1
|
Heng X, Herrera AP, Song Z, Boris-Lawrie K. Retroviral PBS-segment sequence and structure: Orchestrating early and late replication events. Retrovirology 2024; 21:12. [PMID: 38886829 PMCID: PMC11181671 DOI: 10.1186/s12977-024-00646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
An essential regulatory hub for retroviral replication events, the 5' untranslated region (UTR) encodes an ensemble of cis-acting replication elements that overlap in a logical manner to carry out divergent RNA activities in cells and in virions. The primer binding site (PBS) and primer activation sequence initiate the reverse transcription process in virions, yet overlap with structural elements that regulate expression of the complex viral proteome. PBS-segment also encompasses the attachment site for Integrase to cut and paste the 3' long terminal repeat into the host chromosome to form the provirus and purine residues necessary to execute the precise stoichiometry of genome-length transcripts and spliced viral RNAs. Recent genetic mapping, cofactor affinity experiments, NMR and SAXS have elucidated that the HIV-1 PBS-segment folds into a three-way junction structure. The three-way junction structure is recognized by the host's nuclear RNA helicase A/DHX9 (RHA). RHA tethers host trimethyl guanosine synthase 1 to the Rev/Rev responsive element (RRE)-containing RNAs for m7-guanosine Cap hyper methylation that bolsters virion infectivity significantly. The HIV-1 trimethylated (TMG) Cap licenses specialized translation of virion proteins under conditions that repress translation of the regulatory proteins. Clearly host-adaption and RNA shapeshifting comprise the fundamental basis for PBS-segment orchestrating both reverse transcription of virion RNA and the nuclear modification of m7G-Cap for biphasic translation of the complex viral proteome. These recent observations, which have exposed even greater complexity of retroviral RNA biology than previously established, are the impetus for this article. Basic research to fully comprehend the marriage of PBS-segment structures and host RNA binding proteins that carry out retroviral early and late replication events is likely to expose an immutable virus-specific therapeutic target to attenuate retrovirus proliferation.
Collapse
Affiliation(s)
- Xiao Heng
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA.
| | - Amanda Paz Herrera
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Zhenwei Song
- Department of Veterinary and Biomedical Sciences, Institute for Molecular Virology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Kathleen Boris-Lawrie
- Department of Veterinary and Biomedical Sciences, Institute for Molecular Virology, University of Minnesota, Saint Paul, MN, 55108, USA.
| |
Collapse
|
2
|
Tebit DM, Nickel G, Gibson R, Rodriguez M, Hathaway NJ, Bain K, Reyes-Rodriguez AL, Ondoa P, Heeney JL, Li Y, Bongorno J, Canaday D, McDonald D, Bailey JA, Arts EJ. Replicative fitness and pathogenicity of primate lentiviruses in lymphoid tissue, primary human and chimpanzee cells: relation to possible jumps to humans. EBioMedicine 2024; 100:104965. [PMID: 38215691 PMCID: PMC10827413 DOI: 10.1016/j.ebiom.2023.104965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Simian immunodeficiency viruses (SIV) have been jumping between non-human primates in West/Central Africa for thousands of years and yet, the HIV-1 epidemic only originated from a primate lentivirus over 100 years ago. METHODS This study examined the replicative fitness, transmission, restriction, and cytopathogenicity of 22 primate lentiviruses in primary human lymphoid tissue and both primary human and chimpanzee peripheral blood mononuclear cells. FINDINGS Pairwise competitions revealed that SIV from chimpanzees (cpz) had the highest replicative fitness in human or chimpanzee peripheral blood mononuclear cells, even higher fitness than HIV-1 group M strains responsible for worldwide epidemic. The SIV strains belonging to the "HIV-2 lineage" (including SIVsmm, SIVmac, SIVagm) had the lowest replicative fitness. SIVcpz strains were less inhibited by human restriction factors than the "HIV-2 lineage" strains. SIVcpz efficiently replicated in human tonsillar tissue but did not deplete CD4+ T-cells, consistent with the slow or nonpathogenic disease observed in most chimpanzees. In contrast, HIV-1 isolates and SIV of the HIV-2 lineage were pathogenic to the human tonsillar tissue, almost independent of the level of virus replication. INTERPRETATION Of all primate lentiviruses, SIV from chimpanzees appears most capable of infecting and replicating in humans, establishing HIV-1. SIV from other Old World monkeys, e.g. the progenitor of HIV-2, replicate slowly in humans due in part to restriction factors. Nonetheless, many of these SIV strains were more pathogenic than SIVcpz. Either SIVcpz evolved into a more pathogenic virus while in humans or a rare SIVcpz, possibly extinct in chimpanzees, was pathogenic immediately following the jump into human. FUNDING Support for this study to E.J.A. was provided by the NIH/NIAID R01 AI49170 and CIHR project grant 385787. Infrastructure support was provided by the NIH CFAR AI36219 and Canadian CFI/Ontario ORF 36287. Efforts of J.A.B. and N.J.H. was provided by NIH AI099473 and for D.H.C., by VA and NIH AI AI080313.
Collapse
Affiliation(s)
- Denis M Tebit
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA; Global Biomed Scientific, LLC, P.O. Box 2368, Forest, VA, USA
| | - Gabrielle Nickel
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Richard Gibson
- Department of Microbiology and Immunology, Western University, Ontario, Canada
| | - Myriam Rodriguez
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Nicolas J Hathaway
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Katie Bain
- Department of Microbiology and Immunology, Western University, Ontario, Canada
| | - Angel L Reyes-Rodriguez
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Pascal Ondoa
- African Society for Laboratory Medicine, Addis Ababa, Ethiopia; Department of Global Health, Institute of Global Health and Development, University of Amsterdam, Amsterdam, the Netherlands
| | - Jonathan L Heeney
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Yue Li
- Department of Microbiology and Immunology, Western University, Ontario, Canada
| | - Jennifer Bongorno
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - David Canaday
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - David McDonald
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jeffrey A Bailey
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Eric J Arts
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Microbiology and Immunology, Western University, Ontario, Canada.
| |
Collapse
|
3
|
Brady S, Singh G, Bolinger C, Song Z, Boeras I, Weng K, Trent B, Brown WC, Singh K, Boris-Lawrie K, Heng X. Virion-associated, host-derived DHX9/RNA helicase A enhances the processivity of HIV-1 reverse transcriptase on genomic RNA. J Biol Chem 2019; 294:11473-11485. [PMID: 31175158 PMCID: PMC6663884 DOI: 10.1074/jbc.ra119.007679] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/04/2019] [Indexed: 02/02/2023] Open
Abstract
DHX9/RNA helicase A (RHA) is a host RNA helicase that participates in many critical steps of the HIV-1 life cycle. It co-assembles with the viral RNA genome into the capsid core. Virions deficient in RHA are less infectious as a result of reduced reverse transcription efficiency, demonstrating that the virion-associated RHA promotes reverse transcription before the virion gains access to the new host's RHA. Here, we quantified reverse-transcription intermediates in HIV-1-infected T cells to clarify the mechanism by which RHA enhances HIV-1 reverse transcription efficiency. Consistently, purified recombinant human RHA promoted reverse transcription efficiency under in vitro conditions that mimic the early reverse transcription steps prior to capsid core uncoating. We did not observe RHA-mediated structural remodeling of the tRNALys3-viral RNA-annealed complex. RHA did not enhance the DNA synthesis rate until incorporation of the first few nucleotides, suggesting that RHA participates primarily in the elongation phase of reverse transcription. Pre-steady-state and steady-state kinetic studies revealed that RHA has little impact on the kinetics of single-nucleotide incorporation. Primer extension assays performed in the presence of trap dsDNA disclosed that RHA enhances the processivity of HIV-1 reverse transcriptase (RT). The biochemical assays used here effectively reflected and explained the low RT activity in HIV-1 virions produced from RHA-depleted cells. Moreover, RT activity in our assays indicated that RHA in HIV-1 virions is required for the efficient catalysis of (-)cDNA synthesis during viral infection before capsid uncoating. Our study identifies RHA as a processivity factor of HIV-1 RT.
Collapse
Affiliation(s)
- Samantha Brady
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Gatikrushna Singh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota 55108
| | - Cheryl Bolinger
- Department of Veterinary Biosciences, Ohio State University, Columbus, Ohio 432105
| | - Zhenwei Song
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Ioana Boeras
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota 55108
| | - Kexin Weng
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Bria Trent
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - William Clay Brown
- Center for Structural Biology, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Kamalendra Singh
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65211
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Kathleen Boris-Lawrie
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota 55108
- Department of Veterinary Biosciences, Ohio State University, Columbus, Ohio 432105
| | - Xiao Heng
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
4
|
HIV-1 Exploits a Dynamic Multi-aminoacyl-tRNA Synthetase Complex To Enhance Viral Replication. J Virol 2017; 91:JVI.01240-17. [PMID: 28814526 DOI: 10.1128/jvi.01240-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/10/2017] [Indexed: 11/20/2022] Open
Abstract
A hallmark of retroviruses such as human immunodeficiency virus type 1 (HIV-1) is reverse transcription of genomic RNA to DNA, a process that is primed by cellular tRNAs. HIV-1 recruits human tRNALys3 to serve as the reverse transcription primer via an interaction between lysyl-tRNA synthetase (LysRS) and the HIV-1 Gag polyprotein. LysRS is normally sequestered in a multi-aminoacyl-tRNA synthetase complex (MSC). Previous studies demonstrated that components of the MSC can be mobilized in response to certain cellular stimuli, but how LysRS is redirected from the MSC to viral particles for packaging is unknown. Here, we show that upon HIV-1 infection, a free pool of non-MSC-associated LysRS is observed and partially relocalized to the nucleus. Heat inactivation of HIV-1 blocks nuclear localization of LysRS, but treatment with a reverse transcriptase inhibitor does not, suggesting that the trigger for relocalization occurs prior to reverse transcription. A reduction in HIV-1 infection is observed upon treatment with an inhibitor to mitogen-activated protein kinase that prevents phosphorylation of LysRS on Ser207, release of LysRS from the MSC, and nuclear localization. A phosphomimetic mutant of LysRS (S207D) that lacked the capability to aminoacylate tRNALys3 localized to the nucleus, rescued HIV-1 infectivity, and was packaged into virions. In contrast, a phosphoablative mutant (S207A) remained cytosolic and maintained full aminoacylation activity but failed to rescue infectivity and was not packaged. These findings suggest that HIV-1 takes advantage of the dynamic nature of the MSC to redirect and coopt cellular translation factors to enhance viral replication.IMPORTANCE Human tRNALys3, the primer for reverse transcription, and LysRS are essential host factors packaged into HIV-1 virions. Previous studies found that tRNALys3 packaging depends on interactions between LysRS and HIV-1 Gag; however, many details regarding the mechanism of tRNALys3 and LysRS packaging remain unknown. LysRS is normally sequestered in a high-molecular-weight multi-aminoacyl-tRNA synthetase complex (MSC), restricting the pool of free LysRS-tRNALys Mounting evidence suggests that LysRS is released under a variety of stimuli to perform alternative functions within the cell. Here, we show that HIV-1 infection results in a free pool of LysRS that is relocalized to the nucleus of target cells. Blocking this pathway in HIV-1-producing cells resulted in less infectious progeny virions. Understanding the mechanism by which LysRS is recruited into the viral assembly pathway can be exploited for the development of specific and effective therapeutics targeting this nontranslational function.
