1
|
Kiparaki M, Khan C, Folgado-Marco V, Chuen J, Moulos P, Baker NE. The transcription factor Xrp1 orchestrates both reduced translation and cell competition upon defective ribosome assembly or function. eLife 2022; 11:e71705. [PMID: 35179490 PMCID: PMC8933008 DOI: 10.7554/elife.71705] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 02/09/2022] [Indexed: 11/26/2022] Open
Abstract
Ribosomal Protein (Rp) gene haploinsufficiency affects translation rate, can lead to protein aggregation, and causes cell elimination by competition with wild type cells in mosaic tissues. We find that the modest changes in ribosomal subunit levels observed were insufficient for these effects, which all depended on the AT-hook, bZip domain protein Xrp1. Xrp1 reduced global translation through PERK-dependent phosphorylation of eIF2α. eIF2α phosphorylation was itself sufficient to enable cell competition of otherwise wild type cells, but through Xrp1 expression, not as the downstream effector of Xrp1. Unexpectedly, many other defects reducing ribosome biogenesis or function (depletion of TAF1B, eIF2, eIF4G, eIF6, eEF2, eEF1α1, or eIF5A), also increased eIF2α phosphorylation and enabled cell competition. This was also through the Xrp1 expression that was induced in these depletions. In the absence of Xrp1, translation differences between cells were not themselves sufficient to trigger cell competition. Xrp1 is shown here to be a sequence-specific transcription factor that regulates transposable elements as well as single-copy genes. Thus, Xrp1 is the master regulator that triggers multiple consequences of ribosomal stresses and is the key instigator of cell competition.
Collapse
Affiliation(s)
- Marianthi Kiparaki
- Department of Genetics, Albert Einstein College of MedicineThe BronxUnited States
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming”VariGreece
| | - Chaitali Khan
- Department of Genetics, Albert Einstein College of MedicineThe BronxUnited States
| | | | - Jacky Chuen
- Department of Genetics, Albert Einstein College of MedicineThe BronxUnited States
| | - Panagiotis Moulos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming”VariGreece
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of MedicineThe BronxUnited States
- Department of Developmental and Molecular Biology, Albert Einstein College of MedicineThe BronxUnited States
- Department of Opthalmology and Visual Sciences, Albert Einstein College of MedicineThe BronxUnited States
| |
Collapse
|
2
|
Nefedova LN, Urusov FA, Romanova NI, Shmel’kova AO, Kim AI. Study of the transcriptional and transpositional activities of the Tirant Retrotransposon in Drosophila melanogaster strains mutant for the flamenco locus. RUSS J GENET+ 2012. [DOI: 10.1134/s1022795412110063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
de Setta N, Van Sluys MA, Capy P, Carareto CMA. Copia retrotransposon in the Zaprionus genus: another case of transposable element sharing with the Drosophila melanogaster subgroup. J Mol Evol 2011; 72:326-38. [PMID: 21347850 DOI: 10.1007/s00239-011-9435-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 02/07/2011] [Indexed: 11/24/2022]
Abstract
Copia is a retrotransposon that appears to be distributed widely among the Drosophilidae subfamily. Evolutionary analyses of regulatory regions have indicated that the Copia retrotransposon evolved through both positive and purifying selection, and that horizontal transfer (HT) could also explain its patchy distribution of the among the subfamilies of the melanogaster subgroup. Additionally, Copia elements could also have transferred between melanogaster subgroup and other species of Drosophilidae-D. willistoni and Z. tuberculatus. In this study, we surveyed seven species of the Zaprionus genus by sequencing the LTR-ULR and reverse transcriptase regions, and by using RT-PCR in order to understand the distribution and evolutionary history of Copia in the Zaprionus genus. The Copia element was detected, and was transcriptionally active, in all species investigated. Structural and selection analysis revealed Zaprionus elements to be closely related to the most ancient subfamily of the melanogaster subgroup, and they seem to be evolving mainly under relaxed purifying selection. Taken together, these results allowed us to classify the Zaprionus sequences as a new subfamily-ZapCopia, a member of the Copia retrotransposon family of the melanogaster subgroup. These findings indicate that the Copia retrotransposon is an ancient component of the genomes of the Zaprionus species and broaden our understanding of the diversity of retrotransposons in the Zaprionus genus.
