1
|
Zhou S, Sakashita A, Yuan S, Namekawa SH. Retrotransposons in the Mammalian Male Germline. Sex Dev 2022; 16:404-422. [PMID: 35231923 PMCID: PMC11974347 DOI: 10.1159/000520683] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/25/2021] [Indexed: 11/19/2022] Open
Abstract
Retrotransposons are a subset of DNA sequences that constitute a large part of the mammalian genome. They can translocate autonomously or non-autonomously, potentially jeopardizing the heritable germline genome. Retrotransposons coevolved with the host genome, and the germline is the prominent battlefield between retrotransposons and the host genome to maximize their mutual fitness. Host genomes have developed various mechanisms to suppress and control retrotransposons, including DNA methylation, histone modifications, and Piwi-interacting RNA (piRNA), for their own benefit. Thus, rapidly evolved retrotransposons often acquire positive functions, including gene regulation within the germline, conferring reproductive fitness in a species over the course of evolution. The male germline serves as an ideal model to examine the regulation and evolution of retrotransposons, resulting in genomic co-evolution with the host genome. In this review, we summarize and discuss the regulatory mechanisms of retrotransposons, stage-by-stage, during male germ cell development, with a particular focus on mice as an extensively studied mammalian model, highlighting suppression mechanisms and emerging functions of retrotransposons in the male germline.
Collapse
Affiliation(s)
- Shumin Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Akihiko Sakashita
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
| | - Satoshi H. Namekawa
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| |
Collapse
|
2
|
Wasserzug‐Pash P, Rothman R, Reich E, Zecharyahu L, Schonberger O, Weiss Y, Srebnik N, Cohen‐Hadad Y, Weintraub A, Ben‐Ami I, Holzer H, Klutstein M. Loss of heterochromatin and retrotransposon silencing as determinants in oocyte aging. Aging Cell 2022; 21:e13568. [PMID: 35166017 PMCID: PMC8920445 DOI: 10.1111/acel.13568] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/11/2022] [Accepted: 01/27/2022] [Indexed: 12/13/2022] Open
Abstract
Mammalian oocyte quality reduces with age. We show that prior to the occurrence of significant aneuploidy (9M in mouse), heterochromatin histone marks are lost, and oocyte maturation is impaired. This loss occurs in both constitutive and facultative heterochromatin marks but not in euchromatic active marks. We show that heterochromatin loss with age also occurs in human prophase I-arrested oocytes. Moreover, heterochromatin loss is accompanied in mouse oocytes by an increase in RNA processing and associated with an elevation in L1 and IAP retrotransposon expression and in DNA damage and DNA repair proteins nuclear localization. Artificial inhibition of the heterochromatin machinery in young oocytes causes an elevation in retrotransposon expression and oocyte maturation defects. Inhibiting retrotransposon reverse-transcriptase through azidothymidine (AZT) treatment in older oocytes partially rescues their maturation defects and activity of the DNA repair machinery. Moreover, activating the heterochromatin machinery via treatment with the SIRT1 activating molecule SRT-1720, or overexpression of Sirt1 or Ezh2 via plasmid electroporation into older oocytes causes an upregulation in constitutive heterochromatin, downregulation of retrotransposon expression, and elevated maturation rates. Collectively, our work demonstrates a significant process in oocyte aging, characterized by the loss of heterochromatin-associated chromatin marks and activation of specific retrotransposons, which cause DNA damage and impair oocyte maturation.
Collapse
Affiliation(s)
- Peera Wasserzug‐Pash
- Institute of Dental SciencesFaculty of Dental MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - Rachel Rothman
- Institute of Dental SciencesFaculty of Dental MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - Eli Reich
- Institute of Dental SciencesFaculty of Dental MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - Lital Zecharyahu
- Institute of Dental SciencesFaculty of Dental MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - Oshrat Schonberger
- IVF UnitDepartment of Obstetrics and GynecologyShaare Zedek Medical Center and Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
| | - Yifat Weiss
- IVF UnitDepartment of Obstetrics and GynecologyShaare Zedek Medical Center and Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
| | - Naama Srebnik
- IVF UnitDepartment of Obstetrics and GynecologyShaare Zedek Medical Center and Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
| | - Yaara Cohen‐Hadad
- IVF UnitDepartment of Obstetrics and GynecologyShaare Zedek Medical Center and Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
| | - Amir Weintraub
- IVF UnitDepartment of Obstetrics and GynecologyShaare Zedek Medical Center and Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
| | - Ido Ben‐Ami
- IVF UnitDepartment of Obstetrics and GynecologyShaare Zedek Medical Center and Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
| | - Hananel Holzer
- Department of Obstetrics and GynecologyHadassah‐Hebrew University Medical CenterKiryat HadassahJerusalemIsrael
| | - Michael Klutstein
- Institute of Dental SciencesFaculty of Dental MedicineThe Hebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
3
|
Ravel-Godreuil C, Massiani-Beaudoin O, Mailly P, Prochiantz A, Joshi RL, Fuchs J. Perturbed DNA methylation by Gadd45b induces chromatin disorganization, DNA strand breaks and dopaminergic neuron death. iScience 2021; 24:102756. [PMID: 34278264 PMCID: PMC8264156 DOI: 10.1016/j.isci.2021.102756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/14/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
Age is a major risk factor for neurodegenerative diseases like Parkinson's disease, but few studies have explored the contribution of key hallmarks of aging, namely DNA methylation changes and heterochromatin destructuration, in the neurodegenerative process. Here, we investigated the consequences of viral overexpression of Gadd45b, a multifactorial protein involved in DNA demethylation, in the mouse midbrain. Gadd45b overexpression induced global and stable changes in DNA methylation, particularly in introns of genes related to neuronal functions, as well as on LINE-1 transposable elements. This was paralleled by disorganized heterochromatin, increased DNA damage, and vulnerability to oxidative stress. LINE-1 de-repression, a potential source of DNA damage, preceded Gadd45b-induced neurodegeneration, whereas prolonged Gadd45b expression deregulated expression of genes related to heterochromatin maintenance, DNA methylation, or Parkinson's disease. Our data indicates that aging-related alterations contribute to dopaminergic neuron degeneration with potential implications for Parkinson's disease.
Collapse
Affiliation(s)
- Camille Ravel-Godreuil
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Olivia Massiani-Beaudoin
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Philippe Mailly
- Orion Imaging Facility, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | - Alain Prochiantz
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Rajiv L. Joshi
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Julia Fuchs
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
4
|
Bhalla N. Meiosis: Is Spermatogenesis Stress an Opportunity for Evolutionary Innovation? Curr Biol 2021; 30:R1471-R1473. [PMID: 33352126 DOI: 10.1016/j.cub.2020.10.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
During a brief increase in temperature, cells undergoing spermatogenesis, but not oogenesis, activate transposons. This sexual dimorphism suggests that temperature stress during spermatogenesis provides a unique opportunity for transposons to mobilize and modify genomes, driving evolutionary change without substantially affecting reproduction.
Collapse
Affiliation(s)
- Needhi Bhalla
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
5
|
Kaur D, Agrahari M, Singh SS, Mandal PK, Bhattacharya A, Bhattacharya S. Transcriptomic analysis of Entamoeba histolytica reveals domain-specific sense strand expression of LINE-encoded ORFs with massive antisense expression of RT domain. Plasmid 2021; 114:102560. [PMID: 33482228 DOI: 10.1016/j.plasmid.2021.102560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 11/29/2022]
Abstract
LINEs are retrotransposable elements found in diverse organisms. Their activity is kept in check by several mechanisms, including transcriptional silencing. Here we have analyzed the transcription status of LINE1 copies in the early-branching parasitic protist Entamoeba histolytica. Full-length EhLINE1 encodes ORF1, and ORF2 with reverse transcriptase (RT) and endonuclease (EN) domains. RNA-Seq analysis of EhLINE1 copies (both truncated and full-length) showed unique features. Firstly, although 20/41 transcribed copies were full-length, we failed to detect any full-length transcripts. Rather, sense-strand transcripts mapped to the functional domains- ORF1, RT and EN. Secondly, there was strong antisense transcription specifically from RT domain. No antisense transcripts were seen from ORF1. Antisense RT transcripts did not encode known functional peptides. They could possibly be involved in attenuating translation of RT domain, as we failed to detect ORF2p, whereas ORF1p was detectable. Lack of full-length transcripts and strong antisense RT expression may serve to limit EhLINE1 retrotransposition.
Collapse
Affiliation(s)
- Devinder Kaur
- School of Environmental Sciences, Jawaharlal Nehru University, India
| | - Mridula Agrahari
- School of Environmental Sciences, Jawaharlal Nehru University, India
| | | | | | | | | |
Collapse
|
6
|
Shalini V, Bhaduri U, Ravikkumar AC, Rengarajan A, Satyanarayana RMR. Genome-wide occupancy reveals the localization of H1T2 (H1fnt) to repeat regions and a subset of transcriptionally active chromatin domains in rat spermatids. Epigenetics Chromatin 2021; 14:3. [PMID: 33407810 PMCID: PMC7788777 DOI: 10.1186/s13072-020-00376-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/23/2020] [Indexed: 11/10/2022] Open
Abstract
Background H1T2/H1FNT is a germ cell-specific linker histone variant expressed during spermiogenesis specifically in round and elongating spermatids. Infertile phenotype of homozygous H1T2 mutant male mice revealed the essential function of H1T2 for the DNA condensation and histone-to-protamine replacement in spermiogenesis. However, the mechanism by which H1T2 imparts the inherent polarity within spermatid nucleus including the additional protein partners and the genomic domains occupied by this linker histone are unknown. Results Sequence analysis revealed the presence of Walker motif, SR domains and putative coiled-coil domains in the C-terminal domain of rat H1T2 protein. Genome-wide occupancy analysis using highly specific antibody against the CTD of H1T2 demonstrated the binding of H1T2 to the LINE L1 repeat elements and to a significant percentage of the genic regions (promoter-TSS, exons and introns) of the rat spermatid genome. Immunoprecipitation followed by mass spectrometry analysis revealed the open chromatin architecture of H1T2 occupied chromatin encompassing the H4 acetylation and other histone PTMs characteristic of transcriptionally active chromatin. In addition, the present study has identified the interacting protein partners of H1T2-associated chromatin mainly as nucleo-skeleton components, RNA-binding proteins and chaperones. Conclusions Linker histone H1T2 possesses unique domain architecture which can account for the specific functions associated with chromatin remodeling events facilitating the initiation of histone to transition proteins/protamine transition in the polar apical spermatid genome. Our results directly establish the unique function of H1T2 in nuclear shaping associated with spermiogenesis by mediating the interaction between chromatin and nucleo-skeleton, positioning the epigenetically specialized chromatin domains involved in transcription coupled histone replacement initiation towards the apical pole of round/elongating spermatids.