Collapse
|
5
|
A cell-based strategy to assess intrinsic inhibition efficiencies of HIV-1 reverse transcriptase inhibitors. Antimicrob Agents Chemother 2014; 59:838-48. [PMID: 25403670 DOI: 10.1128/aac.04163-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
During HIV-1 reverse transcription, there are increasing opportunities for nucleos(t)ide (NRTI) or nonnucleoside (NNRTI) reverse transcriptase (RT) inhibitors to stop elongation of the nascent viral DNA (vDNA). In addition, RT inhibitors appear to influence the kinetics of vDNA synthesis differently. While cell-free kinetic inhibition constants have provided detailed mechanistic insight, these assays are dependent on experimental conditions that may not mimic the cellular milieu. Here we describe a novel cell-based strategy to provide a measure of the intrinsic inhibition efficiencies of clinically relevant RT inhibitors on a per-stop-site basis. To better compare inhibition efficiencies among HIV-1 RT inhibitors that can stop reverse transcription at any number of different stop sites, their basic probability, p, of getting stopped at any potential stop site was determined. A relationship between qPCR-derived 50% effective inhibitory concentrations (EC50s) and this basic probability enabled determination of p by successive approximation. On a per-stop-site basis, tenofovir (TFV) exhibited 1.4-fold-greater inhibition efficiency than emtricitabine (FTC), and as a class, both NRTIs exhibited an 8- to 11-fold greater efficiency than efavirenz (EFV). However, as more potential stops sites were considered, the probability of reverse transcription failing to reach the end of the template approached equivalence between both classes of RT inhibitors. Overall, this novel strategy provides a quantitative measure of the intrinsic inhibition efficiencies of RT inhibitors in the natural cellular milieu and thus may further understanding of drug efficacy. This approach also has applicability for understanding the impact of viral polymerase-based inhibitors (alone or in combination) in other virus systems.
Collapse
|
6
|
Wadford DA, Kauffman RC, Deere JD, Aoki ST, Stanton RA, Higgins J, Van Rompay KKA, Villalobos A, Nettles JH, Schinazi RF, Pedersen NC, North TW. Variation of human immunodeficiency virus type-1 reverse transcriptase within the simian immunodeficiency virus genome of RT-SHIV. PLoS One 2014; 9:e86997. [PMID: 24498008 PMCID: PMC3909041 DOI: 10.1371/journal.pone.0086997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/17/2013] [Indexed: 11/25/2022] Open
Abstract
RT-SHIV is a chimera of simian immunodeficiency virus (SIV) containing the reverse transcriptase (RT)-encoding region of human immunodeficiency virus type 1 (HIV-1) within the backbone of SIVmac239. It has been used in a non-human primate model for studies of non-nucleoside RT inhibitors (NNRTI) and highly active antiretroviral therapy (HAART). We and others have identified several mutations that arise in the "foreign" HIV-1 RT of RT-SHIV during in vivo replication. In this study we catalogued amino acid substitutions in the HIV-1 RT and in regions of the SIV backbone with which RT interacts that emerged 30 weeks post-infection from seven RT-SHIV-infected rhesus macaques. The virus set points varied from relatively high virus load, moderate virus load, to undetectable virus load. The G196R substitution in RT was detected from 6 of 7 animals at week 4 post-infection and remained in virus from 4 of 6 animals at week 30. Virus from four high virus load animals showed several common mutations within RT, including L74V or V75L, G196R, L214F, and K275R. The foreign RT from high virus load isolates exhibited as much variation as that of the highly variable envelope surface glycoprotein, and 10-fold higher than that of the native RT of SIVmac239. Isolates from moderate virus load animals showed much less variation in the foreign RT than the high virus load isolates. No variation was found in SIVmac239 genes known to interact with RT. Our results demonstrate substantial adaptation of the foreign HIV-1 RT in RT-SHIV-infected macaques, which most likely reflects selective pressure upon the foreign RT to attain optimal activity within the context of the chimeric RT-SHIV and the rhesus macaque host.
Collapse
Affiliation(s)
- Debra A. Wadford
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Robert C. Kauffman
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Jesse D. Deere
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Scott T. Aoki
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Richard A. Stanton
- Children's Center for Drug Discovery (CDD), Departments of Pediatrics and Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Joanne Higgins
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Koen K. A. Van Rompay
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
| | - Andradi Villalobos
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - James H. Nettles
- Children's Center for Drug Discovery (CDD), Departments of Pediatrics and Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Raymond F. Schinazi
- Emory University School of Medicine, Veterans Affairs Medical Center, Decatur, Georgia, United States of America
| | - Niels C. Pedersen
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Thomas W. North
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
7
|
Jones CP, Saadatmand J, Kleiman L, Musier-Forsyth K. Molecular mimicry of human tRNALys anti-codon domain by HIV-1 RNA genome facilitates tRNA primer annealing. RNA (NEW YORK, N.Y.) 2013; 19:219-29. [PMID: 23264568 PMCID: PMC3543088 DOI: 10.1261/rna.036681.112] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/14/2012] [Indexed: 05/18/2023]
Abstract
The primer for initiating reverse transcription in human immunodeficiency virus type 1 (HIV-1) is tRNA(Lys3). Host cell tRNA(Lys) is selectively packaged into HIV-1 through a specific interaction between the major tRNA(Lys)-binding protein, human lysyl-tRNA synthetase (hLysRS), and the viral proteins Gag and GagPol. Annealing of the tRNA primer onto the complementary primer-binding site (PBS) in viral RNA is mediated by the nucleocapsid domain of Gag. The mechanism by which tRNA(Lys3) is targeted to the PBS and released from hLysRS prior to annealing is unknown. Here, we show that hLysRS specifically binds to a tRNA anti-codon-like element (TLE) in the HIV-1 genome, which mimics the anti-codon loop of tRNA(Lys) and is located proximal to the PBS. Mutation of the U-rich sequence within the TLE attenuates binding of hLysRS in vitro and reduces the amount of annealed tRNA(Lys3) in virions. Thus, LysRS binds specifically to the TLE, which is part of a larger LysRS binding domain in the viral RNA that includes elements of the Psi packaging signal. Our results suggest that HIV-1 uses molecular mimicry of the anti-codon of tRNA(Lys) to increase the efficiency of tRNA(Lys3) annealing to viral RNA.
Collapse
MESH Headings
- Base Pairing
- Electrophoretic Mobility Shift Assay
- Genome, Viral/genetics
- HIV Enhancer/genetics
- HIV-1/genetics
- HIV-1/physiology
- Humans
- Lysine-tRNA Ligase/genetics
- Lysine-tRNA Ligase/metabolism
- Molecular Mimicry
- Mutation
- Protein Structure, Tertiary
- RNA
- RNA, Transfer, Lys/chemistry
- RNA, Transfer, Lys/genetics
- RNA, Transfer, Lys/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Virus Assembly/genetics
- Virus Replication/genetics
- gag Gene Products, Human Immunodeficiency Virus/metabolism
Collapse
Affiliation(s)
- Christopher P. Jones
- Department of Chemistry and Biochemistry, Center for Retroviral Research, and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jenan Saadatmand
- Lady Davis Institute for Medical Research, McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada, H3T1E2
| | - Lawrence Kleiman
- Lady Davis Institute for Medical Research, McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada, H3T1E2
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for Retroviral Research, and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- Corresponding authorE-mail
| |
Collapse
|
8
|
Uppuladinne MVN, Sonavane UB, Joshi RR. MD simulations of HIV-1 RT primer-template complex: effect of modified nucleosides and antisense PNA oligomer. J Biomol Struct Dyn 2012; 31:539-60. [PMID: 22888964 DOI: 10.1080/07391102.2012.706076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) requires the human tRNA(3)(Lys) as a reverse transcriptase (RT) primer. The annealing of 3' terminal 18 nucleotides of tRNA(3)(Lys) with the primer binding site (PBS) of viral RNA (vRNA) is crucial for reverse transcription. Additional contacts between the A rich (A-loop) region of vRNA and the anticodon domain of tRNA(3)(Lys) are necessary, which show the specific requirement of tRNA(3)(Lys). The importance of modified nucleosides, present in tRNA(3)(Lys), in giving stability to the primer-template complex has been determined in earlier experiments. It has been observed that the PNA oligomer targeted to PBS of vRNA destabilized the crucial interactions between primer and template due to which the reverse transcription is inhibited. Molecular dynamics simulations have been carried out to study the effect of modified nucleosides on the vRNA-tRNA(3)(Lys) complex stability and the destabilization effect of PNA oligomer on the vRNA-tRNA(3)(Lys)-PNA complex. The root-mean-square deviation, hydrogen bonding, tertiary interactions, and free energy calculations of the simulation data support the experimental results. The analyses have revealed the structural changes in PBS region of vRNA which might be another strong reason for the inability of RT binding to 7F helix for its normal functioning of reverse transcription.
Collapse
|
9
|
Kenyon JC, Lever AML. The molecular biology of feline immunodeficiency virus (FIV). Viruses 2011; 3:2192-213. [PMID: 22163340 PMCID: PMC3230847 DOI: 10.3390/v3112192] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 10/31/2011] [Accepted: 10/31/2011] [Indexed: 11/29/2022] Open
Abstract
Feline immunodeficiency virus (FIV) is widespread in feline populations and causes an AIDS-like illness in domestic cats. It is highly prevalent in several endangered feline species. In domestic cats FIV infection is a valuable small animal model for HIV infection. In recent years there has been sa significant increase in interest in FIV, in part to exploit this, but also because of the potential it has as a human gene therapy vector. Though much less studied than HIV there are many parallels in the replication of the two viruses, but also important differences and, despite their likely common origin, the viruses have in some cases used alternative strategies to overcome similar problems. Recent advances in understanding the structure and function of FIV RNA and proteins and their interactions has enhanced our knowledge of FIV replication significantly, however, there are still many gaps. This review summarizes our current knowledge of FIV molecular biology and its similarities with, and differences from, other lentiviruses.
Collapse
Affiliation(s)
- Julia C Kenyon
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | | |
Collapse
|
10
|
Lalonde MS, Lobritz MA, Ratcliff A, Chamanian M, Athanassiou Z, Tyagi M, Wong J, Robinson JA, Karn J, Varani G, Arts EJ. Inhibition of both HIV-1 reverse transcription and gene expression by a cyclic peptide that binds the Tat-transactivating response element (TAR) RNA. PLoS Pathog 2011; 7:e1002038. [PMID: 21625572 PMCID: PMC3098202 DOI: 10.1371/journal.ppat.1002038] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 03/04/2011] [Indexed: 11/18/2022] Open
Abstract
The RNA response element TAR plays a critical role in HIV replication by
providing a binding site for the recruitment of the viral transactivator protein
Tat. Using a structure-guided approach, we have developed a series of
conformationally-constrained cyclic peptides that act as structural mimics of
the Tat RNA binding region and block Tat-TAR interactions at nanomolar
concentrations in vitro. Here we show that these compounds
block Tat-dependent transcription in cell-free systems and in cell-based
reporter assays. The compounds are also cell permeable, have low toxicity, and
inhibit replication of diverse HIV-1 strains, including both CXCR4-tropic and
CCR5-tropic primary HIV-1 isolates of the divergent subtypes A, B, C, D and
CRF01_AE. In human peripheral blood mononuclear cells, the cyclic peptidomimetic
L50 exhibited an IC50 ∼250 nM. Surprisingly, inhibition of
LTR-driven HIV-1 transcription could not account for the full antiviral
activity. Timed drug-addition experiments revealed that L-50 has a bi-phasic
inhibition curve with the first phase occurring after HIV-1 entry into the host
cell and during the initiation of HIV-1 reverse transcription. The second phase
coincides with inhibition of HIV-1 transcription. Reconstituted reverse
transcription assays confirm that HIV-1 (−) strand strong stop DNA
synthesis is blocked by L50-TAR RNA interactions in-vitro.
These findings are consistent with genetic evidence that TAR plays critical
roles both during reverse transcription and during HIV gene expression. Our
results suggest that antiviral drugs targeting TAR RNA might be highly effective
due to a dual inhibitory mechanism. The HIV-1 transactivator protein (Tat), together with the elongation factor
P-TEFb binds to an HIV-1 RNA secondary structure in the 5′-UTRs of nascent
viral mRNAs (TAR) and promotes transcription elongation. This process has been
an attractive target for drug development but previous inhibitors that bind
either Tat or TAR have been plagued by poor inhibition of virus replication,
limited cell penetration, and off-target effects. In this article, we describe a
series of rationally designed cyclic peptides that block Tat-TAR interactions.