Collapse
Affiliation(s)
- Nathalia de Setta
- Laboratory of Molecular Evolution, Department of Biology, UNESP, São Paulo State University, 15054-000 São José do Rio Preto, SP, Brazil
| | | | | | | |
Collapse
|
4
|
Comparative analysis of transposable elements in the melanogaster subgroup sequenced genomes. Gene 2010; 473:100-9. [PMID: 21156200 DOI: 10.1016/j.gene.2010.11.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 11/24/2010] [Accepted: 11/24/2010] [Indexed: 11/22/2022]
Abstract
Transposable elements (TEs) are indwelling components of genomes, and their dynamics have been a driving force in genome evolution. Although we now have more information concerning their amounts and characteristics in various organisms, we still have little data from overall comparisons of their sequences in very closely-related species. While the Drosophila melanogaster genome has been extensively studied, we have only limited knowledge regarding the precise TE sequences in the genomes of the related species Drosophila simulans, Drosophila sechellia and Drosophila yakuba. In this study we analyzed the number and structure of TE copies in the sequenced genomes of these four species. Our findings show that, unexpectedly, the number of TE insertions in D. simulans is greater than that in D. melanogaster, but that most of the copies in D. simulans are degraded and in small fragments, as in D. sechellia and D. yakuba. This suggests that all three species were invaded by numerous TEs a long time ago, but have since regulated their activity, as the present TE copies are degraded, with very few full-length elements. In contrast, in D. melanogaster, a recent activation of TEs has resulted in a large number of almost-identical TE copies. We have detected variants of some TEs in D. simulans and D. sechellia, that are almost identical to the reference TE sequences in D. melanogaster, suggesting that D. melanogaster has recently been invaded by active TE variants from the other species. Our results indicate that the three species D. simulans, D. sechellia, and D. yakuba seem to be at a different stage of their TE life cycle when compared to D. melanogaster. Moreover, we show that D. melanogaster has been invaded by active TE variants for several TE families likely to come from D. simulans or the ancestor of D. simulans and D. sechellia. The numerous horizontal transfer events implied to explain these results could indicate introgression events between these species.
Collapse
|
5
|
Deprá M, Valente VLDS, Margis R, Loreto ELS. The hobo transposon and hobo-related elements are expressed as developmental genes in Drosophila. Gene 2009; 448:57-63. [PMID: 19720121 DOI: 10.1016/j.gene.2009.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 08/10/2009] [Accepted: 08/22/2009] [Indexed: 02/02/2023]
Abstract
Transposable elements comprise a significant part of genomes and are involved in their evolvability. The hobo element is found as an active class II transposable element in Drosophila melanogaster that is able to induce gonadal dysgenesis. Some hobo-related sequences (hRSs) are thought to be relics of old "hobo" invasions, and are therefore ancient genomic constituents. However, some of these hRSs are still mobile. The present study analyzed the expression pattern of hobo and a particular type of hRSs, hobo(VAHS). Both elements were shown to be expressed as sense and antisense mRNA transcripts. Expression analysis in whole mount embryos revealed a pattern similar to that of some developmental regulatory genes. Here we suggest that cis-regulatory sequences similar to those in developmental genes exist in hobo sequences. Therefore, hobo mobilization may contribute to the development of new regulatory networks during genomic evolution.
Collapse
Affiliation(s)
- Maríndia Deprá
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
6
|
Fablet M, Lerat E, Rebollo R, Horard B, Burlet N, Martinez S, Brasset E, Gilson E, Vaury C, Vieira C. Genomic environment influences the dynamics of the tirant LTR retrotransposon in Drosophila. FASEB J 2009; 23:1482-9. [PMID: 19141532 DOI: 10.1096/fj.08-123513] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Combining genome sequence analysis and functional analysis, we show that some full-length copies of tirant are present in heterochromatic regions in Drosophila simulans and that when tested in vitro, these copies have a functional promoter. However, when inserted in heterochromatic regions, tirant copies are inactive in vivo, and only transcription of euchromatic copies can be detected. Thus, our data indicate that the localization of the element is a hallmark of its activity in vivo and raise the question of genomic invasions by transposable elements and the importance of their genomic integration sites.
