1
|
Nartey C, Koo HJ, Laurendon C, Shaik HZ, O’maille P, Noel JP, Morcos F. Coevolutionary Information Captures Catalytic Functions and Reveals Divergent Roles of Terpene Synthase Interdomain Connections. Biochemistry 2024; 63:355-366. [PMID: 38206111 PMCID: PMC10851433 DOI: 10.1021/acs.biochem.3c00578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
Inferring the historical and biophysical causes of diversity within protein families is a complex puzzle. A key to unraveling this problem is characterizing the rugged topography of sequence-function adaptive landscapes. Using biochemical data from a 29 = 512 combinatorial library of tobacco 5-epi-aristolochene synthase (TEAS) mutants engineered to make the native major product of Egyptian henbane premnaspirodiene synthase (HPS) and a complementary 512 mutant HPS library, we address the question of how product specificity is controlled. These data sets reveal that HPS is far more robust and resistant to mutations than TEAS, where most mutants are promiscuous. We also combine experimental data with a sequence Potts Hamiltonian model and direct coupling analysis to quantify mutant fitness. Our results demonstrate that the Hamiltonian captures variation in product outputs across both libraries, clusters native family members based on their substrate specificities, and exposes the divergent catalytic roles of couplings between the catalytic and noncatalytic domains of TEAS versus HPS. Specifically, we found that the role of the interdomain connectivities in specifying product output is more important in TEAS than connectivities within the catalytic domain. Despite being 75% identical, this property is not shared by HPS, where connectivities within the catalytic domain are more important for specificity. By solving the X-ray crystal structure of HPS, we assessed structural bases for their interdomain network differences. Last, we calculate the product profile Shannon entropies of the two libraries, which showcases that site-site connectivities also play divergent roles in catalytic accuracy.
Collapse
Affiliation(s)
- Charisse
M. Nartey
- Department
of Biological Sciences, The University of
Texas at Dallas, Richardson, Texas 75080, United States
| | - Hyun Jo Koo
- Howard
Hughes Medical Institute, The Salk Institute for Biological Studies, Jack H. Skirball Center for Chemical Biology and Proteomics, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Caroline Laurendon
- John
Innes Centre, Department of Metabolic Biology, Norwich Research Park, Norwich NR4 7UH, U.K.
| | - Hana Z. Shaik
- Department
of Bioengineering, The University of Texas
at Dallas, Richardson, Texas 75080, United States
| | - Paul O’maille
- John
Innes Centre, Institute of Food Research, Food & Health Programme, Norwich Research Park, Norwich NR4 7UA, U.K.
| | - Joseph P. Noel
- Howard
Hughes Medical Institute, The Salk Institute for Biological Studies, Jack H. Skirball Center for Chemical Biology and Proteomics, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Faruck Morcos
- Department
of Biological Sciences, The University of
Texas at Dallas, Richardson, Texas 75080, United States
- Department
of Bioengineering, The University of Texas
at Dallas, Richardson, Texas 75080, United States
- Center for
Systems Biology, The University of Texas
at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
2
|
Gossart N, Berhin A, Sergeant K, Alam I, André C, Hausman JF, Boutry M, Hachez C. Engineering Nicotiana tabacum trichomes for triterpenic acid production. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 328:111573. [PMID: 36563941 DOI: 10.1016/j.plantsci.2022.111573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
In this work, we aimed at implementing the biosynthesis of triterpenic acids in Nicotiana tabacum glandular trichomes. Although endogenous genes coding for enzymes involved in such biosynthetic pathway are found in the Nicotiana tabacum genome, implementing such pathway specifically in glandular trichomes required to boost endogenous enzymatic activities. Five transgenes coding for a farnesyl-diphosphate synthase, a squalene synthase, a squalene epoxidase, a beta-amyrin synthase and a beta-amyrin 28-monooxygenase were introduced in N.tabacum, their expression being driven by pMALD1, a trichome-specific transcriptional promoter. This study aimed at testing whether sinking isoprenoid precursors localized in plastids, by exploiting potential cross-talks allowing the exchange of terpenoid pools from the chloroplast to the cytosol, could be a way to improve overall yield. By analyzing metabolites extracted from entire leaves, a low amount of ursolic acid was detected in plants expressing the five transgenes. Our study shows that the terpene biosynthetic pathway could be, in part, redirected in N.tabacum glandular trichomes with no deleterious phenotype at the whole plant level (chlorosis, dwarfism,…). In light of our results, possible ways to improve the final yield are discussed.
Collapse
Affiliation(s)
- Nicola Gossart
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Alice Berhin
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Kjell Sergeant
- Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Iftekhar Alam
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium; Plant Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh
| | - Christelle André
- Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg; The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag 92169, Auckland, New Zealand
| | - Jean-François Hausman
- Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Marc Boutry
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Charles Hachez
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
3
|
Leferink NGH, Scrutton NS. Predictive Engineering of Class I Terpene Synthases Using Experimental and Computational Approaches. Chembiochem 2022; 23:e202100484. [PMID: 34669250 PMCID: PMC9298401 DOI: 10.1002/cbic.202100484] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/15/2021] [Indexed: 12/18/2022]
Abstract
Terpenoids are a highly diverse group of natural products with considerable industrial interest. Increasingly, engineered microbes are used for the production of terpenoids to replace natural extracts and chemical synthesis. Terpene synthases (TSs) show a high level of functional plasticity and are responsible for the vast structural diversity observed in natural terpenoids. Their relatively inert active sites guide intrinsically reactive linear carbocation intermediates along one of many cyclisation paths via exertion of subtle steric and electrostatic control. Due to the absence of a strong protein interaction with these intermediates, there is a remarkable lack of sequence-function relationship within the TS family, making product-outcome predictions from sequences alone challenging. This, in combination with the fact that many TSs produce multiple products from a single substrate hampers the design and use of TSs in the biomanufacturing of terpenoids. This review highlights recent advances in genome mining, computational modelling, high-throughput screening, and machine-learning that will allow more predictive engineering of these fascinating enzymes in the near future.
Collapse
Affiliation(s)
- Nicole G. H. Leferink
- Future Biomanufacturing Research HubManchester Institute of BiotechnologyDepartment of ChemistrySchool of Natural SciencesThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Nigel S. Scrutton
- Future Biomanufacturing Research HubManchester Institute of BiotechnologyDepartment of ChemistrySchool of Natural SciencesThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| |
Collapse
|
4
|
Yang S, Wang N, Kimani S, Li Y, Bao T, Ning G, Li L, Liu B, Wang L, Gao X. Characterization of Terpene synthase variation in flowers of wild aquilegia species from Northeastern Asia. HORTICULTURE RESEARCH 2022; 9:uhab020. [PMID: 35039842 PMCID: PMC8771452 DOI: 10.1093/hr/uhab020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/25/2021] [Accepted: 10/02/2021] [Indexed: 05/13/2023]
Abstract
There are several causes for the great diversity in floral terpenes. The terpene products are determined by the catalytic fidelity, efficiency and plasticity of the active sites of terpene synthases (TPSs). However, the molecular mechanism of TPS in catalyzing terpene biosynthesis and its evolutionary fate in wild plant species remain largely unknown. In this study, the functionality of terpene synthases and their natural variants were assessed in two Northeastern Asia endemic columbine species and their natural hybrid. Synoptically, TPS7, TPS8, and TPS9 were highly expressed in these Aquilegia species from the Zuojia population. The in vitro and in vivo enzymatic assays revealed that TPS7 and TPS8 mainly produced (+)-limonene and β-sesquiphellandrene, respectively, whereas TPS9 produced pinene, similar to the major components released from Aquilegia flowers. Multiple sequence alignment of Aquilegia TPS7 and TPS8 in the Zuojia population revealed amino acid polymorphisms. Domain swapping and amino acid substitution assays demonstrated that 413A, 503I and 529D had impacts on TPS7 catalytic activity, whereas 420G, 538F and 545 L affected the ratio of β-sesquiphellandrene to β-bisabolene in TPS8. Moreover, these key polymorphic amino acid residues were found in Aquilegia species from the Changbai Mountain population. Interestingly, amino acid polymorphisms in TPSs were present in individuals with low expression levels, and nonsynonymous mutations could impact the catalytic activity or product specificity of these genes. The results of this study will shed new light on the function and evolution of TPS genes in wild plant species and are beneficial to the modification of plant fragrances.
Collapse
Affiliation(s)
- Song Yang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Ning Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Shadrack Kimani
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
- School of Pure and Applied Sciences, Karatina University, Karatina, Kenya
| | - Yueqing Li
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Tingting Bao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Guogui Ning
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Linfeng Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Li Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
5
|
Xu H, Dickschat JS. Germacrene A-A Central Intermediate in Sesquiterpene Biosynthesis. Chemistry 2020; 26:17318-17341. [PMID: 32442350 PMCID: PMC7821278 DOI: 10.1002/chem.202002163] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/20/2020] [Indexed: 01/17/2023]
Abstract
This review summarises known sesquiterpenes whose biosyntheses proceed through the intermediate germacrene A. First, the occurrence and biosynthesis of germacrene A in Nature and its peculiar chemistry will be highlighted, followed by a discussion of 6-6 and 5-7 bicyclic compounds and their more complex derivatives. For each compound the absolute configuration, if it is known, and the reasoning for its assignment is presented.
Collapse
Affiliation(s)
- Houchao Xu
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Jeroen S. Dickschat
- Kekulé-Institute for Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| |
Collapse
|
6
|
Yuyama KT, Fortkamp D, Abraham WR. Eremophilane-type sesquiterpenes from fungi and their medicinal potential. Biol Chem 2017; 399:13-28. [PMID: 28822220 DOI: 10.1515/hsz-2017-0171] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/09/2017] [Indexed: 01/26/2023]
Abstract
Eremophilanes are sesquiterpenes with a rearranged carbon skeleton formed both by plants and fungi, however, almost no plant eremophilanes are found in fungi. These eremophilanes possess mainly phytotoxic, antimicrobial, anticancer and immunomodulatory properties and in this review fungal eremophilanes with bioactivities of potential medicinal applications are reviewed and discussed. A special focus is set on natural products bearing highly functionalized fatty acids at C-1 or C-3 position of the eremophilane backbone. Many of these fatty acids seem to contribute to the bioactivity of the metabolites enhancing the activity of the sesquiterpene moieties. Several approaches for optimization of these natural products for clinical needs and testing of the resulting derivatives are presented and discussed. The combination of identification of bioactive natural products with their subsequent improvement using a variety of genetical or chemical tools and the pharmacokinetic assessment of the products is presented here as a promising approach to new drugs.