L50, the most potent of these compounds, inhibits a wide range of HIV-1 strains
from around the world. Remarkably, L50 inhibits two distinct steps in the HIV-1
lifecycle. As expected, L50 inhibits Tat-dependent HIV-1 transcription, but the
majority of its anti-HIV activity is due to a block in reverse transcription,
i.e. synthesis of the proviral DNA from the RNA genome. L50 inhibition of
reverse transcription reveals an important role for TAR RNA during reverse
transcription as well as providing one of first examples of a drug with a dual
mechanism of action.
Collapse
Affiliation(s)
- Matthew S. Lalonde
- Department of Biochemistry, Case Western
Reserve University, Cleveland, Ohio, United States of America
| | - Michael A. Lobritz
- Department of Molecular Biology and
Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of
America
| | - Annette Ratcliff
- Department of Molecular Biology and
Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of
America
| | - Mastooreh Chamanian
- Department of Molecular Biology and
Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of
America
| | - Zafiria Athanassiou
- Department of Chemistry and Department of
Biochemistry, University of Washington, Seattle, Washington, United States of
America
| | - Mudit Tyagi
- Department of Molecular Biology and
Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of
America
| | - Julian Wong
- Department of Molecular Biology and
Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of
America
| | - John A. Robinson
- Department of Chemistry, University of Zurich,
Zurich, Switzerland
| | - Jonathan Karn
- Department of Molecular Biology and
Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of
America
| | - Gabriele Varani
- Department of Chemistry and Department of
Biochemistry, University of Washington, Seattle, Washington, United States of
America
| | - Eric J. Arts
- Department of Molecular Biology and
Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of
America
- Division of Infectious Diseases, Department of
Medicine, Case Western Reserve University, Cleveland, Ohio, United States of
America
- * E-mail:
| |
Collapse
|
11
|
Coordinate roles of Gag and RNA helicase A in promoting the annealing of formula to HIV-1 RNA. J Virol 2010; 85:1847-60. [PMID: 21106734 DOI: 10.1128/jvi.02010-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
RNA helicase A (RHA) has been shown to promote HIV-1 replication at both the translation and reverse transcription stages. A prerequisite step for reverse transcription involves the annealing of tRNA(3)(Lys), the primer for reverse transcription, to HIV-1 RNA. tRNA(3)(Lys) annealing is a multistep process that is initially facilitated by Gag prior to viral protein processing. Herein, we report that RHA promotes this annealing through increasing both the quantity of tRNA(3)(Lys) annealed by Gag and the ability of tRNA(3)(Lys) to prime the initiation of reverse transcription. This improved annealing is the result of an altered viral RNA conformation produced by the coordinate action of Gag and RHA. Since RHA has been reported to promote the translation of unspliced viral RNA to Gag protein, our observations suggest that the conformational change in viral RNA induced by RHA and newly produced Gag may help facilitate the switch in viral RNA from a translational mode to one facilitating tRNA(3)(Lys) annealing.
Collapse
|
12
|
Levin JG, Mitra M, Mascarenhas A, Musier-Forsyth K. Role of HIV-1 nucleocapsid protein in HIV-1 reverse transcription. RNA Biol 2010; 7:754-74. [PMID: 21160280 DOI: 10.4161/rna.7.6.14115] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The HIV-1 nucleocapsid protein (NC) is a nucleic acid chaperone, which remodels nucleic acid structures so that the most thermodynamically stable conformations are formed. This activity is essential for virus replication and has a critical role in mediating highly specific and efficient reverse transcription. NC's function in this process depends upon three properties: (1) ability to aggregate nucleic acids; (2) moderate duplex destabilization activity; and (3) rapid on-off binding kinetics. Here, we present a detailed molecular analysis of the individual events that occur during viral DNA synthesis and show how NC's properties are important for almost every step in the pathway. Finally, we also review biological aspects of reverse transcription during infection and the interplay between NC, reverse transcriptase, and human APOBEC3G, an HIV-1 restriction factor that inhibits reverse transcription and virus replication in the absence of the HIV-1 Vif protein.
Collapse
Affiliation(s)
- Judith G Levin
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | |
Collapse
|
13
|
Isel C, Ehresmann C, Marquet R. Initiation of HIV Reverse Transcription. Viruses 2010; 2:213-243. [PMID: 21994608 PMCID: PMC3185550 DOI: 10.3390/v2010213] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 01/08/2010] [Accepted: 01/13/2010] [Indexed: 12/01/2022] Open
Abstract
Reverse transcription of retroviral genomes into double stranded DNA is a key event for viral replication. The very first stage of HIV reverse transcription, the initiation step, involves viral and cellular partners that are selectively packaged into the viral particle, leading to an RNA/protein complex with very specific structural and functional features, some of which being, in the case of HIV-1, linked to particular isolates. Recent understanding of the tight spatio-temporal regulation of reverse transcription and its importance for viral infectivity further points toward reverse transcription and potentially its initiation step as an important drug target.
Collapse
Affiliation(s)
- Catherine Isel
- Authors to whom correspondence should be addressed; E-Mail: ; Tel.: +33-388-417-040; Fax: +33-388-602-218 (C.I.); E-Mail: ; Tel.: +33-388-417-054; Fax: +33-388-602-218 (R.M.)
| | | | - Roland Marquet
- Authors to whom correspondence should be addressed; E-Mail: ; Tel.: +33-388-417-040; Fax: +33-388-602-218 (C.I.); E-Mail: ; Tel.: +33-388-417-054; Fax: +33-388-602-218 (R.M.)
| |
Collapse
|
14
|
Hizi A, Herschhorn A. Retroviral reverse transcriptases (other than those of HIV-1 and murine leukemia virus): a comparison of their molecular and biochemical properties. Virus Res 2008; 134:203-20. [PMID: 18291546 DOI: 10.1016/j.virusres.2007.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 12/16/2007] [Accepted: 12/17/2007] [Indexed: 10/22/2022]
Abstract
This chapter reviews most of the biochemical data on reverse transcriptases (RTs) of retroviruses, other than those of HIV-1 and murine leukemia virus (MLV) that are covered in detail in other reviews of this special edition devoted to reverse transcriptases. The various RTs mentioned are grouped according to their retroviral origins and include the RTs of the alpharetroviruses, lentiviruses (both primate, other than HIV-1, and non-primate lentiviruses), betaretroviruses, deltaretroviruses and spumaretroviruses. For each RT group, the processing, molecular organization as well as the enzymatic activities and biochemical properties are described. Several RTs function as dimers, primarily as heterodimers, while the others are active as monomeric proteins. The comparisons between the diverse properties of the various RTs show the common traits that characterize the RTs from all retroviral subfamilies. In addition, the unique features of the specific RTs groups are also discussed.
Collapse
Affiliation(s)
- Amnon Hizi
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | | |
Collapse
|
15
|
Abbink TEM, Berkhout B. HIV-1 reverse transcription: close encounters between the viral genome and a cellular tRNA. ADVANCES IN PHARMACOLOGY 2007; 55:99-135. [PMID: 17586313 DOI: 10.1016/s1054-3589(07)55003-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
Affiliation(s)
- Truus E M Abbink
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center of the University of Amsterdam, Meibergdreef 15, Amsterdam, The Netherlands
| | | |
Collapse
|
16
|
Ooms M, Cupac D, Abbink TEM, Huthoff H, Berkhout B. The availability of the primer activation signal (PAS) affects the efficiency of HIV-1 reverse transcription initiation. Nucleic Acids Res 2007; 35:1649-59. [PMID: 17308346 PMCID: PMC1865047 DOI: 10.1093/nar/gkm046] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Initiation of reverse transcription of a retroviral RNA genome is strictly regulated. The tRNA primer binds to the primer binding site (PBS), and subsequent priming is triggered by the primer activation signal (PAS) that also pairs with the tRNA. We observed that in vitro reverse transcription initiation of the HIV-1 leader RNA varies in efficiency among 3′-end truncated transcripts, despite the presence of both PBS and PAS motifs. As the HIV-1 leader RNA can adopt two different foldings, we investigated if the conformational state of the transcripts did influence the efficiency of reverse transcription initiation. However, mutant transcripts that exclusively fold one or the other structure were similarly active, thereby excluding the possibility of regulation of reverse transcription initiation by the structure riboswitch. We next set out to determine the availability of the PAS element. This sequence motif enhances the efficiency of reverse transcription initiation, but its activity is regulated because the PAS motif is initially base paired within the wild-type template. We measured that the initiation efficiency on different templates correlates directly with accessibility of the PAS motif. Furthermore, changes in PAS are critical to facilitate a primer-switch to a new tRNA species, demonstrating the importance of this enhancer element.
Collapse
Affiliation(s)
| | | | | | | | - Ben Berkhout
- *To whom correspondence should be addressed. +31 205 664 822+31 206 916 531
| |
Collapse
|
17
|
Levin JG, Guo J, Rouzina I, Musier-Forsyth K. Nucleic acid chaperone activity of HIV-1 nucleocapsid protein: critical role in reverse transcription and molecular mechanism. ACTA ACUST UNITED AC 2006; 80:217-86. [PMID: 16164976 DOI: 10.1016/s0079-6603(05)80006-6] [Citation(s) in RCA: 289] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Judith G Levin
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
18
|
Miller JT, Khvorova A, Scaringe SA, Le Grice SFJ. Synthetic tRNALys,3 as the replication primer for the HIV-1HXB2 and HIV-1Mal genomes. Nucleic Acids Res 2004; 32:4687-95. [PMID: 15342789 PMCID: PMC516074 DOI: 10.1093/nar/gkh813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In order to determine the contribution of modified bases on the efficiency with which tRNA(Lys,3) is used in vitro as the HIV-1 replication primer, the properties of synthetic derivatives prepared by three independent methods were compared to the natural, i.e. fully modified, tRNA. When prepared directly by in vitro run-off transcription, we show here that the predominant tRNA species is 77 nt, representing a non-templated addition of a single nucleotide. As a consequence, this aberrant tRNA inefficiently primes (-) strand strong stop DNA synthesis from the primer binding site (PBS) on the HIV-1 viral RNA genome to which it must hybridize. In contrast, correctly sized tRNA(Lys,3) can be prepared by (i) total chemical synthesis and ligation of 'half' tRNAs, (ii) transcription of a cassette whose DNA template contained strategically placed 2'-O-Methyl-containing ribonucleotides and (iii) processing from a larger precursor by means of targeted cleavage with Escherichia coli RNase H. When each of these 76 nt tRNAs was supplemented into a (-) strand strong stop DNA synthesis reaction utilizing the HXB2 strain of HIV-1, the amount of product obtained was comparable to that from the fully modified counterpart. Parallel assays monitoring early events in (-) strand strong stop DNA synthesis using either the HXB2 or Mal strain of HIV-1 RNA as the template indicated little difference in the pattern or total product amount when primed with either natural or synthetic tRNA(Lys,3). In addition, nuclease mapping of PBS-bound tRNA suggests inter-molecular base pairing between bases of the tRNA anticodon domain and the U-rich U5-IR loop of the viral 5' leader region is less stable on the HIV-1(HXB2) genome than the HIV-1(Mal) isolate.
Collapse
Affiliation(s)
- Jennifer T Miller
- Reverse Transcriptase Biochemistry Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
19
|
Goldschmidt V, Paillart JC, Rigourd M, Ehresmann B, Aubertin AM, Ehresmann C, Marquet R. Structural variability of the initiation complex of HIV-1 reverse transcription. J Biol Chem 2004; 279:35923-31. [PMID: 15194685 DOI: 10.1074/jbc.m404473200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HIV-1 reverse transcription is initiated from a tRNA(3)(Lys) molecule annealed to the viral RNA at the primer binding site (PBS), but the structure of the initiation complex of reverse transcription remains controversial. Here, we performed in situ structural probing, as well as in vitro structural and functional studies, of the initiation complexes formed by highly divergent isolates (MAL and NL4.3/HXB2). Our results show that the structure of the initiation complex is not conserved. In MAL, and according to sequence analysis in 14% of HIV-1 isolates, formation of the initiation complex is accompanied by complex rearrangements of the viral RNA, and extensive interactions with tRNA(3)(Lys) are required for efficient initiation of reverse transcription. In NL4.3, HXB2, and most isolates, tRNA(3)(Lys) annealing minimally affects the viral RNA structure and no interaction outside the PBS is required for optimal initiation of reverse transcription. We suggest that in MAL, extensive interactions with tRNA(3)(Lys) are required to drive the structural rearrangements generating the structural elements ultimately recognized by reverse transcriptase. In NL4.3 and HXB2, these elements are already present in the viral RNA prior to tRNA(3)(Lys) annealing, thus explaining that extensive interactions with the primer are not required. Interestingly, such interactions are required in HXB2 mutants designed to use a non-cognate tRNA as primer (tRNA(His)). In the latter case, the extended interactions are required to counteract a negative contribution associate with the alternate primer.
