1
|
O'Brien MJ, Ansari A. Protein interaction network revealed by quantitative proteomic analysis links TFIIB to multiple aspects of the transcription cycle. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140968. [PMID: 37863410 PMCID: PMC10872477 DOI: 10.1016/j.bbapap.2023.140968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
Although TFIIB is widely regarded as an initiation factor, recent reports have implicated it in multiple aspects of eukaryotic transcription. To investigate the broader role of TFIIB in transcription, we performed quantitative proteomic analysis of yeast TFIIB. We purified two different populations of TFIIB; one from soluble cell lysate, which is not engaged in transcription, and the other from the chromatin fraction which yields the transcriptionally active form of the protein. TFIIB purified from the chromatin exhibits several interactions that explain its non-canonical roles in transcription. RNAPII, TFIIF and TFIIH were the only components of the preinitiation complex with a significant presence in chromatin TFIIB. A notable feature was enrichment of all subunits of CF1 and Rat1 3' end processing-termination complexes in chromatin-TFIIB preparation. Subunits of the CPF termination complex were also detected in both chromatin and soluble derived TFIIB preparations. These results may explain the presence of TFIIB at the 3' end of genes during transcription as well as its role in promoter-termination interaction.
Collapse
Affiliation(s)
- Michael J O'Brien
- Department of Biological Science, 5047 Gullen Mall, Wayne State University, Detroit, MI 48202, United States of America
| | - Athar Ansari
- Department of Biological Science, 5047 Gullen Mall, Wayne State University, Detroit, MI 48202, United States of America.
| |
Collapse
|
2
|
Shatsky M, Dong M, Liu H, Yang LL, Choi M, Singer ME, Geller JT, Fisher SJ, Hall SC, Hazen TC, Brenner SE, Butland G, Jin J, Witkowska HE, Chandonia JM, Biggin MD. Quantitative Tagless Copurification: A Method to Validate and Identify Protein-Protein Interactions. Mol Cell Proteomics 2016; 15:2186-202. [PMID: 27099342 PMCID: PMC5083090 DOI: 10.1074/mcp.m115.057117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Indexed: 01/18/2023] Open
Abstract
Identifying protein-protein interactions (PPIs) at an acceptable false discovery rate (FDR) is challenging. Previously we identified several hundred PPIs from affinity purification - mass spectrometry (AP-MS) data for the bacteria Escherichia coli and Desulfovibrio vulgaris. These two interactomes have lower FDRs than any of the nine interactomes proposed previously for bacteria and are more enriched in PPIs validated by other data than the nine earlier interactomes. To more thoroughly determine the accuracy of ours or other interactomes and to discover further PPIs de novo, here we present a quantitative tagless method that employs iTRAQ MS to measure the copurification of endogenous proteins through orthogonal chromatography steps. 5273 fractions from a four-step fractionation of a D. vulgaris protein extract were assayed, resulting in the detection of 1242 proteins. Protein partners from our D. vulgaris and E. coli AP-MS interactomes copurify as frequently as pairs belonging to three benchmark data sets of well-characterized PPIs. In contrast, the protein pairs from the nine other bacterial interactomes copurify two- to 20-fold less often. We also identify 200 high confidence D. vulgaris PPIs based on tagless copurification and colocalization in the genome. These PPIs are as strongly validated by other data as our AP-MS interactomes and overlap with our AP-MS interactome for D.vulgaris within 3% of expectation, once FDRs and false negative rates are taken into account. Finally, we reanalyzed data from two quantitative tagless screens of human cell extracts. We estimate that the novel PPIs reported in these studies have an FDR of at least 85% and find that less than 7% of the novel PPIs identified in each screen overlap. Our results establish that a quantitative tagless method can be used to validate and identify PPIs, but that such data must be analyzed carefully to minimize the FDR.