Collapse
Affiliation(s)
- Marie Fablet
- Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622, Villeurbanne, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Infra- and Transspecific Clues to Understanding the Dynamics of Transposable Elements. TRANSPOSONS AND THE DYNAMIC GENOME 2009. [DOI: 10.1007/7050_2009_044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Matyunina LV, Bowen NJ, McDonald JF. LTR retrotransposons and the evolution of dosage compensation in Drosophila. BMC Mol Biol 2008; 9:55. [PMID: 18533037 PMCID: PMC2443393 DOI: 10.1186/1471-2199-9-55] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 06/04/2008] [Indexed: 11/18/2022] Open
Abstract
Background Dosage compensation in Drosophila is the epigenetic process by which the expression of genes located on the single X-chromosome of males is elevated to equal the expression of X-linked genes in females where there are two copies of the X-chromosome. While epigenetic mechanisms are hypothesized to have evolved originally to silence transposable elements, a connection between transposable elements and the evolution of dosage compensation has yet to be demonstrated. Results We show that transcription of the Drosophila melanogaster copia LTR (long terminal repeat) retrotransposon is significantly down regulated when in the hemizygous state. DNA digestion and chromatin immunoprecipitation (ChIP) analyses demonstrate that this down regulation is associated with changes in chromatin structure mediated by the histone acetyltransferase, MOF. MOF has previously been shown to play a central role in the Drosophila dosage compensation complex by binding to the hemizygous X-chromosome in males. Conclusion Our results are consistent with the hypothesis that MOF originally functioned to silence retrotransposons and, over evolutionary time, was co-opted to play an essential role in dosage compensation in Drosophila.
Collapse
Affiliation(s)
- Lilya V Matyunina
- School of Biology and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | | | | |
Collapse
|
9
|
Fablet M, Rebollo R, Biémont C, Vieira C. The evolution of retrotransposon regulatory regions and its consequences on the Drosophila melanogaster and Homo sapiens host genomes. Gene 2006; 390:84-91. [PMID: 17005332 DOI: 10.1016/j.gene.2006.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 08/11/2006] [Accepted: 08/15/2006] [Indexed: 11/26/2022]
Abstract
It has now been established that transposable elements (TEs) make up a variable, but significant proportion of the genomes of all organisms, from Bacteria to Vertebrates. However, in addition to their quantitative importance, there is increasing evidence that TEs also play a functional role within the genome. In particular, TE regulatory regions can be viewed as a large pool of potential promoter sequences for host genes. Studying the evolution of regulatory region of TEs in different genomic contexts is therefore a fundamental aspect of understanding how a genome works. In this paper, we first briefly describe what is currently known about the regulation of TE copy number and activity in genomes, and then focus on TE regulatory regions and their evolution. We restrict ourselves to retrotransposons, which are the most abundant class of eukaryotic TEs, and analyze their evolution and the subsequent consequences for host genomes. Particular attention is paid to much-studied representatives of the Vertebrates and Invertebrates, Homo sapiens and Drosophila melanogaster, respectively, for which high quality sequenced genomes are available.
Collapse
Affiliation(s)
- Marie Fablet
- UMR CNRS 5558, Biométrie et Biologie Evolutive, Université Claude Bernard Lyon 1, 69622 Villeurbanne Cedex, France
| | | | | | | |
Collapse
|
10
|
Fablet M, McDonald JF, Biémont C, Vieira C. Ongoing loss of the tirant transposable element in natural populations of Drosophila simulans. Gene 2006; 375:54-62. [PMID: 16626897 DOI: 10.1016/j.gene.2006.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 01/16/2006] [Accepted: 02/08/2006] [Indexed: 10/24/2022]
Abstract
Tirant is a long terminal repeat (LTR) retrotransposon with an average of 11 insertion sites on the chromosome arms of Drosophila melanogaster flies collected from natural populations worldwide. In the sibling species Drosophila simulans, tirant is found only in African populations, which harbor a few insertion sites (1 to 5) on the chromosome arms, although some tirant sequences are present in the heterochromatin of most populations. This distribution in D. simulans reflects either the recent genomic invasion of African populations by a new variant of tirant, or a loss of tirant from the entire species apart from some sequence relics still present in Africa. In an attempt to clarify the situation, we focused on the LTR-UTR region of tirant copies from various populations of both D. melanogaster and D. simulans. We found two distinct types of regulatory region: one type was present in both D. melanogaster and D. simulans, and the other was present only in D. simulans. Copies of this latter type of tirant were transcriptionally inactive in gonads. Here we propose that the present day distribution of tirant in D. simulans populations reflects an ancient invasion of D. simulans by tirant copies followed by the loss of active copies from most populations, apart from the African ones, suggesting that this loss is still ongoing in this species.
