98195, USA
| | - Anthony J Convertine
- Department of Material Science and Engineering, Missouri University of Science and Technology, Rolla MO, 65401, USA
| |
Collapse
|
5
|
Croft NP, Purcell AW. Peptidomimetics: modifying peptides in the pursuit of better vaccines. Expert Rev Vaccines 2014; 10:211-26. [DOI: 10.1586/erv.10.161] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Seebach D, Lukaszuk A, Patora-Komisarska K, Podwysocka D, Gardiner J, Ebert MO, Reubi JC, Cescato R, Waser B, Gmeiner P, Hübner H, Rougeot C. On the Terminal Homologation of Physiologically Active Peptides as a Means of Increasing Stability in Human Serum - Neurotensin, Opiorphin, B27-KK10 Epitope, NPY. Chem Biodivers 2011; 8:711-39. [DOI: 10.1002/cbdv.201100093] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
7
|
Abstract
Fragment-based design has significantly modified drug discovery strategies and paradigms in the last decade. Besides technological advances and novel therapeutic avenues, one of the most significant changes brought by this new discipline has occurred in the minds of drug designers. Fragment-based approaches have markedly impacted rational computer-aided design both in method development and in applications. The present review illustrates the importance of molecular fragments in many aspects of rational ligand design, and discusses how thinking in "fragment space" has boosted computational biology and chemistry.
Collapse
|
8
|
Flower DR, Phadwal K, Macdonald IK, Coveney PV, Davies MN, Wan S. T-cell epitope prediction and immune complex simulation using molecular dynamics: state of the art and persisting challenges. Immunome Res 2010; 6 Suppl 2:S4. [PMID: 21067546 PMCID: PMC2981876 DOI: 10.1186/1745-7580-6-s2-s4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Atomistic Molecular Dynamics provides powerful and flexible tools for the prediction and analysis of molecular and macromolecular systems. Specifically, it provides a means by which we can measure theoretically that which cannot be measured experimentally: the dynamic time-evolution of complex systems comprising atoms and molecules. It is particularly suitable for the simulation and analysis of the otherwise inaccessible details of MHC-peptide interaction and, on a larger scale, the simulation of the immune synapse. Progress has been relatively tentative yet the emergence of truly high-performance computing and the development of coarse-grained simulation now offers us the hope of accurately predicting thermodynamic parameters and of simulating not merely a handful of proteins but larger, longer simulations comprising thousands of protein molecules and the cellular scale structures they form. We exemplify this within the context of immunoinformatics.
Collapse
Affiliation(s)
- Darren R Flower
- Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Kanchan Phadwal
- Oxford Biomedical Research Centre, The John Radcliffe Hospital, Room 4503, Corridor 4b, Level 4, Oxford, OX 3 9DU, UK
| | - Isabel K Macdonald
- OncImmune Limited, Clinical Sciences Building, Nottingham City Hospital, Hucknall Rd. Nottingham, NG5 1PB, UK
| | - Peter V Coveney
- Centre for Computational Science, Chemistry Department, University College of London, 20 Gordon Street, WC1H 0AJ, London, UK
| | - Matthew N Davies
- SGDP, Institute of Psychiatry, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Shunzhou Wan
- Centre for Computational Science, Chemistry Department, University College of London, 20 Gordon Street, WC1H 0AJ, London, UK
| |
Collapse
|
9
|
Mishra S, Sinha S. Immunoinformatics and modeling perspective of T cell epitope-based cancer immunotherapy: a holistic picture. J Biomol Struct Dyn 2010; 27:293-306. [PMID: 19795913 DOI: 10.1080/07391102.2009.10507317] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cancer immunotherapy is fast gaining global attention with its unique position as a potential therapy showing promise in cancer prevention and cure. It utilizes the natural system of immunity as opposed to chemotherapy and radiotherapy that utilize chemical drugs and radiation, respectively. Cancer immunotherapy essentially involves treatment and/or prevention with vaccines in the form of peptide vaccines (T and B cell epitopes), DNA vaccines and vaccination using whole tumor cells, dendritic cells, viral vectors, antibodies and adoptive transfer of T cells to harness the body's own immune system towards the targeting of cancer cells for destruction. Given the time, cost and labor involved in the vaccine discovery and development, researchers have evinced interest in the novel field of immunoinformatics to cut down the escalation of these critical resources. Immunoinformatics is a relatively new buzzword in the scientific circuit that is showing its potential and delivering on its promise in expediting the development of effective cancer immunotherapeutic agents. This review attempts to present a holistic picture of our race against cancer and time using the science and technology of immunoinformatics and molecular modeling in T cell epitope-based cancer immunotherapy. It also attempts to showcase some problem areas as well as novel ones waiting to be explored where development of novel immunoinformatics tools and simulations in the context of cancer immunotherapy would be highly welcome.
Collapse
Affiliation(s)
- Seema Mishra
- National Institute of Biologicals, Ministry of Health and Family Welfare, A-32 Sector 62, Noida, U. P., India.
| | | |
Collapse
|
10
|
Butler NS, Theodossis A, Webb AI, Dunstone MA, Nastovska R, Ramarathinam SH, Rossjohn J, Purcell AW, Perlman S. Structural and biological basis of CTL escape in coronavirus-infected mice. THE JOURNAL OF IMMUNOLOGY 2008; 180:3926-37. [PMID: 18322201 DOI: 10.4049/jimmunol.180.6.3926] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytotoxic T lymphocyte escape occurs in many human infections, as well as mice infected with the JHM strain of mouse hepatitis virus, which exhibit CTL escape variants with mutations in a single epitope from the spike glycoprotein (S510). In all CTL epitopes prone to escape, only a subset of all potential variants is generally detected, even though many of the changes that are not selected would result in evasion of the T cell response. It is postulated that these unselected mutations significantly impair virus fitness. To define more precisely the basis for this preferential selection, we combine x-ray crystallographic studies of the MHC class I (D(b))/S510 complexes with viral reverse genetics to identify a prominent TCR contact residue (tryptophan at position 4) prone to escape mutations. The data show that a mutation that is commonly detected in chronically infected mice (tryptophan to arginine) potently disrupts the topology of the complex, explaining its selection. However, other mutations at this residue, which also abrogate the CTL response, are never selected in vivo even though they do not compromise virus fitness in acutely infected animals or induce a significant de novo CTL response. Thus, while structural analyses of the S510/D(b) complex provide a strong basis for why some CTL escape variants are selected, our results also show that factors other than effects on virus fitness limit the diversification of CD8 T cell epitopes.
