1
|
Bhattacharya J, Nitnavare RB, Bhatnagar-Mathur P, Reddy PS. Cytoplasmic male sterility-based hybrids: mechanistic insights. PLANTA 2024; 260:100. [PMID: 39302508 DOI: 10.1007/s00425-024-04532-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
MAIN CONCLUSION A comprehensive understanding of the nucleocytoplasmic interactions that occur between genes related to the restoration of fertility and cytoplasmic male sterility (CMS) provides insight into the development of hybrids of important crop species. Modern biotechnological techniques allow this to be achieved in an efficient and quick manner. Heterosis is paramount for increasing the yield and quality of a crop. The development of hybrids for achieving heterosis has been well-studied and proven to be robust and efficient. Cytoplasmic male sterility (CMS) has been explored extensively in the production of hybrids. The underlying mechanisms of CMS include the role of cytotoxic proteins, PCD of tapetal cells, and improper RNA editing of restoration factors. On the other hand, the restoration of fertility is caused by the presence of restorer-of-fertility (Rf) genes or restorer genes, which inhibit the effects of sterility-causing genes. The interaction between mitochondria and the nuclear genome is crucial for several regulatory pathways, as observed in the CMS-Rf system and occurs at the genomic, transcriptional, post-transcriptional, translational, and post-translational levels. These CMS-Rf mechanisms have been validated in several crop systems. This review aims to summarize the nucleo-mitochondrial interaction mechanism of the CMS-Rf system. It also sheds light on biotechnological interventions, such as genetic engineering and genome editing, to achieve CMS-based hybrids.
Collapse
Affiliation(s)
- Joorie Bhattacharya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
- Department of Genetics, Osmania University, Hyderabad, Telangana, 500007, India
| | - Rahul B Nitnavare
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire, Nottingham, LE12 5RD, UK
| | - Pooja Bhatnagar-Mathur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India.
- Plant Breeding & Genetics Laboratory of United Nation, International Atomic Energy Agency, 1400, Vienna, Austria.
| | - Palakolanu Sudhakar Reddy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India.
| |
Collapse
|
2
|
Zhang X, Ding Z, Lou H, Han R, Ma C, Yang S. A Systematic Review and Developmental Perspective on Origin of CMS Genes in Crops. Int J Mol Sci 2024; 25:8372. [PMID: 39125940 PMCID: PMC11312923 DOI: 10.3390/ijms25158372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Cytoplasmic male sterility (CMS) arises from the incompatibility between the nucleus and cytoplasm as typical representatives of the chimeric structures in the mitochondrial genome (mitogenome), which has been extensively applied for hybrid seed production in various crops. The frequent occurrence of chimeric mitochondrial genes leading to CMS is consistent with the mitochondrial DNA (mtDNA) evolution. The sequence conservation resulting from faithfully maternal inheritance and the chimeric structure caused by frequent sequence recombination have been defined as two major features of the mitogenome. However, when and how these chimeric mitochondrial genes appear in the context of the highly conserved reproduction of mitochondria is an enigma. This review, therefore, presents the critical view of the research on CMS in plants to elucidate the mechanisms of this phenomenon. Generally, distant hybridization is the main mechanism to generate an original CMS source in natural populations and in breeding. Mitochondria and mitogenomes show pleomorphic and dynamic changes at key stages of the life cycle. The promitochondria in dry seeds develop into fully functioning mitochondria during seed imbibition, followed by massive mitochondria or mitogenome fusion and fission in the germination stage along with changes in the mtDNA structure and quantity. The mitogenome stability is controlled by nuclear loci, such as the nuclear gene Msh1. Its suppression leads to the rearrangement of mtDNA and the production of heritable CMS genes. An abundant recombination of mtDNA is also often found in distant hybrids and somatic/cybrid hybrids. Since mtDNA recombination is ubiquitous in distant hybridization, we put forward a hypothesis that the original CMS genes originated from mtDNA recombination during the germination of the hybrid seeds produced from distant hybridizations to solve the nucleo-cytoplasmic incompatibility resulting from the allogenic nuclear genome during seed germination.