Collapse
Affiliation(s)
- Kamila Tomoko Yuyama
- Helmholtz Center for Infection Research, Chemical Microbiology, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | - Diana Fortkamp
- Helmholtz Center for Infection Research, Chemical Microbiology, Inhoffenstrasse 7, D-38124 Braunschweig, Germany.,Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), Department of Exact Sciences, Piracicaba, SP, Brazil
| | - Wolf-Rainer Abraham
- Helmholtz Center for Infection Research, Chemical Microbiology, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| |
Collapse
|
7
|
Huchelmann A, Boutry M, Hachez C. Plant Glandular Trichomes: Natural Cell Factories of High Biotechnological Interest. PLANT PHYSIOLOGY 2017; 175:6-22. [PMID: 28724619 PMCID: PMC5580781 DOI: 10.1104/pp.17.00727] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/17/2017] [Indexed: 05/18/2023]
Abstract
Multicellular glandular trichomes are epidermal outgrowths characterized by the presence of a head made of cells that have the ability to secrete or store large quantities of specialized metabolites. Our understanding of the transcriptional control of glandular trichome initiation and development is still in its infancy. This review points to some central questions that need to be addressed to better understand how such specialized cell structures arise from the plant protodermis. A key and unique feature of glandular trichomes is their ability to synthesize and secrete large amounts, relative to their size, of a limited number of metabolites. As such, they qualify as true cell factories, making them interesting targets for metabolic engineering. In this review, recent advances regarding terpene metabolic engineering are highlighted, with a special focus on tobacco (Nicotiana tabacum). In particular, the choice of transcriptional promoters to drive transgene expression and the best ways to sink existing pools of terpene precursors are discussed. The bioavailability of existing pools of natural precursor molecules is a key parameter and is controlled by so-called cross talk between different biosynthetic pathways. As highlighted in this review, the exact nature and extent of such cross talk are only partially understood at present. In the future, awareness of, and detailed knowledge on, the biology of plant glandular trichome development and metabolism will generate new leads to tap the largely unexploited potential of glandular trichomes in plant resistance to pests and lead to the improved production of specialized metabolites with high industrial or pharmacological value.
Collapse
Affiliation(s)
- Alexandre Huchelmann
- Life Sciences Institute, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Marc Boutry
- Life Sciences Institute, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Charles Hachez
- Life Sciences Institute, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
8
|
Abstract
![]()
The
year 2017 marks the twentieth anniversary of terpenoid cyclase
structural biology: a trio of terpenoid cyclase structures reported
together in 1997 were the first to set the foundation for understanding
the enzymes largely responsible for the exquisite chemodiversity of
more than 80000 terpenoid natural products. Terpenoid cyclases catalyze
the most complex chemical reactions in biology, in that more than
half of the substrate carbon atoms undergo changes in bonding and
hybridization during a single enzyme-catalyzed cyclization reaction.
The past two decades have witnessed structural, functional, and computational
studies illuminating the modes of substrate activation that initiate
the cyclization cascade, the management and manipulation of high-energy
carbocation intermediates that propagate the cyclization cascade,
and the chemical strategies that terminate the cyclization cascade.
The role of the terpenoid cyclase as a template for catalysis is paramount
to its function, and protein engineering can be used to reprogram
the cyclization cascade to generate alternative and commercially important
products. Here, I review key advances in terpenoid cyclase structural
and chemical biology, focusing mainly on terpenoid cyclases and related
prenyltransferases for which X-ray crystal structures have informed
and advanced our understanding of enzyme structure and function.
Collapse
Affiliation(s)
- David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
9
|
Lee HA, Kim S, Kim S, Choi D. Expansion of sesquiterpene biosynthetic gene clusters in pepper confers nonhost resistance to the Irish potato famine pathogen. THE NEW PHYTOLOGIST 2017. [PMID: 28631815 DOI: 10.1111/nph.14637] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Chemical barriers contribute to nonhost resistance, which is defined as the resistance of an entire plant species to nonadapted pathogen species. However, the molecular basis of metabolic defense in nonhost resistance remains elusive. Here, we report genetic evidence for the essential role of phytoalexin capsidiol in nonhost resistance of pepper (Capsicum spp.) to potato late blight Phytophthora infestans using transcriptome and genome analyses. Two different genes for capsidiol biosynthesis, 5-epi-aristolochene synthase (EAS) and 5-epi-aristolochene-1,3-dihydroxylase (EAH), belong to multigene families. However, only a subset of EAS/EAH gene family members were highly induced upon P. infestans infection, which was associated with parallel accumulation of capsidiol in P. infestans-infected pepper. Silencing of EAS homologs in pepper resulted in a significant decrease in capsidiol accumulation and allowed the growth of nonadapted P. infestans that is highly sensitive to capsidiol. Phylogenetic and genomic analyses of EAS/EAH multigene families revealed that the emergence of pathogen-inducible EAS/EAH genes in Capsicum-specific genomic regions rendered pepper a nonhost of P. infestans. This study provides insights into evolutionary aspects of nonhost resistance based on the combination of a species-specific phytoalexin and sensitivity of nonadapted pathogens.
Collapse
Affiliation(s)
- Hyun-Ah Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
- Division of Eco-Friendly Horticulture, Yonam College, Cheonan, 31005, Korea
| | - Sejun Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Seungill Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Doil Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
10
|
Systematic identification of functional residues of Artemisia annua amorpha-4,11-diene synthase. Biochem J 2017; 474:2191-2202. [DOI: 10.1042/bcj20170060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 11/17/2022]
Abstract
Terpene synthases (TPSs) are responsible for the extremely diversified and complex structure of terpenoids. Amorpha-4,11-diene synthase (ADS) has a high (90%) fidelity in generating the sesquiterpene precursor for the biosynthesis of artemisinin, an antimalarial drug, however, little is known about how active site residues of ADS are involved in carbocation rearrangement and cyclization reactions. Here, we identify seven residues that are key to most of the catalytic steps in ADS. By structural modeling and amino acid sequence alignments of ADS with two functionally relevant sesquiterpene synthases from Artemisia annua, we performed site-directed mutagenesis and found that a single substitution, T296V, impaired the ring closure activity almost completely, and tetra-substitutions (L374Y/L404V/L405I/G439S) led to an enzyme generating 80% monocyclic bisabolyl-type sesquiterpenes, whereas a double mutant (T399L/T447G) showed compromised activity in regioselective deprotonation to yield 34.7 and 37.7% normal and aberrant deprotonation products, respectively. Notably, Thr296, Leu374, Gly439, Thr399, and Thr447, which play a major role in directing catalytic cascades, are located around conserved metal-binding motifs and function through impacting the folding of the substrate/intermediate, implying that residues surrounding the two motifs could be valuable targets for engineering TPS activity. Using this knowledge, we substantially increased amorpha-4,11-diene production in a near-additive manner by engineering Thr399 and Thr447 for product release. Our results provide new insight for the rational design of enzyme activity using synthetic biology.
Collapse
|
11
|
Pemberton TA, Chen M, Harris GG, Chou WKW, Duan L, Köksal M, Genshaft AS, Cane DE, Christianson DW. Exploring the Influence of Domain Architecture on the Catalytic Function of Diterpene Synthases. Biochemistry 2017; 56:2010-2023. [PMID: 28362483 DOI: 10.1021/acs.biochem.7b00137] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Terpenoid synthases catalyze isoprenoid cyclization reactions underlying the generation of more than 80,000 natural products. Such dramatic chemodiversity belies the fact that these enzymes generally consist of only three domain folds designated as α, β, and γ. Catalysis by class I terpenoid synthases occurs exclusively in the α domain, which is found with α, αα, αβ, and αβγ domain architectures. Here, we explore the influence of domain architecture on catalysis by taxadiene synthase from Taxus brevifolia (TbTS, αβγ), fusicoccadiene synthase from Phomopsis amygdali (PaFS, (αα)6), and ophiobolin F synthase from Aspergillus clavatus (AcOS, αα). We show that the cyclization fidelity and catalytic efficiency of the α domain of TbTS are severely compromised by deletion of the βγ domains; however, retention of the β domain preserves significant cyclization fidelity. In PaFS, we previously demonstrated that one α domain similarly influences catalysis by the other α domain [ Chen , M. , Chou , W. K. W. , Toyomasu , T. , Cane , D. E. , and Christianson , D. W. ( 2016 ) ACS Chem. Biol. 11 , 889 - 899 ]. Here, we show that the hexameric quaternary structure of PaFS enables cluster channeling. We also show that the α domains of PaFS and AcOS can be swapped so as to make functional chimeric αα synthases. Notably, both cyclization fidelity and catalytic efficiency are altered in all chimeric synthases. Twelve newly formed and uncharacterized C20 diterpene products and three C25 sesterterpene products are generated by these chimeras. Thus, engineered αβγ and αα terpenoid cyclases promise to generate chemodiversity in the greater family of terpenoid natural products.
Collapse
Affiliation(s)
- Travis A Pemberton
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Mengbin Chen
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Golda G Harris
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Wayne K W Chou
- Department of Chemistry, Brown University , Box H, Providence, Rhode Island 02912, United States
| | - Lian Duan
- Department of Chemistry, Brown University , Box H, Providence, Rhode Island 02912, United States
| | - Mustafa Köksal
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Alex S Genshaft
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - David E Cane
- Department of Chemistry, Brown University , Box H, Providence, Rhode Island 02912, United States
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
12
|
Lin CI, McCarty RM, Liu HW. The Enzymology of Organic Transformations: A Survey of Name Reactions in Biological Systems. Angew Chem Int Ed Engl 2017; 56:3446-3489. [PMID: 27505692 PMCID: PMC5477795 DOI: 10.1002/anie.201603291] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Indexed: 01/05/2023]
Abstract
Chemical reactions that are named in honor of their true, or at least perceived, discoverers are known as "name reactions". This Review is a collection of biological representatives of named chemical reactions. Emphasis is placed on reaction types and catalytic mechanisms that showcase both the chemical diversity in natural product biosynthesis as well as the parallels with synthetic organic chemistry. An attempt has been made, whenever possible, to describe the enzymatic mechanisms of catalysis within the context of their synthetic counterparts and to discuss the mechanistic hypotheses for those reactions that are currently active areas of investigation. This Review has been categorized by reaction type, for example condensation, nucleophilic addition, reduction and oxidation, substitution, carboxylation, radical-mediated, and rearrangements, which are subdivided by name reactions.