Collapse
Affiliation(s)
- Noah S Butler
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Jones MA, Notta JK, Cobbold M, Palendira M, Hislop AD, Wilkie J, Snaith JS. Synthesis and ex vivo profiling of chemically modified cytomegalovirus CMVpp65 epitopes. J Pept Sci 2008; 14:313-20. [PMID: 17929331 DOI: 10.1002/psc.930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Accepted: 08/03/2007] [Indexed: 01/12/2023]
Abstract
The effect of substituting unnatural hydrophobic amino acids into the critical MHC binding residues of an HLA-A*0201-restricted cytomegalovirus CMVpp65 epitope, NLVPMVATV, has been investigated. A new set of peptides containing the amino acids tert-butyl glycine (Tgl), cyclohexyl glycine (Chg), neo-pentyl glycine (Npg), cyclohexyl alanine (Cha) and cyclo leucine (Cyl), at either position 2, to mimic Leu, or position 9, to mimic Val, have been synthesised. Immunological profiling using class I MHC stabilisation assays to assess MHC binding affinity, and enzyme-linked immunospot (ELISPOT) assays to assess the ability of the modified peptides to re-stimulate a specific cytotoxic T-lymphocyte (CTL) response, compared to the native epitope, have been performed. It was found that the majority of the unnatural substitutions resulted in a decrease in either HLA-A*0201 binding affinity or cytotoxic T-cell activity. However, the HLA-A*0201 binding affinity was unrelated to the ability to re-stimulate a T-cell response. Minimisation and molecular dynamics studies proved helpful in dissecting the ELISPOT responses. Two principal peptide binding modes were found by minimisation, designated kinked and straight. Peptides that bound in a kinked conformation were poor at re-stimulating a T-cell response. Of the peptides that bound in a straight conformation, molecular dynamics (MD) simulations revealed that those capable of re-stimulating the strongest responses had the greatest degree of flexibility (as determined by RMSD values across the MD simulation) around the P6 residue, one of the residues important for T-cell receptor recognition.
Collapse
Affiliation(s)
- Matthew A Jones
- School of Chemistry, University of Birmingham, Birmingham, B15 2TT, UK
| | | | | | | | | | | | | |
Collapse
|
12
|
Douat-Casassus C, Marchand-Geneste N, Diez E, Gervois N, Jotereau F, Quideau S. Synthetic anticancer vaccine candidates: rational design of antigenic peptide mimetics that activate tumor-specific T-cells. J Med Chem 2007; 50:1598-609. [PMID: 17328535 DOI: 10.1021/jm0613368] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A rational design approach was followed to develop peptidomimetic analogues of a cytotoxic T-cell epitope capable of stimulating T-cell responses as strong as or stronger (heteroclytic) than those of parental antigenic peptides. The work described herein focused on structural alterations of the central amino acids of the melanoma tumor-associated antigenic peptide Melan-A/MART-1(26-35) using nonpeptidic units. A screening was first realized in silico to select altered peptides potentially capable of fitting at the interface between the major histocompatibilty complex (MHC) class-I HLA-A2 molecule and T-cell receptors (TCRs). Two compounds appeared to be high-affinity ligands to the HLA-A2 molecule and stimulated several Melan-A/MART-1 specific T-cell clones. Most remarkably, one of them even managed to amplify the response of one clone. Together, these results indicate that central TCR-contact residues of antigenic peptides can be replaced by nonpeptidic motifs without loss of binding affinity to MHC class-I molecules and T-cell triggering capacity.
Collapse
Affiliation(s)
- Céline Douat-Casassus
- Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac Cedex, France
| | | | | | | | | | | |
Collapse
|
13
|
Meng WS, Bui HH, Haworth IS. Exploiting the Peptide — MHC Water Interface in the Computer-Aided Design of Non-Natural Peptides that Bind to the Class I MHC Molecule HLA-A2. MOLECULAR SIMULATION 2006. [DOI: 10.1080/08927020008022372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Jones MA, Hislop AD, Snaith JS. Synthesis and biological evaluation of two chemically modified peptide epitopes for the class I MHC protein HLA-B*2705. Org Biomol Chem 2006; 4:3769-77. [PMID: 17024283 DOI: 10.1039/b611170j] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The T-cell receptor of a CD8(+) T-cell recognises peptide epitopes bound by class I major histocompatibility complex (MHC) glycoproteins presented in a groove on their upper surface. Within the groove of the MHC molecule are 6 pockets, two of which mostly display a high degree of specificity for binding amino acids capable of making conserved and energetically favourable contacts with the MHC. One type of MHC molecule, HLA-B*2705, preferentially binds peptides containing an arginine at position 2. In an effort to increase the affinity of peptides for HLA-B*2705, potentially leading to better immune responses to such a peptide, we synthesised two modified epitopes where the amino acid at position 2 involved in anchoring the peptide to the class I molecule was replaced with the alpha-methylated beta,gamma-unsaturated arginine analogue 2-(S)-amino-5-guanidino-2-methyl-pent-3-enoic acid. The latter was prepared via a multi-step synthetic sequence, starting from alpha-methyl serine, and incorporated into dipeptides which were fragment-coupled to resin-bound heptameric peptides yielding the target nonameric sequences. Biological characterisation indicated that the modified peptides were poorer than the native peptides at stabilising empty class I MHC complexes, and cells sensitised with these peptides were not recognised as well by cognate CD8(+) T-cells, where available, compared to those sensitised with the native peptide. We suggest that the modifications made to the peptide have decreased its ability to bind to the peptide binding groove of HLA-B*2705 molecules which may explain the decrease in recognition by cytotoxic T-cells when compared to the native peptide.
Collapse
Affiliation(s)
- Matthew A Jones
- School of Chemistry, University of Birmingham, Birmingham, UK B15 2TT.
| | | | | |
Collapse
|
15
|
Hoppe B, Heymann GA, Schoenemann C, Nagy M, Kiesewetter H, Salama A. Description of a novel HLA-B allele, B*5613, identified during HLA-typing using sequence-specific oligonucleotide hybridization and sequence-specific amplification. ACTA ACUST UNITED AC 2005; 64:616-8. [PMID: 15496207 DOI: 10.1111/j.1399-0039.2004.00306.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, we report on the characterization of a novel human leukocyte antigen (HLA)-B allele, B*5613. The allele was identified in an adult male from North Africa who was suffering from sickle cell anemia. HLA-B*5613 most closely matches to B*5601 differing only by a substitution of three nucleotides of codon 180. Due to this substitution, low-resolution HLA-typing using sequence-specific oligonucleotide hybridization or amplification using sequence-specific primers gave inconclusive results. DNA sequencing confirmed a variation of codon 180 (CTG-->GAC) resulting in an amino acid substitution Leu156Asp.
Collapse
Affiliation(s)
- B Hoppe
- Institute of Transfusion Medicine, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
Guichard G. MHC ligands as potential therapeutics in the treatment of autoimmune and allergic diseases. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.7.1.29] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Webb AI, Borg NA, Dunstone MA, Kjer-Nielsen L, Beddoe T, McCluskey J, Carbone FR, Bottomley SP, Aguilar MI, Purcell AW, Rossjohn J. The Structure of H-2Kband Kbm8Complexed to a Herpes Simplex Virus Determinant: Evidence for a Conformational Switch That Governs T Cell Repertoire Selection and Viral Resistance. THE JOURNAL OF IMMUNOLOGY 2004; 173:402-9. [PMID: 15210799 DOI: 10.4049/jimmunol.173.1.402] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Polymorphism within the MHC not only affects peptide specificity but also has a critical influence on the T cell repertoire; for example, the CD8 T cell response toward an immunodominant HSV glycoprotein B peptide is more diverse and of higher avidity in H-2(bm8) compared with H-2(b) mice. We have examined the basis for the selection of these distinct antiviral T cell repertoires by comparing the high-resolution structures of K(b) and K(bm8), in complex with cognate peptide Ag. Although K(b) and K(bm8) differ by four residues within the Ag-binding cleft, the most striking difference in the two structures was the disparate conformation adopted by the shared residue, Arg(62). The altered dynamics of Arg(62), coupled with a small rigid-body movement in the alpha(1) helix encompassing this residue, correlated with biased Valpha usage in the B6 mice. Moreover, an analysis of all known TCR/MHC complexes reveals that Arg(62) invariably interacts with the TCR CDR1alpha loop. Accordingly, Arg(62) appears to function as a conformational switch that may govern T cell selection and protective immunity.