Collapse
Affiliation(s)
- Vasantha Shalini
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - Utsa Bhaduri
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India.,Department of Life Sciences, University of Trieste, Trieste, Italy.,European Union's H2020 TRIM-NET ITN, Marie Sklodowska-Curie Actions (MSCA), Leiden, The Netherlands
| | - Anjhana C Ravikkumar
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - Anusha Rengarajan
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - Rao M R Satyanarayana
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India.
| |
Collapse
|
7
|
Del Re B, Giorgi G. Long INterspersed element-1 mobility as a sensor of environmental stresses. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:465-493. [PMID: 32144842 DOI: 10.1002/em.22366] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Long INterspersed element (LINE-1, L1) retrotransposons are the most abundant transposable elements in the human genome, constituting approximately 17%. They move by a "copy-paste" mechanism, involving reverse transcription of an RNA intermediate and insertion of its cDNA copy at a new site in the genome. L1 retrotransposition (L1-RTP) can cause insertional mutations, alter gene expression, transduce exons, and induce epigenetic dysregulation. L1-RTP is generally repressed; however, a number of observations collected over about 15 years revealed that it can occur in response to environmental stresses. Moreover, emerging evidence indicates that L1-RTP can play a role in the onset of several neurological and oncological diseases in humans. In recent years, great attention has been paid to the exposome paradigm, which proposes that health effects of an environmental factor should be evaluated considering both cumulative environmental exposures and the endogenous processes resulting from the biological response. L1-RTP could be an endogenous process considered for this application. Here, we summarize the current understanding of environmental factors that can affect the retrotransposition of human L1 elements. Evidence indicates that L1-RTP alteration is triggered by numerous and various environmental stressors, such as chemical agents (heavy metals, carcinogens, oxidants, and drugs), physical agents (ionizing and non-ionizing radiations), and experiential factors (voluntary exercise, social isolation, maternal care, and environmental light/dark cycles). These data come from in vitro studies on cell lines and in vivo studies on transgenic animals: future investigations should be focused on physiologically relevant models to gain a better understanding of this topic.
Collapse
Affiliation(s)
- Brunella Del Re
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Gianfranco Giorgi
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Vazquez BN, Thackray JK, Simonet NG, Chahar S, Kane-Goldsmith N, Newkirk SJ, Lee S, Xing J, Verzi MP, An W, Vaquero A, Tischfield JA, Serrano L. SIRT7 mediates L1 elements transcriptional repression and their association with the nuclear lamina. Nucleic Acids Res 2019; 47:7870-7885. [PMID: 31226208 PMCID: PMC6735864 DOI: 10.1093/nar/gkz519] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
Abstract
Long interspersed elements-1 (LINE-1, L1) are retrotransposons that hold the capacity of self-propagation in the genome with potential mutagenic outcomes. How somatic cells restrict L1 activity and how this process becomes dysfunctional during aging and in cancer cells is poorly understood. L1s are enriched at lamin-associated domains, heterochromatic regions of the nuclear periphery. Whether this association is necessary for their repression has been elusive. Here we show that the sirtuin family member SIRT7 participates in the epigenetic transcriptional repression of L1 genome-wide in both mouse and human cells. SIRT7 depletion leads to increased L1 expression and retrotransposition. Mechanistically, we identify a novel interplay between SIRT7 and Lamin A/C in L1 repression. Our results demonstrate that SIRT7-mediated H3K18 deacetylation regulates L1 expression and promotes L1 association with elements of the nuclear lamina. The failure of such activity might contribute to the observed genome instability and compromised viability in SIRT7 knockout mice. Overall, our results reveal a novel function of SIRT7 on chromatin organization by mediating the anchoring of L1 to the nuclear envelope, and a new functional link of the nuclear lamina with transcriptional repression.
Collapse
Affiliation(s)
- Berta N Vazquez
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA.,Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute, Badalona, Barcelona 08916, Spain
| | - Joshua K Thackray
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Nicolas G Simonet
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona 08908, Spain
| | - Sanjay Chahar
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA.,Montpellier Institute of Molecular Genetics (IGMM), CNRS and the University of Montpellier, 34090, France
| | - Noriko Kane-Goldsmith
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Simon J Newkirk
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA
| | - Suman Lee
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA
| | - Jinchuan Xing
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Michael P Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Wenfeng An
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA
| | - Alejandro Vaquero
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute, Badalona, Barcelona 08916, Spain.,Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona 08908, Spain
| | - Jay A Tischfield
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Lourdes Serrano
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
9
|
Mustafin RN. The Role of Transposable Elements in the Differentiation of Stem Cells. MOLECULAR GENETICS MICROBIOLOGY AND VIROLOGY 2019. [DOI: 10.3103/s0891416819020071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Chung N, Jonaid GM, Quinton S, Ross A, Sexton CE, Alberto A, Clymer C, Churchill D, Navarro Leija O, Han MV. Transcriptome analyses of tumor-adjacent somatic tissues reveal genes co-expressed with transposable elements. Mob DNA 2019; 10:39. [PMID: 31497073 PMCID: PMC6720085 DOI: 10.1186/s13100-019-0180-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 08/14/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite the long-held assumption that transposons are normally only expressed in the germ-line, recent evidence shows that transcripts of transposable element (TE) sequences are frequently found in the somatic cells. However, the extent of variation in TE transcript levels across different tissues and different individuals are unknown, and the co-expression between TEs and host gene mRNAs have not been examined. RESULTS Here we report the variation in TE derived transcript levels across tissues and between individuals observed in the non-tumorous tissues collected for The Cancer Genome Atlas. We found core TE co-expression modules consisting mainly of transposons, showing correlated expression across broad classes of TEs. Despite this co-expression within tissues, there are individual TE loci that exhibit tissue-specific expression patterns, when compared across tissues. The core TE modules were negatively correlated with other gene modules that consisted of immune response genes in interferon signaling. KRAB Zinc Finger Proteins (KZFPs) were over-represented gene members of the TE modules, showing positive correlation across multiple tissues. But we did not find overlap between TE-KZFP pairs that are co-expressed and TE-KZFP pairs that are bound in published ChIP-seq studies. CONCLUSIONS We find unexpected variation in TE derived transcripts, within and across non-tumorous tissues. We describe a broad view of the RNA state for non-tumorous tissues exhibiting higher level of TE transcripts. Tissues with higher level of TE transcripts have a broad range of TEs co-expressed, with high expression of a large number of KZFPs, and lower RNA levels of immune genes.
Collapse
Affiliation(s)
- Nicky Chung
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154 USA
| | - G. M. Jonaid
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154 USA
| | - Sophia Quinton
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154 USA
| | - Austin Ross
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154 USA
| | - Corinne E. Sexton
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154 USA
| | - Adrian Alberto
- Department of Computer Science, University of Nevada, Las Vegas, NV 89154 USA
| | - Cody Clymer
- Department of Computer Science, University of Nevada, Las Vegas, NV 89154 USA
| | - Daphnie Churchill
- Department of Computer Science, University of Nevada, Las Vegas, NV 89154 USA
| | - Omar Navarro Leija
- Department of Computer Science, University of Nevada, Las Vegas, NV 89154 USA
| | - Mira V. Han
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154 USA
- Nevada Institute of Personalized Medicine, Las Vegas, NV 89154 USA
| |
Collapse
|
11
|
Mustafin RN, Khusnutdinova EK. Prospects in the Search for Peptides for Specific Regulation of Aging. ADVANCES IN GERONTOLOGY 2019. [DOI: 10.1134/s2079057019020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Richardson SR, Faulkner GJ. Heritable L1 Retrotransposition Events During Development: Understanding Their Origins: Examination of heritable, endogenous L1 retrotransposition in mice opens up exciting new questions and research directions. Bioessays 2018; 40:e1700189. [PMID: 29709066 PMCID: PMC6681178 DOI: 10.1002/bies.201700189] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/04/2018] [Indexed: 01/08/2023]
Abstract
The retrotransposon Long Interspersed Element 1 (LINE-1 or L1) has played a major role in shaping the sequence composition of the mammalian genome. In our recent publication, "Heritable L1 retrotransposition in the mouse primordial germline and early embryo," we systematically assessed the rate and developmental timing of de novo, heritable endogenous L1 insertions in mice. Such heritable retrotransposition events allow L1 to exert an ongoing influence upon genome evolution. Here, we place our findings in the context of earlier studies, and highlight how our results corroborate, and depart from, previous research based on human patient samples and transgenic mouse models harboring engineered L1 reporter genes. In parallel, we outline outstanding questions regarding the stage-specificity, regulation, and functional impact of embryonic and germline L1 retrotransposition, and propose avenues for future research in this field.
Collapse
Affiliation(s)
- Sandra R. Richardson
- Mater Research Institute–University of QueenslandWoolloongabbaQueensland 4102Australia
| | - Geoffrey J. Faulkner
- Mater Research Institute–University of QueenslandWoolloongabbaQueensland 4102Australia
- Queensland Brain InstituteUniversity of QueenslandBrisbaneQueensland 4072Australia
- School of Biomedical SciencesUniversity of QueenslandBrisbaneQueensland 4072Australia
| |
Collapse
|
13
|
Hunter N. Oocyte Quality Control: Causes, Mechanisms, and Consequences. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2018; 82:235-247. [PMID: 29743337 DOI: 10.1101/sqb.2017.82.035394] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Oocyte quality and number are key determinants of reproductive life span and success. These variables are shaped in part by the elimination of oocytes that experience problems during the early stages of meiosis. Meiotic prophase-I marks an extended period of genome vulnerability in which epigenetic reprogramming unleashes retroelements and hundreds of DNA double-strand breaks (DSBs) are inflicted to initiate the programmed recombination required for accurate chromosome segregation at the first meiotic division. Expression of LINE-1 retroelements perturbs several aspects of meiotic prophase and is associated with oocyte death during the early stages of meiotic prophase I. Defects in chromosome synapsis and recombination also trigger oocyte loss, but typically at a later stage, as cells transition into quiescence and form primordial follicles. Interrelated pathways that signal defects in DSB repair and chromosome synapsis mediate this late oocyte attrition. Here, I review our current understanding of early and late oocyte attrition based on studies in mouse and describe how these processes appear to be both distinct and overlapping and how they help balance the quality and size of oocyte reserves to maximize fecundity.