Collapse
Affiliation(s)
- Maxim Shatsky
- From the ‡Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Ming Dong
- §Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Haichuan Liu
- ¶OB/GYN Department, University of California San Francisco-Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, California 94143
| | - Lee Lisheng Yang
- ‖Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Megan Choi
- §Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Mary E Singer
- **Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Jil T Geller
- **Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Susan J Fisher
- ¶OB/GYN Department, University of California San Francisco-Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, California 94143
| | - Steven C Hall
- ¶OB/GYN Department, University of California San Francisco-Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, California 94143
| | - Terry C Hazen
- ‡‡Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996; §§Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Steven E Brenner
- From the ‡Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720; ¶¶Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - Gareth Butland
- ‖‖Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Jian Jin
- ‖Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - H Ewa Witkowska
- ¶OB/GYN Department, University of California San Francisco-Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, California 94143
| | - John-Marc Chandonia
- From the ‡Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720;
| | - Mark D Biggin
- §Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720;
| |
Collapse
|
3
|
Abstract
Transcription of protein-coding genes is highly dependent on the RNA polymerase II core promoter. Core promoters, generally defined as the regions that direct transcription initiation, consist of functional core promoter motifs (such as the TATA-box, initiator [Inr], and downstream core promoter element [DPE]) that confer specific properties to the core promoter. The known basal transcription factors that support TATA-dependent transcription are insufficient for in vitro transcription of DPE-dependent promoters. In search of a transcription factor that supports DPE-dependent transcription, we used a biochemical complementation approach and identified the Drosophila TBP (TATA-box-binding protein)-related factor 2 (TRF2) as an enriched factor in the fractions that support DPE-dependent transcription. We demonstrate that the short TRF2 isoform preferentially activates DPE-dependent promoters. DNA microarray analysis reveals the enrichment of DPE promoters among short TRF2 up-regulated genes. Using primer extension analysis and reporter assays, we show the importance of the DPE in transcriptional regulation of TRF2 target genes. It was previously shown that, unlike TBP, TRF2 fails to bind DNA containing TATA-boxes. Using microfluidic affinity analysis, we discovered that short TRF2-bound DNA oligos are enriched for Inr and DPE motifs. Taken together, our findings highlight the role of short TRF2 as a preferential core promoter regulator.
Collapse
|
4
|
Distinct mechanisms of transcriptional pausing orchestrated by GAGA factor and M1BP, a novel transcription factor. EMBO J 2013; 32:1829-41. [PMID: 23708796 DOI: 10.1038/emboj.2013.111] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 04/24/2013] [Indexed: 01/14/2023] Open
Abstract
Thousands of genes in Drosophila have Pol II paused in the promoter proximal region. Almost half of these genes are associated with either GAGA factor (GAF) or a newly discovered factor we call M1BP. Although both factors dictate the association of Pol II at their target promoters, they are nearly mutually exclusive on the genome and mediate different mechanisms of regulation. High-resolution mapping of Pol II using permanganate-ChIP-seq indicates that pausing on M1BP genes is transient and could involve the +1 nucleosome. In contrast, pausing on GAF genes is much stronger and largely independent of nucleosomes. Distinct regulatory mechanisms are reflected by transcriptional plasticity: M1BP genes are constitutively expressed throughout development while GAF genes exhibit much greater developmental specificity. M1BP binds a core promoter element called Motif 1. Motif 1 potentially directs a distinct transcriptional mechanism from the canonical TATA box, which does not correlate with paused Pol II on the genomic scale. In contrast to M1BP and GAF genes, a significant portion of TATA box genes appear to be controlled at preinitiation complex formation.
Collapse
|
5
|
Dong M, Yang LL, Williams K, Fisher SJ, Hall SC, Biggin MD, Jin J, Witkowska HE. A “Tagless” Strategy for Identification of Stable Protein Complexes Genome-wide by Multidimensional Orthogonal Chromatographic Separation and iTRAQ Reagent Tracking. J Proteome Res 2008; 7:1836-49. [DOI: 10.1021/pr700624e] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ming Dong
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, Applied Biosystems, Foster City, California 94404, UCSF Mass Spectrometry Core Facility and Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California 94143, and Virtual Institute for Microbial Stress and Survival, Berkeley, California 94720
| | - Lee Lisheng Yang
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, Applied Biosystems, Foster City, California 94404, UCSF Mass Spectrometry Core Facility and Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California 94143, and Virtual Institute for Microbial Stress and Survival, Berkeley, California 94720