Collapse
Affiliation(s)
- Andrew I Webb
- Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ota N, Agard DA. Binding mode prediction for a flexible ligand in a flexible pocket using multi-conformation simulated annealing pseudo crystallographic refinement. J Mol Biol 2001; 314:607-17. [PMID: 11846570 DOI: 10.1006/jmbi.2001.5147] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe multi-conformation simulated annealing-pseudo-crystallographic refinement (MCSA-PCR), a technique developed for predicting the binding mode of a flexible ligand in a flexible binding pocket. To circumvent the local-minimum problem efficiently, this method performs multiple independent cycles of simulated annealing with explicit solvent, "growing" the ligand in the binding pocket each time. From the ensemble of structures, a pseudo-crystallographic electron density map is calculated, and then conventional crystallographic refinement methods are used to best fit a single, optimal structure into the density map. The advantage of the MCSA-PCR method is that it provides a direct means to evaluate the accuracy and uniqueness of the calculated solution, provides a measure of ligand and protein dynamics from the refined B-factors, and facilitates comparison with X-ray crystallographic data. Here, we show that our MCSA-PCR method succeeds in predicting the correct binding mode of the VSV8 peptide to the major histocompatibility complex (MHC) receptor. Importantly, there is a significant correlation between the experimentally determined crystallographic water molecules and water density observed in the pseudo map by MCSA-PCR. Furthermore, comparison of different approaches for extracting a single, most probable structure from the calculated ensemble reveals the power of the PCR method and provides insights into the nature of the energetic landscape.
Collapse
Affiliation(s)
- N Ota
- Howard Hughes Medical Institute and the Department of Biochemistry and Biophysics, University of California at San Francisco, CA 94143-0448, USA
| | | |
Collapse
|
19
|
Reinelt S, Marti M, Dédier S, Reitinger T, Folkers G, de Castro JA, Rognan D. Beta-amino acid scan of a class I major histocompatibility complex-restricted alloreactive T-cell epitope. J Biol Chem 2001; 276:24525-30. [PMID: 11342555 DOI: 10.1074/jbc.m102772200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An HLA-B27-restricted self-octapeptide known to react with an alloreactive T-cell receptor has been modified by systematic substitution of a beta-amino acid for the natural alpha-amino acid residue, over the whole length of the parent epitope. All modified peptides were shown to bind to recombinant HLA-B*2705 and induce stable major histocompatibility complex-peptide complexes, but with some variation depending on the position of the beta-amino acid on the peptide sequence. Alteration of the natural peptide sequence at the two N-terminal positions (positions 1 and 2) decreases binding affinity and thermodynamic stability of the refolded complex, but all other positions (from position 3 to the C-terminal residue) were insensitive to the beta-amino acid substitution. All modified peptides were recognized by an alloreactive T-cell clone specific for the parent epitope with decreased efficiency, to an extent dependent of the position that was modified. Furthermore, the introduction of a single beta-amino acid at the first two positions of the modified peptide was shown to be sufficient to protect them against enzymatic cleavage. Thus, beta-amino acids represent new interesting templates for alteration of T-cell epitopes to design either synthetic vaccines of T-cell receptor antagonists.
Collapse
Affiliation(s)
- S Reinelt
- Department of Applied Biosciences, Swiss Federal Institute of Technology, Wintherthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
20
|
Marastoni M, Bazzaro M, Micheletti F, Gavioli R, Tomatis R. Peptide analogues of a subdominant epitope expressed in ebv-associated tumors: synthesis and immunological activity. J Med Chem 2001; 44:2370-3. [PMID: 11428932 DOI: 10.1021/jm001136a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
H-Cys-Leu-Gly-Gly-Leu-Leu-Thr-Met-Val-OH (CLG) peptide is an EBV subdominant epitope that represents the target of HLA-A2 restricted CTL responses. The CLG peptide has low affinity for HLA-A2 and does not produce stable complexes, both factors that determine weak CTL responses. In contrast, the [Tyr(1), Ala(3)]CLG (YLA) analogue showed high affinity for HLA-A2 molecules and efficiently stimulated CLG-specific CTL precursors. Nevertheless, this modified epitope showed low enzymatic stability. To further improve the immunotherapeutical potential of this "improved epitope", we have synthesized and tested YLA analogues containing different modifications next to the scissile peptide bond. Among the analogues we found three peptides, with higher enzymatic resistance, that efficiently stimulate CTL responses. These peptides may be used for EBV-specific immunotherapies.
Collapse
Affiliation(s)
- M Marastoni
- Department of Pharmaceutical Sciences and Biotechnology Center, University of Ferrara, I-44100 Ferrara, Italy.
| | | | | | | | | |
Collapse
|
21
|
García-Peydró M, Paradela A, Albar JP, Castro JA. Antagonism of direct alloreactivity of an HLA-B27-specific CTL clone by altered peptide ligands of its natural epitope. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:5680-5. [PMID: 11067925 DOI: 10.4049/jimmunol.165.10.5680] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Antagonism of allospecific CTL by altered MHC ligands is a potential approach to specific immunomodulation of allogeneic T cell responses in acute graft rejection and graft-vs-host disease. In this study we have analyzed the capacity of peptide analogs of a natural HLA-B27-allospecific CTL epitope to antagonize direct alloreactivity. Alanine scanning demonstrated that positions 4, 5, and 7 of the peptide epitope were critical for allorecognition. A number of relatively conservative substitutions at each of these positions were then tested for their effect on allorecognition and antagonism. All substitutions at position 5 abrogated cytotoxicity. In contrast, a few changes at positions 4 and 7 were tolerated, indicating a limited flexibility of the allospecific CTL in recognition of peptide epitope variants. Most of the substitutions impairing cytotoxicity actually induced antagonism. However, whereas epitope variants with changes at positions 4 and 7 behaved as weak or intermediate antagonists, some of the variants with changes at position 5 antagonized CTL alloreactivity almost completely. The results in this study demonstrate for the first time that antagonism of direct class I-mediated alloreactivity can be achieved by variants of a natural allospecific peptide epitope.