Collapse
Affiliation(s)
- Neil Hunter
- Howard Hughes Medical Institute, University of California, Davis, Davis, California 95616.,Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California 95616.,Department of Molecular and Cellular Biology, University of California, Davis, Davis, California 95616.,Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, California 95616
| |
Collapse
|
14
|
Khazina E, Weichenrieder O. Human LINE-1 retrotransposition requires a metastable coiled coil and a positively charged N-terminus in L1ORF1p. eLife 2018; 7:34960. [PMID: 29565245 PMCID: PMC5940361 DOI: 10.7554/elife.34960] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/21/2018] [Indexed: 12/22/2022] Open
Abstract
LINE-1 (L1) is an autonomous retrotransposon, which acted throughout mammalian evolution and keeps contributing to human genotypic diversity, genetic disease and cancer. L1 encodes two essential proteins: L1ORF1p, a unique RNA-binding protein, and L1ORF2p, an endonuclease and reverse transcriptase. L1ORF1p contains an essential, but rapidly evolving N-terminal portion, homo-trimerizes via a coiled coil and packages L1RNA into large assemblies. Here, we determined crystal structures of the entire coiled coil domain of human L1ORF1p. We show that retrotransposition requires a non-ideal and metastable coiled coil structure, and a strongly basic L1ORF1p amino terminus. Human L1ORF1p therefore emerges as a highly calibrated molecular machine, sensitive to mutation but functional in different hosts. Our analysis rationalizes the locally rapid L1ORF1p sequence evolution and reveals striking mechanistic parallels to coiled coil-containing membrane fusion proteins. It also suggests how trimeric L1ORF1p could form larger meshworks and indicates critical novel steps in L1 retrotransposition. Almost half of the human genome consists of DNA strings that have been copied and pasted from one part of the genome to another many thousands of times. These strings of DNA are called mobile genetic elements. Mobile elements can disrupt important genes, causing disease and cancer, but they can also drive evolution. Presently, only one type of mobile element, called LINE-1, is active in the human genome and able to multiply without help from other mobile elements. LINE-1 DNA is ‘transcribed’ to form molecules of LINE-1 RNA, which can then be ‘translated’ into two distinct proteins. These bind to LINE-1 RNA, which then gets back-transcribed into DNA and inserted as a new LINE-1 element in a new region of the genome. One of the two proteins, called L1ORF1p, forms complexes where three copies of the protein come together. These ‘trimers’ cover and protect LINE-1 RNA and are required for LINE-1 mobility. Different versions of L1ORF1p are found in different animals. Part of the protein is the same across all mammals, and this ‘conserved’ part controls the ability of L1ORF1p to bind to RNA. The non-conserved part of L1ORF1p differs even between humans and their closest animal relatives and little was known about its structure or role. However, this rapidly evolving part of L1ORF1p is essential for LINE-1 mobility. Using X-ray crystallography, Khazina and Weichenrieder obtained a molecular snapshot of the part of L1ORF1p that interacts with other copies of the protein to form trimers. Combined with earlier snapshots of L1ORF1p’s conserved part, this generated a complete structural model of the L1ORF1p trimer. Additional biophysical characterizations suggest that L1ORF1p trimers form a semi-stable structure that can partially open up, indicating how trimers could form larger assemblies of L1ORF1p on LINE-1 RNA. Indeed, the need to maintain a semi-stable structure could explain why L1ORF1p is evolving so rapidly. A second important finding is that the beginning of L1ORF1p needs to be positively charged – a requirement that warrants further exploration. The structural and mechanistic insight into L1ORF1p points to critical new steps in LINE-1 mobilization. It will help to design inhibitor molecules with the goal to halt the mobilization process at various points and to dissect such steps in great detail. Understanding how to control LINE-1 mobility could help to improve stem cell therapies and reproduction assistance techniques, due to the fact that LINE-1 mobility is a potential source of mutation in stem cells, egg and sperm cells, and newly formed embryos.
Collapse
Affiliation(s)
- Elena Khazina
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Oliver Weichenrieder
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
15
|
L1 Mosaicism in Mammals: Extent, Effects, and Evolution. Trends Genet 2017; 33:802-816. [PMID: 28797643 DOI: 10.1016/j.tig.2017.07.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/30/2017] [Accepted: 07/14/2017] [Indexed: 10/19/2022]
Abstract
The retrotransposon LINE-1 (long interspersed element 1, L1) is a transposable element that has extensively colonized the mammalian germline. L1 retrotransposition can also occur in somatic cells, causing genomic mosaicism, as well as in cancer. However, the extent of L1-driven mosaicism arising during ontogenesis is unclear. We discuss here recent experimental data which, at a minimum, fully substantiate L1 mosaicism in early embryonic development and neural cells, including post-mitotic neurons. We also consider the possible biological impact of somatic L1 insertions in neurons, the existence of donor L1s that are highly active ('hot') in specific spatiotemporal niches, and the evolutionary selection of donor L1s driving neuronal mosaicism.
Collapse
|
16
|
Jain D, Meydan C, Lange J, Claeys Bouuaert C, Lailler N, Mason CE, Anderson KV, Keeney S. rahu is a mutant allele of Dnmt3c, encoding a DNA methyltransferase homolog required for meiosis and transposon repression in the mouse male germline. PLoS Genet 2017; 13:e1006964. [PMID: 28854222 PMCID: PMC5607212 DOI: 10.1371/journal.pgen.1006964] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 09/20/2017] [Accepted: 08/07/2017] [Indexed: 12/30/2022] Open
Abstract
Transcriptional silencing by heritable cytosine-5 methylation is an ancient strategy to repress transposable elements. It was previously thought that mammals possess four DNA methyltransferase paralogs-Dnmt1, Dnmt3a, Dnmt3b and Dnmt3l-that establish and maintain cytosine-5 methylation. Here we identify a fifth paralog, Dnmt3c, that is essential for retrotransposon methylation and repression in the mouse male germline. From a phenotype-based forward genetics screen, we isolated a mutant mouse called 'rahu', which displays severe defects in double-strand-break repair and homologous chromosome synapsis during male meiosis, resulting in sterility. rahu is an allele of a transcription unit (Gm14490, renamed Dnmt3c) that was previously mis-annotated as a Dnmt3-family pseudogene. Dnmt3c encodes a cytosine methyltransferase homolog, and Dnmt3crahu mutants harbor a non-synonymous mutation of a conserved residue within one of its cytosine methyltransferase motifs, similar to a mutation in human DNMT3B observed in patients with immunodeficiency, centromeric instability and facial anomalies syndrome. The rahu mutation lies at a potential dimerization interface and near the potential DNA binding interface, suggesting that it compromises protein-protein and/or protein-DNA interactions required for normal DNMT3C function. Dnmt3crahu mutant males fail to establish normal methylation within LINE and LTR retrotransposon sequences in the germline and accumulate higher levels of transposon-derived transcripts and proteins, particularly from distinct L1 and ERVK retrotransposon families. Phylogenetic analysis indicates that Dnmt3c arose during rodent evolution by tandem duplication of Dnmt3b, after the divergence of the Dipodoidea and Muroidea superfamilies. These findings provide insight into the evolutionary dynamics and functional specialization of the transposon suppression machinery critical for mammalian sexual reproduction and epigenetic regulation.
Collapse
Affiliation(s)
- Devanshi Jain
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States of America
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, United States of America
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, United States of America
| | - Julian Lange
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States of America
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, United States of America
| | - Corentin Claeys Bouuaert
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States of America
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, United States of America
| | - Nathalie Lailler
- Integrated Genomics Operation, Memorial Sloan Kettering Cancer Center, New York, United States of America
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, United States of America
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, United States of America
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, United States of America
| | - Kathryn V. Anderson
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States of America
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States of America
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, United States of America
| |
Collapse
|
17
|
Richardson SR, Gerdes P, Gerhardt DJ, Sanchez-Luque FJ, Bodea GO, Muñoz-Lopez M, Jesuadian JS, Kempen MJHC, Carreira PE, Jeddeloh JA, Garcia-Perez JL, Kazazian HH, Ewing AD, Faulkner GJ. Heritable L1 retrotransposition in the mouse primordial germline and early embryo. Genome Res 2017; 27:1395-1405. [PMID: 28483779 PMCID: PMC5538555 DOI: 10.1101/gr.219022.116] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 05/02/2017] [Indexed: 12/31/2022]
Abstract
LINE-1 (L1) retrotransposons are a noted source of genetic diversity and disease in mammals. To expand its genomic footprint, L1 must mobilize in cells that will contribute their genetic material to subsequent generations. Heritable L1 insertions may therefore arise in germ cells and in pluripotent embryonic cells, prior to germline specification, yet the frequency and predominant developmental timing of such events remain unclear. Here, we applied mouse retrotransposon capture sequencing (mRC-seq) and whole-genome sequencing (WGS) to pedigrees of C57BL/6J animals, and uncovered an L1 insertion rate of ≥1 event per eight births. We traced heritable L1 insertions to pluripotent embryonic cells and, strikingly, to early primordial germ cells (PGCs). New L1 insertions bore structural hallmarks of target-site primed reverse transcription (TPRT) and mobilized efficiently in a cultured cell retrotransposition assay. Together, our results highlight the rate and evolutionary impact of heritable L1 retrotransposition and reveal retrotransposition-mediated genomic diversification as a fundamental property of pluripotent embryonic cells in vivo.