Collapse
Affiliation(s)
- Marie Fablet
- UMR CNRS 5558, Biométrie et Biologie Evolutive, Université Claude Bernard Lyon 1, 69622 Villeurbanne Cedex, France
| | | | | | | |
Collapse
|
11
|
Shababi M, Bourque J, Palanichelvam K, Cole A, Xu D, Wan XF, Schoelz J. The ribosomal shunt translation strategy of cauliflower mosaic virus has evolved from ancient long terminal repeats. J Virol 2006; 80:3811-22. [PMID: 16571798 PMCID: PMC1440423 DOI: 10.1128/jvi.80.8.3811-3822.2006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 01/25/2006] [Indexed: 12/17/2022] Open
Abstract
We have screened portions of the large intergenic region of the Cauliflower mosaic virus (CaMV) genome for promoter activity in baker's yeast (Saccharomyces cerevisiae) and have identified an element that contributes to promoter activity in yeast but has negligible activity in plant cells when expressed in an agroinfiltration assay. A search of the yeast genome sequence revealed that the CaMV element had sequence similarity with the R region of the long terminal repeat (LTR) of the yeast Ty1 retrotransposon, with significant statistical confidence. In plants, the same CaMV sequence has been shown to have an essential role in the ribosomal shunt mechanism of translation, as it forms the base of the right arm of the stem-loop structure that is required for the ribosomal shunt. Since the left arm of the stem-loop structure must represent an imperfect reverse copy of the right arm, we propose that the ribosomal shunt has evolved from a pair of LTRs that have become incorporated end to end into the CaMV genome.
Collapse
Affiliation(s)
- Monir Shababi
- Division of Plant Sciences, 108 Waters Hall, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Brookfield JFY. Evolutionary forces generating sequence homogeneity and heterogeneity within retrotransposon families. Cytogenet Genome Res 2005; 110:383-91. [PMID: 16093690 DOI: 10.1159/000084970] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Accepted: 07/09/2004] [Indexed: 11/19/2022] Open
Abstract
Genome projects allow us to sample copies of a retrotransposon sequence family residing in a host genome. The variation in DNA sequence between these individual copies will reflect the evolutionary process that has spread the sequences through the genome. Here I review quantitatively the expected diversity of elements belonging to a transposable genetic element family. I use a simple neutral model for replicative mobile DNAs such as retrotransposons to predict the extent of sequence variability between members of a single family of transposable elements, both within and between species. The effects of horizontal transfer are also explored. I also consider the impact on these distributions of an increase in transposition rate arising from a mutational change in copy of the sequence. In addition, I consider the question of the interaction between retrotransposons and their hosts, and the causes of the abundance of transposable elements in the genomes that they occupy.
Collapse
Affiliation(s)
- J F Y Brookfield
- Institute of Genetics, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom.
| |
Collapse
|
13
|
Vicient CM, Kalendar R, Schulman AH. Variability, Recombination, and Mosaic Evolution of the Barley BARE-1 Retrotransposon. J Mol Evol 2005; 61:275-91. [PMID: 16034651 DOI: 10.1007/s00239-004-0168-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Accepted: 03/11/2005] [Indexed: 11/27/2022]
Abstract
BARE-1 is a highly abundant, copia-like, LTR (long terminal repeat) retrotransposon in the genus Hordeum. The LTRs provide the promoter, terminator, and polyadenylation signals necessary for the replicational life cycle of retrotransposons. We have examined the variability and evolution of BARE-1-like elements, focusing on the LTRs. Three groups were found, corresponding to each of the Hordeum genome types analyzed, which predate the divergence of these types. The most variable LTR regions are tandem repeats near the 3' end and the promoter. In barley (H. vulgare L.), two main classes of LTR promoters were defined, corresponding to BARE-1 and to a new class we call BARE-2. These can be considered as families within the group I BARE elements. Although less abundant in cultivated barley than is BARE-1, BARE-2 is transcriptionally active in leaves and calli. A sequenced BARE-2 has more than 99% similar LTRs and perfect terminal direct repeats (TDRs), indicating it is a recent insertion, but the coding region, especially gag, is disrupted by frameshifts and stop codons. BARE-2 appears to be a chimeric element resulting from retrotransposon recombination by strand switching during replication, with LTRs and 5'UTR more similar to BARE-1 and the rest more similar to Wis-2. We provide evidence as well for another form of recombination, where LTR-LTR recombination has generated tandem multimeric BARE-1 elements in which internal coding domains are interspersed with shared LTRs. The data indicate that recombination contributes to the complexity and plasticity of retroelement evolution in plant genomes.