| | - Katherine Williams
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, Applied Biosystems, Foster City, California 94404, UCSF Mass Spectrometry Core Facility and Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California 94143, and Virtual Institute for Microbial Stress and Survival, Berkeley, California 94720
| | - Susan J. Fisher
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, Applied Biosystems, Foster City, California 94404, UCSF Mass Spectrometry Core Facility and Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California 94143, and Virtual Institute for Microbial Stress and Survival, Berkeley, California 94720
| | - Steven C. Hall
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, Applied Biosystems, Foster City, California 94404, UCSF Mass Spectrometry Core Facility and Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California 94143, and Virtual Institute for Microbial Stress and Survival, Berkeley, California 94720
| | - Mark D. Biggin
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, Applied Biosystems, Foster City, California 94404, UCSF Mass Spectrometry Core Facility and Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California 94143, and Virtual Institute for Microbial Stress and Survival, Berkeley, California 94720
| | - Jian Jin
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, Applied Biosystems, Foster City, California 94404, UCSF Mass Spectrometry Core Facility and Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California 94143, and Virtual Institute for Microbial Stress and Survival, Berkeley, California 94720
| | - H. Ewa Witkowska
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, Applied Biosystems, Foster City, California 94404, UCSF Mass Spectrometry Core Facility and Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California 94143, and Virtual Institute for Microbial Stress and Survival, Berkeley, California 94720
| |
Collapse
|
6
|
Santoso B, Kadonaga JT. Reconstitution of chromatin transcription with purified components reveals a chromatin-specific repressive activity of p300. Nat Struct Mol Biol 2006; 13:131-9. [PMID: 16415879 DOI: 10.1038/nsmb1048] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Accepted: 12/08/2005] [Indexed: 11/09/2022]
Abstract
Here we describe an in vitro chromatin transcription system in which chromatin assembly and transcription are carried out with purified and defined factors. With basal (also known as general) transcription factors and sequence-specific DNA-binding activators, we observed chromatin-specific, activation domain-dependent transcription. We then examined the biochemical function of purified p300 in the absence of the endogenous factor and other related activities and found, unexpectedly, that p300 has a chromatin-specific, transcriptional repression activity that can be relieved by the addition of acetyl-CoA. This p300-mediated repression is reversible, requires the p300 bromodomain but not the acetyltransferase region, and does not involve the formation of a stable, nuclease-resistant nucleoprotein complex. Hence, the mechanism of transcriptional repression by p300 is distinct from that of histone H1, PARP-1 or Sir2. These findings reveal a novel chromatin-specific repressive function of p300.
Collapse
Affiliation(s)
- Buyung Santoso
- Section of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0347, USA
| | | |
Collapse
|
7
|
Ito S, Takeyama KI, Yamamoto A, Sawatsubashi S, Shirode Y, Kouzmenko A, Tabata T, Kato S. Retracted: In vivopotentiation of human oestrogen receptor α by Cdk7-mediated phosphorylation. Genes Cells 2004; 9:983-92. [PMID: 15461668 DOI: 10.1111/j.1365-2443.2004.00777.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphorylation of the Ser(118) residue in the N-terminal A/B domain of the human oestrogen receptor alpha (hERalpha) by mitogen-activated protein kinase (MAPK), stimulated via growth factor signalling pathways, is known to potentiate ERalpha ligand-induced transactivation function. Besides MAPK, cyclin dependent kinase 7 (Cdk7) in the TFIIH complex has also been found to potentiate hERalpha transactivation in vitro through Ser(118) phosphorylation. To investigate an impact of Cdk7 on hERalpha transactivation in vivo, we assessed activity of hERalpha in a wild-type and cdk7 inactive mutant Drosophila that ectopically expressed hERalpha in the eye disc. Ectopic expression of the wild-type or mutant receptors, together with a green fluorescent protein (GFP) reporter gene, allowed us to demonstrate that hERalpha expressed in the fly tissues was transcriptionally functional and adequately responded to hERalpha ligands in the patterns similar to those observed in mammalian cells. Replacement of Ser(118) with alanine in hERalpha (S118A mutant) significantly reduced the ligand-induced hERalpha transactivation function. Importantly, while in cdk7 inactive mutant Drosophila the wild-type hERalpha exhibited reduced response to the ligand; levels of transactivation by the hERalpha S118A mutant were not affected in these inactive cdk7 mutant flies. Furthermore, phosphorylation of hERalpha at Ser(118) has been observed in vitro by both human and Drosophila Cdk7. Our findings demonstrate that Cdk7 is involved in regulation of the ligand-induced transactivation function of hERalphain vivo via Ser(118) phosphorylation.