Collapse
Affiliation(s)
- Valérie Goldschmidt
- Unité Propre de Recherche 9002 du CNRS conventionnée à l'Université Louis Pasteur, IBMC, 15 rue René Descartes, 67084 Strasbourg cedex, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Damgaard CK, Andersen ES, Knudsen B, Gorodkin J, Kjems J. RNA interactions in the 5' region of the HIV-1 genome. J Mol Biol 2004; 336:369-79. [PMID: 14757051 DOI: 10.1016/j.jmb.2003.12.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The untranslated leader of the dimeric HIV-1 RNA genome is folded into a complex structure that plays multiple and essential roles in the viral replication cycle. Here, we have investigated secondary and tertiary structural elements within the 5' 744 nucleotides of the HIV-1 genome using a combination of bioinformatics, enzymatic probing, native gel electrophoresis, and UV-crosslinking experiments. We used a recently developed RNA folding algorithm (Pfold) to predict the common secondary structure of an alignment of 20 divergent HIV-1 sequences. Combining this analysis with biochemical data, we present a secondary structure model for the entire 744 nucleotide fragment, which incorporates previously recognized and novel structural elements. In particular, our data provided strong evidence for a long-distance interaction between the region encompassing the AUG Gag initiation codon and an upstream region and we demonstrate that this feature is highly conserved in distantly related human and animal retroviruses. To obtain information about tertiary interactions we applied an intramolecular UV-crosslinking strategy and identified a novel tertiary interaction within the PBS hairpin structure.
Collapse
Affiliation(s)
- Christian Kroun Damgaard
- Department of Molecular Biology, University of Aarhus, C.F. Møllers Allé, Building 130, DK-8000 C, Arhus, Denmark
| | | | | | | | | |
Collapse
|
21
|
Rigourd M, Goldschmidt V, Brulé F, Morrow CD, Ehresmann B, Ehresmann C, Marquet R. Structure-function relationships of the initiation complex of HIV-1 reverse transcription: the case of mutant viruses using tRNA(His) as primer. Nucleic Acids Res 2003; 31:5764-75. [PMID: 14500840 PMCID: PMC206454 DOI: 10.1093/nar/gkg754] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Reverse transcription of HIV-1 RNA is initiated from the 3' end of a tRNA3Lys molecule annealed to the primer binding site (PBS). An additional interaction between the anticodon loop of tRNA3Lys and a viral A-rich loop is required for efficient initiation of reverse transcription of the HIV-1 MAL isolate. In the HIV-1 HXB2 isolate, simultaneous mutations of the PBS and the A-rich loop (mutant His-AC), but not of the PBS alone (mutant His) allows the virus to stably utilize tRNA(His) as primer. However, mutant His-AC selects additional mutations during cell culture, generating successively His-AC-GAC and His-AC-AT-GAC. Here, we wanted to establish direct relationships between the evolution of these mutants in cell culture, their efficiency in initiating reverse transcription and the structure of the primer/template complexes in vitro. The initiation of reverse transcription of His and His-AC RNAs was dramatically reduced. However, His-AC-GAC RNA, which incorporated three adaptative point mutations, was reverse transcribed more efficiently than the wild type RNA. Incorporation of two additional mutations decreased the efficiency of the initiation of reverse transcription, which remained at the wild type level. Structural probing showed that even though both His-AC and His-AC-GAC RNAs can potentially interact with the anticodon loop of tRNA(His), only the latter template formed a stable interaction. Thus, our results showed that the selection of adaptative mutations by HIV-1 mutants utilizing tRNA(His) as primer was initially dictated by the efficiency of the initiation of reverse transcription, which relied on the existence of a stable interaction between the mutated A-rich loop and the anticodon loop of tRNA(His).
Collapse
Affiliation(s)
- Mickaël Rigourd
- Unité Propre de Recherche 9002 du CNRS conventionnée à l'Université Louis Pasteur, IBMC, 15 rue René Descartes, 67084 Strasbourg cedex, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Huthoff H, Bugala K, Barciszewski J, Berkhout B. On the importance of the primer activation signal for initiation of tRNA(lys3)-primed reverse transcription of the HIV-1 RNA genome. Nucleic Acids Res 2003; 31:5186-94. [PMID: 12930970 PMCID: PMC212812 DOI: 10.1093/nar/gkg714] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Initiation of reverse transcription is a complex and regulated process in all retroviruses. Several base pairing interactions have been proposed to occur between the HIV-1 RNA genome and the specific tRNA(lys3) primer. The tRNA primer can form up to 21 bp with the primer binding site (PBS), and an additional 8 bp interaction may form between the primer activation signal (PAS) in the HIV-1 RNA and sequences within the T(Psi)C arm of the tRNA. The latter interaction is further analyzed in this in vitro study with mutant RNA transcripts that were designed to preclude the PAS interaction. These mutant transcripts are able to efficiently bind the tRNA primer, but they exhibit a profound defect at initiating reverse transcription. This defect is specific for the tRNA primer because it is not observed for PBS-bound DNA oligonucleotide primers. These results reinforce the model of regulated reverse transcription in which the PAS-mediated interaction is critical for efficient initiation.
Collapse
MESH Headings
- Base Sequence
- Binding Sites/genetics
- DNA Primers/genetics
- DNA Primers/metabolism
- Genome, Viral
- HIV Reverse Transcriptase/metabolism
- HIV-1/genetics
- HIV-1/metabolism
- Molecular Sequence Data
- Mutation
- Nucleic Acid Conformation
- Nucleic Acid Hybridization
- Oligoribonucleotides/genetics
- Oligoribonucleotides/metabolism
- RNA, Transfer, Lys/chemistry
- RNA, Transfer, Lys/genetics
- RNA, Transfer, Lys/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Temperature
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- Hendrik Huthoff
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
23
|
Zhao Y, Pan-Hammarström Q, Kacskovics I, Hammarström L. The porcine Ig delta gene: unique chimeric splicing of the first constant region domain in its heavy chain transcripts. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:1312-8. [PMID: 12874220 DOI: 10.4049/jimmunol.171.3.1312] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The pig delta gene is located approximately 3.4 kb downstream of the second transmembrane exon of the micro gene and shows a similar genomic structure to its counterpart in cow with three exons encoding the CH1, CH2, and CH3 domains. The porcine genomic deltaCH1 exon has been replaced by a recent duplication of the micro CH1 and its flanking sequences, a genetic event that also led to the formation of a short switch delta region, immediately upstream of the delta gene. The deltaCH1 exhibits a 98.7% similarity (314 of 318 bp) to the micro CH1 at the DNA level, whereas the homologies between the deltaCH2 and micro CH3, and the deltaCH3 and micro CH4 are only 33.3 and 35.8%, respectively. Either of the two CH1 exons ( micro and delta) could be observed in the expressed porcine IgD H chain cDNA sequences VDJ- micro CH1-H-deltaCH2-deltaCH3 or VDJ-deltaCH1-H-deltaCH2-deltaCH3, showing a pattern that has not been observed previously in vertebrates. In addition, transfection of a human B cell line, using artificial constructs resembling the porcine C micro -Cdelta locus, also generated both VDJ- micro CH1-deltaCH1-H1-deltaCH2 and VDJ -deltaCH1-H1-deltaCH2 transcripts. An examination of the pig delta genomic sequence shows a putative, second hinge region-encoding exon. Due to the lack of a normal branchpoint sequence for RNA splicing, this exon is not present in the normal pig delta cDNA. However, the exon could be spliced into most of the expressed transcripts in vitro in cell transfection experiments after introduction of a single T nucleotide to restore the branchpoint sequence upstream of the putative H2 exon.
Collapse
Affiliation(s)
- Yaofeng Zhao
- Center for Biotechnology, Department of Biosciences at Novum, Karolinska Institutet, Huddinge, Sweden.
| | | | | | | |
Collapse
|
24
|
Iwatani Y, Rosen AE, Guo J, Musier-Forsyth K, Levin JG. Efficient initiation of HIV-1 reverse transcription in vitro. Requirement for RNA sequences downstream of the primer binding site abrogated by nucleocapsid protein-dependent primer-template interactions. J Biol Chem 2003; 278:14185-95. [PMID: 12560327 DOI: 10.1074/jbc.m211618200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synthesis of HIV-1 (-) strong-stop DNA is initiated following annealing of the 3' 18 nucleotides (nt) of tRNA(3)(Lys) to the primer binding site (PBS) near the 5' terminus of viral RNA. Here, we have investigated whether sequences downstream of the PBS play a role in promoting efficient (-) strong-stop DNA synthesis. Our findings demonstrate a template requirement for at least 24 bases downstream of the PBS when tRNA(3)(Lys) or an 18-nt RNA complementary to the PBS (R18), but not an 18-nt DNA primer, are used. Additional assays using 18-nt DNA-RNA chimeric primers, as well as melting studies and circular dichroism spectra of 18-nt primer:PBS duplexes, suggest that priming efficiency is correlated with duplex conformation and stability. Interestingly, in the presence of nucleocapsid protein (NC), the 24 downstream bases are dispensable for synthesis primed by tRNA(3)(Lys) but not by R18. We present data supporting the conclusion that NC promotes extended interactions between the anticodon stem and variable loop of tRNA(3)(Lys) and a sequence upstream of the A-rich loop in the template. Taken together, this study leads to new insights into the initiation of HIV-1 reverse transcription and the functional role of NC-facilitated tRNA-template interactions in this process.
Collapse
Affiliation(s)
- Yasumasa Iwatani
- Laboratory of Molecular Genetics, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
25
|
Goldschmidt V, Ehresmann C, Ehresmann B, Marquet R. Does the HIV-1 primer activation signal interact with tRNA3(Lys) during the initiation of reverse transcription? Nucleic Acids Res 2003; 31:850-9. [PMID: 12560480 PMCID: PMC149207 DOI: 10.1093/nar/gkg187] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Reverse transcription of HIV-1 RNA is primed by a tRNA3(Lys) molecule bound at the primer binding site (PBS). Complex intermolecular interactions were proposed between tRNA3(Lys) and the RNA of the HIV-1 Mal isolate. Recently, an alternative interaction was proposed between the TPsiC stem of tRNA3(Lys) and a primer activation signal (PAS) of the Lai and Hxb2 RNAs, suggesting major structural variations in the reverse transcription complex of different HIV-1 strains. Here, we analyzed mutants of the Hxb2 RNA that prevent the interaction between the PAS and tRNA3(Lys) or/and a complementary sequence in the viral RNA. We compared the kinetics of reverse transcription of the wild type and mutant Hxb2 RNAs, using either tRNA3(Lys) or an 18mer oligoribonucleotide complementary to the PBS, which cannot interact with the PAS, as primers. We also used chemical probing to test the structure of the mutant and wild type RNAs, as well as the complex formed between the later RNA and tRNA3(Lys). These experiments, together with the analysis of long term replication data of mutant viruses obtained by C. Morrow and coworkers (Birmingham, USA) that use alternate tRNAs as primers, strongly suggest that the interaction between the Hxb2 PAS and tRNA3(Lys) does not exist. Instead, the effects of the vRNA mutations on reverse transcription seem to be linked to incorrect folding of the mutant RNAs.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- DNA Primers
- DNA, Viral/biosynthesis
- Gene Expression Regulation, Viral
- HIV Reverse Transcriptase/metabolism
- HIV-1/genetics
- Kinetics
- Molecular Sequence Data
- Mutation
- Nucleic Acid Conformation
- Oligoribonucleotides
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Valérie Goldschmidt
- UPR 9002 du CNRS, l'Université Louis Pasteur, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg cedex, France
| | | | | | | |
Collapse
|
26
|
Kvaratskhelia M, Miller JT, Budihas SR, Pannell LK, Le Grice SFJ. Identification of specific HIV-1 reverse transcriptase contacts to the viral RNA:tRNA complex by mass spectrometry and a primary amine selective reagent. Proc Natl Acad Sci U S A 2002; 99:15988-93. [PMID: 12461175 PMCID: PMC138552 DOI: 10.1073/pnas.252550199] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have devised a high-resolution protein footprinting methodology to dissect HIV-1 reverse transcriptase (RT) contacts to the viral RNA:tRNA complex. The experimental strategy included modification of surface-exposed lysines in RT and RT-viral RNA:tRNA complexes by the primary amine selective reagent NHS-biotin, SDSPAGE separation of p66 and p51 polypeptides, in gel proteolysis, and comparative mass spectrometric analysis of peptide fragments. The lysines modified in free RT but protected from biotinylation in the nucleoprotein complex were readily revealed by this approach. Results of a control experiment examining the RT-DNA:DNA complex were in excellent agreement with the crystal structure data on the identical complex. Probing the RT-viral RNA:tRNA complex revealed that a majority of protein contacts are located in the primer-template binding cleft in common with the RT-DNA:DNA and RT-RNA:DNA species. However, our footprinting data indicate that the p66 fingers subdomain makes additional contacts to the viral RNA:tRNA specific for this complex and not detected with DNA:DNA. The protein footprinting method described herein has a generic application for high-resolution solution structural studies of multiprotein-nucleic acid contacts.