Collapse
Affiliation(s)
- Xuemei Zhang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China;
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (Z.D.); (H.L.)
| | - Zhengpin Ding
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (Z.D.); (H.L.)
| | - Hongbo Lou
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (Z.D.); (H.L.)
| | - Rui Han
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Cunqiang Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Shengchao Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China;
| |
Collapse
|
3
|
Xu F, Su T, Zhang X, Qiu L, Yang X, Koizuka N, Arimura S, Hu Z, Zhang M, Yang J. Editing of ORF138 restores fertility of Ogura cytoplasmic male sterile broccoli via mitoTALENs. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1325-1334. [PMID: 38213067 PMCID: PMC11022808 DOI: 10.1111/pbi.14268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/03/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
Cytoplasmic male sterility (CMS), encoded by the mitochondrial open reading frames (ORFs), has long been used to economically produce crop hybrids. However, the utilization of CMS also hinders the exploitation of sterility and fertility variation in the absence of a restorer line, which in turn narrows the genetic background and reduces biodiversity. Here, we used a mitochondrial targeted transcription activator-like effector nuclease (mitoTALENs) to knock out ORF138 from the Ogura CMS broccoli hybrid. The knockout was confirmed by the amplification and re-sequencing read mapping to the mitochondrial genome. As a result, knockout of ORF138 restored the fertility of the CMS hybrid, and simultaneously manifested a cold-sensitive male sterility. ORF138 depletion is stably inherited to the next generation, allowing for direct use in the breeding process. In addition, we proposed a highly reliable and cost-effective toolkit to accelerate the life cycle of fertile lines from CMS-derived broccoli hybrids. By applying the k-mean clustering and interaction network analysis, we identified the central gene networks involved in the fertility restoration and cold-sensitive male sterility. Our study enables mitochondrial genome editing via mitoTALENs in Brassicaceae vegetable crops and provides evidence that the sex production machinery and its temperature-responsive ability are regulated by the mitochondria.
Collapse
Affiliation(s)
- Fengyuan Xu
- Hainan Institute, Zhejiang UniversityYazhou Bay Science and Technology CitySanyaChina
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable ScienceZhejiang UniversityHangzhouChina
| | - Tongbing Su
- Beijing Vegetable Research CenterBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Xiaochen Zhang
- Hainan Institute, Zhejiang UniversityYazhou Bay Science and Technology CitySanyaChina
| | - Lei Qiu
- College of Horticulture and Landscape ArchitectureYangzhou UniversityYangzhouChina
| | - Xiaodong Yang
- College of Horticulture and Landscape ArchitectureYangzhou UniversityYangzhouChina
| | | | - Shin‐ichi Arimura
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Zhongyuan Hu
- Hainan Institute, Zhejiang UniversityYazhou Bay Science and Technology CitySanyaChina
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable ScienceZhejiang UniversityHangzhouChina
- Key Laboratory of Horticultural Plant Growth and DevelopmentMinistry of Agriculture and Rural AffairsHangzhouChina
| | - Mingfang Zhang
- Hainan Institute, Zhejiang UniversityYazhou Bay Science and Technology CitySanyaChina
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable ScienceZhejiang UniversityHangzhouChina
- Key Laboratory of Horticultural Plant Growth and DevelopmentMinistry of Agriculture and Rural AffairsHangzhouChina
| | - Jinghua Yang
- Hainan Institute, Zhejiang UniversityYazhou Bay Science and Technology CitySanyaChina
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable ScienceZhejiang UniversityHangzhouChina
- Key Laboratory of Horticultural Plant Growth and DevelopmentMinistry of Agriculture and Rural AffairsHangzhouChina
| |
Collapse
|
4
|
Gautam R, Shukla P, Kirti PB. Male sterility in plants: an overview of advancements from natural CMS to genetically manipulated systems for hybrid seed production. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:195. [PMID: 37606708 DOI: 10.1007/s00122-023-04444-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023]
Abstract
KEY MESSAGE The male sterility system in plants has traditionally been utilized for hybrid seed production. In last three decades, genetic manipulation for male sterility has revolutionized this area of research related to hybrid seed production technology. Here, we have surveyed some of the natural cytoplasmic male sterility (CMS) systems that existed/ were developed in different crop plants for developing male sterility-fertility restoration systems used in hybrid seed production and highlighted some of the recent biotechnological advancements in the development of genetically engineered systems that occurred in this area. We have indicated the possible future directions toward the development of engineered male sterility systems. Cytoplasmic male sterility (CMS) is an important trait that is naturally prevalent in many plant species, which has been used in the development of hybrid varieties. This is associated with the use of appropriate genes for fertility restoration provided by the restorer line that restores fertility on the corresponding CMS line. The development of hybrids based on a CMS system has been demonstrated in several different crops. However, there are examples of species, which do not have usable cytoplasmic male sterility and fertility restoration systems (Cytoplasmic Genetic Male Sterility Systems-CGMS) for hybrid variety development. In such plants, it is necessary to develop usable male sterile lines through genetic engineering with the use of heterologous expression of suitable genes that control the development of male gametophyte and fertile male gamete formation. They can also be developed through gene editing using the recently developed CRISPR-Cas technology to knock out suitable genes that are responsible for the development of male gametes. The present review aims at providing an insight into the development of various technologies for successful production of hybrid varieties and is intended to provide only essential information on male sterility systems starting from naturally occurring ones to the genetically engineered systems obtained through different means.