Collapse
Affiliation(s)
- Saya Ito
- The Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Chen J, Larochelle S, Li X, Suter B. Xpd/Ercc2 regulates CAK activity and mitotic progression. Nature 2003; 424:228-32. [PMID: 12853965 DOI: 10.1038/nature01746] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2003] [Accepted: 05/08/2003] [Indexed: 11/09/2022]
Abstract
General transcription factor IIH (TFIIH) consists of nine subunits: cyclin-dependent kinase 7 (Cdk7), cyclin H and MAT1 (forming the Cdk-activating-kinase or CAK complex), the two helicases Xpb/Hay and Xpd, and p34, p44, p52 and p62 (refs 1-3). As the kinase subunit of TFIIH, Cdk7 participates in basal transcription by phosphorylating the carboxy-terminal domain of the largest subunit of RNA polymerase II. As part of CAK, Cdk7 also phosphorylates other Cdks, an essential step for their activation. Here we show that the Drosophila TFIIH component Xpd negatively regulates the cell cycle function of Cdk7, the CAK activity. Excess Xpd titrates CAK activity, resulting in decreased Cdk T-loop phosphorylation, mitotic defects and lethality, whereas a decrease in Xpd results in increased CAK activity and cell proliferation. Moreover, Xpd is downregulated at the beginning of mitosis when Cdk1, a cell cycle target of Cdk7, is most active. Downregulation of Xpd thus seems to contribute to the upregulation of mitotic CAK activity and to regulate mitotic progression positively. Simultaneously, the downregulation of Xpd might be a major mechanism of mitotic silencing of basal transcription.
Collapse
Affiliation(s)
- Jian Chen
- Present address: Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | |
Collapse
|
9
|
Mohd-Sarip A, Venturini F, Chalkley GE, Verrijzer CP. Pleiohomeotic can link polycomb to DNA and mediate transcriptional repression. Mol Cell Biol 2002; 22:7473-83. [PMID: 12370294 PMCID: PMC135681 DOI: 10.1128/mcb.22.21.7473-7483.2002] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polycomb group (PcG) proteins function through cis-acting DNA elements called PcG response elements (PREs) to stably silence developmental regulators, including the homeotic genes. However, the mechanism by which they are targeted to PREs remains largely unclear. Pleiohomeotic (PHO) is a sequence-specific DNA-binding PcG protein and therefore may function to tether other PcG proteins to the DNA. Here, we show that PHO can directly bind to a Polycomb (PC)-containing complex as well as the Brahma (BRM) chromatin-remodeling complex. PHO contacts the BRM complex through its zinc finger DNA-binding domain and a short N-terminal region. A distinct domain of PHO containing a conserved motif contacts the PcG proteins PC and Polyhomeotic (PH). With mobility shift assays and DNA pulldown experiments, we demonstrated that PHO is able to link PC, which lacks sequence-specific DNA-binding activity, to the DNA. Importantly, we found that the PC-binding domain of PHO can mediate transcriptional repression in transfected Drosophila Schneider cells. Concomitant overexpression of PC resulted in stronger PHO-directed repression that was dependent on its PC-binding domain. Together, these results suggest that PHO can contribute to PRE-mediated silencing by direct recruitment of a PC complex to repress transcription.
Collapse
Affiliation(s)
- Adone Mohd-Sarip
- Department of Molecular and Cell Biology, Centre for Biomedical Genetics, Leiden University Medical Center, 2300 RA Leiden, The Netherlands
| | | | | | | |
Collapse
|
10
|
Gu JY, Park JM, Song EJ, Mizuguchi G, Yoon JH, Kim-Ha J, Lee KJ, Kim YJ. Novel Mediator proteins of the small Mediator complex in Drosophila SL2 cells. J Biol Chem 2002; 277:27154-61. [PMID: 12021283 DOI: 10.1074/jbc.m204144200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Mediator complex is generally required for transcriptional regulation in species ranging from yeast to human. Throughout evolution, the functional diversity of the Mediator complex has been enhanced to meet the increasing requirements for sophisticated gene regulation. It is likely that greater structural complexity is thus required to accomplish these new, complex regulatory functions. In this study, we took systematic steps to examine various types of Mediator complexes in Drosophila melanogaster. Such efforts led to the identification of three distinct forms of Mediator complexes. In exploring their compositional and functional heterogeneity, we found that the smallest complex (C1) is highly enriched in a certain type of Drosophila cells and possesses novel Mediator proteins. The subunits shared among the three Mediator complexes (C1, C2, and C3) appear to form a stable modular structure that serves as a binding surface for transcriptional activator proteins. However, only C2 and C3 were able to support activated transcription in vitro. These findings suggest that different cell types may require distinct Mediator complexes, some of which may participate in nuclear processes other than the previously identified functions.