Collapse
MESH Headings
- Amino Acid Sequence
- Binding Sites
- Biotin/analogs & derivatives
- Biotin/pharmacology
- Biotinylation
- DNA/chemistry
- HIV Reverse Transcriptase/chemistry
- HIV Reverse Transcriptase/drug effects
- HIV Reverse Transcriptase/metabolism
- Humans
- Indicators and Reagents
- Lysine/chemistry
- Macromolecular Substances
- Models, Molecular
- Molecular Sequence Data
- Multiprotein Complexes
- Protein Binding
- Protein Conformation
- Protein Footprinting/methods
- Protein Interaction Mapping
- Protein Structure, Tertiary
- RNA, Transfer, Lys/chemistry
- RNA, Transfer, Lys/metabolism
- RNA, Viral/chemistry
- RNA, Viral/metabolism
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
- Succinimides/pharmacology
Collapse
Affiliation(s)
- Mamuka Kvaratskhelia
- HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA
| | | | | | | | | |
Collapse
|
27
|
Pata JD, King BR, Steitz TA. Assembly, purification and crystallization of an active HIV-1 reverse transcriptase initiation complex. Nucleic Acids Res 2002; 30:4855-63. [PMID: 12433988 PMCID: PMC137168 DOI: 10.1093/nar/gkf620] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) initiates DNA synthesis from the 3' end of human tRNA(Lys3). We have used cis-acting hammerhead ribozymes to produce homogeneous-length transcribed tRNA(Lys3) and have developed conditions for purifying highly structured RNAs on a modified tube-gel apparatus. Titration experiments show that this RNA can assemble into an initiation complex that contains equimolar amounts of HIV-1 RT, transcribed tRNA(Lys3), and chemically synthesized template RNA. We have purified this complex using gel-filtration chromatography and have found that it is homogeneous with respect to molecular weight, demonstrating that the initiation complex forms a single discrete species at micromolar concentrations. When this initiation complex is supplied with deoxynucleotides, essentially all of the tRNA is used as a primer by HIV-1 RT and is fully extended to the 5' end of the template. Thus, in vitro transcribed tRNA can be used efficiently as a primer by HIV-1 RT. We have also obtained crystals of the HIV-1 initiation complex that require the precisely defined ends of this in vitro transcribed tRNA(Lys3) to grow.
Collapse
MESH Headings
- Base Sequence
- Chromatography, Gel
- Crystallization
- DNA/biosynthesis
- HIV Reverse Transcriptase/chemistry
- HIV Reverse Transcriptase/isolation & purification
- HIV Reverse Transcriptase/metabolism
- Humans
- Macromolecular Substances
- Molecular Sequence Data
- RNA/chemistry
- RNA/isolation & purification
- RNA/metabolism
- RNA, Catalytic/metabolism
- RNA, Transfer, Lys/chemistry
- RNA, Transfer, Lys/isolation & purification
- RNA, Transfer, Lys/metabolism
- Templates, Genetic
- Transcription, Genetic
Collapse
Affiliation(s)
- Janice D Pata
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | |
Collapse
|
28
|
Goldschmidt V, Rigourd M, Ehresmann C, Le Grice SFJ, Ehresmann B, Marquet R. Direct and indirect contributions of RNA secondary structure elements to the initiation of HIV-1 reverse transcription. J Biol Chem 2002; 277:43233-42. [PMID: 12194974 DOI: 10.1074/jbc.m205295200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Initiation of human immunodeficiency virus type 1 (HIV-1) reverse transcription requires specific recognition between the viral RNA (vRNA), tRNA(3)(Lys), which acts as primer, and reverse transcriptase (RT). The specificity of this ternary complex is mediated by intricate interactions between the HIV-1 RNA and tRNA(3)(Lys). Here, we compared the relative importance of the secondary structure elements of this complex in the initiation process. To this aim, we used the previously published three-dimensional model of the initiation complex to rationally introduce a series of deletions and substitutions in the vRNA. When necessary, we used chemical probing to check the structure of the tRNA(3)(Lys)-mutant vRNA complexes. For each of them, we measured the binding affinity of RT and the kinetics of initial extension of tRNA(3)(Lys) and of synthesis of the (-) strand strong stop DNA. Our results were overall in keeping with the three-dimensional model of the initiation complex. Surprisingly, we found that disruption of the intermolecular template-primer interactions, which are not directly recognized by RT, more severely affected reverse transcription than deletions or disruption of one of the intramolecular helices to which RT directly binds. Perturbations of the highly constrained junction between the intermolecular helix formed by the primer binding site and the 3' end of tRNA(3)(Lys) and the helix immediately upstream also had dramatic effects on the initiation of reverse transcription. Taken together, our results demonstrate the overwhelming importance of the overall three-dimensional structure of the initiation complex and identify structural elements that constitute promising targets for anti-initiation-specific drugs.
Collapse
Affiliation(s)
- Valerie Goldschmidt
- UPR 9002 du CNRS affiliée à l'Université Louis Pasteur, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg cedex, France
| | | | | | | | | | | |
Collapse
|
29
|
Beerens N, Berkhout B. Switching the in vitro tRNA usage of HIV-1 by simultaneous adaptation of the PBS and PAS. RNA (NEW YORK, N.Y.) 2002; 8:357-369. [PMID: 12003495 PMCID: PMC1370257 DOI: 10.1017/s1355838202028194] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Reverse transcription of the HIV-1 RNA genome is primed by the cellular tRNA(lys3) molecule that anneals to a complementary sequence in the viral genome, the primer-binding site (PBS). Additional interactions between the tRNA primer and the viral RNA were proposed to play a role in reverse transcription. We recently identified an 8-nt element in the U5 region upstream of the PBS that is critical for initiation and processive elongation of reverse transcription. This motif was termed the primer activation signal (PAS), and is proposed to interact with the "antiPAS sequence" in the TphiC arm of tRNA(lys3). In this study, we demonstrate that the efficiency of initiation of reverse transcription can be modulated by PAS mutations that strengthen or weaken the interaction with antiPAS. These results provide further evidence for a direct base-pairing interaction between the PAS in the viral RNA and the antiPAS in the tRNA(lys3) molecule. A broad phylogenetic survey indicated that a PAS element is present in all retroviral RNA genomes, suggesting that the process of reverse transcription is regulated by a common mechanism in all retroviridae. It has proven very difficult to change the identity of the tRNA primer for HIV-1 reverse transcription by changing the PBS sequence. Using in vitro reverse transcription assays, we demonstrate that the identity of the priming tRNA species can be switched by simultaneous alteration of the PBS and PAS motifs to accommodate a new tRNA primer. These results indicate that the PAS-antiPAS interaction is important for both primer selection and efficient reverse transcription.
Collapse
MESH Headings
- 5' Untranslated Regions/chemistry
- 5' Untranslated Regions/genetics
- 5' Untranslated Regions/metabolism
- Base Pairing
- Base Sequence
- Gene Expression Regulation, Viral
- Genome, Viral
- HIV Infections/virology
- HIV-1/genetics
- HIV-1/metabolism
- Humans
- Molecular Sequence Data
- Mutation
- Nucleic Acid Conformation
- RNA
- RNA, Transfer, Lys/genetics
- RNA, Transfer, Lys/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Templates, Genetic
- Transcription, Genetic/genetics
- Transfection
- Virus Replication/genetics
Collapse
Affiliation(s)
- Nancy Beerens
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, The Netherlands
| | | |
Collapse
|
30
|
Beerens N, Berkhout B. The tRNA primer activation signal in the human immunodeficiency virus type 1 genome is important for initiation and processive elongation of reverse transcription. J Virol 2002; 76:2329-39. [PMID: 11836411 PMCID: PMC153804 DOI: 10.1128/jvi.76.5.2329-2339.2002] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) reverse transcription is primed by the cellular tRNA(3)(Lys) molecule, which binds, with its 3"-terminal 18 nucleotides (nt), to a complementary sequence in the viral genome, the primer-binding site (PBS). Besides PBS-anti-PBS pairing, additional interactions between viral RNA sequences and the tRNA primer are thought to regulate the process of reverse transcription. We previously identified a novel 8-nt sequence motif in the U5 region of the HIV-1 RNA genome that is critical for tRNA(3)(Lys)-mediated initiation of reverse transcription in vitro. This motif activates initiation from the natural tRNA(3)(Lys) primer but is not involved in tRNA placement and was therefore termed primer activation signal (PAS). It was proposed that the PAS interacts with the anti-PAS motif in the TphiC arm of tRNA(3)(Lys). In this study, we analyzed several PAS-mutated viruses and performed reverse transcription assays with virion-extracted RNA-tRNA complexes. Mutation of the PAS reduced the efficiency of tRNA-primed reverse transcription. In contrast, mutations in the opposing leader sequence that trigger release of the PAS from base pairing stimulated reverse transcription. These results are similar to the reverse transcription effects observed in vitro. We also selected revertant viruses that partially overcome the reverse transcription defect of the PAS deletion mutant. Remarkably, all revertants acquired a single nucleotide substitution that does not restore the PAS sequence but that stimulates elongation of reverse transcription. These combined results indicate that the additional PAS-anti-PAS interaction is needed to assemble an initiation-competent and processive reverse transcription complex.