Collapse
Affiliation(s)
- Chia-I Lin
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, and Department of Chemistry, University of Texas at Austin, Austin, TX, 78731, USA
| | - Reid M McCarty
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, and Department of Chemistry, University of Texas at Austin, Austin, TX, 78731, USA
| | - Hung-Wen Liu
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, and Department of Chemistry, University of Texas at Austin, Austin, TX, 78731, USA
| |
Collapse
|
13
|
Lin C, McCarty RM, Liu H. Die Enzymologie organischer Umwandlungen: Namensreaktionen in biologischen Systemen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201603291] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Chia‐I. Lin
- Division of Chemical Biology and Medicinal Chemistry College of Pharmacy, and Department of Chemistry University of Texas at Austin Austin TX 78731 USA
| | - Reid M. McCarty
- Division of Chemical Biology and Medicinal Chemistry College of Pharmacy, and Department of Chemistry University of Texas at Austin Austin TX 78731 USA
| | - Hung‐wen Liu
- Division of Chemical Biology and Medicinal Chemistry College of Pharmacy, and Department of Chemistry University of Texas at Austin Austin TX 78731 USA
| |
Collapse
|
14
|
Kumar S, Kempinski C, Zhuang X, Norris A, Mafu S, Zi J, Bell SA, Nybo SE, Kinison SE, Jiang Z, Goklany S, Linscott KB, Chen X, Jia Q, Brown SD, Bowman JL, Babbitt PC, Peters RJ, Chen F, Chappell J. Molecular Diversity of Terpene Synthases in the Liverwort Marchantia polymorpha. THE PLANT CELL 2016; 28:2632-2650. [PMID: 27650333 PMCID: PMC5134972 DOI: 10.1105/tpc.16.00062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/09/2016] [Accepted: 09/19/2016] [Indexed: 05/23/2023]
Abstract
Marchantia polymorpha is a basal terrestrial land plant, which like most liverworts accumulates structurally diverse terpenes believed to serve in deterring disease and herbivory. Previous studies have suggested that the mevalonate and methylerythritol phosphate pathways, present in evolutionarily diverged plants, are also operative in liverworts. However, the genes and enzymes responsible for the chemical diversity of terpenes have yet to be described. In this study, we resorted to a HMMER search tool to identify 17 putative terpene synthase genes from M. polymorpha transcriptomes. Functional characterization identified four diterpene synthase genes phylogenetically related to those found in diverged plants and nine rather unusual monoterpene and sesquiterpene synthase-like genes. The presence of separate monofunctional diterpene synthases for ent-copalyl diphosphate and ent-kaurene biosynthesis is similar to orthologs found in vascular plants, pushing the date of the underlying gene duplication and neofunctionalization of the ancestral diterpene synthase gene family to >400 million years ago. By contrast, the mono- and sesquiterpene synthases represent a distinct class of enzymes, not related to previously described plant terpene synthases and only distantly so to microbial-type terpene synthases. The absence of a Mg2+ binding, aspartate-rich, DDXXD motif places these enzymes in a noncanonical family of terpene synthases.
Collapse
Affiliation(s)
- Santosh Kumar
- Plant Biology Program and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0082
| | - Chase Kempinski
- Plant Biology Program and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0082
| | - Xun Zhuang
- Plant Biology Program and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0082
| | - Ayla Norris
- Gradaute School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996-0840
| | - Sibongile Mafu
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Jiachen Zi
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Stephen A Bell
- Plant Biology Program and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0082
| | - Stephen Eric Nybo
- Plant Biology Program and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0082
| | - Scott E Kinison
- Plant Biology Program and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0082
| | - Zuodong Jiang
- Plant Biology Program and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0082
| | - Sheba Goklany
- Plant Biology Program and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0082
| | - Kristin B Linscott
- Plant Biology Program and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0082
| | - Xinlu Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996-4561
| | - Qidong Jia
- Gradaute School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996-0840
| | - Shoshana D Brown
- Departments of Bioengineering and Therapeutic Sciences and Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, California 94158-2330
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Patricia C Babbitt
- Departments of Bioengineering and Therapeutic Sciences and Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, California 94158-2330
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Feng Chen
- Gradaute School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996-0840
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996-4561
| | - Joe Chappell
- Plant Biology Program and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0082
| |
Collapse
|
15
|
González V, Grundy DJ, Faraldos JA, Allemann RK. The amino-terminal segment in the β-domain of δ-cadinene synthase is essential for catalysis. Org Biomol Chem 2016; 14:7451-4. [DOI: 10.1039/c6ob01398h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The β-domain of δ-cadinene synthase (DCS) directs desolvation of the active site.
Collapse
|
16
|
Moniodis J, Jones CG, Barbour EL, Plummer JA, Ghisalberti EL, Bohlmann J. The transcriptome of sesquiterpenoid biosynthesis in heartwood xylem of Western Australian sandalwood (Santalum spicatum). PHYTOCHEMISTRY 2015; 113:79-86. [PMID: 25624157 DOI: 10.1016/j.phytochem.2014.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/07/2014] [Accepted: 12/05/2014] [Indexed: 05/14/2023]
Abstract
The fragrant heartwood oil of West Australian sandalwood (Santalum spicatum) contains a mixture of sesquiterpene olefins and alcohols, including variable levels of the valuable sesquiterpene alcohols, α- and β-santalol, and often high levels of E,E-farnesol. Transcriptome analysis revealed sequences for a nearly complete set of genes of the sesquiterpenoid biosynthetic pathway in this commercially valuable sandalwood species. Transcriptome sequences were produced from heartwood xylem tissue of a farnesol-rich individual tree. From the assembly of 12,537 contigs, seven different terpene synthases (TPSs), several cytochromes P450, and allylic phosphatases were identified, as well as transcripts of the mevalonic acid and methylerythritol phosphate pathways. Five of the S. spicatum TPS sequences were previously unknown. The full-length cDNA of SspiTPS4 was cloned and the enzyme functionally characterized as a multi-product sesquisabinene B synthase, which complements previous characterization of santalene and bisabolol synthases in S. spicatum. While SspiTPS4 and previously cloned sandalwood TPSs do not explain the prevalence of E,E-farnesol in S. spicatum, the genes identified in this and previous work can form a basis for future studies on natural variation of sandalwood terpenoid oil profiles.
Collapse
Affiliation(s)
- Jessie Moniodis
- School of Plant Biology (M084), University of Western Australia (UWA), 35 Stirling Hwy, Crawley, WA 6009, Australia; School of Chemistry and Biochemistry (M310), University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T1Z4, Canada.
| | - Christopher G Jones
- School of Plant Biology (M084), University of Western Australia (UWA), 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - E Liz Barbour
- School of Plant Biology (M084), University of Western Australia (UWA), 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - Julie A Plummer
- School of Plant Biology (M084), University of Western Australia (UWA), 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - Emilio L Ghisalberti
- School of Chemistry and Biochemistry (M310), University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T1Z4, Canada
| |
Collapse
|
17
|
Singh B, Sharma RA. Plant terpenes: defense responses, phylogenetic analysis, regulation and clinical applications. 3 Biotech 2015; 5:129-151. [PMID: 28324581 PMCID: PMC4362742 DOI: 10.1007/s13205-014-0220-2] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/10/2014] [Indexed: 12/11/2022] Open
Abstract
The terpenoids constitute the largest class of natural products and many interesting products are extensively applied in the industrial sector as flavors, fragrances, spices and are also used in perfumery and cosmetics. Many terpenoids have biological activities and also used for medical purposes. In higher plants, the conventional acetate-mevalonic acid pathway operates mainly in the cytosol and mitochondria and synthesizes sterols, sesquiterpenes and ubiquinones mainly. In the plastid, the non-mevalonic acid pathway takes place and synthesizes hemi-, mono-, sesqui-, and diterpenes along with carotenoids and phytol tail of chlorophyll. In this review paper, recent developments in the biosynthesis of terpenoids, indepth description of terpene synthases and their phylogenetic analysis, regulation of terpene biosynthesis as well as updates of terpenes which have entered in the clinical studies are reviewed thoroughly.
Collapse
Affiliation(s)
- Bharat Singh
- AIB, Amity University Rajasthan, NH-11C, Kant Kalwar, Jaipur, 303 002, India.
| | - Ram A Sharma
- Department of Botany, University of Rajasthan, Jaipur, 302 055, India
| |
Collapse
|
18
|
Li R, Chou WKW, Himmelberger JA, Litwin KM, Harris GG, Cane DE, Christianson DW. Reprogramming the chemodiversity of terpenoid cyclization by remolding the active site contour of epi-isozizaene synthase. Biochemistry 2014; 53:1155-68. [PMID: 24517311 PMCID: PMC3985761 DOI: 10.1021/bi401643u] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The class I terpenoid cyclase epi-isozizaene synthase (EIZS) utilizes the universal achiral isoprenoid substrate, farnesyl diphosphate, to generate epi-isozizaene as the predominant sesquiterpene cyclization product and at least five minor sesquiterpene products, making EIZS an ideal platform for the exploration of fidelity and promiscuity in a terpenoid cyclization reaction. The hydrophobic active site contour of EIZS serves as a template that enforces a single substrate conformation, and chaperones subsequently formed carbocation intermediates through a well-defined mechanistic sequence. Here, we have used the crystal structure of EIZS as a guide to systematically remold the hydrophobic active site contour in a library of 26 site-specific mutants. Remolded cyclization templates reprogram the reaction cascade not only by reproportioning products generated by the wild-type enzyme but also by generating completely new products of diverse structure. Specifically, we have tripled the overall number of characterized products generated by EIZS. Moreover, we have converted EIZS into six different sesquiterpene synthases: F96A EIZS is an (E)-β-farnesene synthase, F96W EIZS is a zizaene synthase, F95H EIZS is a β-curcumene synthase, F95M EIZS is a β-acoradiene synthase, F198L EIZS is a β-cedrene synthase, and F96V EIZS and W203F EIZS are (Z)-γ-bisabolene synthases. Active site aromatic residues appear to be hot spots for reprogramming the cyclization cascade by manipulating the stability and conformation of critical carbocation intermediates. A majority of mutant enzymes exhibit only relatively modest 2-100-fold losses of catalytic activity, suggesting that residues responsible for triggering substrate ionization readily tolerate mutations deeper in the active site cavity.