Collapse
Affiliation(s)
- Ji-Young Gu
- National Creative Research Initiative Center for Genome Regulation, Department of Biochemistry, Yonsei University, Seoul 120-749, Korea
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Mizuguchi G, Vassilev A, Tsukiyama T, Nakatani Y, Wu C. ATP-dependent nucleosome remodeling and histone hyperacetylation synergistically facilitate transcription of chromatin. J Biol Chem 2001; 276:14773-83. [PMID: 11279013 DOI: 10.1074/jbc.m100125200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Drosophila nucleosome remodeling factor (NURF) is an ISWI-containing protein complex that facilitates nucleosome mobility and transcriptional activation in an ATP-dependent manner. Numerous studies have implicated histone acetylation in transcriptional activation. We investigated the relative contributions of these two chromatin modifications to transcription in vitro of a chromatinized adenovirus E4 minimal promoter that contains binding sites for the GAL4-VP16 activator. We found that NURF could remodel chromatin and stimulate transcription irrespective of the acetylation status of histones. In contrast, hyperacetylation of histones in the absence of NURF was unable to stimulate transcription, suggesting that NURF-dependent chromatin remodeling is an obligatory step in E4 promoter activation. When chromatin templates were first hyperacetylated and then incubated with NURF, significantly greater transcription stimulation was observed. The results suggest that changes in chromatin induced by acetylation of histones and the mobilization of nucleosomes by NURF combine synergistically to facilitate transcription. Experiments using single and multiple rounds of transcription indicate that these chromatin modifications stimulate transcription preinitiation as well as reinitiation.
Collapse
Affiliation(s)
- G Mizuguchi
- Laboratory of Molecular Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
12
|
Pham AD, Sauer F. Ubiquitin-activating/conjugating activity of TAFII250, a mediator of activation of gene expression in Drosophila. Science 2000; 289:2357-60. [PMID: 11009423 DOI: 10.1126/science.289.5488.2357] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Ubiquitination of histones has been linked to the complex processes that regulate the activation of eukaryotic transcription. However, the cellular factors that interpose this histone modification during the processes of transcriptional activation are not well characterized. A biochemical approach identified the Drosophila coactivator TAFII250, the central subunit within the general transcription factor TFIID, as a histone-specific ubiquitin-activating/conjugating enzyme (ubac). TAFII250 mediates monoubiquitination of histone H1 in vitro. Point mutations within the putative ubac domain of TAFII250 abolished H1-specific ubiquitination in vitro. In the Drosophila embryo, inactivation of the TAFII250 ubac activity reduces the cellular level of monoubiquitinated histone H1 and the expression of genes targeted by the maternal activator Dorsal. Thus, coactivator-mediated ubiquitination of proteins within the transactivation pathway may contribute to the processes directing activation of eukaryotic transcription.
Collapse
Affiliation(s)
- A D Pham
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | | |
Collapse
|
13
|
Kal AJ, Mahmoudi T, Zak NB, Verrijzer CP. The Drosophila Brahma complex is an essential coactivator for the trithorax group protein Zeste. Genes Dev 2000. [DOI: 10.1101/gad.14.9.1058] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The trithorax group (trxG) of activators andPolycomb group (PcG) of repressors are believed to control the expression of several key developmental regulators by changing the structure of chromatin. Here, we have sought to dissect the requirements for transcriptional activation by the DrosophilatrxG protein Zeste, a DNA-binding activator of homeotic genes. Reconstituted transcription reactions established that the Brahma (BRM) chromatin-remodeling complex is essential for Zeste-directed activation on nucleosomal templates. Because it is not required for Zeste to bind to chromatin, the BRM complex appears to act after promoter binding by the activator. Purification of the Drosophila BRM complex revealed a number of novel subunits. We found that Zeste tethers the BRM complex via direct binding to specific subunits, including trxG proteins Moira (MOR) and OSA. The leucine zipper of Zeste mediates binding to MOR. Interestingly, although the Imitation Switch (ISWI) remodelers are potent nucleosome spacing factors, they are dispensable for transcriptional activation by Zeste. Thus, there is a distinction between general chromatin restructuring and transcriptional coactivation by remodelers. These results establish that different chromatin remodeling factors display distinct functional properties and provide novel insights into the mechanism of their targeting.