Collapse
Affiliation(s)
- M García-Peydró
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Cientificas), Universidad Autónoma de Madrid, Facultad de Ciencias, Cantoblanco, Madrid, Spain
| | | | | | | |
Collapse
|
22
|
Toh H, Savoie CJ, Kamikawaji N, Muta S, Sasazuki T, Kuhara S. Changes at the floor of the peptide-binding groove induce a strong preference for proline at position 3 of the bound peptide: molecular dynamics simulations of HLA-A*0217. Biopolymers 2000; 54:318-27. [PMID: 10935972 DOI: 10.1002/1097-0282(20001015)54:5<318::aid-bip30>3.0.co;2-t] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We report on molecular dynamics simulations of major histocompatibility complex (MHC)-peptide complexes. Class I MHC molecules play an important role in cellular immunity by presenting antigenic peptides to cytotoxic T cells. Pockets in the peptide-binding groove of MHC molecules accommodate anchor side chains of the bound peptide. Amino acid substitutions in MHC affect differences in the peptide-anchor motifs. HLA-A*0217, human MHC class I molecule, differs from HLA-A*0201 only by three amino acid residues substitutions (positions 95, 97, and 99) at the floor of the peptide-binding groove. A*0217 showed a strong preference for Pro at position 3 (p3) and accepted Phe at p9 of its peptide ligands, but these preferences have not been found in other HLA-A2 ligands. To reveal the structural mechanism of these observations, the A*0217-peptide complexes were simulated by 1000 ps molecular dynamics at 300 K with explicit solvent molecules and compared with those of the A*0201-peptide complexes. We examined the distances between the anchor side chain of the bound peptide and the pocket, and the rms fluctuations of the bound peptides and the HLA molecules. On the basis of the results from our simulations, we propose that Pro at p3 serves as an optimum residue to lock the dominant anchor residue (p9) tightly into pocket F and to hold the peptide in the binding groove, rather than a secondary anchor residue fitting optimally the complementary pocket. We also found that Phe at p9 is used to occupy the space created by replacements of three amino acid residues at the floor within the groove. These findings would provide a novel understanding in the peptide-binding motifs of class I MHC molecules.
Collapse
Affiliation(s)
- H Toh
- Graduate School of Genetic Resources Technology, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Abstract
Major histocompatibility complex (MHC) antigens bind peptides of diverse sequences with high affinity. They do this in order to generate maximal immunological protection by covering the spectrum of peptides that may be seen by a host over the course of its lifetime. However, in many circumstances the immune system does not recognize a particular peptide that it should for maximum advantage over the pathogen. In other situations, the immune system goes awry and incorrectly recognizes a self-peptide that it should not. This results in disease characterized by recognition and attack of self. Rheumatoid arthritis is an example of just such a disease. In either of these situations, peptide-based modalities for immune therapy would be an advantage. However, peptide-based therapies require a thorough understanding of the forces involved in peptide binding. Great strides have been made in elucidating the mechanisms by which these MHC proteins may bind peptides with diverse sequences and high affinity. This review summarizes the current data obtained from crystallographic analyses of peptide binding for both class I and class II MHC molecules. Unfortunately, as yet these data have not allowed us to predict which peptides will bind with high affinity to a specific MHC molecule.
Collapse
Affiliation(s)
- M A Batalia
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill 27599-7290, USA
| | | |
Collapse
|
25
|
Toh H, Kamikawaji N, Tana T, Muta S, Sasazuki T, Kuhara S. Magnitude of structural changes of the T-cell receptor binding regions determine the strength of T-cell antagonism: molecular dynamics simulations of HLA-DR4 (DRB1*0405) complexed with analogue peptide. PROTEIN ENGINEERING 2000; 13:423-9. [PMID: 10877853 DOI: 10.1093/protein/13.6.423] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In our model system, we generated T cell clones specific for the HLA-DR4 (DRB1*0405)-index peptide (YWALEAAAD) complex. Based on response patterns of the T cell clones, analogue peptides containing single amino acid substitutions of the index peptide were classified into three types, agonists, antagonists or null peptides (non-agonistic and non-antagonistic peptides). Subtle structural changes induced by the antagonists in the T-cell receptor (TCR) binding regions have already been explained using the root mean square (r.m.s.) deviations from the DR4-index peptide complex in the molecular dynamics (MD) trajectory. In this work, we performed additional MD simulations at 300 K with explicit solvent molecules to reveal the structural character of the HLA-DR4 complexed with the analogue peptides. We examined the r.m.s. deviations of the TCR-binding sites and the exposed areas of the bound peptides. Remarkable differences of the r.m.s. deviations among the DR4-antagonist complexes, together with our previous data, suggest that the magnitude of structural changes of TCR-binding regions would determine the strength of TCR antagonism. The simulations also indicate that TCR could discriminate null peptides from other ligands mainly through the changes of exposed side chains of the bound peptide, rather than the conformational changes of TCR-binding surfaces on HLA molecule.
Collapse
Affiliation(s)
- H Toh
- Graduate School of Genetic Resources Technology, Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | | | | | | | |
Collapse
|
26
|
García-Peydró M, Rognan D, López de Castro JA. Limited plasticity in the recognition of peptide epitope variants by an alloreactive CTL clone correlates directly with conservation of critical residues and inversely with peptide length. TISSUE ANTIGENS 2000; 55:289-95. [PMID: 10852379 DOI: 10.1034/j.1399-0039.2000.550401.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Although self-restricted T cells are peptide-specific and can distinguish among closely related ligands, they have some flexibility in the recognition of sequence variants of their natural peptide epitopes. Alloreactive cytotoxic T lymphocytes (CTL) can recognize specific peptides bound to the allo-major histocompatibility complex (MHC) molecule, but their plasticity in the recognition of related peptide variants has not been properly defined. The anti-B*2705 alloreactive CTL 27S69 specifically recognizes a natural octamer ligand of HLA-B*2705. In this study, we tested the recognition of a nested set of epitope variants by this CTL clone. Although none of these peptides was recognized equally as the natural epitope, two of the peptide variants were recognized with only slightly decreased efficiency. Peptide sensitization assays showed that CTL recognition of epitope variants correlated directly with conservation of two non-anchor residues that were critical for recognition of the natural epitope, and inversely with peptide length. Molecular modeling of the peptide variants complexed with B*2705 provided a rational explanation for their differential recognition. Location of the two critical peptide residues at the right three-dimensional space favored efficient recognition by CTL 27S69. The negative effect of increasing peptide length on recognition was due to the bigger bulging surface between the two critical residues, which precluded for optimal interaction with the specific T-cell receptors (TCR). Our results demonstrate that an alloreactive CTL has a degree of plasticity in the recognition of peptide epitope variants that is comparable to that of peptide-specific self-restricted CTL, and define the structural features determining crossreaction among related peptides.