Collapse
Affiliation(s)
- Ranjana Gautam
- Department of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, 208024, India
| | - Pawan Shukla
- Seri-Biotech Research Laboratory, Central Silk Board, Carmelram Post, Kodathi, Bangalore, 560035, India.
| | - P B Kirti
- Agri Biotech Foundation, PJTS Agricultural University Campus, Rajendranagar, Hyderabad, Telangana, 500030, India
| |
Collapse
|
5
|
Kitazaki K, Oda K, Akazawa A, Iwahori R. Molecular genetics of cytoplasmic male sterility and restorer-of-fertility for the fine tuning of pollen production in crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:156. [PMID: 37330934 DOI: 10.1007/s00122-023-04398-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/01/2023] [Indexed: 06/20/2023]
Abstract
Cytoplasmic male sterility (CMS) is an increasingly important issue within the context of hybrid seed production. Its genetic framework is simple: S-cytoplasm for male sterility induction and dominant allele of the restorer-of-fertility gene (Rf) for suppression of S. However, breeders sometimes encounter a phenotype of CMS plants too complex to be explained via this simple model. The molecular basis of CMS provides clue to the mechanisms that underlie the expression of CMS. Mitochondria have been associated with S, and several unique ORFs to S-mitochondria are thought to be responsible for the induction of male sterility in various crops. Their functions are still the subject of debate, but they have been hypothesized to emit elements that trigger sterility. Rf suppresses the action of S by various mechanisms. Some Rfs, including those that encode the pentatricopeptide repeat (PPR) protein and other proteins, are now considered members of unique gene families that are specific to certain lineages. Additionally, they are thought to be complex loci in which several genes in a haplotype simultaneously counteract an S-cytoplasm and differences in the suite of genes in a haplotype can lead to multiple allelism including strong and weak Rf at phenotypic level. The stability of CMS is influenced by factors such as the environment, cytoplasm, and genetic background; the interaction of these factors is also important. In contrast, unstable CMS becomes inducible CMS if its expression can be controlled. CMS becomes environmentally sensitive in a genotype-dependent manner, suggesting the feasibility of controlling the expression of CMS.
Collapse
Affiliation(s)
- Kazuyoshi Kitazaki
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Kotoko Oda
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Akiho Akazawa
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ryoma Iwahori
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
6
|
Ren W, Si J, Chen L, Fang Z, Zhuang M, Lv H, Wang Y, Ji J, Yu H, Zhang Y. Mechanism and Utilization of Ogura Cytoplasmic Male Sterility in Cruciferae Crops. Int J Mol Sci 2022; 23:ijms23169099. [PMID: 36012365 PMCID: PMC9409259 DOI: 10.3390/ijms23169099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 12/11/2022] Open
Abstract
Hybrid production using lines with cytoplasmic male sterility (CMS) has become an important way to utilize heterosis in vegetables. Ogura CMS, with the advantages of complete pollen abortion, ease of transfer and a progeny sterility rate reaching 100%, is widely used in cruciferous crop breeding. The mapping, cloning, mechanism and application of Ogura CMS and fertility restorer genes in Brassica napus, Brassica rapa, Brassica oleracea and other cruciferous crops are reviewed herein, and the existing problems and future research directions in the application of Ogura CMS are discussed.
Collapse
Affiliation(s)
- Wenjing Ren
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinchao Si
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Li Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyuan Fang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Mu Zhuang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Honghao Lv
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Yong Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Jialei Ji
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Hailong Yu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
- Correspondence: (H.Y.); (Y.Z.)
| | - Yangyong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
- Correspondence: (H.Y.); (Y.Z.)
| |
Collapse
|
7
|
Breton S, Stewart DT, Brémaud J, Havird JC, Smith CH, Hoeh WR. Did doubly uniparental inheritance (DUI) of mtDNA originate as a cytoplasmic male sterility (CMS) system? Bioessays 2022; 44:e2100283. [PMID: 35170770 PMCID: PMC9083018 DOI: 10.1002/bies.202100283] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 01/10/2023]
Abstract
Animal and plant species exhibit an astonishing diversity of sexual systems, including environmental and genetic determinants of sex, with the latter including genetic material in the mitochondrial genome. In several hermaphroditic plants for example, sex is determined by an interaction between mitochondrial cytoplasmic male sterility (CMS) genes and nuclear restorer genes. Specifically, CMS involves aberrant mitochondrial genes that prevent pollen development and specific nuclear genes that restore it, leading to a mixture of female (male-sterile) and hermaphroditic individuals in the population (gynodioecy). Such a mitochondrial-nuclear sex determination system is thought to be rare outside plants. Here, we present one possible case of CMS in animals. We hypothesize that the only exception to the strict maternal mtDNA inheritance in animals, the doubly uniparental inheritance (DUI) system in bivalves, might have originated as a mitochondrial-nuclear sex-determination system. We document and explore similarities that exist between DUI and CMS, and we propose various ways to test our hypothesis.