Collapse
|
14
|
Kal AJ, Mahmoudi T, Zak NB, Verrijzer CP. The Drosophila brahma complex is an essential coactivator for the trithorax group protein zeste. Genes Dev 2000; 14:1058-71. [PMID: 10809665 PMCID: PMC316570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The trithorax group (trxG) of activators and Polycomb group (PcG) of repressors are believed to control the expression of several key developmental regulators by changing the structure of chromatin. Here, we have sought to dissect the requirements for transcriptional activation by the Drosophila trxG protein Zeste, a DNA-binding activator of homeotic genes. Reconstituted transcription reactions established that the Brahma (BRM) chromatin-remodeling complex is essential for Zeste-directed activation on nucleosomal templates. Because it is not required for Zeste to bind to chromatin, the BRM complex appears to act after promoter binding by the activator. Purification of the Drosophila BRM complex revealed a number of novel subunits. We found that Zeste tethers the BRM complex via direct binding to specific subunits, including trxG proteins Moira (MOR) and OSA. The leucine zipper of Zeste mediates binding to MOR. Interestingly, although the Imitation Switch (ISWI) remodelers are potent nucleosome spacing factors, they are dispensable for transcriptional activation by Zeste. Thus, there is a distinction between general chromatin restructuring and transcriptional coactivation by remodelers. These results establish that different chromatin remodeling factors display distinct functional properties and provide novel insights into the mechanism of their targeting.
Collapse
Affiliation(s)
- A J Kal
- Department of Molecular and Cell Biology, MGC, Centre for Biomedical Genetics, Leiden University Medical Centre, 2300 RA Leiden, The Netherlands
| | | | | | | |
Collapse
|
15
|
Austin RJ, Orr-Weaver TL, Bell SP. Drosophila ORC specifically binds to ACE3, an origin of DNA replication control element. Genes Dev 1999; 13:2639-49. [PMID: 10541550 PMCID: PMC317108 DOI: 10.1101/gad.13.20.2639] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the yeast Saccharomyces cerevisiae, sequence-specific DNA binding by the origin recognition complex (ORC) is responsible for selecting origins of DNA replication. In metazoans, origin selection is poorly understood and it is unknown whether specific DNA binding by metazoan ORC controls replication. To address this problem, we used in vivo and in vitro approaches to demonstrate that Drosophila ORC (DmORC) binds to replication elements that direct repeated initiation of replication to amplify the Drosophila chorion gene loci in the follicle cells of egg chambers. Using immunolocalization, we observe that ACE3, a 440-bp chorion element that contains information sufficient to drive amplification, directs DmORC localization in follicle cells. Similarly, in vivo cross-linking and chromatin immunoprecipitation assays demonstrate association of DmORC with both ACE3 and two other amplification control elements, AER-d and ACE1. To demonstrate that the in vivo localization of DmORC is related to its DNA-binding properties, we find that purified DmORC binds to ACE3 and AER-d in vitro, and like its S. cerevisiae counterpart, this binding is dependent on ATP. Our findings suggest that sequence-specific DNA binding by ORC regulates initiation of metazoan DNA replication. Furthermore, adaptation of this experimental approach will allow for the identification of additional metazoan ORC DNA-binding sites and potentially origins of replication.
Collapse
Affiliation(s)
- R J Austin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
16
|
Pham AD, Müller S, Sauer F. Mesoderm-determining transcription in Drosophila is alleviated by mutations in TAF(II)60 and TAF(II)110. Mech Dev 1999; 84:3-16. [PMID: 10473116 DOI: 10.1016/s0925-4773(99)00051-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In Drosophila, a coordinate interplay between the Rel transcription factor Dorsal and the basic Helix-Loop-Helix transcription factor Twist initiates mesoderm formation by activating the zygotic expression of mesoderm-determining genes. Here, we show that TBP-associated-factors (TAF(II)s) within the basal transcription factor TFIID mediate transcriptional activation by Dorsal and Twist. Dorsal interacts with TAF(II)110 and TAF(II)60, while Twist contacts TAF(II)110. The TAF(II):activator interactions mediate simple and synergistic transactivation by Dorsal and Twist in vitro. Mutations in TAF(II)60 or TAF(II)110 alleviate the transcription of Dorsal and Twist target genes. Gene dosage assays imply that an interplay of Dorsal and Twist with TAF(II)110 is critically required for the activation of mesoderm-determining gene expression in the Drosophila embryo. The results provide evidence that TAF(II)-subunits within the TFIID complex play an important role during the molecular events leading to initiation of mesoderm formation in Drosophila.