Collapse
MESH Headings
- Cloning, Molecular
- Cytotoxicity Tests, Immunologic
- Epitopes/chemistry
- Epitopes/genetics
- Epitopes/immunology
- Humans
- Immunologic Memory/immunology
- Models, Molecular
- Peptide Fragments/chemistry
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Transfection
Collapse
Affiliation(s)
- M García-Peydró
- Centro de Biología, Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Facultad de Ciencias, Spain
| | | | | |
Collapse
|
27
|
Rognan D, Stryhn A, Fugger L, Lyngbaek S, Engberg J, Andersen PS, Buus S. Modeling the interactions of a peptide-major histocompatibility class I ligand with its receptors. I. Recognition by two alpha beta T cell receptors. J Comput Aided Mol Des 2000; 14:53-69. [PMID: 10702925 DOI: 10.1023/a:1008142830353] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A three-dimensional model of the complex between an Influenza Hemagglutinin peptide, Ha255-262, and its restricting element, the mouse major histocompatibility complex (MHC) class I molecule, Kk, was built by homology modeling and subsequently refined by simulated annealing and restrained molecular dynamics. Next, three-dimensional models of two different T cell receptors (TCRs) both specific for the Ha255-262/Kk complex were generated based on previously published TCR X-ray structures. Finally, guided by the recently published X-ray structures of ternary TCR/peptide/MHC-I complexes, the TCR models were successfully docked into the Ha255-262/Kk model. We have previously used a systematic and exhaustive panel of 144 single amino acid substituted analogs to analyze both MHC binding and T cell recognition of the parental viral peptide. This large body of experimental data was used to evaluate the models. They were found to account well for the experimentally obtained data, lending considerable support to the proposed models and suggesting a universal docking mode for alpha beta TCRs to MHC-peptide complexes. Such models may also be useful in guiding future rational experimentation.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Crystallography, X-Ray
- H-2 Antigens/chemistry
- H-2 Antigens/genetics
- H-2 Antigens/metabolism
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Ligands
- Macromolecular Substances
- Mice
- Models, Molecular
- Molecular Sequence Data
- Peptide Fragments/chemistry
- Peptide Fragments/metabolism
- Protein Conformation
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- D Rognan
- Department of Pharmacy, Swiss Federal Institute of Technology, Zürich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
28
|
Lamas JR, Paradela A, Roncal F, López de Castro JA. Modulation at multiple anchor positions of the peptide specificity of HLA-B27 subtypes differentially associated with ankylosing spondylitis. ARTHRITIS AND RHEUMATISM 1999; 42:1975-85. [PMID: 10513815 DOI: 10.1002/1529-0131(199909)42:9<1975::aid-anr25>3.0.co;2-v] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To investigate the rules governing peptide binding to HLA-B*2705, and to B*2704 and B*2706, which are 2 subtypes differentially associated with ankylosing spondylitis. METHODS Poly-Ala analogs carrying the HLA-B27 motif Arg-2, and substitutions at anchor positions P1, P3, or Pomega, were used to determine a binding score for each residue at each position. Binding was assessed in a quantitative epitope stabilization assay, where the cell surface expression of HLA-B27 was measured by flow cytometry as a function of peptide concentration. RESULTS Peptide anchor residues contributed additively to B*2705 binding. About 15% of the natural B*2705 ligands used a deficient P3 or Pomega anchor, but never both, indicating that detrimental anchoring at one of these positions is always compensated by a good anchor at the other one. About 50% of the B*2705 ligands used suboptimal P1 residues. However, this was compensated with optimal P3 and/or Pomega anchoring. Peptides that were longer than decamers used good anchor residues at the 3 positions, suggesting more stringent binding requirements. B*2704 and B*2706 differed in their residue specificity at P1, P3, and Pomega. The rules derived for B*2705 also applied to the known ligands of these 2 subtypes. CONCLUSION The B*2705, B*2704, and B*2706 peptide repertoires are limited by the allowed residue combinations described in this study. The differential association of B*2704 and B*2706 with spondylarthropathy correlates with differences in their peptide specificity at multiple anchor positions. However, it is now possible to predict the peptide features that determine this differential binding to both subtypes.
Collapse
Affiliation(s)
- J R Lamas
- Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | |
Collapse
|
29
|
Poenaru S, Lamas JR, Folkers G, López de Castro JA, Seebach D, Rognan D. Nonapeptide analogues containing (R)-3-hydroxybutanoate and beta-homoalanine oligomers: synthesis and binding affinity to a class I major histocompatibility complex protein. J Med Chem 1999; 42:2318-31. [PMID: 10395472 DOI: 10.1021/jm981123l] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Crystal structures of antigenic peptides bound to class I MHC proteins suggest that chemical modifications of the central part of the bound peptide should not alter binding affinity to the MHC restriction protein but could perturb the T-cell response to the parent epitope. In our effort in designing nonpeptidic high-affinity ligands for class I MHC proteins, oligomers of (R)-3-hydroxybutanoate and(or) beta-homoalanine have been substituted for the central part of a HLA-B27-restricted T-cell epitope of viral origin. The affinity of six modified peptides to the B2705 allele was determined by an in vitro stabilization assay. Four out of the six designed analogues presented an affinity similar to that of the parent peptide. Two compounds, sharing the same stereochemistry (R,R,S,S) at the four stereogenic centers of the nonpeptidic spacer, bound to B2705 with a 5-6-fold decreased affinity. Although the chiral spacers do not strongly interact with the protein active site, there are configurations which are not accepted by the MHC binding groove, probably because of improper orientation of some lateral substituents in the bound state and different conformational behavior in the free state. However we demonstrate that beta-amino acids can be incorporated in the sequence of viral T-cell epitopes without impairing MHC binding. The presented structure-activity relationships open the door to the rational design of peptide-based vaccines and of nonnatural T-cell receptor antagonists aimed at blocking peptide-specific T-cell responses in MHC-associated autoimmune diseases.
Collapse
Affiliation(s)
- S Poenaru
- Laboratory for Organic Chemistry, Swiss Federal Institute of Technology, Universitätstrasse 16, CH-8092 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
30
|
Ayyoub M, Mazarguil H, Monsarrat B, Van den Eynde B, Gairin JE. A structure-based approach to designing non-natural peptides that can activate anti-melanoma cytotoxic T cells. J Biol Chem 1999; 274:10227-34. [PMID: 10187808 DOI: 10.1074/jbc.274.15.10227] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor antigens presented by major histocompatibility complex (MHC) class I molecules and recognized by CD8(+) cytotoxic T lymphocytes (CTLs) may generate an efficient antitumor immune response after appropriate immunization. Antigenic peptides can be used in vivo to induce antitumor or antiviral immunity. The efficiency of naked peptides may be greatly limited by their degradation in the biological fluids. We present a rational, structure-based approach to design structurally modified, peptidase-resistant and biologically active analogues of human tumor antigen MAGE-1.A1. This approach is based on our understanding of the peptide interaction with the MHC and the T cell receptor and its precise degradation pathway. Knowledge of these mechanisms led to the design of a non-natural, minimally modified analogue of MAGE-1.A1, [Aib2, NMe-Ser8]MAGE-1.A1, which was highly peptidase-resistant and bound to MHC and activated MAGE-1.A1-specific anti-melanoma CTLs. Thus, we showed that it is possible to structurally modify peptide epitopes to obtain analogues that are still specifically recognized by CTLs. Such analogues may represent interesting leads for antitumor synthetic vaccines.