Collapse
Affiliation(s)
- Sandra R Richardson
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia
| | - Patricia Gerdes
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia
| | - Daniel J Gerhardt
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia.,Invenra, Incorporated, Madison, Wisconsin 53719, USA
| | - Francisco J Sanchez-Luque
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia.,Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain
| | - Gabriela-Oana Bodea
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia
| | - Martin Muñoz-Lopez
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain
| | - J Samuel Jesuadian
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia
| | | | - Patricia E Carreira
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia
| | | | - Jose L Garcia-Perez
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain.,Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Haig H Kazazian
- Institute of Genetic Medicine and Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Adam D Ewing
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia
| | - Geoffrey J Faulkner
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia.,School of Biomedical Sciences.,Queensland Brain Institute, University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
18
|
Vieira-da-Silva A, Adega F, Guedes-Pinto H, Chaves R. LINE-1 distribution in six rodent genomes follow a species-specific pattern. J Genet 2016; 95:21-33. [PMID: 27019429 DOI: 10.1007/s12041-015-0595-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
L1 distribution in mammal's genomes is yet a huge riddle. However, these repetitive sequences were already found in all chromosomic regions, and in general, they seem to be nonrandomly distributed in the genome. It also seems that after insertion and when they are not deleterious, they are always involved in dynamic processes occurring on that particular chromosomic region. Furthermore, it seems that large-scale genome rearrangements and L1 activity and accumulation are somehow interconnected. In the present study, we analysed L1 genomic distribution in Tatera gambiana (Muridae, Gerbillinae), Acomys sp. (Muridae, Deomyinae), Cricetomys sp. (Nesomyidae, Cricetomyinae), Microtus arvalis (Cricetidae, Arvicolinae), Phodopus roborovskii and P. sungorus (Cricetidae, Cricetinae). All the species studied here seems to exhibit a species-specific pattern.Possible mechanisms, and processes involved in L1 distribution and preferential accumulation in certain regions are di scussed.
Collapse
Affiliation(s)
- A Vieira-da-Silva
- Department of Genetics and Biotechnology (DGB), Laboratory of Cytogenomics and Animal Genomics (CAG), University of Trάs-os-Montes and Alto Douro (UTAD), 5001, 801 Vila Real,
| | | | | | | |
Collapse
|
19
|
Spadafora C. Soma to germline inheritance of extrachromosomal genetic information via a LINE-1 reverse transcriptase-based mechanism. Bioessays 2016; 38:726-33. [DOI: 10.1002/bies.201500197] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Abstract
Transposable elements have had a profound impact on the structure and function of mammalian genomes. The retrotransposon Long INterspersed Element-1 (LINE-1 or L1), by virtue of its replicative mobilization mechanism, comprises ∼17% of the human genome. Although the vast majority of human LINE-1 sequences are inactive molecular fossils, an estimated 80-100 copies per individual retain the ability to mobilize by a process termed retrotransposition. Indeed, LINE-1 is the only active, autonomous retrotransposon in humans and its retrotransposition continues to generate both intra-individual and inter-individual genetic diversity. Here, we briefly review the types of transposable elements that reside in mammalian genomes. We will focus our discussion on LINE-1 retrotransposons and the non-autonomous Short INterspersed Elements (SINEs) that rely on the proteins encoded by LINE-1 for their mobilization. We review cases where LINE-1-mediated retrotransposition events have resulted in genetic disease and discuss how the characterization of these mutagenic insertions led to the identification of retrotransposition-competent LINE-1s in the human and mouse genomes. We then discuss how the integration of molecular genetic, biochemical, and modern genomic technologies have yielded insight into the mechanism of LINE-1 retrotransposition, the impact of LINE-1-mediated retrotransposition events on mammalian genomes, and the host cellular mechanisms that protect the genome from unabated LINE-1-mediated retrotransposition events. Throughout this review, we highlight unanswered questions in LINE-1 biology that provide exciting opportunities for future research. Clearly, much has been learned about LINE-1 and SINE biology since the publication of Mobile DNA II thirteen years ago. Future studies should continue to yield exciting discoveries about how these retrotransposons contribute to genetic diversity in mammalian genomes.
Collapse
|
21
|
Furano AV, Cook PR. The challenge of ORF1p phosphorylation: Effects on L1 activity and its host. Mob Genet Elements 2015; 6:e1119927. [PMID: 27066302 DOI: 10.1080/2159256x.2015.1119927] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/04/2015] [Accepted: 11/06/2015] [Indexed: 01/09/2023] Open
Abstract
L1 non-LTR retrotransposons are autonomously replicating genetic elements that profoundly affected their mammalian hosts having generated upwards of 40% or more of their genomes. Although deleterious, they remain active in most mammalian species, and thus the nature and consequences of the interaction between L1 and its host remain major issues for mammalian biology. We recently showed that L1 activity requires phosphorylation of one of its 2 encoded proteins, ORF1p, a nucleic acid chaperone and the major component of the L1RNP retrotransposition intermediate. Reversible protein phosphorylation, which is effected by interacting cascades of protein kinases, phosphatases, and ancillary proteins, is a mainstay in the regulation and coordination of many basic biological processes. Therefore, demonstrating phosphorylation-dependence of L1 activity substantially enlarged our knowledge of the scope of L1 / host interaction. However, developing a mechanistic understanding of what this means for L1 or its host is a formidable challenge, which we discuss here.
Collapse
Affiliation(s)
- Anthony V Furano
- Laboratory of Cellular and Molecular Biology, NIDDK, National Institutes of Health , Bethesda, MD, USA
| | - Pamela R Cook
- Laboratory of Cellular and Molecular Biology, NIDDK, National Institutes of Health , Bethesda, MD, USA
| |
Collapse
|
22
|
Svoboda P, Franke V, Schultz RM. Sculpting the Transcriptome During the Oocyte-to-Embryo Transition in Mouse. Curr Top Dev Biol 2015; 113:305-49. [PMID: 26358877 DOI: 10.1016/bs.ctdb.2015.06.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In mouse, the oocyte-to-embryo transition entails converting a highly differentiated oocyte to totipotent blastomeres. This transition is driven by degradation of maternal mRNAs, which results in loss of oocyte identity, and reprogramming of gene expression during the course of zygotic gene activation, which occurs primarily during the two-cell stage and confers blastomere totipotency. Full-grown oocytes are transcriptionally quiescent and mRNAs are remarkably stable in oocytes due to the RNA-binding protein MSY2, which stabilizes mRNAs, and low activity of the 5' and 3' RNA degradation machinery. Oocyte maturation initiates a transition from mRNA stability to instability due to phosphorylation of MSY2, which makes mRNAs more susceptible to the RNA degradation machinery, and recruitment of dormant maternal mRNAs that encode for critical components of the 5' and 3' RNA degradation machinery. Small RNAs (miRNA, siRNA, and piRNA) play little, if any, role in mRNA degradation that occurs during maturation. Many mRNAs are totally degraded but a substantial fraction is only partially degraded, their degradation completed by the end of the two-cell stage. Genome activation initiates during the one-cell stage, is promiscuous, low level, and genome wide (and includes both inter- and intragenic regions) and produces transcripts that are inefficiently spliced and polyadenylated. The major wave of genome activation in two-cell embryos involves expression of thousands of new genes. This unique pattern of gene expression is the product of maternal mRNAs recruited during maturation that encode for transcription factors and chromatin remodelers, as well as dramatic changes in chromatin structure due to incorporation of histone variants and modified histones.
Collapse
Affiliation(s)
- Petr Svoboda
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | - Vedran Franke
- Bioinformatics Group, Division of Biology, Faculty of Science, Zagreb University, Zagreb, Croatia
| | - Richard M Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
23
|
Miousse IR, Chalbot MCG, Lumen A, Ferguson A, Kavouras IG, Koturbash I. Response of transposable elements to environmental stressors. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2015; 765:19-39. [PMID: 26281766 PMCID: PMC4544780 DOI: 10.1016/j.mrrev.2015.05.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 12/21/2022]
Abstract
Transposable elements (TEs) comprise a group of repetitive sequences that bring positive, negative, as well as neutral effects to the host organism. Earlier considered as "junk DNA," TEs are now well-accepted driving forces of evolution and critical regulators of the expression of genetic information. Their activity is regulated by epigenetic mechanisms, including methylation of DNA and histone modifications. The loss of epigenetic control over TEs, exhibited as loss of DNA methylation and decondensation of the chromatin structure, may result in TEs reactivation, initiation of their insertional mutagenesis (retrotransposition) and has been reported in numerous human diseases, including cancer. Accumulating evidence suggests that these alterations are not the simple consequences of the disease, but often may drive the pathogenesis, as they can be detected early during disease development. Knowledge derived from the in vitro, in vivo, and epidemiological studies, clearly demonstrates that exposure to ubiquitous environmental stressors, many of which are carcinogens or suspected carcinogens, are capable of causing alterations in methylation and expression of TEs and initiate retrotransposition events. Evidence summarized in this review suggests that TEs are the sensitive endpoints for detection of effects caused by such environmental stressors, as ionizing radiation (terrestrial, space, and UV-radiation), air pollution (including particulate matter [PM]-derived and gaseous), persistent organic pollutants, and metals. Furthermore, the significance of these effects is characterized by their early appearance, persistence and presence in both, target organs and peripheral blood. Altogether, these findings suggest that TEs may potentially be introduced into safety and risk assessment and serve as biomarkers of exposure to environmental stressors. Furthermore, TEs also show significant potential to become invaluable surrogate biomarkers in clinic and possible targets for therapeutic modalities for disease treatment and prevention.
Collapse
Affiliation(s)
- Isabelle R Miousse
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Marie-Cecile G Chalbot
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Annie Lumen
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Alesia Ferguson
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Ilias G Kavouras
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Igor Koturbash
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
24
|
piRNA involvement in genome stability and human cancer. J Hematol Oncol 2015; 8:38. [PMID: 25895683 PMCID: PMC4412036 DOI: 10.1186/s13045-015-0133-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/31/2015] [Indexed: 12/16/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are a large family of small, single-stranded, non-coding RNAs present throughout the animal kingdom. They form complexes with several members of the PIWI clade of Argonaute proteins and carry out regulatory functions. Their best established biological role is the inhibition of transposon mobilization, which they enforce both at the transcriptional level, through regulation of heterochromatin formation, and by promoting transcript degradation. In this capacity, piRNAs and PIWI proteins are at the heart of the germline cells’ efforts to preserve genome integrity. Additional regulatory roles of piRNAs and PIWI proteins in gene expression are becoming increasingly apparent. PIWI proteins and piRNAs are often detected in human cancers deriving from germline cells as well as somatic tissues. Their detection in cancer correlates with poorer clinical outcomes, suggesting that they play a functional role in the biology of cancer. Nonetheless, the currently available information, while highly suggestive, is still not sufficient to entirely discriminate between a ‘passenger’ role for the ectopic expression of piRNAs and PIWI proteins in cancer from a ‘driver’ role in the pathogenesis of these diseases. In this article, we review some of the key available evidence for the role of piRNAs and PIWI in human cancer and discuss ways in which our understanding of their functions may be improved.