Collapse
Affiliation(s)
- Ruiqiong Li
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| | | | | | | | | | | | | |
Collapse
|
19
|
Huchelmann A, Gastaldo C, Veinante M, Zeng Y, Heintz D, Tritsch D, Schaller H, Rohmer M, Bach TJ, Hemmerlin A. S-carvone suppresses cellulase-induced capsidiol production in Nicotiana tabacum by interfering with protein isoprenylation. PLANT PHYSIOLOGY 2014; 164:935-50. [PMID: 24367019 PMCID: PMC3912117 DOI: 10.1104/pp.113.232546] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 12/20/2013] [Indexed: 05/27/2023]
Abstract
S-Carvone has been described as a negative regulator of mevalonic acid (MVA) production by interfering with 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMGR) activity, a key player in isoprenoid biosynthesis. The impact of this monoterpene on the production of capsidiol in Nicotiana tabacum, an assumed MVA-derived sesquiterpenoid phytoalexin produced in response to elicitation by cellulase, was investigated. As expected, capsidiol production, as well as early stages of elicitation such as hydrogen peroxide production or stimulation of 5-epi-aristolochene synthase activity, were repressed. Despite the lack of capsidiol synthesis, apparent HMGR activity was boosted. Feeding experiments using (1-13C)Glc followed by analysis of labeling patterns by 13C-NMR, confirmed an MVA-dependent biosynthesis; however, treatments with fosmidomycin, an inhibitor of the MVA-independent 2-C-methyl-D-erythritol 4-phosphate (MEP) isoprenoid pathway, unexpectedly down-regulated the biosynthesis of this sesquiterpene as well. We postulated that S-carvone does not directly inhibit the production of MVA by inactivating HMGR, but possibly targets an MEP-derived isoprenoid involved in the early steps of the elicitation process. A new model is proposed in which the monoterpene blocks an MEP pathway-dependent protein geranylgeranylation necessary for the signaling cascade. The production of capsidiol was inhibited when plants were treated with some inhibitors of protein prenylation or by further monoterpenes. Moreover, S-carvone hindered isoprenylation of a prenylable GFP indicator protein expressed in N. tabacum cell lines, which can be chemically complemented with geranylgeraniol. The model was further validated using N. tabacum cell extracts or recombinant N. tabacum protein prenyltransferases expressed in Escherichia coli. Our study endorsed a reevaluation of the effect of S-carvone on plant isoprenoid metabolism.
Collapse
Affiliation(s)
- Alexandre Huchelmann
- Unité Propre de Recherche 2357, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, conventionné avec l’Université de Strasbourg, F-67083 Strasbourg, France (Al.H., M.V., Y.Z., D.H., H.S., T.J.B., An.H.); and
- Institut de Chimie Unité Mixte de Recherche 7177, Université de Strasbourg/Centre National de la Recherche Scientifique, F-67070 Strasbourg, France (C.G., D.T., M.R.)
| | - Clément Gastaldo
- Unité Propre de Recherche 2357, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, conventionné avec l’Université de Strasbourg, F-67083 Strasbourg, France (Al.H., M.V., Y.Z., D.H., H.S., T.J.B., An.H.); and
- Institut de Chimie Unité Mixte de Recherche 7177, Université de Strasbourg/Centre National de la Recherche Scientifique, F-67070 Strasbourg, France (C.G., D.T., M.R.)
| | - Mickaël Veinante
- Unité Propre de Recherche 2357, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, conventionné avec l’Université de Strasbourg, F-67083 Strasbourg, France (Al.H., M.V., Y.Z., D.H., H.S., T.J.B., An.H.); and
- Institut de Chimie Unité Mixte de Recherche 7177, Université de Strasbourg/Centre National de la Recherche Scientifique, F-67070 Strasbourg, France (C.G., D.T., M.R.)
| | | | - Dimitri Heintz
- Unité Propre de Recherche 2357, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, conventionné avec l’Université de Strasbourg, F-67083 Strasbourg, France (Al.H., M.V., Y.Z., D.H., H.S., T.J.B., An.H.); and
- Institut de Chimie Unité Mixte de Recherche 7177, Université de Strasbourg/Centre National de la Recherche Scientifique, F-67070 Strasbourg, France (C.G., D.T., M.R.)
| | - Denis Tritsch
- Unité Propre de Recherche 2357, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, conventionné avec l’Université de Strasbourg, F-67083 Strasbourg, France (Al.H., M.V., Y.Z., D.H., H.S., T.J.B., An.H.); and
- Institut de Chimie Unité Mixte de Recherche 7177, Université de Strasbourg/Centre National de la Recherche Scientifique, F-67070 Strasbourg, France (C.G., D.T., M.R.)
| | - Hubert Schaller
- Unité Propre de Recherche 2357, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, conventionné avec l’Université de Strasbourg, F-67083 Strasbourg, France (Al.H., M.V., Y.Z., D.H., H.S., T.J.B., An.H.); and
- Institut de Chimie Unité Mixte de Recherche 7177, Université de Strasbourg/Centre National de la Recherche Scientifique, F-67070 Strasbourg, France (C.G., D.T., M.R.)
| | - Michel Rohmer
- Unité Propre de Recherche 2357, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, conventionné avec l’Université de Strasbourg, F-67083 Strasbourg, France (Al.H., M.V., Y.Z., D.H., H.S., T.J.B., An.H.); and
- Institut de Chimie Unité Mixte de Recherche 7177, Université de Strasbourg/Centre National de la Recherche Scientifique, F-67070 Strasbourg, France (C.G., D.T., M.R.)
| | - Thomas J. Bach
- Unité Propre de Recherche 2357, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, conventionné avec l’Université de Strasbourg, F-67083 Strasbourg, France (Al.H., M.V., Y.Z., D.H., H.S., T.J.B., An.H.); and
- Institut de Chimie Unité Mixte de Recherche 7177, Université de Strasbourg/Centre National de la Recherche Scientifique, F-67070 Strasbourg, France (C.G., D.T., M.R.)
| | | |
Collapse
|
20
|
Rational engineering of plasticity residues of sesquiterpene synthases from Artemisia annua: product specificity and catalytic efficiency. Biochem J 2013; 451:417-26. [DOI: 10.1042/bj20130041] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Most TPSs (terpene synthases) contain plasticity residues that are responsible for diversified terpene products and functional evolution, which provide a potential for improving catalytic efficiency. Artemisinin, a sesquiterpene lactone from Artemisia annua L., is widely used for malaria treatment and progress has been made in engineering the production of artemisinin or its precursors. In the present paper, we report a new sesquiterpene synthase from A. annua, AaBOS (A. annua α-bisabolol synthase), which has high sequence identity with AaADS (A. annua amorpha-4,11-diene synthase), a key enzyme in artemisinin biosynthesis. Comparative analysis of the two enzymes by domain-swapping and structure-based mutagenesis led to the identification of several plasticity residues, whose alteration changed the product profile of AaBOS to include γ-humulene as the major product. To elucidate the underlying mechanisms, we solved the crystal structures of AaBOS and a γ-humulene-producing AaBOS mutant (termed AaBOS-M2). Among the plasticity residues, position 399, located in the substrate-binding pocket, is crucial for both enzymes. In AaBOS, substitution of threonine for leucine (AaBOSL339T) is required for γ-humulene production; whereas in AaADS, replacing the threonine residue with serine (AaADST399S) resulted in a substantial increase in the activity of amorpha-4,11-diene production, probably as a result of accelerated product release. The present study demonstrates that substitution of plasticity residues has potential for improving catalytic efficiency of the enzyme.
Collapse
|
21
|
Gao Y, Honzatko RB, Peters RJ. Terpenoid synthase structures: a so far incomplete view of complex catalysis. Nat Prod Rep 2012; 29:1153-75. [PMID: 22907771 PMCID: PMC3448952 DOI: 10.1039/c2np20059g] [Citation(s) in RCA: 272] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The complexity of terpenoid natural products has drawn significant interest, particularly since their common (poly)isoprenyl origins were discovered. Notably, much of this complexity is derived from the highly variable cyclized and/or rearranged nature of the observed hydrocarbon skeletal structures. Indeed, at least in some cases it is difficult to immediately recognize their derivation from poly-isoprenyl precursors. Nevertheless, these diverse structures are formed by sequential elongation to acyclic precursors, most often with subsequent cyclization and/or rearrangement. Strikingly, the reactions used to assemble and diversify terpenoid backbones share a common carbocationic driven mechanism, although the means by which the initial carbocation is generated does vary. High-resolution crystal structures have been obtained for at least representative examples from each of the various types of enzymes involved in producing terpenoid hydrocarbon backbones. However, while this has certainly led to some insights into the enzymatic structure-function relationships underlying the elongation and simpler cyclization reactions, our understanding of the more complex cyclization and/or rearrangement reactions remains limited. Accordingly, selected examples are discussed here to demonstrate our current understanding, its limits, and potential ways forward.
Collapse
Affiliation(s)
- Yang Gao
- Department of Biochemistry, Biophysics, & Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Richard B. Honzatko
- Department of Biochemistry, Biophysics, & Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Reuben J. Peters
- Department of Biochemistry, Biophysics, & Molecular Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
22
|
Wei K, Chen J, Chen Y, Wu L, Xie D. Multiple-strategy analyses of ZmWRKY subgroups and functional exploration of ZmWRKY genes in pathogen responses. MOLECULAR BIOSYSTEMS 2012; 8:1940-9. [PMID: 22569521 DOI: 10.1039/c2mb05483c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The WRKY transcription factor family plays crucial roles in biotic responses, such as fungi, bacteria, viruses and nematode infections and insect attacks. In this article, multiple-strategy analyses of the three subgroups were performed in order to gain structural and evolutionary proofs of the overall WRKY family and unravel the functions possessed by each group or subgroup. Thus we analyzed the similarity of WRKY factors between maize and Arabidopsis based on homology modelling. The gene structure and motif analyses of Group II demonstrated that specific motifs existing in the given subgroups may contribute to the functional diversification of WRKY proteins and the two types of conserved intron splice sites suggest their evolutionary conservation. The evolutionary divergence time estimation of Group III proteins indicated that the divergence of Group III occurred during the Neogene period. Further, we focused on the roles of maize WRKYs in pathogen responses based on publicly available microarray experiments. The result suggested that some ZmWRKYs are expressed specifically under the infection of certain fungus, among which some are up-regulated and some are down-regulated, indicating their positive or negative roles in pathogen response. Also, some genes remain unchanged upon fungal infection. Pearson correlation coefficient (PCC) analysis was performed using 62 fungal infection experiments to calculate the correlation between each pair of genes. A PCC value higher than 0.6 was regarded as strong correlation - in these circumstances, ninety pairs of genes showed a strong positive correlation, while fifteen pairs of genes displayed a strong negative correlation. These correlated genes form a co-regulatory network and help us investigate the existence of interactions between WRKY proteins.