Collapse
Affiliation(s)
- M Ayyoub
- Institut de Pharmacologie et Biologie Structurale, UPR 9062 CNRS, 205 route de Narbonne, 31400 Toulouse, France
| | | | | | | | | |
Collapse
|
31
|
Dédier S, Krebs S, Lamas JR, Poenaru S, Folkers G, López de Castro JA, Seebach D, Rognan D. Structure-based design of nonnatural ligands for the HLA-B27 protein. J Recept Signal Transduct Res 1999; 19:645-57. [PMID: 10071790 DOI: 10.3109/10799899909036677] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
X-ray studies as well as structure-activity relationships indicate that the central part of class I MHC-binding nonapeptides represents the main interaction site for a T cell receptor. In order to rationally manipulate T cell epitopes, several nonpeptidic spacer have been designed from the X-ray structure of a MHC-peptide complex and substituted for the T cell receptor-binding part of several antigenic peptides. The binding of the modified epitopes to the HLA-B*2705 protein was studied by an in vitro stabilisation assay and the thermal stability of all complexes examined by circular dichroism spectroscopy. Depending on their chemical nature and length, the introduced spacers may be classified into two categories. Monofunctional spacers (11-amino undecanoate, (R)-3-hydroxybutyrate trimer) simply link two anchoring peptide positions (P3 and P9) but loosely contact the MHC binding groove, and thus decrease more or less the affinity of the altered epitopes to HLA-B*2705. Bifunctional spacers ((R)-3-hydroxybutyrate and beta-homoalanine combinations) not only bridges the two distant anchoring amino acids but also strongly interact with the binding cleft and lead to an increase in binding to the MHC protein. The presented modified ligands constitute interesting tools for perturbing the T cell response to the parent antigenic peptide.
Collapse
Affiliation(s)
- S Dédier
- Department of Pharmacy, Swiss Federal Institute of Technology, Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Krebs S, Rognan D. From peptides to peptidomimetics: design of nonpeptide ligands for major histocompatibility proteins. PHARMACEUTICA ACTA HELVETIAE 1998; 73:173-81. [PMID: 9861866 DOI: 10.1016/s0031-6865(98)00021-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The ever increasing data available on antigen presentation by class I or class II histocompatibility proteins have made these glycoproteins highly interesting pharmaceutical targets for either vaccination or immunosuppressive therapy of autoimmune diseases and cancers. Herewith, we review the design and biological properties of the very first nonpeptide ligands of major histocompatibility proteins as well as their potential application in vaccination, Major Histocompatibility Complex (MHC) blockade or T cell receptor antagonism.
Collapse
Affiliation(s)
- S Krebs
- Department of Pharmacy-ETH Zurich, Switzerland
| | | |
Collapse
|
33
|
Abstract
A novel class of major histocompatibility complex class I (MHC-I) ligands containing an N-hydroxyamide bond was designed on the basis of the natural epitope SIINFEKL, and synthesized on solid phase. The capacity of these compounds to bind to the MHC-I molecule H-2Kb and to induce T cell responses was analysed in comparison with the corresponding glycine containing variant of SIINFEKL. Binding to the MHC molecule was diminished by the N-hydroxy group at positions 2 and 3 of the oligomer and improved in the case of positions 4, 5, 6 and 7. No change was seen for position 1. The efficacy of T cell stimulation was strongly reduced by the modification of all positions except for position 1. A complete loss of activity was found for the N-hydroxy variant in positions 4 and 6. N-Hydroxy amide-containing peptides displayed an enhanced stability to enzymatic degradation. This new class of MHC ligand can become instrumental as immunomodulatory reagent in various disease situations.
Collapse
Affiliation(s)
- A Bianco
- Institut für Organische Chemie, Universität Tübingen, Germany
| | | | | | | |
Collapse
|
34
|
Paradela A, García-Peydró M, Vázquez J, Rognan D, López de Castro JA. The Same Natural Ligand Is Involved in Allorecognition of Multiple HLA-B27 Subtypes by a Single T Cell Clone: Role of Peptide and the MHC Molecule in Alloreactivity. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.10.5481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
The human alloreactive CTL clone 27S69, raised against B*2705, cross-reacts with B*2702 and B*2703, but not with B*2701, B*2704, B*2706, or B*2710. Its natural epitope was identified by electrospray/ion trap mass spectrometry, as the proteasome-derived RRFFPYYV octamer. This is the first HLA-B27 ligand shown to be immunogenic in alloreactivity. The RRFFPYYVY nonamer, also found in the B*2705-bound peptide pool, was recognized much less efficiently, demonstrating that an alloreactive CTL distinguishes between very similar natural ligands. Molecular modeling suggested that this was due to the different conformation of each peptide in complex with B*2705. B*2702- and B*2703-RMA-S cells were lysed by CTL 27S69 when sensitized with the octamer, demonstrating that cross-reaction with these subtypes is through recognition of the same peptide as in B*2705. B*2704-, B*2706-, and B*2710-RMA-S cells were not sensitized for lysis, in spite of efficient binding of the octamer, indicating that polymorphism in these subtypes directly impairs allorecognition. B*2701-RMA-S and -C1R cells were sensitized for lysis by the octamer, suggesting lack of the endogenous peptide epitope on this subtype. Absence of the octamer in the B*2701-bound peptide pool further suggested that B*2701 polymorphism impairs the generation of this peptide.
Collapse
Affiliation(s)
- Alberto Paradela
- *Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, Facultad de Ciencias, Madrid, Spain; and
| | - Marina García-Peydró
- *Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, Facultad de Ciencias, Madrid, Spain; and
| | - Jesús Vázquez
- *Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, Facultad de Ciencias, Madrid, Spain; and
| | | | - José A. López de Castro
- *Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, Facultad de Ciencias, Madrid, Spain; and
| |
Collapse
|
35
|
Bianco A, Brock C, Zabel C, Walk T, Walden P, Jung G. New synthetic non-peptide ligands for classical major histocompatibility complex class I molecules. J Biol Chem 1998; 273:28759-65. [PMID: 9786873 DOI: 10.1074/jbc.273.44.28759] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Poly-N-acylated amines, as a new class of synthetic non-peptide ligands for the murine major histocompatibility complex (MHC) class I molecule H-2Kb, were developed on the basis of the ovalbumin-derived peptide epitope SIINFEKL. Non-peptidic structural elements were introduced at the C-terminal part of the ligand and include the two dominant anchors at positions 5 and 8. Several oligomers and five different combinatorial libraries were synthesized and tested for their H-2Kb-binding capacities in an MHC stabilization assay. First, the optimal spacing and geometry of the side chains were determined using a series of oligomers with different main chain modifications. Then, based on the structure with the highest binding efficiency, randomized libraries were designed that contain 26 different aromatic, heteroaromatic, or pseudoaromatic side chains for the dominant anchor at position 5, which is deeply buried inside the MHC peptide-binding groove and is crucial for the conformational stability of the entire peptide-MHC complex. Similarly, a series of aliphatic side chains were tested for the second dominant anchor at position 8. MHC-binding and MHC-stabilizing oligomers with defined structures were derived from these libraries by deconvolution.