Collapse
|
25
|
A unique HMG-box domain of mouse Maelstrom binds structured RNA but not double stranded DNA. PLoS One 2015; 10:e0120268. [PMID: 25807393 PMCID: PMC4373776 DOI: 10.1371/journal.pone.0120268] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/05/2015] [Indexed: 01/11/2023] Open
Abstract
Piwi-interacting piRNAs are a major and essential class of small RNAs in the animal germ cells with a prominent role in transposon control. Efficient piRNA biogenesis and function require a cohort of proteins conserved throughout the animal kingdom. Here we studied Maelstrom (MAEL), which is essential for piRNA biogenesis and germ cell differentiation in flies and mice. MAEL contains a high mobility group (HMG)-box domain and a Maelstrom-specific domain with a presumptive RNase H-fold. We employed a combination of sequence analyses, structural and biochemical approaches to evaluate and compare nucleic acid binding of mouse MAEL HMG-box to that of canonical HMG-box domain proteins (SRY and HMGB1a). MAEL HMG-box failed to bind double-stranded (ds)DNA but bound to structured RNA. We also identified important roles of a novel cluster of arginine residues in MAEL HMG-box in these interactions. Cumulatively, our results suggest that the MAEL HMG-box domain may contribute to MAEL function in selective processing of retrotransposon RNA into piRNAs. In this regard, a cellular role of MAEL HMG-box domain is reminiscent of that of HMGB1 as a sentinel of immunogenic nucleic acids in the innate immune response.
Collapse
|
26
|
Abstract
Although members of the L1 (LINE-1) clade of non-LTR retrotransposons can be deleterious, the L1 clade has remained active in most mammals for ∼100 million years and generated almost 40% of the human genome. The details of L1-host interaction are largely unknown, however. Here we report that L1 activity requires phosphorylation of the protein encoded by the L1 ORF1 (ORF1p). Critical phospho-acceptor residues (two serines and two threonines) reside in four conserved proline-directed protein kinase (PDPK) target sites. The PDPK family includes mitogen-activated protein kinases and cyclin-dependent kinases. Mutation of any PDPK phospho-acceptor inhibits L1 retrotransposition. The phosphomimetic aspartic acid can restore activity at the two serine sites, but not at either threonine site, where it is strongly inhibitory. ORF1p also contains conserved PDPK docking sites, which promote specific interaction of PDPKs with their targets. As expected, mutations in these sites also inhibit L1 activity. PDPK mutations in ORF1p that inactivate L1 have no significant effect on the ability of ORF1p to anneal RNA in vitro, an important biochemical property of the protein. We show that phosphorylated PDPK sites in ORF1p are required for an interaction with the peptidyl prolyl isomerase 1 (Pin1), a critical component of PDPK-mediated regulation. Pin1 acts via isomerization of proline side chains at phosphorylated PDPK motifs, thereby affecting substrate conformation and activity. Our demonstration that L1 activity is dependent on and integrated with cellular phosphorylation regulatory cascades significantly increases our understanding of interactions between L1 and its host.
Collapse
|
27
|
Ulahannan N, Greally JM. Genome-wide assays that identify and quantify modified cytosines in human disease studies. Epigenetics Chromatin 2015; 8:5. [PMID: 25788985 PMCID: PMC4363328 DOI: 10.1186/1756-8935-8-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/05/2015] [Indexed: 12/23/2022] Open
Abstract
The number of different assays that has been published to study DNA methylation is extensive, complemented by recently described assays that test modifications of cytosine other than the most abundant 5-methylcytosine (5mC) variant. In this review, we describe the considerations involved in choosing how to study 5mC throughout the genome, with an emphasis on the common application of testing for epigenetic dysregulation in human disease. While microarray studies of 5mC continue to be commonly used, these lack the additional qualitative information from sequencing-based approaches that is increasingly recognized to be valuable. When we test the representation of functional elements in the human genome by several current assay types, we find that no survey approach interrogates anything more than a small minority of the nonpromoter cis-regulatory sites where DNA methylation variability is now appreciated to influence gene expression and to be associated with human disease. However, whole-genome bisulphite sequencing (WGBS) adds a substantial representation of loci at which DNA methylation changes are unlikely to be occurring with transcriptional consequences. Our assessment is that the most effective approach to DNA methylation studies in human diseases is to use targeted bisulphite sequencing of the cis-regulatory loci in a cell type of interest, using a capture-based or comparable system, and that no single design of a survey approach will be suitable for all cell types.
Collapse
Affiliation(s)
- Netha Ulahannan
- Department of Genetics, Albert Einstein College of Medicine, Center for Epigenomics and Division of Computational Genetics, 1301 Morris Park Avenue, Bronx, NY 10461 USA
| | - John M Greally
- Department of Genetics, Albert Einstein College of Medicine, Center for Epigenomics and Division of Computational Genetics, 1301 Morris Park Avenue, Bronx, NY 10461 USA
| |
Collapse
|
28
|
Crichton JH, Dunican DS, MacLennan M, Meehan RR, Adams IR. Defending the genome from the enemy within: mechanisms of retrotransposon suppression in the mouse germline. Cell Mol Life Sci 2014; 71:1581-605. [PMID: 24045705 PMCID: PMC3983883 DOI: 10.1007/s00018-013-1468-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/27/2013] [Accepted: 08/29/2013] [Indexed: 12/15/2022]
Abstract
The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline.
Collapse
Affiliation(s)
- James H. Crichton
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU UK
| | - Donncha S. Dunican
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU UK
| | - Marie MacLennan
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU UK
| | - Richard R. Meehan
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU UK
| | - Ian R. Adams
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU UK
| |
Collapse
|
29
|
Mukherjee A, Koli S, Reddy KVR. Regulatory non-coding transcripts in spermatogenesis: shedding light on ‘dark matter’. Andrology 2014; 2:360-9. [DOI: 10.1111/j.2047-2927.2014.00183.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 12/26/2013] [Accepted: 12/26/2013] [Indexed: 11/29/2022]
Affiliation(s)
- A. Mukherjee
- Division of Molecular Immunology and Microbiology; National Institute for Research in Reproductive Health; Indian Council of Medical Research; Mumbai India
| | - S. Koli
- Division of Molecular Immunology and Microbiology; National Institute for Research in Reproductive Health; Indian Council of Medical Research; Mumbai India
| | - K. V. R. Reddy
- Division of Molecular Immunology and Microbiology; National Institute for Research in Reproductive Health; Indian Council of Medical Research; Mumbai India
| |
Collapse
|
30
|
Belan E. LINEs of evidence: noncanonical DNA replication as an epigenetic determinant. Biol Direct 2013; 8:22. [PMID: 24034780 PMCID: PMC3868326 DOI: 10.1186/1745-6150-8-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/06/2013] [Indexed: 12/17/2022] Open
Abstract
LINE-1 (L1) retrotransposons are repetitive elements in mammalian genomes. They are
capable of synthesizing DNA on their own RNA templates by harnessing reverse
transcriptase (RT) that they encode. Abundantly expressed full-length L1s and their
RT are found to globally influence gene expression profiles, differentiation state,
and proliferation capacity of early embryos and many types of cancer, albeit by yet
unknown mechanisms. They are essential for the progression of early development and
the establishment of a cancer-related undifferentiated state. This raises important
questions regarding the functional significance of L1 RT in these cell systems.
Massive nuclear L1-linked reverse transcription has been shown to occur in mouse
zygotes and two-cell embryos, and this phenomenon is purported to be DNA replication
independent. This review argues against this claim with the goal of understanding the
nature of this phenomenon and the role of L1 RT in early embryos and cancers.
Available L1 data are revisited and integrated with relevant findings accumulated in
the fields of replication timing, chromatin organization, and epigenetics, bringing
together evidence that strongly supports two new concepts. First, noncanonical
replication of a portion of genomic full-length L1s by means of L1 RNP-driven reverse
transcription is proposed to co-exist with DNA polymerase-dependent replication of
the rest of the genome during the same round of DNA replication in embryonic and
cancer cell systems. Second, the role of this mechanism is thought to be epigenetic;
it might promote transcriptional competence of neighboring genes linked to
undifferentiated states through the prevention of tethering of involved L1s to the
nuclear periphery. From the standpoint of these concepts, several hitherto
inexplicable phenomena can be explained. Testing methods for the model are
proposed.
Collapse
Affiliation(s)
- Ekaterina Belan
- Genetics Laboratory, Royal University Hospital, Saskatoon, SK S7N 0W8, Canada.
| |
Collapse
|
31
|
Abstract
Transposable elements and their fossil sequences occupy about half of the genome in mammals. While most of these selfish mobile elements have been inactivated by truncations and mutations during evolution, some copies remain competent to transpose and/or amplify, posing an ongoing genetic threat. To control such mutagenic sequences, host genomes have developed multiple layers of defence mechanisms, including epigenetic regulation and RNA silencing. Germ cells, in particular, employ the piwi-small RNA pathway, which plays a central and adaptive role in safeguarding the germline genome from retrotransposons. Recent studies have revealed that a class of developmentally regulated genes, which have long been implicated in germ cell specification and differentiation, such as vasa and tudor family genes, play key roles in the piwi pathway to suppress retrotransposons, indicating that the piwi-mediated genome protection is at the core of germline development. Furthermore, while the piwi system primarily operates post-transcriptionally at the RNA level, it also affects the epigenetics of cognate genome loci, offering an intriguing link between small RNAs and transcriptional control in mammals. In this review, we summarize our current understanding of the piwi pathway in mice, which is emerging as a fundamental component of spermatogenesis that ensures male fertility and genome integrity.