Collapse
Affiliation(s)
- Sophie Breton
- Département des sciences biologiques, Université de Montréal, Montréal, Québec, Canada
| | - Donald T Stewart
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| | - Julie Brémaud
- Département des sciences biologiques, Université de Montréal, Montréal, Québec, Canada
| | - Justin C Havird
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Chase H Smith
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Walter R Hoeh
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| |
Collapse
|
8
|
Xu F, Yang X, Zhao N, Hu Z, Mackenzie SA, Zhang M, Yang J. Exploiting sterility and fertility variation in cytoplasmic male sterile vegetable crops. HORTICULTURE RESEARCH 2022; 9:uhab039. [PMID: 35039865 PMCID: PMC8807945 DOI: 10.1093/hr/uhab039] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/18/2022] [Accepted: 10/15/2021] [Indexed: 05/04/2023]
Abstract
Cytoplasmic male sterility (CMS) has long been used to economically produce hybrids that harness growth vigor through heterosis. Yet, how CMS systems operate within commercially viable seed production strategies in various economically important vegetable crops, and their underlying molecular mechanisms, are often overlooked details that could expand the utility of CMS as a cost-effective and stable system. We provide here an update on the nature of cytoplasmic-nuclear interplay for pollen sterility and fertility transitions in vegetable crops, based on the discovery of components of nuclear fertility restoration and reversion determinants. Within plant CMS systems, pollen fertility can be rescued by the introduction of nuclear fertility restorer genes (Rfs), which operate by varied mechanisms to countermand the sterility phenotype. By understanding these systems, it is now becoming feasible to achieve fertility restoration with Rfs designed for programmable CMS-associated open reading frames (ORFs). Likewise, new opportunities exist for targeted disruption of CMS-associated ORFs by mito-TALENs in crops where natural Rfs have not been readily identified, providing an alternative approach to recovering fertility of cytoplasmic male sterile lines in crops. Recent findings show that facultative gynodioecy, as a reproductive strategy, can coordinate the sterility and fertility transition in response to environmental cues and/or metabolic signals that reflect ecological conditions of reproductive isolation. This information is important to devising future systems that are more inherently stable.
Collapse
Affiliation(s)
- Fengyuan Xu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xiaodong Yang
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Na Zhao
- College of Grassland Science, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Sally A Mackenzie
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025, China
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs, Hangzhou,
Zhejiang, 310058, China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025, China
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs, Hangzhou,
Zhejiang, 310058, China
| |
Collapse
|
9
|
Abstract
Brassica oleracea is an important vegetable species which belongs to the genus Brassica and the mustard family Brassicaceae Burnett. Strong heterosis in B. oleracea is displayed in yield, quality, disease resistance, and stress tolerance. Heterosis breeding is the main way to improve B. oleracea varieties. Male sterile mutants play an important role in the utilization of heterosis and the study of development and regulation in plant reproduction. In this paper, advances in the research and application of male sterility in B. oleracea were reviewed, including aspects of the genetics, cytological characteristics, discovery of genes related to male sterility, and application of male sterility in B. oleracea. Moreover, the main existing problems and prospect of male sterility application in B. oleracea were addressed and a new hybrids’ production strategy with recessive genic male sterility is introduced.