Collapse
Affiliation(s)
- Nancy Beerens
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, 1100 DE Amsterdam, The Netherlands
| | | |
Collapse
|
31
|
Rong L, Liang C, Hsu M, Guo X, Roques BP, Wainberg MA. HIV-1 nucleocapsid protein and the secondary structure of the binary complex formed between tRNA(Lys.3) and viral RNA template play different roles during initiation of (-) strand DNA reverse transcription. J Biol Chem 2001; 276:47725-32. [PMID: 11602578 DOI: 10.1074/jbc.m105124200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In human immunodeficiency virus type 1 (HIV-1), the tRNA(Lys.3) primer and viral RNA template can form a specific complex that is characterized by extensive inter- and intramolecular interactions. Initiation of reverse transcription from this complex has been shown to be distinguished from subsequent elongation by early pausing events, such as at the +1 and +3 nucleotide positions. One major concern regarding the biological relevance of these results is that most kinetic studies of HIV-1 reverse transcription have been performed using tRNA(Lys.3)-viral (v) RNA complexes that were formed by heat annealing. In contrast, tRNA(Lys.3) in viruses is placed onto the primer binding site by nucleocapsid (NC) sequences of the Gag protein. In this study, we have further characterized the initiation features of reverse transcription in the presence of HIV-1 NC protein. In contrast to results obtained with a heat-annealed tRNA(Lys.3).vRNA complex, we found that polymerization reactions catalyzed by HIV-1 reverse transcriptase did not commonly pause at the +1 nucleotide position when a NC-annealed RNA complex was used, and that this was true regardless whether NC was actually still present during reverse transcription. This activity of NC required both zinc finger motifs, as demonstrated by experiments that employed zinc finger-mutated forms of NC protein (H23C NC and ddNC), supporting the involvement of the zinc fingers in the RNA chaperone activity of NC. However, NC was not able to help reverse transcriptase to escape the +3 pausing event. Mutagenesis of a stem structure within the tRNA(Lys.3). vRNA complex led to disappearance of the +3 pausing event as well as to significantly reduced rates of reverse transcription. Thus, this stem structure is essential for optimal reverse transcription, despite its role in promotion of the +3 pausing event.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- Base Sequence
- Blotting, Western
- COS Cells
- DNA Primers/pharmacology
- DNA, Viral/chemistry
- DNA, Viral/metabolism
- HIV-1/genetics
- HIV-1/metabolism
- Mutagenesis, Site-Directed
- Mutation
- Nucleic Acid Conformation
- Nucleocapsid Proteins/chemistry
- Plasmids/metabolism
- Protein Binding
- Protein Structure, Secondary
- Protein Structure, Tertiary
- RNA/metabolism
- RNA, Transfer, Lys/chemistry
- RNA, Viral/chemistry
- RNA, Viral/metabolism
- RNA-Directed DNA Polymerase/metabolism
- Transcription, Genetic
- Zinc Fingers
Collapse
Affiliation(s)
- L Rong
- McGill AIDS Centre, Lady Davis Institute-Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | | | | | | | | | | |
Collapse
|
32
|
Beerens N, Groot F, Berkhout B. Initiation of HIV-1 reverse transcription is regulated by a primer activation signal. J Biol Chem 2001; 276:31247-56. [PMID: 11384976 DOI: 10.1074/jbc.m102441200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reverse transcription of the human immunodeficiency virus type 1 (HIV-1) RNA genome appears to be strictly regulated at the level of initiation. The primer binding site (PBS), at which the tRNA(3)(Lys) molecule anneals and reverse transcription is initiated, is present in a highly structured region of the untranslated leader RNA. Detailed mutational analysis of the U5 leader stem identified a sequence motif in the U5 region that is critical for activation of the PBS-bound tRNA(3)(Lys) primer. This U5 motif, termed the primer activation signal (PAS), may interact with the TPsiC arm of the tRNA(3)(Lys) primer, similar to the additional interaction proposed for the genome of Rous sarcoma virus and its tRNA(Trp) primer. This suggests that reverse transcription is regulated by a common mechanism in all retroviruses. In HIV-1, the PAS is masked through base pairing in the U5 leader stem. This provides a mechanism for positive and negative regulation of reverse transcription. Based on structure probing of the mutant and wild-type RNAs, an RNA secondary structure model is proposed that juxtaposes the critical PAS and PBS motifs.
Collapse
Affiliation(s)
- N Beerens
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, 1100 DE Amsterdam, The Netherlands
| | | | | |
Collapse
|
33
|
Menéndez-Arias L, Abraha A, Quiñones-Mateu ME, Mas A, Camarasa MJ, Arts EJ. Functional characterization of chimeric reverse transcriptases with polypeptide subunits of highly divergent HIV-1 group M and O strains. J Biol Chem 2001; 276:27470-9. [PMID: 11353775 DOI: 10.1074/jbc.m104342200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus (HIV)-1 strains have been divided into three groups: main (M), outlier (O), and non-M non-O (N). Biochemical analyses of HIV-1 reverse transcriptase (RT) have been performed predominantly with enzymes derived from HIV-1 group M:subtype B laboratory strains. This study was designed to optimize the expression and to characterize the enzymatic properties of HIV-1 group O RTs as well as chimeric RTs composed of group M and O p66 and p51 subunits. The DNA-dependent DNA polymerase activity on a short heteropolymeric template-primer was similar with all enzymes, i.e. the HIV-1 group O and M and chimeric RTs. Our data revealed that the 51-kDa subunit in the chimeric heterodimer p66(M:B)/p51(O) confers increased heterodimer stability and partial resistance to non-nucleoside RT inhibitors. Chimeric RTs (p66(M:B)/p51(O) and p66(O)/p51(M:B)) were unable to initiate reverse transcription from tRNA(3)(Lys) using HIV-1 group O or group M:subtype B RNA templates. In contrast, HIV-1 group O and M RTs supported (-)-strand DNA synthesis from tRNA(3)(Lys) hybridized to any of their corresponding HIV-1 RNA templates. HIV-2 RT could not initiate reverse transcription on tRNA(3)(Lys)-primed HIV-1 genomic RNA. These findings suggest that the initiation event is conserved between HIV-1 groups, but not HIV types.
Collapse
Affiliation(s)
- L Menéndez-Arias
- Centro de Biologia Molecular "Severo Ochoa," Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
34
|
Miller JT, Ehresmann B, Hübscher U, Le Grice SF. A novel interaction of tRNA(Lys,3) with the feline immunodeficiency virus RNA genome governs initiation of minus strand DNA synthesis. J Biol Chem 2001; 276:27721-30. [PMID: 11353768 DOI: 10.1074/jbc.m100513200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Complementarity between nucleotides at the 5' terminus of tRNA(Lys,3) and the U5-IR loop of the feline immunodeficiency virus RNA genome suggests a novel intermolecular interaction controls initiation of minus strand synthesis in a manner analogous to other retroviral systems. Base pairing of this tRNA-viral RNA duplex was confirmed by nuclease mapping of the RNA genome containing full-length or 5'-deleted variants of tRNA(Lys,3) hybridized to the primer-binding site. A major pause in RNA-dependent DNA synthesis occurred 14 nucleotides ahead of the primer-binding site with natural and synthetic tRNA(Lys,3) primers, indicating it was not a consequence of tRNA base modifications. The majority of the paused complexes resulted in dissociation of the reverse transcriptase from the template/primer, as demonstrated by an assay limited to a single binding event. Hybridization of a tRNA mutant whose 5' nucleotides are deleted relieved pausing at this position and subsequently allowed high level DNA synthesis. Additional experiments with tRNA-DNA chimeric primers were used to localize the stage of minus strand synthesis at which the tRNA-viral RNA interaction was disrupted. Finally, replacing nucleotides of the feline immunodeficiency virus U5-IR loop with the (A)(4) sequence of its human immunodeficiency virus (HIV)-1 counterpart also relieved pausing, but did not induce pausing immediately downstream of the primer-binding site previously noted during initiation of HIV-1 DNA synthesis. These combined observations provide further evidence of cis-acting sequences immediately adjacent to the primer-binding site controlling initiation of minus strand DNA synthesis in retroviruses and retrotransposons.
Collapse
Affiliation(s)
- J T Miller
- HIV Drug Resistance Program, NCI-Frederick Cancer Research and Development Center, Frederick, Maryland 21702, USA
| | | | | | | |
Collapse
|
35
|
Beerens N, Groot F, Berkhout B. Stabilization of the U5-leader stem in the HIV-1 RNA genome affects initiation and elongation of reverse transcription. Nucleic Acids Res 2000; 28:4130-7. [PMID: 11058109 PMCID: PMC113157 DOI: 10.1093/nar/28.21.4130] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Reverse transcription of the Human Immunodeficiency Virus type I (HIV-1) RNA genome is primed by a cellular tRNA-lys3 molecule that binds to the primer binding site (PBS). The PBS is predicted to be part of an extended RNA structure, consisting of a small U5-PBS hairpin and a large U5-leader stem. In this study we stabilized the U5-leader stem of HIV-1 to study its role in reverse transcription. We tested in vitro synthesized wild-type and mutant templates in primer annealing, initiation and elongation assays. Stabilization of the stem inhibits the initiation of reverse transcription, but not the annealing of the tRNA primer onto the PBS. These results suggest that stabilization of the stem results in occlusion of a sequence motif that is involved in an additional interaction with the tRNA-lys3 primer and that is needed to trigger the initiation of reverse transcription. The stable structure was also found to affect the elongation of reverse transcription, causing the RT enzyme to pause upon copying 7-8 bases into the extended base paired stem. The stabilizing mutations were also introduced into proviral constructs for replication studies, demonstrating that the mutant viruses have a reduced replication capacity. Analysis of a revertant virus demonstrated that opening of the stabilized U5-leader stem can restore both virus replication and reverse transcription.
Collapse
MESH Headings
- Base Pairing/genetics
- Base Sequence
- Biological Evolution
- Cell Line
- Enzyme-Linked Immunosorbent Assay
- Gene Expression Regulation, Viral
- Genetic Engineering
- Genome, Viral
- HIV Long Terminal Repeat/genetics
- HIV Reverse Transcriptase/metabolism
- HIV-1/enzymology
- HIV-1/genetics
- HIV-1/physiology
- Humans
- Molecular Sequence Data
- Proviruses/enzymology
- Proviruses/genetics
- Proviruses/physiology
- RNA/genetics
- RNA/metabolism
- RNA Stability
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Viral/biosynthesis
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Selection, Genetic
- Serial Passage
- Suppression, Genetic/genetics
- T-Lymphocytes/virology
- Templates, Genetic
- Thermodynamics
- Transcription, Genetic
- Transfection
- Virus Replication/genetics
Collapse
Affiliation(s)
- N Beerens
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, PO Box 22700, 1100 DE Amsterdam, The Netherlands
| | | | | |
Collapse
|
36
|
Snyder CS, Roth MJ. Comparison of second-strand transfer requirements and RNase H cleavages catalyzed by human immunodeficiency virus type 1 reverse transcriptase (RT) and E478Q RT. J Virol 2000; 74:9668-79. [PMID: 11000239 PMCID: PMC112399 DOI: 10.1128/jvi.74.20.9668-9679.2000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Truncated tRNA-DNA mimics were examined in an in vitro assay for second-strand transfer during human immunodeficiency virus type 1 (HIV-1) reverse transcription. Strand transfer in this system requires the progressive degradation of the RNA within the 18-mer tRNA-DNA (plus-strand strong stop DNA) intermediate to products approximately 8 nucleotides in length. The ability of the truncated substrates to substitute for directional processing by RNase H or reverse transcriptase (RT) was examined. Using wild-type HIV-1 RT, substrates which truncated the 5' end of the tRNA primer by 6, 9, and 12 nucleotides (Delta6, Delta9, and Delta12, respectively) were recognized by RNase H and resulted in strand transfer. An overlap of 5 nucleotides between the acceptor and newly synthesized DNA template was sufficient for strand transfer. The mutant RT, E478Q correctly catalyzed the initial cleavage of the 18-mer tRNA-DNA mimic in the presence of Mn(2+); however, no directional processing was observed. In contrast, no RNase H activity was observed with the Delta6, Delta9, and Delta12 substrates with E478Q RT in this strand transfer assay. However, when complemented with Escherichia coli RNase H, E478Q RT supported strand transfer with the truncated substrates. E478Q RT did cleave the truncated forms of the substrates, Delta6, Delta9, and Delta12, in a polymerase-independent assay. The size requirements of the substrates which were cleaved by the polymerase-independent RNase H activity of E478Q RT are defined.