Collapse
Affiliation(s)
- Shinichiro Chuma
- Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | | |
Collapse
|
32
|
Cao K, Lailler N, Zhang Y, Kumar A, Uppal K, Liu Z, Lee EK, Wu H, Medrzycki M, Pan C, Ho PY, Cooper GP, Dong X, Bock C, Bouhassira EE, Fan Y. High-resolution mapping of h1 linker histone variants in embryonic stem cells. PLoS Genet 2013; 9:e1003417. [PMID: 23633960 PMCID: PMC3636266 DOI: 10.1371/journal.pgen.1003417] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 02/13/2013] [Indexed: 02/07/2023] Open
Abstract
H1 linker histones facilitate higher-order chromatin folding and are essential for mammalian development. To achieve high-resolution mapping of H1 variants H1d and H1c in embryonic stem cells (ESCs), we have established a knock-in system and shown that the N-terminally tagged H1 proteins are functionally interchangeable to their endogenous counterparts in vivo. H1d and H1c are depleted from GC- and gene-rich regions and active promoters, inversely correlated with H3K4me3, but positively correlated with H3K9me3 and associated with characteristic sequence features. Surprisingly, both H1d and H1c are significantly enriched at major satellites, which display increased nucleosome spacing compared with bulk chromatin. While also depleted at active promoters and enriched at major satellites, overexpressed H10 displays differential binding patterns in specific repetitive sequences compared with H1d and H1c. Depletion of H1c, H1d, and H1e causes pericentric chromocenter clustering and de-repression of major satellites. These results integrate the localization of an understudied type of chromatin proteins, namely the H1 variants, into the epigenome map of mouse ESCs, and we identify significant changes at pericentric heterochromatin upon depletion of this epigenetic mark. Embryonic stem cells (ESCs) possess unique chromatin and epigenetic signatures, which are important in defining the identity and genome plasticity of pluripotent stem cells. Although ESC epigenomes have been extensively characterized, the genome localization of histone H1 variants, the chromatin structural proteins facilitating higher-order chromatin folding, remains elusive. Linker histone H1 is essential for mammalian development and regulates the expression of specific genes in ESCs. Here, by using a knock-in system coupled with ChIP–seq, we first achieve the high resolution mapping of two H1 variants on a genome-wide scale in mouse ESCs. Our study reveals the correlations of this underexplored histone family with other epigenetic marks and genome attributes. Surprisingly, we identify a dramatic enrichment of H1d and H1c at major satellite sequences. H10, mapped using an overexpressing ESC line, shows similar features at active promoters but differential binding at repetitive sequences compared with H1d and H1c. Furthermore, using mutant ESCs that are deficient for multiple H1 variants, we demonstrate the role of H1 in chromocenter clustering and transcriptional repression of major satellites. Thus, these results connect this important repressive mark with the well understood ESC epigenome and identify novel functions of H1 in mammalian genome organization.
Collapse
Affiliation(s)
- Kaixiang Cao
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Nathalie Lailler
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Yunzhe Zhang
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Ashwath Kumar
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Karan Uppal
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Zheng Liu
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Eva K. Lee
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Hongwei Wu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Magdalena Medrzycki
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Chenyi Pan
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Po-Yi Ho
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Guy P. Cooper
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Xiao Dong
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Max Planck Institute for Informatics, Saarbrücken, Germany
| | - Eric E. Bouhassira
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Yuhong Fan
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
33
|
Xie Y, Mates L, Ivics Z, Izsvák Z, Martin SL, An W. Cell division promotes efficient retrotransposition in a stable L1 reporter cell line. Mob DNA 2013; 4:10. [PMID: 23497436 PMCID: PMC3607998 DOI: 10.1186/1759-8753-4-10] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 02/08/2013] [Indexed: 01/15/2023] Open
Abstract
Background Long interspersed element type one (L1) actively modifies the human genome by inserting new copies of itself. This process, termed retrotransposition, requires the formation of an L1 ribonucleoprotein (RNP) complex, which must enter the nucleus before retrotransposition can proceed. Thus, the nuclear import of L1 RNP presents an opportunity for cells to regulate L1 retrotransposition post-translationally. The effect of cell division on L1 retrotransposition has been investigated by two previous studies, which observed varied degrees of inhibition in retrotransposition when primary cell strains or cancer cell lines were experimentally arrested in different stages of the cell cycle. However, seemingly divergent conclusions were reached. The role of cell division on retrotransposition remains highly debated. Findings To monitor both L1 expression and retrotransposition quantitatively, we developed a stable dual-luciferase L1 reporter cell line, in which a bi-directional tetracycline-inducible promoter drives the expression of both a firefly luciferase-tagged L1 element and a Renilla luciferase, the latter indicative of the level of promoter induction. We observed an additional 10-fold reduction in retrotransposition in cell-cycle arrested cells even after retrotransposition had been normalized to Renilla luciferase or L1 ORF1 protein levels. In synchronized cells, cells undergoing two mitoses showed 2.6-fold higher retrotransposition than those undergoing one mitosis although L1 expression was induced for the same amount of time. Conclusions Our data provide additional support for an important role of cell division in retrotransposition and argue that restricting the accessibility of L1 RNP to nuclear DNA could be a post-translational regulatory mechanism for retrotransposition.
Collapse
Affiliation(s)
- Yi Xie
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Singh DK, Rath PC. Long interspersed nuclear elements (LINEs) show tissue-specific, mosaic genome and methylation-unrestricted, widespread expression of noncoding RNAs in somatic tissues of the rat. RNA Biol 2012; 9:1380-96. [PMID: 23064113 DOI: 10.4161/rna.22402] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We report strong somatic and germ line expression of LINE RNAs in eight different tissues of rat by using a novel ~2.8 kb genomic PstI-LINE DNA (P1-LINE) isolated from the rat brain. P1-LINE is present in a 93 kb LINE-SINE-cluster in sub-telomeric region of chromosome 12 (12p12) and as multiple truncated copies interspersed in all rat chromosomes. P1-LINEs occur as inverted repeats at multiple genomic loci in tissue-specific and mosaic patterns. P1-LINE RNAs are strongly expressed in brain, liver, lungs, heart, kidney, testes, spleen and thymus into large to small heterogeneous RNAs (~5.0 to 0.2 kb) in tissue-specific and dynamic patterns in individual rats. P1-LINE DNA is strongly methylated at CpG-dinucleotides in most genomic copies in all the tissues and weakly hypomethylated in few copies in some tissues. Small (700-75 nt) P1-LINE RNAs expressed in all tissues may be possible precursors for small regulatory RNAs (PIWI-interacting/piRNAs) bioinformatically derived from P1-LINE. The strong and dynamic expression of LINE RNAs from multiple chromosomal loci and the putative piRNAs in somatic tissues of rat under normal physiological conditions may define functional chromosomal domains marked by LINE RNAs as long noncoding RNAs (lncRNAs) unrestricted by DNA methylation. The tissue-specific, dynamic RNA expression and mosaic genomic distribution of LINEs representing a steady-state genomic flux of retrotransposon RNAs suggest for biological role of LINE RNAs as long ncRNAs and small piRNAs in mammalian tissues independent of their cellular fate for translation, reverse-transcription and retrotransposition. This may provide evolutionary advantages to LINEs and mammalian genomes.
Collapse
Affiliation(s)
- Deepak K Singh
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | |
Collapse
|
35
|
Zhu W, Kuo D, Nathanson J, Satoh A, Pao GM, Yeo GW, Bryant SV, Voss SR, Gardiner DM, Hunter T. Retrotransposon long interspersed nucleotide element-1 (LINE-1) is activated during salamander limb regeneration. Dev Growth Differ 2012; 54:673-85. [PMID: 22913491 DOI: 10.1111/j.1440-169x.2012.01368.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 06/20/2012] [Accepted: 07/01/2012] [Indexed: 12/14/2022]
Abstract
Salamanders possess an extraordinary capacity for tissue and organ regeneration when compared to mammals. In our effort to characterize the unique transcriptional fingerprint emerging during the early phase of salamander limb regeneration, we identified transcriptional activation of some germline-specific genes within the Mexican axolotl (Ambystoma mexicanum) that is indicative of cellular reprogramming of differentiated cells into a germline-like state. In this work, we focus on one of these genes, the long interspersed nucleotide element-1 (LINE-1) retrotransposon, which is usually active in germ cells and silent in most of the somatic tissues in other organisms. LINE-1 was found to be dramatically upregulated during regeneration. In addition, higher genomic LINE-1 content was also detected in the limb regenerate when compared to that before amputation indicating that LINE-1 retrotransposition is indeed active during regeneration. Active LINE-1 retrotransposition has been suggested to have a potentially deleterious impact on genomic integrity. Silencing of activated LINE-1 by small RNAs has been reported to be part of the machinery aiming to maintain genomic integrity. Indeed, we were able to identify putative LINE-1-related piRNAs in the limb blastema. Transposable element-related piRNAs have been identified frequently in the germline in other organisms. Thus, we present here a scenario in which a unique germline-like state is established during axolotl limb regeneration, and the re-activation of LINE-1 may serve as a marker for cellular dedifferentiation in the early-stage of limb regeneration.
Collapse
Affiliation(s)
- Wei Zhu
- Molecular and Cell Biology Laboratory and Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Liao HF, Tai KY, Chen WSC, Cheng LCW, Ho HN, Lin SP. Functions of DNA methyltransferase 3-like in germ cells and beyond. Biol Cell 2012; 104:571-87. [PMID: 22671959 DOI: 10.1111/boc.201100109] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 05/21/2012] [Indexed: 02/06/2023]
Abstract
DNA methyltransferase 3-like (DNMT3L) is one of the key players in de novo DNA methylation of imprinting control elements and retrotransposons, which occurs after genome-wide epigenetic erasure during germ cell development. In this review, we summarise the biochemical properties of DNMT3L and discuss the possible mechanisms behind DNMT3L-mediated imprinting establishment and retrotransposon silencing in germ cells. We also discuss possible connections between DNMT3L and non-coding RNA-mediated epigenetic remodelling, the roles of DNMT3L in germ cell development and the implications in stem cell and cancer research.