Collapse
Affiliation(s)
- A D Pham
- Zentrum für Molekulare Biologie der Universität Heidelberg, Germany
| | | | | |
Collapse
|
17
|
Crosby MA, Miller C, Alon T, Watson KL, Verrijzer CP, Goldman-Levi R, Zak NB. The trithorax group gene moira encodes a brahma-associated putative chromatin-remodeling factor in Drosophila melanogaster. Mol Cell Biol 1999; 19:1159-70. [PMID: 9891050 PMCID: PMC116045 DOI: 10.1128/mcb.19.2.1159] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genes of the trithorax group (trxG) in Drosophila melanogaster are required to maintain the pattern of homeotic gene expression that is established early in embryogenesis by the transient expression of the segmentation genes. The precise role of each of the diverse trxG members and the functional relationships among them are not well understood. Here, we report on the isolation of the trxG gene moira (mor) and its molecular characterization. mor encodes a fruit fly homolog of the human and yeast chromatin-remodeling factors BAF170, BAF155, and SWI3. mor is widely expressed throughout development, and its 170-kDa protein product is present in many embryonic tissues. In vitro, MOR can bind to itself and it interacts with Brahma (BRM), an SWI2-SNF2 homolog, with which it is associated in embryonic nuclear extracts. The leucine zipper motif of MOR is likely to participate in self-oligomerization; the equally conserved SANT domain, for which no function is known, may be required for optimal binding to BRM. MOR thus joins BRM and Snf5-related 1 (SNR1), two known Drosophila SWI-SNF subunits that act as positive regulators of the homeotic genes. These observations provide a molecular explanation for the phenotypic and genetic relationships among several of the trxG genes by suggesting that they encode evolutionarily conserved components of a chromatin-remodeling complex.
Collapse
Affiliation(s)
- M A Crosby
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Peng J, Marshall NF, Price DH. Identification of a cyclin subunit required for the function of Drosophila P-TEFb. J Biol Chem 1998; 273:13855-60. [PMID: 9593731 DOI: 10.1074/jbc.273.22.13855] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P-TEFb is required for the transition from abortive elongation into productive elongation and is capable of phosphorylating the carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II. We cloned a cDNA encoding the large subunit of Drosophila P-TEFb and found the predicted protein contained a cyclin motif. We now name the large subunit cyclin T and the previously cloned small subunit (Zhu, Y. R., Peery, T., Peng, J. M., Ramanathan, Y., Marshall, N., Marshall, T., Amendt, B., Mathews, M. B., and Price, D. H. (1997) Genes Dev. 11, 2622-2632) cyclin-dependent kinase 9 (CDK9). Recombinant P-TEFb produced in baculovirus-transfected Sf9 cells exhibited 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole-sensitive kinase activity similar to native P-TEFb. Kc cell nuclear extract depleted of P-TEFb failed to generate long DRB-sensitive transcripts, but this activity was restored upon addition of either native or recombinant P-TEFb. Like other CDKs, CDK9 is essentially inactive in the absence of its cyclin partner. P-TEFb containing a CDK9 mutation that knocked out the kinase activity did not function in transcription. Deletion of the carboxyl-terminal domain of cyclin T in P-TEFb reduced both the kinase and transcription activity to about 10%. The CDK-activating kinase in TFIIH was unable to activate the CTD kinase activity of P-TEFb.
Collapse
Affiliation(s)
- J Peng
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
19
|
Sandaltzopoulos R, Becker PB. Heat shock factor increases the reinitiation rate from potentiated chromatin templates. Mol Cell Biol 1998; 18:361-7. [PMID: 9418883 PMCID: PMC121506 DOI: 10.1128/mcb.18.1.361] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transcription by RNA polymerase II is highly regulated at the level of initiation and elongation. Well-documented transcription activation mechanisms, such as the recruitment of TFIID and TFIIB, control the early phases of preinitiation complex formation. The heat shock genes provide an example for transcriptional regulation at a later step: in nuclei TFIID can be detected at the TATA box prior to heat induction. Using cell-free systems for chromatin reconstitution and transcription, we have analyzed the mechanisms by which heat shock factor (HSF) increases transcription of heat shock genes in chromatin. HSF affected transcription of naked DNA templates in multiple ways: (i) by speeding up the rate of preinitiation complex formation, (ii) by increasing the number of productive templates, and (iii) by increasing the reinitiation rate. Under the more physiological conditions of potentiated chromatin templates, HSF affected only the reinitiation rate. Activator-dependent reinitiation of transcription, obviating the slow assembly of the TFIID-TFIIA complex on a promoter, may be especially crucial for genes requiring a fast response to inducers.