Collapse
Affiliation(s)
- A Bianco
- Institut für Organische Chemie, Universität Tübingen, D-72076 Tübingen, Germany.
| | | | | | | | | | | |
Collapse
|
36
|
Mata M, Travers PJ, Liu Q, Frankel FR, Paterson Y. The MHC Class I-Restricted Immune Response to HIV-gag in BALB/c Mice Selects a Single Epitope That Does Not Have a Predictable MHC-Binding Motif and Binds to Kd Through Interactions Between a Glutamine at P3 and Pocket D. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.6.2985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Using a strain of Listeria monocytogenes that stably expresses and secretes HIV gag to deliver this Ag to the MHC class I pathway of Ag processing, we have identified the immunodominant CTL epitope to gag in the BALB/c mouse and shown that it is Kd restricted. The specific motif for the peptides that bind the MHC class I molecule H-2 Kd is believed to be a nonamer with residues tyrosine or phenylalanine in the second amino acid position and leucine or isoleucine in the carboxyl-terminal or ninth amino acid position as dominant anchoring positions. Surprisingly, the identified gag peptide, AMQMLKETI, does not contain an anchoring aromatic residue in position two although competition assays with other Kd-restricted epitopes indicated that it binds to Kd with comparable affinity. Using a theoretical molecular dynamics approach to probe the stability of peptide binding to MHC class I molecules, we show that the absence of an appropriate anchor residue at P2 in AMQMLKETI is compensated by favorable interactions of the glutamine at P3 with pocket D of Kd. These findings were verified experimentally, demonstrating the predictive power of this theoretical approach in analyzing MHC class I/peptide interactions. These studies also indicate that CTL epitope prediction that relies on dominant peptide motifs may not always identify the correct epitope.
Collapse
Affiliation(s)
- Marielena Mata
- *Department of Microbiology, University of Pennsylvania Medical School, Philadelphia, PA; and
| | - Paul J. Travers
- †Department of Crystallography, Birkbeck College, London, United Kingdom
| | - Qiang Liu
- *Department of Microbiology, University of Pennsylvania Medical School, Philadelphia, PA; and
| | - Fred R. Frankel
- *Department of Microbiology, University of Pennsylvania Medical School, Philadelphia, PA; and
| | - Yvonne Paterson
- *Department of Microbiology, University of Pennsylvania Medical School, Philadelphia, PA; and
| |
Collapse
|
37
|
Abstract
High-affinity ligands of non-peptidic nature, binding to the class I major histocompatibility complex protein HLA B*2705 whose expression is strongly linked to the pathogenesis of the autoimmune disease ankylosing spondylitis, should give way to a selective immunotherapy by blocking or antagonising the interaction with autoreactive T cell clones. Here we present experimental data on the binding of modified peptides, designed to optimally bind to HLA-B*2705 by filling a hydrophobic binding pocket (pocket D) with nonencoded aromatic amino acids. Three peptides with altered side chains (alpha-naphthylalanine, betanaphthylalanine and homophenylalanine) in position 3 were synthesised. The thermal denaturation profiles of the HLA protein in complex with the modified peptides, monitored by circular dichroism spectroscopy, showed a significant shift towards higher melting temperatures with respect to the parent T cell epitope. The proposed binding mode of the nonnatural peptides was checked by site-directed mutagenesis of the pocket D, hypothesised to accommodate the large hydrophobic side chains. Reducing the size and depth of the pocket by mutating Leu 156 into Trp only affects the binding of the non-natural ligands, thus providing experimental evidence that the nonnatural peptide amino acids bind as predicted to the host MHC protein.
Collapse
Affiliation(s)
- S Krebs
- Department of Pharmacy, Swiss Federal Institute of Technology, Zurich
| | | | | |
Collapse
|
38
|
Krebs S, Lamas JR, Poenaru S, Folkers G, de Castro JA, Seebach D, Rognan D. Substituting nonpeptidic spacers for the T cell receptor-binding part of class I major histocompatibility complex-binding peptides. J Biol Chem 1998; 273:19072-9. [PMID: 9668090 DOI: 10.1074/jbc.273.30.19072] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
X-ray diffraction studies as well as structure-activity relationships indicate that the central part of class I major histocompatibility complex (MHC)-binding nonapeptides represents the main interaction site for a T cell receptor. In order to rationally manipulate T cell epitopes, three nonpeptidic spacers have been designed from the x-ray structure of a MHC-peptide complex and substituted for the T cell receptor-binding part of several antigenic peptides. The binding of the modified epitopes to the human leukocyte antigen-B*2705 protein was studied by an in vitro stabilization assay, and the thermal stability of all complexes was examined by circular dichroism spectroscopy. Depending on their chemical nature and length, the introduced spacers may be classified into two categories. Monofunctional spacers (11-amino undecanoate, (R)-3-hydroxybutyrate trimer) simply link two anchoring peptide positions (P3 and P9) but loosely contact the MHC binding groove and thus decrease more or less the affinity of the altered epitopes to human leukocyte antigen-B*2705. A bifunctional spacer ((R)-3-hydroxybutyrate tetramer) not only bridges the two distant anchoring amino acids but also strongly interacts with the binding cleft and leads to a 5-fold increase in binding to the MHC protein. To our knowledge, this is the first report of a nonpeptidic modification of T-cell receptor binding residues that significantly enhances the binding of altered peptide ligands to their host MHC protein. The presented modified ligands constitute interesting tools for perturbing the T cell response to the parent antigenic peptide.
Collapse
Affiliation(s)
- S Krebs
- Department of Pharmacy, Swiss Federal Institute of Technology, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
39
|
Hudrisier D, Gairin JE. Peptide-major histocompatibility complex class I complex: from the structural and molecular basis to pharmacological principles and therapeutic applications. Curr Top Microbiol Immunol 1998; 232:75-97. [PMID: 9557394 DOI: 10.1007/978-3-642-72045-1_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- D Hudrisier
- Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
| | | |
Collapse
|
40
|
García F, Rognan D, Lamas JR, Marina A, López de Castro JA. An HLA-B27 polymorphism (B*2710) that is critical for T-cell recognition has limited effects on peptide specificity. TISSUE ANTIGENS 1998; 51:1-9. [PMID: 9459498 DOI: 10.1111/j.1399-0039.1998.tb02941.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The B*2710 subtype differs from the HLA-B27 prototype (B*2705) only by having Glu instead of Val at position 152, in the alpha2 helix of the peptide-binding site. In spite of its structural similarity most alloreactive CTL raised against B*2705 fail to cross-react with B*2710. Indeed, of the residues that are polymorphic among HLA-B27 subtypes, the Val>Glu152 change has the greatest influence on HLA-B27 T-cell antigenicity. The molecular basis for this antigenic disparity was analyzed in this study. Sequence analysis indicated that B*2710-bound peptides have very similar motifs to B*2705-bound ones both at the main and auxiliary anchor positions. In addition, most of the individual ligands sequenced from B*2710 were previously found in B*2705. Together these results indicate that both subtypes have largely overlapping peptide repertoires. Molecular dynamics simulations of a common ligand in complex with either B*2710 or B*2705 failed to detect significant conformational changes in the peptidic main chain or in solvent accessibility of the side chains. In addition, modeling of the Val>Glu152 change into the MHC-peptide-TCR structure suggested a direct role of residue 152 in interaction with the TCR. Thus, the large differences in T-cell recognition between B*2710 and B*2705 are not explained by an effect of the Glu152 change on peptide specificity or conformation, but by different direct interactions with the TCR.