Collapse
Affiliation(s)
- Kaifa Wei
- Department of Biological Sciences and Biotechnology, Zhangzhou Normal University, 36 Xian Qian Zhi Street, Zhangzhou 363000, Fujian, China.
| | | | | | | | | |
Collapse
|
23
|
Fähnrich A, Krause K, Piechulla B. Product variability of the 'cineole cassette' monoterpene synthases of related Nicotiana species. MOLECULAR PLANT 2011; 4:965-84. [PMID: 21527560 DOI: 10.1093/mp/ssr021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Nicotiana species of the section Alatae characteristically emit the floral scent compounds of the 'cineole cassette' comprising 1,8-cineole, limonene, myrcene, α-pinene, β-pinene, sabinene, and α-terpineol. We successfully isolated genes of Nicotiana alata and Nicotiana langsdorfii that encoded enzymes, which produced the characteristic monoterpenes of this 'cineole cassette' with α-terpineol being most abundant in the volatile spectra. The amino acid sequences of both terpineol synthases were 99% identical. The enzymes cluster in a monophyletic branch together with the closely related cineole synthase of Nicotiana suaveolens and monoterpene synthase 1 of Solanum lycopersicum. The cyclization reactions (α-terpineol to 1,8-cineole) of the terpineol synthases of N. alata and N. langsdorfii were less efficient compared to the 'cineole cassette' monoterpene synthases of Arabidopsis thaliana, N. suaveolens, Salvia fruticosa, Salvia officinalis, and Citrus unshiu. The terpineol synthases of N. alata and N. langsdorfii were localized in pistils and in the adaxial and abaxial epidermis of the petals. The enzyme activities reached their maxima at the second day after anthesis when flowers were fully opened and the enzyme activity in N. alata was highest at the transition from day to night (diurnal rhythm).
Collapse
Affiliation(s)
- Anke Fähnrich
- University of Rostock, Institute for Biological Sciences, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | | | | |
Collapse
|
24
|
Shameer K, Shingate PN, Manjunath SCP, Karthika M, Pugalenthi G, Sowdhamini R. 3DSwap: curated knowledgebase of proteins involved in 3D domain swapping. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2011; 2011:bar042. [PMID: 21959866 PMCID: PMC3294423 DOI: 10.1093/database/bar042] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Three-dimensional domain swapping is a unique protein structural phenomenon where two or more protein chains in a protein oligomer share a common structural segment between individual chains. This phenomenon is observed in an array of protein structures in oligomeric conformation. Protein structures in swapped conformations perform diverse functional roles and are also associated with deposition diseases in humans. We have performed in-depth literature curation and structural bioinformatics analyses to develop an integrated knowledgebase of proteins involved in 3D domain swapping. The hallmark of 3D domain swapping is the presence of distinct structural segments such as the hinge and swapped regions. We have curated the literature to delineate the boundaries of these regions. In addition, we have defined several new concepts like ‘secondary major interface’ to represent the interface properties arising as a result of 3D domain swapping, and a new quantitative measure for the ‘extent of swapping’ in structures. The catalog of proteins reported in 3DSwap knowledgebase has been generated using an integrated structural bioinformatics workflow of database searches, literature curation, by structure visualization and sequence–structure–function analyses. The current version of the 3DSwap knowledgebase reports 293 protein structures, the analysis of such a compendium of protein structures will further the understanding molecular factors driving 3D domain swapping. Database URL:http://caps.ncbs.res.in/3dswap
Collapse
Affiliation(s)
- Khader Shameer
- National Centre for Biological Sciences, GKVK Campus, Bangalore, Karnataka, India
| | | | | | | | | | | |
Collapse
|
25
|
Farrow MF, Arnold FH. Combinatorial recombination of gene fragments to construct a library of chimeras. ACTA ACUST UNITED AC 2010; Chapter 26:Unit 26.2. [PMID: 20814931 DOI: 10.1002/0471140864.ps2602s61] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recombination of distantly related and nonrelated genes is difficult using traditional PCR-based techniques, and truncation-based methods result in a large proportion of nonviable sequences due to frame shifts, deletions, and insertions. This unit describes a method for creating libraries of chimeras through combinatorial assembly of gene fragments. It allows the experimenter to recombine genes of any identity and to select the sites where recombination takes place. Combinatorial recombination is achieved by generating gene fragments with specific overhangs, or sticky ends. The overhangs permit the fragments to be ligated in the correct order while allowing independent assortment of blocks with identical overhangs. Genes of any identity can be recombined so long as they share 3 to 5 base pairs of identity at the desired recombination sites. Simple adaptations of the method allow incorporation of specific gene fragments.
Collapse
|
26
|
Kawaide H, Hayashi KI, Kawanabe R, Sakigi Y, Matsuo A, Natsume M, Nozaki H. Identification of the single amino acid involved in quenching the ent-kauranyl cation by a water molecule in ent-kaurene synthase of Physcomitrella patens. FEBS J 2010; 278:123-33. [DOI: 10.1111/j.1742-4658.2010.07938.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Shameer K, Pugalenthi G, Kandaswamy KK, Suganthan PN, Archunan G, Sowdhamini R. Insights into Protein Sequence and Structure-Derived Features Mediating 3D Domain Swapping Mechanism using Support Vector Machine Based Approach. Bioinform Biol Insights 2010; 4:33-42. [PMID: 20634983 PMCID: PMC2901629 DOI: 10.4137/bbi.s4464] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
3-dimensional domain swapping is a mechanism where two or more protein molecules form higher order oligomers by exchanging identical or similar subunits. Recently, this phenomenon has received much attention in the context of prions and neurodegenerative diseases, due to its role in the functional regulation, formation of higher oligomers, protein misfolding, aggregation etc. While 3-dimensional domain swap mechanism can be detected from three-dimensional structures, it remains a formidable challenge to derive common sequence or structural patterns from proteins involved in swapping. We have developed a SVM-based classifier to predict domain swapping events using a set of features derived from sequence and structural data. The SVM classifier was trained on features derived from 150 proteins reported to be involved in 3D domain swapping and 150 proteins not known to be involved in swapped conformation or related to proteins involved in swapping phenomenon. The testing was performed using 63 proteins from the positive dataset and 63 proteins from the negative dataset. We obtained 76.33% accuracy from training and 73.81% accuracy from testing. Due to high diversity in the sequence, structure and functions of proteins involved in domain swapping, availability of such an algorithm to predict swapping events from sequence and structure-derived features will be an initial step towards identification of more putative proteins that may be involved in swapping or proteins involved in deposition disease. Further, the top features emerging in our feature selection method may be analysed further to understand their roles in the mechanism of domain swapping.
Collapse
Affiliation(s)
- Khader Shameer
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bellary Road, Bangalore, 560065, India
| | | | | | | | | | | |
Collapse
|
28
|
Fujisawa M, Harada H, Kenmoku H, Mizutani S, Misawa N. Cloning and characterization of a novel gene that encodes (S)-beta-bisabolene synthase from ginger, Zingiber officinale. PLANTA 2010; 232:121-30. [PMID: 20229191 DOI: 10.1007/s00425-010-1137-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Accepted: 02/22/2010] [Indexed: 05/28/2023]
Abstract
Ginger, Zingiber officinale Roscoe, contains a fragrant oil mainly composed of sesquiterpenes and monoterpenes. We isolated a cDNA that codes for a sesquiterpene synthase from young rhizomes of ginger, Z. officinale Roscoe, Japanese cultivar "Kintoki". The cDNA, designated ZoTps1, potentially encoded a protein that comprised 550 amino acid residues and exhibited 49-53% identity with those of the sesquiterpene synthases already isolated from the genus Zingiber. Recombinant Escherichia coli cells, in which ZoTps1 was coexpressed along with genes for D-mevalonate utilization, resulted in the production of a sesquiterpene (S)-beta-bisabolene exclusively with a D-mevalonolactone supplement. This result indicated that ZoTps1 was the (S)-beta-bisabolene synthase gene in ginger. ZoTPS1 was suggested to catalyze (S)-beta-bisabolene formation with the conversion of farnesyl diphosphate to nerolidyl diphosphate followed by the cyclization between position 1 and 6 carbons. The ZoTps1 transcript was detected in young rhizomes, but not in leaves, roots and mature rhizomes of the ginger "Kintoki".
Collapse
Affiliation(s)
- Masaki Fujisawa
- Central Laboratories for Frontier Technology, Kirin Holdings Co. Ltd., i-BIRD, Nonoichi, Ishikawa, Japan
| | | | | | | | | |
Collapse
|
29
|
Neelakandan AK, Song Z, Wang J, Richards MH, Wu X, Valliyodan B, Nguyen HT, Nes WD. Cloning, functional expression and phylogenetic analysis of plant sterol 24C-methyltransferases involved in sitosterol biosynthesis. PHYTOCHEMISTRY 2009; 70:1982-98. [PMID: 19818974 DOI: 10.1016/j.phytochem.2009.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 07/20/2009] [Accepted: 09/03/2009] [Indexed: 05/28/2023]
Abstract
Sterol 24C-methyltransferases (SMTs) constitute a group of sequence-related proteins that catalyze the distinct patterns of 24-alkyl sterols that occur throughout nature. Two SMT cDNAs (SMT2-1 and SMT2-2) were cloned by homology based PCR methods from young leaves of Glycine max (soybean) and the corresponding enzymes were expressed functionally in Escherichia coli. The full-length cDNA for SMT2-1 and SMT2-2 have open reading frames of 1086 bp and 1092 bp, respectively, and encode proteins of 361 and 363 residues with a calculated molecular mass of 40.3 and 40.4 kDa, respectively. The substrate preference of the two isoforms was similar yet they differed from SMT1; kinetically SMT2-1 and SMT2-2 generated k(cat) values for the optimal substrate 24(28)methylene lophenol of 0.8 min(-1) and 1.34 min(-1), respectively, compared to the activity of SMT1 that generated a k(cat) for the optimal substrate cycloartenol of 0.6 min(-1). SMT2-2 was purified to homogeneity and the subunit organization shown to be tetrameric in similar fashion to other cloned SMTs. Analysis of the accumulated products catalyzed by the recombinant enzymes demonstrated that soybean SMT2-1 and SMT2-2 operate transalkylation activities analogous to the soybean plant SMT1. Metabolite analyses correlated with transcript profiling of the three SMT isoforms during soybean maturation clearly demonstrated that SMT isoform expression determines specific C24-methyl to C24-ethyl ratios to flowering whereas with seed development there is a disconnection such that the SMT transcript levels decrease against an increase in sterol content; generally SMT2-2 is expressed more than SMT2-1 or SMT1. These observations suggest that the genes that encode SMT1 and SMT2 in sitosterol biosynthesis may have undergone divergent evolution. In support of this proposition, the genomic organization for SMT1 of fungi and protozoa align very closely with one another and to those of the plant SMT2; both sets of SMTs lack introns. Unexpectedly, the SMT1 from Glycine max and other embryophytes of diverse origin possess disparate intron-exon characteristics that can be shown relates back to the algae. Our results suggest that the order of SMT1 appearing before SMT2 in phytosterol synthesis arose recently in plant evolution in response to duplication of a more primitive SMT gene likely to have been bifunctional and catalytically promiscuous.