Collapse
Affiliation(s)
- Carlos M Vicient
- MTT/BI Plant Genomics Laboratory, Institute of Biotechnology, University of Helsinki, Helsinki, FIN-00014, Finland
| | | | | |
Collapse
|
14
|
Mugnier N, Biémont C, Vieira C. New regulatory regions of Drosophila 412 retrotransposable element generated by recombination. Mol Biol Evol 2004; 22:747-57. [PMID: 15574808 DOI: 10.1093/molbev/msi060] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
There are no doubts that transposable elements (TEs) have greatly influenced genomes evolution. They have, however, evolved in different ways throughout mammals, plants, and invertebrates. In mammals they have been shown to be widely present but with low transposition activity; in plants they are responsible for large increases in genome size. In Drosophila, despite their low amount, transposition seems to be higher. Therefore, to understand how these elements have evolved in different genomes and how host genomes have proposed to go around them, are major questions on genome evolution. We analyzed sequences of the retrotransposable elements 412 in natural populations of the Drosophila simulans and D. melanogaster species that greatly differ in their amount of TEs. We identified new subfamilies of this element that were the result of mutation or insertion-deletion process, but also of interfamily recombinations. These new elements were well conserved in the D. simulans natural populations. The new regulatory regions produced by recombination could give rise to new elements able to overcome host control of transposition and, thus, become potential genome invaders.
Collapse
Affiliation(s)
- Nathalie Mugnier
- Laboratoire de Biométrie et Biologie Evolutive, Université Claude Bernard Lyon, Villeurbanne Cedex, France
| | | | | |
Collapse
|
15
|
Meignin C, Dastugue B, Vaury C. Intercellular communication between germ line and somatic line is utilized to control the transcription of ZAM, an endogenous retrovirus from Drosophila melanogaster. Nucleic Acids Res 2004; 32:3799-806. [PMID: 15263061 PMCID: PMC506797 DOI: 10.1093/nar/gkh708] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
ZAM is an long terminal repeat (LTR) retrotransposon from Drosophila melanogaster that bears striking resemblance to the vertebrate retroviruses, in their structure and replication cycle. This element transposes via an RNA intermediate and its reverse transcription, and ultimately inserts copies within the germ line. In this paper, we show that intercellular communication established between the germ line cells and the somatic follicle cells is used to initiate the replication cycle of ZAM. ZAM has been shown to be transcribed in the follicle cells located at the posterior pole of the oocyte. Here, we determine the cis-regulatory elements necessary for its somatic expression, and show that they respond to the EGF-receptor signaling pathway and its activation by the ligand Gurken emitted by the germ line. We further show that the ETS-transcription factor Pointed2 acting downstream of this pathway acts as a trans-regulatory factor and targets a specific cis-regulatory binding site located within the ZAM LTR. Our data give an insight into the molecular mechanism for how intercellular communications between germ cells and somatic cells may be used by endogenous retroviruses to control their replication, and thereby specify their intrinsic and highly restricted expression in the reproductive apparatus.
Collapse
|
16
|
Gray CE, Coates CJ. High-level gene expression in Aedes albopictus cells using a baculovirus Hr3 enhancer and IE1 transactivator. BMC Mol Biol 2004; 5:8. [PMID: 15251037 PMCID: PMC487899 DOI: 10.1186/1471-2199-5-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Accepted: 07/13/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aedes aegypti is the key vector of both the Yellow Fever and Dengue Fever viruses throughout many parts of the world. Low and variable transgene expression levels due to position effect and position effect variegation are problematic to efforts to create transgenic laboratory strains refractory to these viruses. Transformation efficiencies are also less than optimal, likely due to failure to detect expression from all integrated transgenes and potentially due to limited expression of the transposase required for transgene integration. RESULTS Expression plasmids utilizing three heterologous promoters and three heterologous enhancers, in all possible combinations, were tested. The Hr3/IE1 enhancer-transactivator in combination with each of the constitutive heterologous promoters tested increased reporter gene expression significantly in transiently transfected Aedes albopictus C7-10 cells. CONCLUSIONS The addition of the Hr3 enhancer to expression cassettes and concomitant expression of the IE1 transactivator gene product is a potential method for increasing the level of transgene expression in insect systems. This mechanism could also potentially be used to increase the level of transiently-expressed transposase in order to increase the number of integration events in transposon-mediated transformation experiments.