Collapse
Affiliation(s)
- Hung-Fu Liao
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
37
|
Sacha JB, Kim IJ, Chen L, Ullah JH, Goodwin DA, Simmons HA, Schenkman DI, von Pelchrzim F, Gifford RJ, Nimityongskul FA, Newman LP, Wildeboer S, Lappin PB, Hammond D, Castrovinci P, Piaskowski SM, Reed JS, Beheler KA, Tharmanathan T, Zhang N, Muscat-King S, Rieger M, Fernandes C, Rumpel K, Gardner JP, Gebhard DH, Janies J, Shoieb A, Pierce BG, Trajkovic D, Rakasz E, Rong S, McCluskie M, Christy C, Merson JR, Jones RB, Nixon DF, Ostrowski MA, Loudon PT, Pruimboom-Brees IM, Sheppard NC. Vaccination with cancer- and HIV infection-associated endogenous retrotransposable elements is safe and immunogenic. THE JOURNAL OF IMMUNOLOGY 2012; 189:1467-79. [PMID: 22745376 DOI: 10.4049/jimmunol.1200079] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The expression of endogenous retrotransposable elements, including long interspersed nuclear element 1 (LINE-1 or L1) and human endogenous retrovirus, accompanies neoplastic transformation and infection with viruses such as HIV. The ability to engender immunity safely against such self-antigens would facilitate the development of novel vaccines and immunotherapies. In this article, we address the safety and immunogenicity of vaccination with these elements. We used immunohistochemical analysis and literature precedent to identify potential off-target tissues in humans and establish their translatability in preclinical species to guide safety assessments. Immunization of mice with murine L1 open reading frame 2 induced strong CD8 T cell responses without detectable tissue damage. Similarly, immunization of rhesus macaques with human LINE-1 open reading frame 2 (96% identity with macaque), as well as simian endogenous retrovirus-K Gag and Env, induced polyfunctional T cell responses to all Ags, and Ab responses to simian endogenous retrovirus-K Env. There were no adverse safety or pathological findings related to vaccination. These studies provide the first evidence, to our knowledge, that immune responses can be induced safely against this class of self-antigens and pave the way for investigation of them as HIV- or tumor-associated targets.
Collapse
Affiliation(s)
- Jonah B Sacha
- AIDS Vaccine Laboratory and Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53705, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Roy-Engel AM. LINEs, SINEs and other retroelements: do birds of a feather flock together? Front Biosci (Landmark Ed) 2012; 17:1345-61. [PMID: 22201808 DOI: 10.2741/3991] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mobile elements account for almost half of the mass of the human genome. Only the retroelements from the non-LTR (long terminal repeat) retrotransposon family, which include the LINE-1 (L1) and its non-autonomous partners, are currently active and contributing to new insertions. Although these elements seem to share the same basic amplification mechanism, the activity and success of the different types of retroelements varies. For example, Alu-induced mutagenesis is responsible for the majority of the documented instances of human disease induced by insertion of retroelements. Using copy number in mammals as an indicator, some SINEs have been vastly more successful than other retroelements, such as the retropseudogenes and even L1, likely due to differences in post-insertion selection and ability to overcome cellular controls. SINE and LINE integration can be differentially influenced by cellular factors, indicating some differences between in their amplification mechanisms. We focus on the known aspects of this group of retroelements and highlight their similarities and differences that may significantly influence their biological impact.
Collapse
Affiliation(s)
- Astrid M Roy-Engel
- Tulane University, Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane Cancer Center, SL-66 1430 Tulane Ave., New Orleans, LA 70112.
| |
Collapse
|
39
|
Rosser JM, An W. L1 expression and regulation in humans and rodents. Front Biosci (Elite Ed) 2012; 4:2203-25. [PMID: 22202032 DOI: 10.2741/537] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Long interspersed elements type 1 (LINE-1s, or L1s) have impacted mammalian genomes at multiple levels. L1 transcription is mainly controlled by its 5' untranslated region (5'UTR), which differs significantly among active human and rodent L1 families. In this review, L1 expression and its regulation are examined in the context of human and rodent development. First, endogenous L1 expression patterns in three different species-human, rat, and mouse-are compared and contrasted. A detailed account of relevant experimental evidence is presented according to the source material, such as cell lines, tumors, and normal somatic and germline tissues from different developmental stages. Second, factors involved in the regulation of L1 expression at both transcriptional and posttranscriptional levels are discussed. These include transcription factors, DNA methylation, PIWI-interacting RNAs (piRNAs), RNA interference (RNAi), and posttranscriptional host factors. Similarities and differences between human and rodent L1s are highlighted. Third, recent findings from transgenic mouse models of L1 are summarized and contrasted with those from endogenous L1 studies. Finally, the challenges and opportunities for L1 mouse models are discussed.
Collapse
Affiliation(s)
- James M Rosser
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | | |
Collapse
|
40
|
Beck CR, Garcia-Perez JL, Badge RM, Moran JV. LINE-1 elements in structural variation and disease. Annu Rev Genomics Hum Genet 2011; 12:187-215. [PMID: 21801021 DOI: 10.1146/annurev-genom-082509-141802] [Citation(s) in RCA: 431] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The completion of the human genome reference sequence ushered in a new era for the study and discovery of human transposable elements. It now is undeniable that transposable elements, historically dismissed as junk DNA, have had an instrumental role in sculpting the structure and function of our genomes. In particular, long interspersed element-1 (LINE-1 or L1) and short interspersed elements (SINEs) continue to affect our genome, and their movement can lead to sporadic cases of disease. Here, we briefly review the types of transposable elements present in the human genome and their mechanisms of mobility. We next highlight how advances in DNA sequencing and genomic technologies have enabled the discovery of novel retrotransposons in individual genomes. Finally, we discuss how L1-mediated retrotransposition events impact human genomes.
Collapse
Affiliation(s)
- Christine R Beck
- Department of Human Genetics, University of MIchigan Medical School, Ann Arbor, Michigan 48109-5618, USA.
| | | | | | | |
Collapse
|
41
|
Wissing S, Muñoz-Lopez M, Macia A, Yang Z, Montano M, Collins W, Garcia-Perez JL, Moran JV, Greene WC. Reprogramming somatic cells into iPS cells activates LINE-1 retroelement mobility. Hum Mol Genet 2011; 21:208-18. [PMID: 21989055 DOI: 10.1093/hmg/ddr455] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Long interspersed element-1 (LINE-1 or L1) retrotransposons account for nearly 17% of human genomic DNA and represent a major evolutionary force that has reshaped the structure and function of the human genome. However, questions remain concerning both the frequency and the developmental timing of L1 retrotransposition in vivo and whether the mobility of these retroelements commonly results in insertional and post-insertional mechanisms of genomic injury. Cells exhibiting high rates of L1 retrotransposition might be especially at risk for such injury. We assessed L1 mRNA expression and L1 retrotransposition in two biologically relevant cell types, human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), as well as in control parental human dermal fibroblasts (HDFs). Full-length L1 mRNA and the L1 open reading frame 1-encoded protein (ORF1p) were readily detected in hESCs and iPSCs, but not in HDFs. Sequencing analysis proved the expression of human-specific L1 element mRNAs in iPSCs. Bisulfite sequencing revealed that the increased L1 expression observed in iPSCs correlates with an overall decrease in CpG methylation in the L1 promoter region. Finally, retrotransposition of an engineered human L1 element was ~10-fold more efficient in iPSCs than in parental HDFs. These findings indicate that somatic cell reprogramming is associated with marked increases in L1 expression and perhaps increases in endogenous L1 retrotransposition, which could potentially impact the genomic integrity of the resultant iPSCs.
Collapse
Affiliation(s)
- Silke Wissing
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Mourier T. Retrotransposon-centered analysis of piRNA targeting shows a shift from active to passive retrotransposon transcription in developing mouse testes. BMC Genomics 2011; 12:440. [PMID: 21884594 PMCID: PMC3175481 DOI: 10.1186/1471-2164-12-440] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 09/01/2011] [Indexed: 12/31/2022] Open
Abstract
Background Piwi-associated RNAs (piRNAs) bind transcripts from retrotransposable elements (RTE) in mouse germline cells and seemingly act as guides for genomic methylation, thereby repressing the activity of RTEs. It is currently unknown if and how Piwi proteins distinguish RTE transcripts from other cellular RNAs. During germline development, the main target of piRNAs switch between different types of RTEs. Using the piRNA targeting of RTEs as an indicator of RTE activity, and considering the entire population of genomic RTE loci along with their age and location, this study aims at further elucidating the dynamics of RTE activity during mouse germline development. Results Due to the inherent sequence redundancy between RTE loci, assigning piRNA targeting to specific loci is problematic. This limits the analysis, although certain features of piRNA targeting of RTE loci are apparent. As expected, young RTEs display a much higher level of piRNA targeting than old RTEs. Further, irrespective of age, RTE loci near protein-coding coding genes are targeted to a greater extent than RTE loci far from genes. During development, a shift in piRNA targeting is observed, with a clear increase in the relative piRNA targeting of RTEs residing within boundaries of protein-coding gene transcripts. Conclusions Reanalyzing published piRNA sequences and taking into account the features of individual RTE loci provide novel insight into the activity of RTEs during development. The obtained results are consistent with some degree of proportionality between what transcripts become substrates for Piwi protein complexes and the level by which the transcripts are present in the cell. A transition from active transcription of RTEs to passive co-transcription of RTE sequences residing within protein-coding transcripts appears to take place in postnatal development. Hence, the previously reported increase in piRNA targeting of SINEs in postnatal testis development does not necessitate widespread active transcription of SINEs, but may simply be explained by the prevalence of SINEs residing in introns.
Collapse
Affiliation(s)
- Tobias Mourier
- Centre for GeoGenetics, Natural History Museum, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen K, Denmark.
| |
Collapse
|
43
|
Wissing S, Montano M, Garcia-Perez JL, Moran JV, Greene WC. Endogenous APOBEC3B restricts LINE-1 retrotransposition in transformed cells and human embryonic stem cells. J Biol Chem 2011; 286:36427-37. [PMID: 21878639 DOI: 10.1074/jbc.m111.251058] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the APOBEC3 (A3) family of cytidine deaminase enzymes act as host defense mechanisms limiting both infections by exogenous retroviruses and mobilization of endogenous retrotransposons. Previous studies revealed that the overexpression of some A3 proteins could restrict engineered human Long INterspersed Element-1 (LINE-1 or L1) retrotransposition in HeLa cells. However, whether endogenous A3 proteins play a role in restricting L1 retrotransposition remains largely unexplored. Here, we show that HeLa cells express endogenous A3B and A3C, whereas human embryonic stem cells (hESCs) express A3B, A3C, A3DE, A3F, and A3G. To study the relative contribution of endogenous A3 proteins in restricting L1 retrotransposition, we first generated small hairpin RNAs (shRNAs) to suppress endogenous A3 mRNA expression, and then assessed L1 mobility using a cell-based L1 retrotransposition assay. We demonstrate that in both HeLa and hESCs, shRNA-based knockdown of A3B promotes a ∼2-3.7-fold increase in the retrotransposition efficiency of an engineered human L1. Knockdown of the other A3s produced no significant increase in L1 activity. Thus, A3B appears to restrict engineered L1 retrotransposition in a broad range of cell types, including pluripotent cells.