Collapse
Affiliation(s)
- R Sandaltzopoulos
- Gene Expression Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
20
|
Hansen SK, Takada S, Jacobson RH, Lis JT, Tjian R. Transcription properties of a cell type-specific TATA-binding protein, TRF. Cell 1997; 91:71-83. [PMID: 9335336 DOI: 10.1016/s0092-8674(01)80010-6] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Eukaryotic cells are thought to contain a single TATA-binding protein (TBP) that directs transcription by cellular RNA polymerases. Here we report a cell type-specific TBP-related factor (TRF) that can form a stable TRF/IIA/IIB TATA DNA complex and substitute for TBP in directing RNA polymerase II transcription in vitro. Transfection studies reveal that TRF can differentially mediate activation by some enhancer proteins but not others. Like TBP, TRF forms a stable complex containing multiple novel subunits, nTAFs. Antibody staining of embryos and polytene chromosomes reveals cell type-specific expression and gene-selective properties consistent with the shaker/male sterile phenotype of trf mutants. These findings suggest TRF is a homolog of TBP that functions to direct tissue- and gene-specific transcription.
Collapse
Affiliation(s)
- S K Hansen
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley 94720-3204, USA
| | | | | | | | | |
Collapse
|
21
|
Wang X, Hansen SK, Ratts R, Zhou S, Snook AJ, Zehring W. Drosophila TFIIE: purification, cloning, and functional reconstitution. Proc Natl Acad Sci U S A 1997; 94:433-8. [PMID: 9012800 PMCID: PMC19529 DOI: 10.1073/pnas.94.2.433] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We present a physical and molecular genetic characterization of Drosophila melanogaster TFIIE (dTFIIE), a component of the basal RNA polymerase II transcription apparatus. We have purified dTFIIE to near homogeneity from nuclear extracts of Drosophila embryos and found that it is composed of two subunits with apparent molecular weights of 55 and 38 kDa. Peptide sequence information derived from the two subunits was used to isolate the corresponding cDNA clones, revealing that dTFIIE and human TFIIE share extensive amino acid similarity. Functional conservation was demonstrated by the ability of bacterially expressed dTFIIE to substitute for human TFIIE in an in vitro transcription assay reconstituted from purified components. Cytological mapping analysis shows that both subunits are encoded by single copy genes located on chromosome III.
Collapse
Affiliation(s)
- X Wang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
22
|
Marshall NF, Peng J, Xie Z, Price DH. Control of RNA polymerase II elongation potential by a novel carboxyl-terminal domain kinase. J Biol Chem 1996; 271:27176-83. [PMID: 8900211 DOI: 10.1074/jbc.271.43.27176] [Citation(s) in RCA: 517] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The entry of RNA polymerase II into a productive mode of elongation is controlled, in part, by the postinitiation activity of positive transcription elongation factor b (P-TEFb) (Marshall, N. F., and Price, D. H. (1995) J. Biol. Chem. 270, 12335-12338). We report here that removal of the carboxyl-terminal domain (CTD) of the large subunit of RNA polymerase II abolishes productive elongation. Correspondingly, we found that P-TEFb can phosphorylate the CTD of pure RNA polymerase II. Furthermore, P-TEFb can phosphorylate the CTD of RNA polymerase II when the polymerase is in an early elongation complex. Both the function and kinase activity of P-TEFb are blocked by the drugs 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) and H-8. P-TEFb is distinct from transcription factor IIH (TFIIH) because the two factors have no subunits in common, P-TEFb is more sensitive to DRB than is TFIIH, and most importantly, TFIIH cannot substitute functionally for P-TEFb. We propose that phosphorylation of the CTD by P-TEFb controls the transition from abortive into productive elongation mode.
Collapse
Affiliation(s)
- N F Marshall
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|