Collapse
Affiliation(s)
- Christine E Gray
- Department of Entomology, MS 2475, Texas A&M University, College Station, TX 77843-2475 USA
- Genetics Interdisciplinary Program, MS 2475, Texas A&M University, College Station, TX 77843-2475 USA
| | - Craig J Coates
- Department of Entomology, MS 2475, Texas A&M University, College Station, TX 77843-2475 USA
- Genetics Interdisciplinary Program, MS 2475, Texas A&M University, College Station, TX 77843-2475 USA
| |
Collapse
|
17
|
Meignin C, Bailly JL, Arnaud F, Dastugue B, Vaury C. The 5' untranslated region and Gag product of Idefix, a long terminal repeat-retrotransposon from Drosophila melanogaster, act together to initiate a switch between translated and untranslated states of the genomic mRNA. Mol Cell Biol 2003; 23:8246-54. [PMID: 14585982 PMCID: PMC262410 DOI: 10.1128/mcb.23.22.8246-8254.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Idefix is a long terminal repeat (LTR)-retrotransposon present in Drosophila melanogaster which shares similarities with vertebrates retroviruses both in its genomic arrangement and in the mechanism of transposition. Like in retroviruses, its two LTRs flank a long 5' untranslated region (5'UTR) and three open reading frames referred to as the gag, pol, and env genes. Here we report that its 5'UTR, located upstream of the gag gene, can fold into highly structured domains that are known to be incompatible with efficient translation by ribosome scanning. Using dicistronic plasmids analyzed by both (i) in vitro transcription and translation in rabbit reticulocyte or wheat germ lysates and (ii) in vivo expression in transgenic flies, we show that the 5'UTR of Idefix exhibits an internal ribosome entry site (IRES) activity that is able to promote translation of a downstream cistron in a cap-independent manner. The functional state of this novel IRES depends on eukaryotic factors that are independent of their host origin. However, in vivo, its function can be down-regulated by trans-acting factors specific to tissues or developmental stages of its host. We identify one of these trans-acting factors as the Gag protein encoded by Idefix itself. Our data support a model in which nascent Gag is able to block translation initiated from the viral mRNA and thus its own translation. These data highlight the fact that LTR-retrotransposons may autoregulate their replication cycle through their Gag production.
Collapse
Affiliation(s)
- Carine Meignin
- Unité INSERM U384, Service de Bactériologie-Virologie, Faculté de Médecine, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | | | | | | | | |
Collapse
|
18
|
von Sternberg R. On the roles of repetitive DNA elements in the context of a unified genomic-epigenetic system. Ann N Y Acad Sci 2002; 981:154-88. [PMID: 12547679 DOI: 10.1111/j.1749-6632.2002.tb04917.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Repetitive DNA sequences comprise a substantial portion of most eukaryotic and some prokaryotic chromosomes. Despite nearly forty years of research, the functions of various sequence families as a whole and their monomer units remain largely unknown. The inability to map specific functional roles onto many repetitive DNA elements (REs), coupled with the taxon-specificity of sequence families, have led many to speculate that these genomic components are "selfish" replicators generating genomic "junk." The purpose of this paper is to critically examine the selfishness, evolutionary effects, and functionality of REs. First, a brief overview of the range of ideas pertaining to RE function is presented. Second, the argument is presented that the selfish DNA "hypothesis" is actually a narrative scheme, that it serves to protect neo-Darwinian assumptions from criticism, and that this story is untestable and therefore not a hypothesis. Third, attempts to synthesize the selfish DNA concept with complex systems models of the genome and RE functionality are critiqued. Fourth, the supposed connection between RE-induced mutations and macroevolutionary events are stated to be at variance with empirical evidence and theoretical considerations. Hypotheses that base phylogenetic transitions in repetitive sequence changes thus remain speculative. Fifth and finally, the case is made for viewing REs as integrally functional components of chromosomes, genomes, and cells. It is argued throughout that a new conceptual framework is needed for understanding the roles of repetitive DNA in genomic/epigenetic systems, and that neo-Darwinian "narratives" have been the primary obstacle to elucidating the effects of these enigmatic components of chromosomes.