Collapse
Affiliation(s)
- Silke Wissing
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, California 94158, USA
| | | | | | | | | |
Collapse
|
44
|
Abstract
Transposable elements (TEs) have a unique ability to mobilize to new genomic locations, and the major advance of second-generation DNA sequencing has provided insights into the dynamic relationship between TEs and their hosts. It now is clear that TEs have adopted diverse strategies - such as specific integration sites or patterns of activity - to thrive in host environments that are replete with mechanisms, such as small RNAs or epigenetic marks, that combat TE amplification. Emerging evidence suggests that TE mobilization might sometimes benefit host genomes by enhancing genetic diversity, although TEs are also implicated in diseases such as cancer. Here, we discuss recent findings about how, where and when TEs insert in diverse organisms.
Collapse
Affiliation(s)
- Henry L. Levin
- Section on Eukaryotic Transposable Elements, Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, 20892, USA, Tel. 301-402-4281, Fax. 301-496-4491,
| | - John V. Moran
- Departments of Human Genetics and Internal Medicine, and Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, MI, 48109-6518, USA, Tel. 734-615-4046, Fax. 734-763-3784,
| |
Collapse
|
45
|
Muñoz-Lopez M, Macia A, Garcia-Cañadas M, Badge RM, Garcia-Perez JL. An epi [c] genetic battle: LINE-1 retrotransposons and intragenomic conflict in humans. Mob Genet Elements 2011; 1:122-127. [PMID: 22016860 DOI: 10.4161/mge.1.2.16730] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 05/27/2011] [Indexed: 01/14/2023] Open
Abstract
The ongoing activity of the human retrotransposon Long Interspersed Element 1 (LINE-1 or L1) continues to impact the human genome in various ways. Throughout evolution, mammalian and primate genomes have been under selection to generate strategies to reduce the activity of selfish DNA like L1. Similarly, selfish DNA has evolved to elude these containment systems. This intragenomic conflict has left many inactive versions of LINEs and other Transposable Elements (TEs) littering the human genome, which together account for roughly half of our DNA. Here, we survey the distinct mechanisms operating in the human genome that seem to reduce the mobility of L1s. In addition, we discuss recent findings that strongly suggest epigenetic mechanisms specifically regulate L1 activity in pluripotent human cells.
Collapse
Affiliation(s)
- Martin Muñoz-Lopez
- Department of Human DNA Variability; GENYO (Centre Pfizer-University of Granada-Junta de Andalucía of Genomics and Oncology); Granada, Spain
| | | | | | | | | |
Collapse
|
46
|
Tudor domain containing 7 (Tdrd7) is essential for dynamic ribonucleoprotein (RNP) remodeling of chromatoid bodies during spermatogenesis. Proc Natl Acad Sci U S A 2011; 108:10579-84. [PMID: 21670278 DOI: 10.1073/pnas.1015447108] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the male germline in mammals, chromatoid bodies, a specialized assembly of cytoplasmic ribonucleoprotein (RNP), are structurally evident during meiosis and haploidgenesis, but their developmental origin and regulation remain elusive. The tudor domain containing proteins constitute a conserved class of chromatoid body components. We show that tudor domain containing 7 (Tdrd7), the deficiency of which causes male sterility and age-related cataract (as well as glaucoma), is essential for haploid spermatid development and defines, in concert with Tdrd6, key biogenesis processes of chromatoid bodies. Single and double knockouts of Tdrd7 and Tdrd6 demonstrated that these spermiogenic tudor genes orchestrate developmental programs for ordered remodeling of chromatoid bodies, including the initial establishment, subsequent RNP fusion with ubiquitous processing bodies/GW bodies and later structural maintenance. Tdrd7 suppresses LINE1 retrotransposons independently of piwi-interacting RNA (piRNA) biogenesis wherein Tdrd1 and Tdrd9 operate, indicating that distinct Tdrd pathways act against retrotransposons in the male germline. Tdrd6, in contrast, does not affect retrotransposons but functions at a later stage of spermiogenesis when chromatoid bodies exhibit aggresome-like properties. Our results delineate that chromatoid bodies assemble as an integrated compartment incorporating both germline and ubiquitous features as spermatogenesis proceeds and that the conserved tudor family genes act as master regulators of this unique RNP remodeling, which is genetically linked to the male germline integrity in mammals.
Collapse
|
47
|
Iwabuchi KA, Yamakawa T, Sato Y, Ichisaka T, Takahashi K, Okita K, Yamanaka S. ECAT11/L1td1 is enriched in ESCs and rapidly activated during iPSC generation, but it is dispensable for the maintenance and induction of pluripotency. PLoS One 2011; 6:e20461. [PMID: 21637830 PMCID: PMC3102727 DOI: 10.1371/journal.pone.0020461] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 04/24/2011] [Indexed: 11/30/2022] Open
Abstract
The principal factors that lead to proliferation and pluripotency in embryonic stem cells (ESCs) have been vigorously investigated. However, the global network of factors and their full signaling cascade is still unclear. In this study, we found that ECAT11 (L1td1) is one of the ESC-associated transcripts harboring a truncated fragment of ORF-1, a component of theL1 retrotransposable element. We generated an ECAT11 knock-in mouse by replacing its coding region with green fluorescent protein. In the early stage of development, the fluorescence was observed at the inner cell mass of blastocysts and epiblasts. Despite this specific expression, ECAT11-null mice grow normally and are fertile. In addition, ECAT11 was dispensable for both the proliferation and pluripotency of ESCs.We found rapid and robust activation of ECAT11 in fibroblasts after the forced expression of transcription factors that can give rise pluripotency in somatic cells.However, iPS cells could be established from ECAT11-null fibroblasts. Our data demonstrate thedispensability of ECAT11/L1td1 in pluripotency, despite its specific expression.
Collapse
Affiliation(s)
- Kumiko A. Iwabuchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Department of Stem Cell Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tatsuya Yamakawa
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Department of Stem Cell Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yoshiko Sato
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Tomoko Ichisaka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Kazutoshi Takahashi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Keisuke Okita
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Department of Stem Cell Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
- Yamanaka iPS Cell Special Project, Japan Science and Technology Agency, Kawaguchi, Japan
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
48
|
Castañeda J, Genzor P, Bortvin A. piRNAs, transposon silencing, and germline genome integrity. Mutat Res 2011; 714:95-104. [PMID: 21600904 DOI: 10.1016/j.mrfmmm.2011.05.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 05/04/2011] [Indexed: 12/17/2022]
Abstract
Integrity of the germline genome is essential for the production of viable gametes and successful reproduction. In mammals, the generation of gametes involves extensive epigenetic changes (DNA methylation and histone modification) in conjunction with changes in chromosome structure to ensure flawless progression through meiotic recombination and packaging of the genome into mature gametes. Although epigenetic reprogramming is essential for mammalian reproduction, reprogramming also provides a permissive window for exploitation by transposable elements (TEs), autonomously replicating endogenous elements. Expression and propagation of TEs during the reprogramming period can result in insertional mutagenesis that compromises genome integrity leading to reproductive problems and sporadic inherited diseases in offspring. Recent work has identified the germ cell associated PIWI Interacting RNA (piRNA) pathway in conjunction with the DNA methylation and histone modification machinery in silencing TEs. In this review we will highlight these recent advances in piRNA mediated regulation of TEs in the mouse germline, as well as mention the repercussions of failure to properly regulate TEs.
Collapse
Affiliation(s)
- Julio Castañeda
- Biology Department, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
49
|
Ikeda T, Abd El Galil KH, Tokunaga K, Maeda K, Sata T, Sakaguchi N, Heidmann T, Koito A. Intrinsic restriction activity by apolipoprotein B mRNA editing enzyme APOBEC1 against the mobility of autonomous retrotransposons. Nucleic Acids Res 2011; 39:5538-54. [PMID: 21398638 PMCID: PMC3141244 DOI: 10.1093/nar/gkr124] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ability of mammalian cytidine deaminases encoded by the APOBEC3 (A3) genes to restrict a broad number of endogenous retroelements and exogenous retroviruses, including murine leukemia virus and human immunodeficiency virus (HIV)-1, is now well established. The RNA editing family member apolipoprotein B (apo B)-editing catalytic subunit 1 (APOBEC1; A1) from a variety of mammalian species, a protein involved in lipid transport and which mediates C-U deamination of mRNA for apo B, has also been shown to modify a range of exogenous retroviruses, but its activity against endogenous retroelements remains unclear. Here, we show in cell culture-based retrotransposition assays that A1 family proteins from multiple mammalian species can also reduce the mobility and infectivity potential of LINE-1 (long interspersed nucleotide sequence-1, L1) and long-terminal repeats (LTRs) retrotransposons (or endogenous retroviruses), such as murine intracisternal A-particle (IAP) and MusD sequences. The anti-L1 activity of A1 was mainly mediated by a deamination-independent mechanism, and was not affected by subcellular localization of the proteins. In contrast, the inhibition of LTR-retrotransposons appeared to require the deaminase activity of A1 proteins. Thus, the AID/APOBEC family proteins including A1s employ multiple mechanisms to regulate the mobility of autonomous retrotransposons in several mammalian species.
Collapse
Affiliation(s)
- Terumasa Ikeda
- Department of Retrovirology and Self-Defense, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Schaack S, Gilbert C, Feschotte C. Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. Trends Ecol Evol 2010; 25:537-46. [PMID: 20591532 PMCID: PMC2940939 DOI: 10.1016/j.tree.2010.06.001] [Citation(s) in RCA: 323] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 06/03/2010] [Accepted: 06/03/2010] [Indexed: 11/25/2022]
Abstract
Horizontal transfer is the passage of genetic material between genomes by means other than parent-to-offspring inheritance. Although the transfer of genes is thought to be crucial in prokaryotic evolution, few instances of horizontal gene transfer have been reported in multicellular eukaryotes; instead, most cases involve transposable elements. With over 200 cases now documented, it is possible to assess the importance of horizontal transfer for the evolution of transposable elements and their host genomes. We review criteria for detecting horizontal transfers and examine recent examples of the phenomenon, shedding light on its mechanistic underpinnings, including the role of host-parasite interactions. We argue that the introduction of transposable elements by horizontal transfer in eukaryotic genomes has been a major force propelling genomic variation and biological innovation.
Collapse
Affiliation(s)
| | | | - Cédric Feschotte
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019
| |
Collapse
|