Collapse
Affiliation(s)
- Anjanasree K Neelakandan
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Degenhardt J, Köllner TG, Gershenzon J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. PHYTOCHEMISTRY 2009; 70:1621-37. [PMID: 19793600 DOI: 10.1016/j.phytochem.2009.07.030] [Citation(s) in RCA: 635] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 07/23/2009] [Accepted: 07/24/2009] [Indexed: 05/20/2023]
Abstract
The multitude of terpene carbon skeletons in plants is formed by enzymes known as terpene synthases. This review covers the monoterpene and sesquiterpene synthases presenting an up-to-date list of enzymes reported and evidence for their ability to form multiple products. The reaction mechanisms of these enzyme classes are described, and information on how terpene synthase proteins mediate catalysis is summarized. Correlations between specific amino acid motifs and terpene synthase function are described, including an analysis of the relationships between active site sequence and cyclization type and a discussion of whether specific protein features might facilitate multiple product formation.
Collapse
Affiliation(s)
- Jörg Degenhardt
- Martin Luther University Halle-Wittenberg, Institute for Pharmacy, Halle/Saale, Germany.
| | | | | |
Collapse
|
31
|
Yu F, Utsumi R. Diversity, regulation, and genetic manipulation of plant mono- and sesquiterpenoid biosynthesis. Cell Mol Life Sci 2009; 66:3043-52. [PMID: 19547916 PMCID: PMC11115753 DOI: 10.1007/s00018-009-0066-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 05/28/2009] [Accepted: 06/05/2009] [Indexed: 10/20/2022]
Abstract
Among plant secondary metabolites, terpenoids are the most abundant and structurally diverse group. In addition to their important roles in pollinator attraction and direct and indirect plant defense, terpenoids are also commercially valuable due to their broad applications in the cosmetic, food, and pharmaceutical industries. Because of their functional versatility and wide distribution, great efforts have been made to decipher terpenoid biosynthetic pathways, to investigate the molecular mechanism determining their structural diversity, and to understand their biosynthetic regulation. Recent progress on the manipulation of terpenoid production in transgenic plants not only holds considerable promise for improving various plant traits and crop protection but also increases our understanding of the significance of terpenoid metabolites in mediating plant-environment interactions.
Collapse
Affiliation(s)
- Fengnian Yu
- Department of Bioscience, Graduate School of Agriculture, Kinki University, Nakamachi, Nara 631-8505 Japan
| | - Ryutaro Utsumi
- Department of Bioscience, Graduate School of Agriculture, Kinki University, Nakamachi, Nara 631-8505 Japan
| |
Collapse
|
32
|
Muntendam R, Melillo E, Ryden A, Kayser O. Perspectives and limits of engineering the isoprenoid metabolism in heterologous hosts. Appl Microbiol Biotechnol 2009; 84:1003-19. [PMID: 19669755 DOI: 10.1007/s00253-009-2150-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 07/14/2009] [Accepted: 07/14/2009] [Indexed: 10/20/2022]
Abstract
Terpenoids belong to the largest class of natural compounds and are produced in all living organisms. The isoprenoid skeleton is based on assembling of C5 building blocks, but the biosynthesis of a great variety of terpenoids ranging from monoterpenoids to polyterpenoids is not fully understood today. Terpenoids play a fundamental role in human nutrition, cosmetics, and medicine. In the past 10 years, many metabolic engineering efforts have been undertaken in plants but also in microorganisms to improve the production of various terpenoids like artemisinin and paclitaxel. Recently, inverse metabolic engineering and combinatorial biosynthesis as main strategies in synthetic biology have been applied to produce high-cost natural products like artemisinin and paclitaxel in heterologous microorganisms. This review describes the recent progresses made in metabolic engineering of the terpenoid pathway with particular focus on fundamental aspects of host selection, vector design, and system biotechnology.
Collapse
Affiliation(s)
- Remco Muntendam
- Department of Pharmaceutical Biology, GUIDE, University of Groningen, The Netherlands
| | | | | | | |
Collapse
|
33
|
Hong YJ, Tantillo DJ. Consequences of Conformational Preorganization in Sesquiterpene Biosynthesis: Theoretical Studies on the Formation of the Bisabolene, Curcumene, Acoradiene, Zizaene, Cedrene, Duprezianene, and Sesquithuriferol Sesquiterpenes. J Am Chem Soc 2009; 131:7999-8015. [DOI: 10.1021/ja9005332] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Young J. Hong
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616
| | - Dean J. Tantillo
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616
| |
Collapse
|
34
|
Meyer MM, Hiraga K, Arnold FH. Combinatorial recombination of gene fragments to construct a library of chimeras. ACTA ACUST UNITED AC 2008; Chapter 26:26.2.1-26.2.17. [PMID: 18429308 DOI: 10.1002/0471140864.ps2602s44] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Recombination of distantly related and nonrelated genes is difficult using traditional PCR-based techniques, and truncation-based methods result in a large proportion of nonviable sequences due to frame shifts, deletions, and insertions. This unit describes a method for creating libraries of chimeras through combinatorial assembly of gene fragments. It allows the experimenter to recombine genes of any identity and to select the sites where recombination takes place. Combinatorial recombination is achieved by generating gene fragments with specific overhangs, or sticky ends. The overhangs permit the fragments to be ligated in the correct order while allowing independent assortment of blocks with identical overhangs. Genes of any identity can be recombined so long as they share 3 to 5 base pairs of identity at the desired recombination sites. Simple adaptations of the method allow incorporation of specific gene fragments.
Collapse
|
35
|
Lee S, Chappell J. Biochemical and genomic characterization of terpene synthases in Magnolia grandiflora. PLANT PHYSIOLOGY 2008; 147:1017-33. [PMID: 18467455 PMCID: PMC2442544 DOI: 10.1104/pp.108.115824] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 04/22/2008] [Indexed: 05/20/2023]
Abstract
Magnolia grandiflora (Southern Magnolia) is a primitive evergreen tree that has attracted attention because of its horticultural distinctiveness, the wealth of natural products associated with it, and its evolutionary position as a basal angiosperm. Three cDNAs corresponding to terpene synthase (TPS) genes expressed in young leaves were isolated, and the corresponding enzymes were functionally characterized in vitro. Recombinant Mg25 converted farnesyl diphosphate (C(15)) predominantly to beta-cubebene, while Mg17 converted geranyl diphosphate (C(5)) to alpha-terpineol. Efforts to functionally characterize Mg11 were unsuccessful. Transcript levels for all three genes were prominent in young leaf tissue and significantly elevated for Mg25 and Mg11 messenger RNAs in stamens. A putative amino-terminal signal peptide of Mg17 targeted the reporter green fluorescent protein to both chloroplasts and mitochondria when transiently expressed in epidermal cells of Nicotiana tabacum leaves. Phylogenetic analyses indicated that Mg25 and Mg11 belonged to the angiosperm sesquiterpene synthase subclass TPS-a, while Mg17 aligned more closely to the angiosperm monoterpene synthase subclass TPS-b. Unexpectedly, the intron-exon organizations for the three Magnolia TPS genes were different from one another and from other well-characterized TPS gene sets. The Mg17 gene consists of six introns arranged in a manner similar to many other angiosperm sesquiterpene synthases, but Mg11 contains only four introns, and Mg25 has only a single intron located near the 5' terminus of the gene. Our results suggest that the structural diversity observed in the Magnolia TPS genes could have occurred either by a rapid loss of introns from a common ancestor TPS gene or by a gain of introns into an intron-deficient progenote TPS gene.
Collapse
Affiliation(s)
- Sungbeom Lee
- Plant Physiology, Biochemistry, and Molecular Biology Program, Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546-0312, USA
| | | |
Collapse
|
36
|
Affiliation(s)
- David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, USA.
| |
Collapse
|
37
|
Withers ST, Keasling JD. Biosynthesis and engineering of isoprenoid small molecules. Appl Microbiol Biotechnol 2006; 73:980-90. [PMID: 17115212 DOI: 10.1007/s00253-006-0593-1] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 07/25/2006] [Accepted: 08/07/2006] [Indexed: 12/22/2022]
Abstract
Isoprenoid secondary metabolites are a rich source of commercial products that have not been fully explored. At present, there are isoprenoid products used in cancer therapy, the treatment of infectious diseases, and crop protection. All isoprenoids share universal prenyl diphosphate precursors synthesized via two distinct pathways. From these universal precursors, the biosynthetic pathways to specific isoprenoids diverge resulting in a staggering array of products. Taking advantage of this diversity has been the focus of much effort in metabolic engineering heterologous hosts. In addition, the engineering of the mevalonate pathway has increased levels of the universal precursors available for heterologous production. Finally, we will describe the efforts to produce to commercial terpenoids, paclitaxel and artemisinin.
Collapse
Affiliation(s)
- Sydnor T Withers
- Department of Chemical Engineering, University of California, Berkeley, CA, USA
| | | |
Collapse
|
38
|
Greenhagen BT, O’Maille PE, Noel JP, Chappell J. Identifying and manipulating structural determinates linking catalytic specificities in terpene synthases. Proc Natl Acad Sci U S A 2006; 103:9826-31. [PMID: 16785438 PMCID: PMC1502538 DOI: 10.1073/pnas.0601605103] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Terpene synthases are a mechanistically intriguing family of enzymes that catalyze complex, multistep reactions that are capable of generating hundreds of structurally diverse hydrocarbon and oxygenated scaffolds of biological and commercial importance. Interestingly, distantly related terpene synthases from fungi to plants all contain an invariant three-dimensional fold, and molecular comparisons of their active sites indicate that they are enriched with relatively inert amino acid residues that do not react directly with the reaction intermediates. Therefore, catalytic specificity appears to rely on the contour and dynamics of the active site created by the positioning of amino acid backbones and side chains on this catalytic surface and by supporting layers of residues surrounding the synthase active site cavity. Despite the high degree of structural relatedness among terpene synthases, previous studies suggest that no clear relationship between phylogenic organization and catalytic specificities is easily deciphered. We now report on the reciprocal interconversion of catalytic specificities between two distinct yet evolutionarily related terpene synthases based on the systematic identification and mutational replacement of variable residues within and surrounding the active site. Furthermore, we uncover previously undocumented biosynthetic activity during the interconversion, activity that could have been present in a common ancestor of these two highly related synthases. These results provide a simplified means for mapping structural features that are responsible for functional attributes and a strategy for identifying residues that differentiate divergent biosynthetic properties in phylogenetically related terpene synthases.