Collapse
Affiliation(s)
- C S Snyder
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
37
|
|
38
|
Rausch JW, Grice MK, Henrietta M, Miller JT, Le Grice SF. Interaction of p55 reverse transcriptase from the Saccharomyces cerevisiae retrotransposon Ty3 with conformationally distinct nucleic acid duplexes. J Biol Chem 2000; 275:13879-87. [PMID: 10788512 DOI: 10.1074/jbc.275.18.13879] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 55-kDa reverse transcriptase (RT) domain of the Ty3 POL3 open reading frame was purified and evaluated on conformationally distinct nucleic acid duplexes. Purified enzyme migrated as a monomer by size exclusion chromatography. Enzymatic footprinting indicate Ty3 RT protects template nucleotides +7 through -21 and primer nucleotides -1 through -24. Contrary to previous data with retroviral enzymes, a 4-base pair region of the template-primer duplex remained nuclease accessible. The C-terminal portion of Ty3 RT encodes a functional RNase H domain, although the hydrolysis profile suggests an increased spatial separation between the catalytic centers. Despite conservation of catalytically important residues in the RNase H domain, Fe(2+) fails to replace Mg(2+) in the RNase H catalytic center for localized generation of hydroxyl radicals, again suggesting this domain may be structurally distinct from its retroviral counterparts. RNase H specificity was investigated using a model system challenging the enzyme to select the polypurine tract primer from within an RNA/DNA hybrid, extend this into (+) DNA, and excise the primer from nascent DNA. Purified RT catalyzed each of these three steps but was almost inactive on a non-polypurine tract RNA primer. Our studies provide the first detailed characterization of the enzymatic activities of a retrotransposon reverse transcriptase.
Collapse
Affiliation(s)
- J W Rausch
- Human Immunodeficiency Virus Drug Resistance Program, Division of Basic Sciences, NCI-Frederick Cancer Research and Development Center, Frederick, Maryland 21702, USA
| | | | | | | | | |
Collapse
|
39
|
Lanchy JM, Isel C, Keith G, Le Grice SF, Ehresmann C, Ehresmann B, Marquet R. Dynamics of the HIV-1 reverse transcription complex during initiation of DNA synthesis. J Biol Chem 2000; 275:12306-12. [PMID: 10766870 DOI: 10.1074/jbc.275.16.12306] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Initiation of human immunodeficiency virus-1 (HIV-1) reverse transcription requires formation of a complex containing the viral RNA (vRNA), tRNA(3)(Lys) and reverse transcriptase (RT). The vRNA and the primer tRNA(3)(Lys) form several intermolecular interactions in addition to annealing of the primer 3' end to the primer binding site (PBS). These interactions are crucial for the efficiency and the specificity of the initiation of reverse transcription. However, as they are located upstream of the PBS, they must unwind as DNA synthesis proceeds. Here, the dynamics of the complex during initiation of reverse transcription was followed by enzymatic probing. Our data revealed reciprocal effects of the tertiary structure of the vRNA.tRNA(3)(Lys) complex and reverse transcriptase (RT) at a distance from the polymerization site. The structure of the initiation complex allowed RT to interact with the template strand up to 20 nucleotides upstream from the polymerization site. Conversely, nucleotide addition by RT modified the tertiary structure of the complex at 10-14 nucleotides from the catalytic site. The viral sequences became exposed at the surface of the complex as they dissociated from the tRNA following primer extension. However, the counterpart tRNA sequences became buried inside the complex. Surprisingly, they became exposed when mutations prevented the intermolecular interactions in the initial complex, indicating that the fate of the tRNA depended on the tertiary structure of the initial complex.
Collapse
Affiliation(s)
- J M Lanchy
- UPR 9002 du CNRS, IBMC, 67084 Strasbourg cedex, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Lund AH, Duch M, Pedersen FS. Selection of functional tRNA primers and primer binding site sequences from a retroviral combinatorial library: identification of new functional tRNA primers in murine leukemia virus replication. Nucleic Acids Res 2000; 28:791-9. [PMID: 10637332 PMCID: PMC102544 DOI: 10.1093/nar/28.3.791] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Retroviral reverse transcription is initiated from a cellular tRNA molecule and all known exogenous isolates of murine leukemia virus utilise a tRNA(Pro)molecule. While several studies suggest flexibility in murine leukemia virus primer utilisation, studies on human immunodeficiency virus and avian retro-viruses have revealed evidence of molecular adapt-ation towards the specific tRNA isoacceptor used as replication primer. In this study, murine leukemia virus tRNA utilisation is investigated by in vivo screening of a retroviral vector combinatorial library with randomised primer binding sites. While most of the selected primer binding sites are complementary to the 3'-end of tRNA((Pro)), we also retrieved PBS sequences matching four other tRNA molecules and demonstrate that Akv murine leukemia virus vectors may efficiently replicate using tRNA(Arg(CCU)), tRNA(Phe(GAA))and a hitherto unknown human tRNA(Ser(CGA)).
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Base Sequence
- Bias
- Binding Sites
- Blotting, Northern
- Cell Line
- Gene Library
- Genetic Vectors/genetics
- Humans
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/physiology
- Mice
- Nucleic Acid Hybridization/genetics
- Polymerase Chain Reaction
- RNA/genetics
- RNA, Transfer/genetics
- RNA, Transfer, Arg/genetics
- RNA, Transfer, Phe/genetics
- RNA, Transfer, Ser/genetics
- Random Allocation
- Regulatory Sequences, Nucleic Acid/genetics
- Substrate Specificity
- Virus Replication/genetics
Collapse
Affiliation(s)
- A H Lund
- Department of Molecular and Structural Biology, University of Aarhus, Denmark
| | | | | |
Collapse
|
41
|
Brulé F, Bec G, Keith G, Le Grice SF, Roques BP, Ehresmann B, Ehresmann C, Marquet R. In vitro evidence for the interaction of tRNA(3)(Lys) with U3 during the first strand transfer of HIV-1 reverse transcription. Nucleic Acids Res 2000; 28:634-40. [PMID: 10606665 PMCID: PMC102502 DOI: 10.1093/nar/28.2.634] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Over the course of its evolution, HIV-1 has taken maximum advantage of its tRNA(3)(Lys)primer by utilizing it in several steps of reverse transcription. Here, we have identified a conserved nonanucleotide sequence in the U3 region of HIV-1 RNA that is complementary to the anticodon stem of tRNA(3)(Lys). In order to test its possible role in the first strand transfer reaction, we applied an assay using a donor RNA corresponding to the 5'-part and an acceptor RNA spanning the 3'-part of HIV-1 RNA. In addition, we constructed two acceptor RNAs in which the nonanucleotide sequence complementary to tRNA(3)(Lys)was either substituted (S) or deleted (Delta). We used either natural tRNA(3)(Lys)or an 18 nt DNA as primer and measured the efficiency of (-) strand strong stop DNA transfer in the presence of wild-type, S or Delta acceptor RNA. Mutations in U3 did not decrease the transfer efficiency when reverse transcription was primed with the 18mer DNA. However, they significantly reduced the strand transfer efficiency in the tRNA(3)(Lys)-primed reactions. This reduction was also observed in the presence of nucleocapsid protein. These results suggest that tRNA(3)(Lys)increases (-) strand strong stop transfer by interacting with the U3 region of the genomic RNA. Sequence comparisons suggest that such long range interactions also exist in other lentiviruses.
Collapse
Affiliation(s)
- F Brulé
- Unité Propre de Recherche No. 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Morris S, Leis J. Changes in Rous sarcoma virus RNA secondary structure near the primer binding site upon tRNATrp primer annealing. J Virol 1999; 73:6307-18. [PMID: 10400722 PMCID: PMC112709 DOI: 10.1128/jvi.73.8.6307-6318.1999] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Predicted secondary-structure elements encompassing the primer binding site in the 5' untranslated region of Rous sarcoma virus (RSV) RNA play an integral role in multiple viral replications steps including reverse transcription, DNA integration, and RNA packaging (A. Aiyar, D. Cobrinik, Z. Ge, H. J. Kung, and J. Leis, J. Virol. 66:2464-2472, 1992; D. Cobrinik, A. Aiyar, Z. Ge, M. Katzman, H. Huang, and J. Leis, J. Virol. 65:3864-3872, 1991; J. T. Miller, Z. Ge, S. Morris, K. Das, and J. Leis, J. Virol. 71:7648-7656, 1997). These elements include the U5-Leader stem, U5-IR stem-loop, and U5-TPsiC interaction region. Limited digestion of the 5' untranslated region of wild-type and mutant RSV RNAs with structure- and/or sequence-specific RNases detects the presence of the U5-Leader stem and the U5-IR stem-loop. When a tRNATrp primer is annealed to wild-type RNAs in vitro, limited nuclease mapping indicates that the U5-IR stem becomes partially unwound. This is not observed when mutant RNAs with altered U5-IR stem-loop structures are substituted for wild-type RNAs. The U5-Leader stem also becomes destabilized when the tRNA primer is annealed to either wild-type or mutant RNA fragments. Nuclease mapping studies of tRNATrp, as well as the viral RNA, indicate that the U5-TPsiC helix does form in vitro upon primer annealing. Collectively, these data suggest that the various structural elements near the RSV primer binding site undergo significant changes during the process of primer annealing.
Collapse
Affiliation(s)
- S Morris
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4935, USA
| | | |
Collapse
|
43
|
Isel C, Westhof E, Massire C, Le Grice SF, Ehresmann B, Ehresmann C, Marquet R. Structural basis for the specificity of the initiation of HIV-1 reverse transcription. EMBO J 1999; 18:1038-48. [PMID: 10022845 PMCID: PMC1171195 DOI: 10.1093/emboj/18.4.1038] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Initiation of human immunodeficiency virus type 1 (HIV-1) reverse transcription requires specific recognition of the viral genome, tRNA3Lys, which acts as primer, and reverse transcriptase (RT). The specificity of this ternary complex is mediated by intricate interactions between HIV-1 RNA and tRNA3Lys, but remains poorly understood at the three-dimensional level. We used chemical probing to gain insight into the three-dimensional structure of the viral RNA-tRNA3Lys complex, and enzymatic footprinting to delineate regions interacting with RT. These and previous experimental data were used to derive a three-dimensional model of the initiation complex. The viral RNA and tRNA3Lys form a compact structure in which the two RNAs fold into distinct structural domains. The extended interactions between these molecules are not directly recognized by RT. Rather, they favor RT binding by preventing steric clashes between the nucleic acids and the polymerase and inducing a viral RNA-tRNA3Lys conformation which fits perfectly into the nucleic acid binding cleft of RT. Recognition of the 3' end of tRNA3Lys and of the first template nucleotides by RT is favored by a kink in the template strand promoted by the short junctions present in the previously established secondary structure.
Collapse
Affiliation(s)
- C Isel
- Unité Propre de Recherche No. 9002 du Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg Cedex, France
| | | | | | | | | | | | | |
Collapse
|
44
|
Clever JL, Eckstein DA, Parslow TG. Genetic dissociation of the encapsidation and reverse transcription functions in the 5' R region of human immunodeficiency virus type 1. J Virol 1999; 73:101-9. [PMID: 9847312 PMCID: PMC103813 DOI: 10.1128/jvi.73.1.101-109.1999] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The efficient packaging of genomic RNA into virions of human immunodeficiency virus type 1 (HIV-1) is directed by cis-acting encapsidation signals, which have been mapped to particular RNA stem-loop structures near the 5' end of the genome. Earlier studies have shown that three such stem-loops, located adjacent to the major 5' splice donor, are required for optimal packaging; more recent reports further suggest a requirement for the TAR and poly(A) hairpins of the 5' R region. In the present study, we have compared the phenotypes that result from mutating these latter elements in the HIV-1 provirus. Using a single-round infectivity assay, we find that mutations which disrupt base pairing in either the TAR or poly(A) stems cause profound defects in both packaging and viral replication. Decreased genomic packaging in a given mutant was always accompanied by increased packaging of spliced viral RNAs. Compensatory mutations that restored base pairing also restored encapsidation, indicating that the secondary structures of the TAR and poly(A) stems, rather than their primary sequences, are important for packaging activity. Despite having normal RNA contents, however, viruses with compensatory mutations at the base of the TAR stem were severely replication defective, owing to a defect in proviral DNA synthesis. Our findings thus confirm that the HIV-1 TAR stem-loop is required for at least three essential viral functions (transcriptional activation, RNA packaging, and reverse transcription) and reveal that its packaging and reverse transcription activities can be dissociated genetically by mutations at the base of the TAR stem.