Collapse
Affiliation(s)
- Richard von Sternberg
- Department of Systematic Biology, NHB-163, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA.
| |
Collapse
|
19
|
Borie N, Maisonhaute C, Sarrazin S, Loevenbruck C, Biémont C. Tissue-specificity of 412 retrotransposon expression in Drosophila simulans and D. melanogaster. Heredity (Edinb) 2002; 89:247-52. [PMID: 12242639 DOI: 10.1038/sj.hdy.6800135] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2002] [Accepted: 06/20/2002] [Indexed: 11/09/2022] Open
Abstract
We analyse the expression of the retrotransposon 412 in the soma, testes, and ovaries in populations of Drosophila simulans and D. melanogaster, using RT-PCR and in situ hybridization. We find that expression of 412 is highly variable in the soma, confirming previous findings based on Northern blots. No 412RNA is detected in the ovaries by either in situ hybridization or RT-PCR, in any population of either species. Transcripts are, however, detected in the male germline, which show a very characteristic spatial pattern of 412 expression in primary spermatocytes. There is no relationship between expression of the 412 element in the soma and in the testes in the populations. These findings show that the expression of 412 is independently regulated in the soma and the testes, and this raises the question of the real influence of the somatic transcripts on the organism and on the transposition rate.
Collapse
Affiliation(s)
- N Borie
- UMR CNRS 5558 Biométrie et Biologie Evolutive, Université Lyon1 69622 Villeurbanne, France
| | | | | | | | | |
Collapse
|
20
|
Posey KL, Jones LB, Cerda R, Bajaj M, Huynh T, Hardin PE, Hardin SH. Survey of transcripts in the adult Drosophila brain. Genome Biol 2001; 2:RESEARCH0008. [PMID: 11276425 PMCID: PMC30707 DOI: 10.1186/gb-2001-2-3-research0008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2000] [Revised: 01/22/2001] [Accepted: 01/24/2001] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Classic methods of identifying genes involved in neural function include the laborious process of behavioral screening of mutagenized flies and then rescreening candidate lines for pleiotropic effects due to developmental defects. To accelerate the molecular analysis of brain function in Drosophila we constructed a cDNA library exclusively from adult brains. Our goal was to begin to develop a catalog of transcripts expressed in the brain. These transcripts are expected to contain a higher proportion of clones that are involved in neuronal function. RESULTS The library contains approximately 6.75 million independent clones. From our initial characterization of 271 randomly chosen clones, we expect that approximately 11% of the clones in this library will identify transcribed sequences not found in expressed sequence tag databases. Furthermore, 15% of these 271 clones are not among the 13,601 predicted Drosophila genes. CONCLUSIONS Our analysis of this unique Drosophila brain library suggests that the number of genes may be underestimated in this organism. This work complements the Drosophila genome project by providing information that facilitates more complete annotation of the genomic sequence. This library should be a useful resource that will help in determining how basic brain functions operate at the molecular level.
Collapse
Affiliation(s)
- Karen L Posey
- Department of Biology and Biochemistry, Institute of Molecular Biology, University of Houston, Houston, TX 77204-5513, USA
| | - Leslie B Jones
- Department of Biology and Biochemistry, Institute of Molecular Biology, University of Houston, Houston, TX 77204-5513, USA
| | - Rosalinda Cerda
- Department of Biology and Biochemistry, Institute of Molecular Biology, University of Houston, Houston, TX 77204-5513, USA
| | - Monica Bajaj
- Department of Biology and Biochemistry, Institute of Molecular Biology, University of Houston, Houston, TX 77204-5513, USA
| | - Thao Huynh
- Department of Biology and Biochemistry, Institute of Molecular Biology, University of Houston, Houston, TX 77204-5513, USA
| | - Paul E Hardin
- Department of Biology and Biochemistry, Institute of Molecular Biology, University of Houston, Houston, TX 77204-5513, USA
| | - Susan H Hardin
- Department of Biology and Biochemistry, Institute of Molecular Biology, University of Houston, Houston, TX 77204-5513, USA
| |
Collapse
|
21
|
Perdue S, Nuzhdin SV. Master copy is not responsible for the high rate of copia transposition in Drosophila. Mol Biol Evol 2000; 17:984-6. [PMID: 10833206 DOI: 10.1093/oxfordjournals.molbev.a026380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
Jordan IK, Matyunina LV, McDonald JF. Evidence for the recent horizontal transfer of long terminal repeat retrotransposon. Proc Natl Acad Sci U S A 1999; 96:12621-5. [PMID: 10535972 PMCID: PMC23018 DOI: 10.1073/pnas.96.22.12621] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The evolutionary dynamics existing between transposable elements (TEs) and their host genomes have been likened to an "arms race." The selfish drive of TEs to replicate, in turn, elicits the evolution of host-mediated regulatory mechanisms aimed at repressing transpositional activity. It has been postulated that horizontal (cross-species) transfer may be one effective strategy by which TEs and other selfish genes can escape host-mediated silencing mechanisms over evolutionary time; however, to date, the most definitive evidence that TEs horizontally transfer between species has been limited to class II or DNA-type elements. Evidence that the more numerous and widely distributed retroelements may also be horizontally transferred between species has been more ambiguous. In this paper, we report definitive evidence for a recent horizontal transfer of the copia long terminal repeat retrotransposon between Drosophila melanogaster and Drosophila willistoni.