Collapse
Affiliation(s)
- F García
- Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, Facultad de Ciencias, Cantoblanco, Spain
| | | | | | | | | |
Collapse
|
41
|
Seebach D, Poenaru S, Folkers G, Rognan D. Synthesis of Oligo(3-hydroxybutanoate)(OHB)-Containing Peptides with High Binding Affinity to a Class-I-MHC Protein. Helv Chim Acta 1998. [DOI: 10.1002/hlca.19980810529] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Rognan D, Krebs S, Kuonen O, Lamas JR, López de Castro JA, Folkers G. Fine specificity of antigen binding to two class I major histocompatibility proteins (B*2705 and B*2703) differing in a single amino acid residue. J Comput Aided Mol Des 1997; 11:463-78. [PMID: 9385550 DOI: 10.1023/a:1007963901092] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Starting from the X-ray structure of a class I major histocompatibility complex (MHC)-encoded protein (HLA-B*2705), a naturally presented self-nonapeptide and two synthetic analogues were simulated in the binding groove of two human leukocyte antigen (HLA) alleles (B*2703 and B*2705) differing in a single amino acid residue. After 200 ps molecular dynamics simulations of the solvated HLA-peptide pairs, some molecular properties of the complexes (distances between ligand and protein center of masses, atomic fluctuations, buried versus accessible surface areas, hydrogen-bond frequencies) allow a clear discrimination of potent from weak MHC binders. The binding specificity of the three nonapeptides for the two HLA alleles could be explained by the disruption of one hydrogen-bonding network in the binding pocket of the HLA-B*2705 protein where the single mutation occurs. Rearrangements of interactions in the B pocket, which binds the side chain of peptide residue 2, and a weakening of interactions involving the C-terminal end of the peptide also took place. In addition, extension of the peptide backbone using a beta-Ala analogue did not abolish binding to any of the two HLA-B27 subtypes, but increased the selectivity for B*2703, as expected from the larger peptide binding groove in this subtype. A better understanding of the atomic details involved in peptide selection by closely related HLA alleles is of crucial importance for unraveling the molecular features linking particular HLA alleles to autoimmune diseases, and for the identification of antigenic peptides triggering such pathologies.
Collapse
Affiliation(s)
- D Rognan
- Department of Pharmacy, Swiss Federal Institute of Technology, Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
43
|
Boisgérault F, Tieng V, Stolzenberg MC, Dulphy N, Khalil I, Tamouza R, Charron D, Toubert A. Differences in endogenous peptides presented by HLA-B*2705 and B*2703 allelic variants. Implications for susceptibility to spondylarthropathies. J Clin Invest 1996; 98:2764-70. [PMID: 8981922 PMCID: PMC507741 DOI: 10.1172/jci119102] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The association between HLA-B27 and spondylarthropathies is currently being reinvestigated in the light of HLA-B27 subtyping. At least 11 different subtypes have been described among which B*2703, B*2706, and B*2709 could be less closely associated with disease at the population level. Differences in the presentation of antigenic peptides by these subtypes could be related to differences in disease susceptibility. We focused our work on the comparison of B*2705 and B*2703 which differ at a single position at residue 59 in pocket A of the peptide binding groove. Endogenous peptides from the human C1R line transfected by B*2705 or B*2703 were acid-eluted and separated by HPLC. Major individual fractions were sequenced by Edman NH2-terminal degradation. Differences observed between B*2705 versus B*2703 individual ligands were confirmed in an in vitro stabilization assay with T2-B*2705 or B*2703 transfected cells in the presence of synthetic peptides. One B*2705 associated peptide is derived from the sequence 169-179 in the second extracellular domain of several HLA class I molecules including HLA-B27. This sequence (RRYLENGKETL) is highly homologous to a previously reported sequence (LRRYLENGK) sharing similarities with proteins from enteric bacteria. We show here that it is naturally presented as a major endogenous peptide by B*2705 and B*2702 disease-associated subtypes and not by B*2703.
Collapse
Affiliation(s)
- F Boisgérault
- Laboratoire d'Immunogénétique Humaine, INSERM U 396, Institut Biomédical des Cordeliers, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Bouvier M, Wiley DC. Antigenic peptides containing large PEG loops designed to extend out of the HLA-A2 binding site form stable complexes with class I major histocompatibility complex molecules. Proc Natl Acad Sci U S A 1996; 93:4583-8. [PMID: 8643447 PMCID: PMC39320 DOI: 10.1073/pnas.93.10.4583] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Recognition of peptides bound to class I major histocompatibility complex (MHC) molecules by specific receptors on T cells regulates the development and activity of the cellular immune system. We have designed and synthesized de novo cyclic peptides that incorporate PEG in the ring structure for binding to class I MHC molecules. The large PEG loops are positioned to extend out of the peptide binding site, thus creating steric effects aimed at preventing the recognition of class I MHC complexes by T-cell receptors. Peptides were synthesized and cyclized on polymer support using high molecular weight symmetrical PEG dicarboxylic acids to link the side chains of lysine residues substituted at positions 4 and 8 in the sequence of the HLA-A2-restricted human T-lymphotrophic virus type I Tax peptide. Cyclic peptides promoted the in vitro folding and assembly of HLA-A2 complexes. Thermal denaturation studies using circular dichroism spectroscopy showed that these complexes are as stable as complexes formed with antigenic peptides.
Collapse
Affiliation(s)
- M Bouvier
- Department of Molecular and Cellular Biochemistry, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
45
|
Guichard G, Connan F, Graff R, Ostankovitch M, Muller S, Guillet JG, Choppin J, Briand JP. Partially modified retro-inverso pseudopeptides as non-natural ligands for the human class I histocompatibility molecule HLA-A2. J Med Chem 1996; 39:2030-9. [PMID: 8642561 DOI: 10.1021/jm9509511] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Syntheses of a series of partially modified retro-inverso analogues of the antigenic peptide M58-66 derived from the influenza virus matrix protein are reported. The retro-inverso modification phi(NH-CO) was obtained by replacement of two successive amino acid residues with a 2-substituted malonate derivative and gem-diaminoalkyl residue. The resulting compounds 1-8 were tested for their binding to the human histocompatibility class I molecule HLA-A2 in an assembly assay using lysates of peptide transporter-deficient cells T2. Specific peptide-dependent HLA-A2 assembly was revealed by an enzyme-linked immunosorbent assay. Significant HLA-A2 assembly was detected in the presence of analogues [gGly58-(S)mLeu59]-M58-66 (1a), [gGly61-(R,S)mPhe62]M58-66 (4), [gVal63-(R,S)mPhe64]M58-66 (6), and [gPhe64-(R,S)mAla65]M58-66 (7). The introduction of the retro-inverso modification between P2-P3, P3-P4, P5-P6, and P8-P9 (compounds 2, 3, 5, and 8, respectively) however led to a dramatic reduction in peptide binding to HLA-A2. Interestingly, compound 1a which contains modification between P1-P2 was found to be the most potent analogue, being able to retain the original HLA-A2 binding profile of the parent peptide M58-66. Taken together, these results and recent binding data obtained in the context of murine MHC class I molecule H-2Kd suggest that the incorporation of peptide bond surrogates in MHC class I-restricted epitopes is a useful approach to design molecules having both increased stability and high MHC-binding capacity. Depending on their agonist or antagonist effects at the T-cell receptor, such non-natural MHC ligands are likely to find many applications in the development of peptide-based vaccines or as potential therapeutic agents in the treatment of allergies and autoimmune diseases.
Collapse
Affiliation(s)
- G Guichard
- Institut de Biologie Moléculaire et Cellulaire, UPR 9021 CNRS, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|