Collapse
Affiliation(s)
- Bryan T. Greenhagen
- *Plant Biology Program, Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312; and
| | - Paul E. O’Maille
- The Jack H. Skirball Center for Chemical Biology and Proteomics and Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Joseph P. Noel
- The Jack H. Skirball Center for Chemical Biology and Proteomics and Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Joe Chappell
- *Plant Biology Program, Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
39
|
Schenk DJ, Starks CM, Manna KR, Chappell J, Noel JP, Coates RM. Stereochemistry and deuterium isotope effects associated with the cyclization-rearrangements catalyzed by tobacco epiaristolochene and hyoscyamus premnaspirodiene synthases, and the chimeric CH4 hybrid cyclase. Arch Biochem Biophys 2006; 448:31-44. [PMID: 16309622 PMCID: PMC2883252 DOI: 10.1016/j.abb.2005.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 09/09/2005] [Accepted: 09/14/2005] [Indexed: 11/25/2022]
Abstract
Tobacco epiaristolochene and hyoscyamus premnaspirodiene synthases (TEAS and HPS) catalyze the cyclizations and rearrangements of (E,E)-farnesyl diphosphate (FPP) to the corresponding bicyclic sesquiterpene hydrocarbons. The complex mechanism proceeds through a tightly bound (R)-germacrene A intermediate and involves partitioning of a common eudesm-5-yl carbocation either by angular methyl migration, or by C-9 methylene rearrangement, to form the respective eremophilane and spirovetivane structures. In this work, the stereochemistry and timing of the proton addition and elimination steps in the mechanism were investigated by synthesis of substrates bearing deuterium labels in one or both terminal methyl groups, and in the pro-S and pro-R methylene hydrogens at C-8. Incubations of the labeled FPPs with recombinant TEAS and HPS, and with the chimeric CH4 hybrid cyclase having catalytic activities of both TEAS and HPS, and of unlabeled FPP in D2O, together with gas chromatography-mass spectrometry (GC-MS) and/or NMR analyses of the labeled products gave the following results: (1) stereospecific CH3-->CH2 eliminations at the cis-terminal methyl in all cases; (2) similar primary kinetic isotope effects (KIE) of 4.25-4.64 for the CH3-->CH2 eliminations; (3) a significant intermolecular KIE (1.33+/-0.03) in competitive cyclizations of unlabeled FPP and FPP-d6 to premnaspirodiene by HPS; (4) stereoselective incorporation of label from D2O into the 1beta position of epiaristolochene; (5) stereoselective eliminations of the 1beta and 9beta protons in formation of epiaristolochene and its delta(1(10)) isomer epieremophilene by TEAS and CH4; and (6) predominant loss of the 1alpha proton in forming the cyclohexene double bond of premnaspirodiene by HPS and CH4. The results are explained by consideration of the conformations of individual intermediates, and by imposing the requirement of stereoelectronically favorable proton additions and eliminations.
Collapse
Affiliation(s)
- David J. Schenk
- Department of Chemistry, University of Illinois, 600 South Mathews Ave., Urbana, IL 61801, USA
| | - Courtney M. Starks
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, 10010 North Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Kathleen Rising Manna
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0091, USA
| | - Joe Chappell
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0091, USA
| | - Joseph P. Noel
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, 10010 North Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Robert M. Coates
- Department of Chemistry, University of Illinois, 600 South Mathews Ave., Urbana, IL 61801, USA
| |
Collapse
|
40
|
Kerr RG, Kohl AC, Ferns TA. Elucidation of the biosynthetic origin of the anti-inflammatory pseudopterosins. J Ind Microbiol Biotechnol 2006; 33:532-8. [PMID: 16555072 DOI: 10.1007/s10295-006-0106-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Accepted: 02/10/2006] [Indexed: 10/24/2022]
Abstract
The pseudopterosins are a family of diterpene glycosides isolated from the gorgonian coral Pseudopterogorgia elisabethae. These metabolites exhibit potent anti-inflammatory activity, and this review describes our efforts to elucidate their biosynthetic origin. A radioactivity-guided isolation was used to identify the terpene cyclase product. In addition, a detailed NMR-guided search for potential biosynthetic intermediates identified metabolites which were tested by incubating 3H-labeled analogues with a cell-free extract of the coral. All labeled metabolites were generated biosynthetically, and radiochemical purity was established by a combination of HPLC purification and derivatization. In summary, pseudopterosins are produced by a cyclization of geranylgeranyl diphosphate to elisabethatriene, aromatization to erogorgiaene, two successive oxidations to 7,8-dihydroxyerogorgiaene and a glycosylation to afford a seco-pseudopterosin as a key intermediate. A dehydrogenation leads to amphilectosins which undergo ring closures to yield the pseudopterosins.
Collapse
Affiliation(s)
- Russell G Kerr
- Department of Chemistry and Biochemistry, and Center of Excellence in Biomedical and Marine Biotechnology, Florida Atlantic University, Boca Raton, FL 33431, USA.
| | | | | |
Collapse
|
41
|
Yamamizo C, Kuchimura K, Kobayashi A, Katou S, Kawakita K, Jones JDG, Doke N, Yoshioka H. Rewiring mitogen-activated protein kinase cascade by positive feedback confers potato blight resistance. PLANT PHYSIOLOGY 2006; 140:681-92. [PMID: 16407438 PMCID: PMC1361334 DOI: 10.1104/pp.105.074906] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 11/30/2005] [Accepted: 12/16/2005] [Indexed: 05/06/2023]
Abstract
Late blight, caused by the notorious pathogen Phytophthora infestans, is a devastating disease of potato (Solanum tuberosum) and tomato (Solanum lycopersicum), and during the 1840s caused the Irish potato famine and over one million fatalities. Currently, grown potato cultivars lack adequate blight tolerance. Earlier cultivars bred for resistance used disease resistance genes that confer immunity only to some strains of the pathogen harboring corresponding avirulence gene. Specific resistance gene-mediated immunity and chemical controls are rapidly overcome in the field when new pathogen races arise through mutation, recombination, or migration from elsewhere. A mitogen-activated protein kinase (MAPK) cascade plays a pivotal role in plant innate immunity. Here we show that the transgenic potato plants that carry a constitutively active form of MAPK kinase driven by a pathogen-inducible promoter of potato showed high resistance to early blight pathogen Alternaria solani as well as P. infestans. The pathogen attack provoked defense-related MAPK activation followed by induction of NADPH oxidase gene expression, which is implicated in reactive oxygen species production, and resulted in hypersensitive response-like phenotype. We propose that enhancing disease resistance through altered regulation of plant defense mechanisms should be more durable and publicly acceptable than engineering overexpression of antimicrobial proteins.
Collapse
Affiliation(s)
- Chihiro Yamamizo
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Köllner TG, O'Maille PE, Gatto N, Boland W, Gershenzon J, Degenhardt J. Two pockets in the active site of maize sesquiterpene synthase TPS4 carry out sequential parts of the reaction scheme resulting in multiple products. Arch Biochem Biophys 2005; 448:83-92. [PMID: 16297849 DOI: 10.1016/j.abb.2005.10.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 10/12/2005] [Accepted: 10/13/2005] [Indexed: 11/19/2022]
Abstract
One of the most interesting features of terpene synthases is their ability to form multiple products with different carbon skeletons from a single prenyl diphosphate substrate. The maize sesquiterpene synthase TPS4, for example, produces a mixture of 14 different olefinic sesquiterpenes. To understand the complex TPS4 reaction mechanism, we modeled the active site cavity and conducted docking simulations with the substrate farnesyl diphosphate, several predicted carbocation intermediates, and the final reaction products. The model suggests that discrete steps of the reaction sequence are controlled by two different active site pockets, with the conformational change of the bisabolyl cation intermediate causing a shift from one pocket to the other. Site-directed mutagenesis and measurements of mutant activity in the presence of (E,E)- and (Z,E)-farnesyl diphosphate as substrates were employed to test this model. Amino acid alterations in pocket I indicated that early steps of the catalytic process up to the formation of the monocyclic bisabolyl cation are probably localized in this compartment. Mutations in pocket II primarily inhibited the formation of bicylic compounds, suggesting that secondary cyclizations of the bisabolyl cation are catalyzed in pocket II.
Collapse
Affiliation(s)
- Tobias G Köllner
- Max Planck Institute for Chemical Ecology, Hans-Knöll Strasse 8, D-07745 Jena, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Hyatt DC, Croteau R. Mutational analysis of a monoterpene synthase reaction: altered catalysis through directed mutagenesis of (-)-pinene synthase from Abies grandis. Arch Biochem Biophys 2005; 439:222-33. [PMID: 15978541 DOI: 10.1016/j.abb.2005.05.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 05/13/2005] [Accepted: 05/13/2005] [Indexed: 11/16/2022]
Abstract
Two monoterpene synthases, (-)-pinene synthase and (-)-camphene synthase, from grand fir (Abies grandis) produce different product mixtures despite having highly homologous amino acid sequences and, presumably, very similar three-dimensional structures. The major product of (-)-camphene synthase, (-)-camphene, and the major products of (-)-pinene synthase, (-)-alpha-pinene, and (-)-beta-pinene, arise through distinct mechanistic variations of the electrophilic reaction cascade that is common to terpenoid synthases. Structural modeling followed by directed mutagenesis in (-)-pinene synthase was used to replace selected amino acid residues with the corresponding residues from (-)-camphene synthase in an effort to identify the amino acids responsible for the catalytic differences. This approach produced an enzyme in which more than half of the product was channeled through an alternative pathway. It was also shown that several (-)-pinene synthase to (-)-camphene synthase amino acid substitutions were necessary before catalysis was significantly altered. The data support a model in which the collective action of many key amino acids, located both in and distant from the active site pocket, regulate the course of the electrophilic reaction cascade.
Collapse
Affiliation(s)
- David C Hyatt
- Institute of Biological Chemistry, Washington State University, Pullman, 99163-6340, USA
| | | |
Collapse
|
44
|
Picaud S, Olofsson L, Brodelius M, Brodelius PE. Expression, purification, and characterization of recombinant amorpha-4,11-diene synthase from Artemisia annua L. Arch Biochem Biophys 2005; 436:215-26. [PMID: 15797234 DOI: 10.1016/j.abb.2005.02.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Revised: 07/01/2004] [Indexed: 11/15/2022]
Abstract
A cDNA clone encoding amorpha-4,11-diene synthase from Artemisia annua was subcloned into a bacterial expression vector in frame with a His6-tag. Recombinant amorpha-4,11-diene synthase was produced in Escherichia coli and purified to apparent homogeneity. The enzyme showed pH optimum at pH 6.5, and a minimum at pH 7.5. Substantial activity was observed in the presence of Mg2+, Mn2+ or Co2+ as cofactor. The enzyme exhibits a low activity in the presence of Ni2+ and essentially no activity with Cu2+ or Zn2+. The sesquiterpenoids produced from farnesyl diphosphate in the presence of Mg2+ were analyzed by GC-MS. In addition to amorpha-4,11-diene, 15 sesquiterpenoids were produced. Only small quantitative differences in product pattern were observed at pH 6.5, 7.5, or 9.5. Amorpha-4,11-diene synthase showed significant increased product selectivity in the presence of Mn2+ or Co2+. Km for farnesyl diphosphate was 3.3, 8.0, and 0.7 microM in the presence of Mg2+, Mn2+ or Co2+, respectively. The corresponding kcat-values were 6.8, 15.0, and 1.3 x 10(-3) s(-1), respectively. Km and kcat for geranyl diphosphate were 16.9 microM and 7.0 x 10(-4) s(-1), respectively, at pH 6.5, in the presence of Mn2+.