Collapse
Affiliation(s)
- I K Jordan
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
23
|
Wilson S, Matyunina LV, McDonald JF. An enhancer region within the copia untranslated leader contains binding sites for Drosophila regulatory proteins. Gene 1998; 209:239-46. [PMID: 9524274 DOI: 10.1016/s0378-1119(98)00048-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The untranslated leader region (ULR) of the Drosophila LTR retrotransposon copia is known to be critical to the element's expression in a variety of species. Two copia ULR size variants are prevalent in natural populations. The more transcriptionally active full length variants contain within their ULRs two tandemly repeated copies of a 28-bp region of dyad symmetry with a sequence similarity to the core sequence of the SV40 enhancer. The region of dyad symmetry contains two inverted repeats of a 8-bp motif (TTGTGAAA) that occurs at three additional locations within the ULR. The less active ULR gap variants differ from full length variants in that they contain only one copy of the 28-bp sequence. We show that the full length copia ULR in either orientation but not the gap ULR can significantly enhance expression of a minimal hsp 70 promoter. We demonstrate by EMSA that the full length ULR, the gap ULR and the 28-bp sequence are each capable of binding the Drosophila CCAAT/enhancer binding protein (DmC/EBP) and another previously uncharacterized factor, copia binding factor-1 (CBF-1). Another Drosophila protein previously implicated in fat body specific expression of the alcohol dehydrogenase gene (Adh), the Box-B-binding factor-2 (BBF-2), is also shown to bind to the copia ULR.
Collapse
Affiliation(s)
- S Wilson
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
24
|
Takeda S, Sugimoto K, Otsuki H, Hirochika H. Transcriptional activation of the tobacco retrotransposon Tto1 by wounding and methyl jasmonate. PLANT MOLECULAR BIOLOGY 1998; 36:365-76. [PMID: 9484477 DOI: 10.1023/a:1005911413528] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The tobacco retrotransposon Tto1, one of a few active retrotransposons of plants, has been shown to be activated by tissue culture. Its transposition is regulated mainly at the transcriptional level. It is shown here that expression of Tto1 can be induced in leaves of tobacco by wounding stress. Exogenous supply of methyl jasmonate, which is known to be a potent inducer of certain wound-responsive genes in plants, also induces Tto1 RNA expression. Tto1 RNA was detected within 2 to 4 h after wounding/cutting treatment, and increased levels of Tto1 RNA were observed during subsequent incubation periods for 48 h. Expression of Tto1 RNA after cutting treatment was induced more significantly in young expanding leaves rather than in older mature leaves, suggesting that developmental or physiological factors may be required for the strong response to Tto1 transcription to wounding stimuli. Experiments with transgenic tobacco plants carrying the Tto1-LTR: beta-glucuronidase fusion gene (LTR:GUS) revealed that Tto1 actually contains cis-regulatory regions in response to wounding and methyl jasmonate. These findings are discussed in relation to the mechanism of transcriptional activation and the evolutionary role played by retrotransposons.
Collapse
Affiliation(s)
- S Takeda
- Department of Molecular Genetics, National Institute of Agrobiological Resources, Ibaraki, Japan
| | | | | | | |
Collapse
|