Collapse
Affiliation(s)
- J L Clever
- Departments of Pathology and of Microbiology and Immunology, University of California, San Francisco, California 94143, USA
| | | | | |
Collapse
|
45
|
Lanchy JM, Keith G, Le Grice SF, Ehresmann B, Ehresmann C, Marquet R. Contacts between reverse transcriptase and the primer strand govern the transition from initiation to elongation of HIV-1 reverse transcription. J Biol Chem 1998; 273:24425-32. [PMID: 9733733 DOI: 10.1074/jbc.273.38.24425] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HIV-1 reverse transcriptase (RT) utilizes RNA oligomers to prime DNA synthesis. The initiation of reverse transcription requires specific interactions between HIV-1 RNA, primer tRNA3Lys, and RT. We have previously shown that extension of an oligodeoxyribonucleotide, a situation that mimicks elongation, is unspecific and differs from initiation by the polymerization rate and dissociation rate of RT from the primer-template complex. Here, we used replication intermediates to analyze the transition from the initiation to the elongation phases. We found that the 2'-hydroxyl group at the 3' end of tRNA had limited effects on the polymerization and dissociation rate constants. Instead, the polymerization rate increased 3400-fold between addition of the sixth and seventh nucleotide to tRNA3Lys. The same increase in the polymerization rate was observed when an oligoribonucleotide, but not an oligodeoxyribonucleotide, was used as a primer. In parallel, the dissociation rate of RT from the primer-template complex decreased 30-fold between addition of the 17th and 19th nucleotide to tRNA3Lys. The polymerization and dissociation rates are most likely governed by interactions of the primer strand with helix alphaH in the p66 thumb subdomain and the RNase H domain of RT, respectively.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cattle
- Chimera
- Crystallography, X-Ray
- DNA Primers
- DNA, Viral/chemistry
- DNA, Viral/metabolism
- HIV Reverse Transcriptase/chemistry
- HIV Reverse Transcriptase/metabolism
- HIV-1/enzymology
- HIV-1/genetics
- Kinetics
- Liver/chemistry
- Liver/metabolism
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Conformation
- RNA, Transfer, Amino Acyl/isolation & purification
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Viral/chemistry
- RNA, Viral/metabolism
- Ribonuclease H/chemistry
- Ribonuclease H/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- J M Lanchy
- Unité Propre de Recherche 9002, CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg cedex, France
| | | | | | | | | | | |
Collapse
|
46
|
Boulmé F, Freund F, Litvak S. Initiation of in vitro reverse transcription from tRNA(Lys3) on HIV-1 or HIV-2 RNAs by both type 1 and 2 reverse transcriptases. FEBS Lett 1998; 430:165-70. [PMID: 9688531 DOI: 10.1016/s0014-5793(98)00649-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
HIV reverse transcription is initiated from a cellular tRNA partially associated with the retroviral genome. Here we studied homologous HIV-2 cDNA synthesis using natural or synthetic primers. With natural tRNA(Lys3), synthesis of early products comprising nucleotides +5 to +7 preceded the elongation step leading to synthesis of (-) strong-stop cDNA. In the presence of a poly(A) x oligo(dT) trap, no full-length product was observed while early products were still present, showing a transition between initiation and elongation. With DNA primers only an unspecific elongation was found. Our data show a similar mechanism of reverse transcription initiation by HIV-1 and HIV-2 reverse transcriptases. Furthermore, using a heterologous system we found that HIV-1 RNA, in contrast to data reported in the literature, was an excellent template for HIV-2 reverse transcriptase.
Collapse
Affiliation(s)
- F Boulmé
- EP-630, CNRS-Université Victor Ségalen Bordeaux 2, IFR 66 Pathologies Infectieuses, France
| | | | | |
Collapse
|
47
|
Arts EJ, Miller JT, Ehresmann B, Le Grice SF. Mutating a region of HIV-1 reverse transcriptase implicated in tRNA(Lys-3) binding and the consequences for (-)-strand DNA synthesis. J Biol Chem 1998; 273:14523-32. [PMID: 9603966 DOI: 10.1074/jbc.273.23.14523] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, tRNALys-3 was cross-linked via its anticodon loop to human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) between residues 230 and 357 (Mishima, Y., and Steitz, J. A. (1995) EMBO J. 14, 2679-2687). Scanning the surface of this region identified three basic amino acids Lys249, Arg307, and Lys311 flanking a small crevice on the p66 thumb subdomain outside the primer-template binding cleft. To assess an interaction of this region with the tRNA anticodon loop, these p66 residues were altered to Glu or Gln. p66 subunits containing K249Q, K311Q, K311E, and a dual R307E/K311E mutation formed a stable dimer with wild type p51. All mutants showed reduced affinity for tRNALys-3 and supported significantly less (-)-strand DNA synthesis from this primer than the parental heterodimer. In contrast, these variants efficiently synthesized HIV-1 (-)-strand strong-stop DNA from oligonucleotide primers and had minimal effect on RNase H activity, retaining endonucleolytic and directed cleavage of an RNA/DNA hybrid. Structural features of binary RT.tRNALys-3 complexes were examined by in situ footprinting, via susceptibility to 1, 10-phenanthroline-copper-mediated cleavage. Unlike wild type RT, mutants p66(K311Q)/p51 and p66(K311E)/p51 failed to protect the tRNA anticodon domain from chemical cleavage, indicating a significant structural alteration in the binary RT.tRNA complex. These results suggest a crevice in the p66 thumb subdomain of HIV-1 RT supports an interaction with the tRNALys-3 anticodon loop critical for efficient (-)-strand DNA synthesis.
Collapse
Affiliation(s)
- E J Arts
- Department of Medicine, University Hospitals of Cleveland and Center for AIDS Research at Case Western Reserve University, Cleveland, Ohio 44106-4984, USA
| | | | | | | |
Collapse
|
48
|
Huang Y, Khorchid A, Gabor J, Wang J, Li X, Darlix JL, Wainberg MA, Kleiman L. The role of nucleocapsid and U5 stem/A-rich loop sequences in tRNA(3Lys) genomic placement and initiation of reverse transcription in human immunodeficiency virus type 1. J Virol 1998; 72:3907-15. [PMID: 9557676 PMCID: PMC109616 DOI: 10.1128/jvi.72.5.3907-3915.1998] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have studied the effect of mutations in the human immunodeficiency virus type 1 (HIV-1) nucleocapsid (NC) sequence on tRNA(3Lys) genomic placement, i.e., the in vivo placement of primer tRNA(3Lys) on the HIV-1 primer binding site (PBS). HIV-1 produced from COS cells transfected with wild-type or mutant proviral DNA was used in this study. We have found that mutations in the amino acid sequences flanking the first Cys-His box in the NC sequence produce the maximum inhibition of genomic placement. A similar finding was obtained when the NC-facilitated annealing of primer tRNA(3Lys) to the HIV PBS in vitro was studied. However, since the genomic placement of tRNA(3Lys) occurs independently of precursor protein processing, the NC mutations studied here have probably exerted their effect through one or both of the precursor proteins, Pr55gag and/or Pr160(gag-pol). One mutation in the linker region between the two Cys-His boxes, P31L, prevented packaging of both Pr160(gag-pol) and tRNA(3Lys) and prevented the genomic placement of tRNA(3Lys). Both packaging and genomic placement were rescued by cotransfection with a plasmid coding for wild-type Pr160(gag-pol). For other linker mutations [R7R10K11 S, R32G, and S3(32-34)], packaging of Pr160(gag-pol) and tRNA(3Lys) was not affected, but genomic placement was, and placement could not be rescued by cotransfection with plasmids coding for either Pr55gag or Pr160(gag-pol). After placement, the initiation of reverse transcription within extracellular virions is characterized by a 2-base DNA extension of the placed tRNA(3Lys). This process requires precursor processing, and those NC mutations which showed the most inhibition of initiation were in either of the two NC Cys-His boxes. Destabilization of a U5 stem-A-rich loop immediately upstream of the PBS (through deletion of four consecutive A's in the loop) did not affect the in vivo genomic placement of tRNA(3Lys) but resulted in the presence in the extracellular virus of longer cDNA extensions of tRNA(3Lys), with a corresponding decrease in the presence of unextended and 2-base-extended tRNA(3Lys).
Collapse
Affiliation(s)
- Y Huang
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Isel C, Keith G, Ehresmann B, Ehresmann C, Marquet R. Mutational analysis of the tRNA3Lys/HIV-1 RNA (primer/template) complex. Nucleic Acids Res 1998; 26:1198-204. [PMID: 9469827 PMCID: PMC147409 DOI: 10.1093/nar/26.5.1198] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Retroviruses use a specific tRNA, whose 3' end is complementary to the 18 nucleotides of the primer binding site (PBS), to prime reverse transcription. Previous work has shown that initiation of HIV-1 reverse transcription is a specific process, in contrast with the subsequent elongation phase. HIV-1 reverse transcriptase (RT) specifically recognizes the complex formed by the viral RNA and tRNA3Lys. We previously proposed a secondary structure model of this complex based on chemical and enzymatic probing. In this model, tRNA3Lysextensively interacts with the genomic RNA. Here, we have combined site-directed mutagenesis and structural probing to test crucial aspects of this model. We found that the complex interactions between tRNA3Lysand HIV-1 RNA, and the intra-molecular rearrangements did not depend on the presence of upstream and downstream viral sequences. Indeed, a short RNA template, encompassing nucleotides 123-217 of the HIV-1 Mal genome, was able, together with the primer tRNA, to adopt the same structure as longer viral RNA fragments. This model primer/template is thus amenable to detailed structural and functional studies. The probing data obtained on the tRNA3Lys/mutant viral RNA complexes support the previously proposed model. Furthermore, they indicate that destroying the complementarity between the anticodon of tRNA3Lysand the so-called viral 'A-rich loop' destabilizes all four helices of the extended tRNA3Lys/HIV-1 RNA interactions.
Collapse
Affiliation(s)
- C Isel
- Unité Propre de Recherche No. 9002 du Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg cedex, France
| | | | | | | | | |
Collapse
|
50
|
Fossé P, Mougel M, Keith G, Westhof E, Ehresmann B, Ehresmann C. Modified nucleotides of tRNAPro restrict interactions in the binary primer/template complex of M-MuLV. J Mol Biol 1998; 275:731-46. [PMID: 9480765 DOI: 10.1006/jmbi.1997.1487] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In all retroviruses, reverse transcription is primed by a cellular tRNA, which is base-paired through its 3'-terminal 18 nucleotides to a complementary sequence on the viral RNA genome termed the primer binding site (PBS). Evidence for specific primer-template interactions in addition to this standard interaction has recently been demonstrated for several retroviruses. Here, we used chemical and enzymatic probing to investigate the interactions between Moloney murine leukemia virus (M-MuLV) RNA and its natural primer tRNAPro. The existence of extended interactions was further tested by comparing the viral RNA/tRNAPro complex with simplified complexes in which viral RNA or tRNA were reduced to the 18 nt of the PBS or to the complementary tRNA sequence. These data, combined with computer modeling provide important clues on the secondary structure and three-dimensional folding of the M-MuLV RNA/tRNAPro complex. In contrast with other retroviruses, we found that the interaction between tRNAPro and the M-MuLV RNA template is restricted to the standard PBS interaction. In this binary complex, the viral RNA is highly constrained and the rest of tRNAPro is rearranged, with the exception of the anticodon arm, leading to a very compact structure. Unexpectedly, when a synthetic tRNAPro lacking the post-transcriptional modifications is substituted for the natural tRNAPro primer, the interactions between the primer and the viral RNA are extended. Hence, our data suggest that the post-transcriptional modifications of natural tRNAPro prevent additional contacts between tRNAPro and the U5 region of M-MuLV RNA.
Collapse
Affiliation(s)
- P Fossé
- Institut de Biologie Moléculaire et Cellulaire, 15 rue Descartes, Strasbourg cedex, 67084, France
| | | | | | | | | | | |
Collapse
|