Collapse
Affiliation(s)
- Sarah Picaud
- Department of Chemistry and Biomedical Sciences, University of Kalmar, 39182 Kalmar, Sweden
| | | | | | | |
Collapse
|
45
|
Zhao Y, Schenk DJ, Takahashi S, Chappell J, Coates RM. Eremophilane sesquiterpenes from capsidiol. J Org Chem 2004; 69:7428-35. [PMID: 15497966 DOI: 10.1021/jo049058c] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of eremophilane sesquiterpene alcohols and hydrocarbons was prepared from the phytoalexin capsidiol (1) for mechanistic studies with epiaristolochene synthase and epiaristolochene dihydroxylase. Among them, 3-deoxycapsidiol (10) was obtained through selective derivatization and reductive cleavage of the equatorial 3 alpha hydroxyl group. Two novel isomers of aristolochene and eremophilene were accessed from the 1- and 3-deoxycapsidiol isomers. 4-Epieremophilene (17) was obtained by conjugate reduction of epiaristolochen-1-one tosylhydrazone with catecholborane followed by sulfinate elimination and diimide rearrangement. Epimerization of epiaristolochen-3-one (27a) at the C4 methyl followed by reductions led to the previously unknown aristolochene isomer, eremophila-9(10),11(12)-diene (30). Optical rotations and characteristic (1)H NMR data for the related eremophilenols and dienes are collected in Tables 1 and 2. Finally, bioassays were used to assess the antifungal potencies of capsidiol and its synthetic derivatives. The minimum inhibitory concentration for capsidiol (3-10 ng) was at least 1 order of magnitude lower than that of any of the derivatives and considerably lower than those previously reported for ketoconazole, nystatin, and propiconazole.
Collapse
Affiliation(s)
- Yuxin Zhao
- Department of Chemistry, University of Illinois, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
46
|
Iijima Y, Davidovich-Rikanati R, Fridman E, Gang DR, Bar E, Lewinsohn E, Pichersky E. The biochemical and molecular basis for the divergent patterns in the biosynthesis of terpenes and phenylpropenes in the peltate glands of three cultivars of basil. PLANT PHYSIOLOGY 2004; 136:3724-36. [PMID: 15516500 PMCID: PMC527170 DOI: 10.1104/pp.104.051318] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Surface glandular trichomes distributed throughout the aerial parts of sweet basil (Ocimum basilicum) produce and store monoterpene, sesquiterpene, and phenylpropene volatiles. Three distinct basil chemotypes were used to examine the molecular mechanisms underlying the divergence in their monoterpene and sesquiterpene content. The relative levels of specific terpenes in the glandular trichomes of each cultivar were correlated with the levels of transcripts for eight genes encoding distinct terpene synthases. In a cultivar that produces mostly (R)-linalool, transcripts of (R)-linalool synthase (LIS) were the most abundant of these eight. In a cultivar that synthesizes mostly geraniol, transcripts of geraniol synthase were the most abundant, but the glands of this cultivar also contained a transcript of an (R)-LIS gene with a 1-base insertion that caused a frameshift mutation. A geraniol synthase-LIS hybrid gene was constructed and expressed in Escherichia coli, and the protein catalyzed the formation of both geraniol and (R)-linalool from geranyl diphosphate. The total amounts of terpenes were correlated with total levels of terpene synthase activities, and negatively correlated with levels of phenylpropanoids and phenylalanine ammonia lyase activity. The relative levels of geranyl diphosphate synthase and farnesyl diphosphate synthase activities did not correlate with the total amount of terpenes produced, but showed some correlation with the ratio of monoterpenes to sesquiterpenes.
Collapse
Affiliation(s)
- Yoko Iijima
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Katoh S, Hyatt D, Croteau R. Altering product outcome in Abies grandis (−)-limonene synthase and (−)-limonene/(−)-α-pinene synthase by domain swapping and directed mutagenesis. Arch Biochem Biophys 2004; 425:65-76. [PMID: 15081895 DOI: 10.1016/j.abb.2004.02.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Revised: 02/12/2004] [Indexed: 10/26/2022]
Abstract
(-)-(4S)-limonene synthase (LS) and (-)-(4S)-limonene/(-)-(1S, 5S)-alpha-pinene synthase (LPS) from grand fir (Abies grandis) exhibit nearly 91% sequence identity (93% similarity) at the amino acid level, yet produce very different mixtures of monoterpene olefins. To elucidate critical amino acids involved in determining monoterpene product distribution, a combination of domain swapping and reciprocal site-directed mutagenesis was carried out between these two enzymes. Exchange of the predicted helix D through F region in LS gave rise to an LPS-like product outcome, whereas reciprocal substitutions of four amino acids in LPS (two in the predicted helix D and two in the predicted helix F) altered the product distribution to that intermediate between LS and LPS, and resulted in a 5-fold increase in relative velocity. These results, in conjunction with modeling of the two enzymes, suggest that amino acids in the predicted D through F helix regions are critical for product determination.
Collapse
Affiliation(s)
- Sadanobu Katoh
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA
| | | | | |
Collapse
|
48
|
Köllner TG, Schnee C, Gershenzon J, Degenhardt J. The variability of sesquiterpenes emitted from two Zea mays cultivars is controlled by allelic variation of two terpene synthase genes encoding stereoselective multiple product enzymes. THE PLANT CELL 2004; 16:1115-31. [PMID: 15075399 PMCID: PMC423204 DOI: 10.1105/tpc.019877] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Accepted: 02/16/2004] [Indexed: 05/18/2023]
Abstract
The mature leaves and husks of Zea mays release a complex blend of terpene volatiles after anthesis consisting predominantly of bisabolane-, sesquithujane-, and bergamotane-type sesquiterpenes. The varieties B73 and Delprim release the same volatile constituents but in significantly different proportions. To study the molecular genetic and biochemical mechanisms controlling terpene diversity and distribution in these varieties, we isolated the closely related terpene synthase genes terpene synthase4 (tps4) and tps5 from both varieties. The encoded enzymes, TPS4 and TPS5, each formed the same complex mixture of sesquiterpenes from the precursor farnesyl diphosphate but with different proportions of products. These mixtures correspond to the sesquiterpene blends observed in the varieties B73 and Delprim, respectively. The differences in the stereoselectivity of TPS4 and TPS5 are determined by four amino acid substitutions with the most important being a Gly instead of an Ala residue at position 409 at the catalytic site of the enzyme. Although both varieties contain tps4 and tps5 alleles, their differences in terpene composition result from the fact that B73 has only a single functional allele of tps4 and no functional alleles of tps5, whereas Delprim has only a functional allele of tps5 and no functional alleles of tps4. Lack of functionality was shown to be attributable to frame-shift mutations or amino acid substitutions that greatly reduce the activity of their encoded proteins. Therefore, the diversity of sesquiterpenes in these two maize cultivars is strongly influenced by single nucleotide changes in the alleles of two terpene synthase genes.
Collapse
Affiliation(s)
- Tobias G Köllner
- Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | | | | | | |
Collapse
|
49
|
Peters RJ, Croteau RB. Alternative termination chemistries utilized by monoterpene cyclases: chimeric analysis of bornyl diphosphate, 1,8-cineole, and sabinene synthases. Arch Biochem Biophys 2003; 417:203-11. [PMID: 12941302 DOI: 10.1016/s0003-9861(03)00347-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Monoterpene cyclization reactions are initiated by ionization and isomerization of geranyl diphosphate, and proceed, via cyclization of bound linalyl diphosphate, through a series of carbocation intermediates with ultimate termination of the multistep cascade by deprotonation or nucleophile capture. Three structurally and mechanistically related monoterpene cyclases from Salvia officinalis, (+)-sabinene synthase (deprotonation to olefin), 1,8-cineole synthase (water capture), and (+)-bornyl diphosphate synthase (diphosphate capture), were employed to explore the structural determinants of these alternative termination chemistries. Results with chimeric recombinant enzymes, constructed by reciprocally substituting regions of sabinene synthase with the corresponding sequences from bornyl diphosphate synthase or 1,8-cineole synthase, demonstrated that exchange of the C-terminal catalytic domain is sufficient to completely switch the resulting product profile. Exchange of smaller sequence elements identified a region of roughly 70 residues from 1,8-cineole synthase that, when substituted into sabinene synthase, conferred the ability to produce 1,8-cineole. A similar strategy identified a small region of bornyl diphosphate synthase important in conducting the anti-Markovnikov addition to the bornane skeleton. Observations made with these chimeric monoterpene cyclases are discussed in the context of the recently determined crystal structure for bornyl diphosphate synthase.
Collapse
Affiliation(s)
- Reuben J Peters
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | | |
Collapse
|
50
|
Kalde M, Barth M, Somssich IE, Lippok B. Members of the Arabidopsis WRKY group III transcription factors are part of different plant defense signaling pathways. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:295-305. [PMID: 12744458 DOI: 10.1094/mpmi.2003.16.4.295] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
WRKY proteins are a large group of transcription factors restricted to the plant kingdom. In Arabidopsis thaliana, the gene family consists of 74 members. Here, we analyzed the expression of all 13 members of one main WRKY subgroup and found that the majority are responsive both to pathogen infection and to salicylic acid. Temporal expression studies during compatible, incompatible, and nonhost interactions and employing plant defense-signaling mutants allowed us to define four distinct WRKY subsets responding to different signaling queues along defense pathways. These subsets did not reflect phylogenetic relationships. Promoter studies of one member, AtWRKY54, using a reporter gene construct in transgenic Arabidopsis plants, revealed that regulatory regions mediating pathogen and SA inducibility are clearly separable. In an AtWRKY54 knockout line, resistance to Peronospora parasitica was not compromised, but the transient expression kinetics of several WRKY genes was affected, suggesting both the existence of functional redundancy and intense cross-talk between signaling networks.
Collapse
Affiliation(s)
- Monika Kalde
- Max-Planck-lnstitut für Züchtungsforschung, Abteilung Molekulare Phytopathologie, Carl-von-Linné Weg 10, D-50829 Köln, Germany
| | | | | | | |
Collapse
|