Collapse
|
10
|
Kazama T, Okuno M, Watari Y, Yanase S, Koizuka C, Tsuruta Y, Sugaya H, Toyoda A, Itoh T, Tsutsumi N, Toriyama K, Koizuka N, Arimura SI. Curing cytoplasmic male sterility via TALEN-mediated mitochondrial genome editing. NATURE PLANTS 2019; 5:722-730. [PMID: 31285556 DOI: 10.1038/s41477-019-0459-z] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 05/23/2019] [Indexed: 05/22/2023]
Abstract
Sequence-specific nucleases are commonly used to modify the nuclear genome of plants. However, targeted modification of the mitochondrial genome of land plants has not yet been achieved. In plants, a type of male sterility called cytoplasmic male sterility (CMS) has been attributed to certain mitochondrial genes, but none of these genes has been validated by direct mitochondrial gene-targeted modification. Here, we knocked out CMS-associated genes (orf79 and orf125) of CMS varieties of rice and rapeseed, respectively, using transcription activator-like effector nucleases (TALENs) with mitochondria localization signals (mitoTALENs). We demonstrate that knocking out these genes cures male sterility, strongly suggesting that these genes are causes of CMS. Sequencing revealed that double-strand breaks induced by mitoTALENs were repaired by homologous recombination, and that during this process, the target genes and surrounding sequences were deleted. Our results show that mitoTALENs can be used to stably and heritably modify the mitochondrial genome in plants.
Collapse
Affiliation(s)
- Tomohiko Kazama
- Laboratory of Environmental Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.
| | - Miki Okuno
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Yuta Watari
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shungo Yanase
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Chie Koizuka
- College of Agriculture, Tamagawa University, Tokyo, Japan
| | - Yu Tsuruta
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hajime Sugaya
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Nobuhiro Tsutsumi
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kinya Toriyama
- Laboratory of Environmental Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Nobuya Koizuka
- College of Agriculture, Tamagawa University, Tokyo, Japan.
| | - Shin-Ichi Arimura
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
- PRESTO, Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|
11
|
Tang H, Xie Y, Liu YG, Chen L. Advances in understanding the molecular mechanisms of cytoplasmic male sterility and restoration in rice. PLANT REPRODUCTION 2017; 30:179-184. [PMID: 28988325 DOI: 10.1007/s00497-017-0308-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
Cytoplasmic male sterility (CMS) in plants is a male reproductive defect determined by mitochondrial genes and inherited maternally. CMS can be suppressed by nuclear restorer of fertility (Rf) genes. Therefore, CMS/Rf systems provide a classic model for the study of mitochondrial-nuclear interactions in plants. Moreover, CMS/Rf systems are economical, effective tools for the production of hybrid seeds. For example, CMS/Rf systems have been applied in over forty countries to breed hybrid rice (Oryza sativa L.) with improved yields due to hybrid vigor. The production of hybrid rice mainly depends on three types of CMS systems, namely Wild-Abortive type CMS (CMS-WA), Hong-Lian type CMS (CMS-HL) and Boro II type CMS (CMS-BT). Understanding the molecular mechanisms underlying these CMS/Rf systems will help us to understand mitochondrial-nuclear interactions, and accelerate the utilization of heterosis for improvement in yield. In the past decades, research benefitting from the availability of the high-quality, annotated mitochondrial and nuclear genome sequences of rice has isolated many CMS genes, identified the cognate nuclear Rf genes and studied the molecular mechanisms underlying CMS and restoration in rice. Here, we focus on recent advances in studies of the three major CMS/Rf systems in rice and discuss the key issues facing basic research and application of CMS/Rf systems in the future.
Collapse
Affiliation(s)
- Huiwu Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yongyao Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
12
|
Paul P, Röth S, Schleiff E. Importance of organellar proteins, protein translocation and vesicle transport routes for pollen development and function. PLANT REPRODUCTION 2016; 29:53-65. [PMID: 26874709 DOI: 10.1007/s00497-016-0274-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/18/2016] [Indexed: 05/27/2023]
Abstract
Protein translocation. Cellular homeostasis strongly depends on proper distribution of proteins within cells and insertion of membrane proteins into the destined membranes. The latter is mediated by organellar protein translocation and the complex vesicle transport system. Considering the importance of protein transport machineries in general it is foreseen that these processes are essential for pollen function and development. However, the information available in this context is very scarce because of the current focus on deciphering the fundamental principles of protein transport at the molecular level. Here we review the significance of protein transport machineries for pollen development on the basis of pollen-specific organellar proteins as well as of genetic studies utilizing mutants of known organellar proteins. In many cases these mutants exhibit morphological alterations highlighting the requirement of efficient protein transport and translocation in pollen. Furthermore, expression patterns of genes coding for translocon subunits and vesicle transport factors in Arabidopsis thaliana are summarized. We conclude that with the exception of the translocation systems in plastids-the composition and significance of the individual transport systems are equally important in pollen as in other cell types. Apparently for plastids only a minimal translocon, composed of only few subunits, exists in the envelope membranes during maturation of pollen. However, only one of the various transport systems known from thylakoids seems to be required for the function of the "simple thylakoid system" existing in pollen plastids. In turn, the vesicle transport system is as complex as seen for other cell types as it is essential, e.g., for pollen tube formation.
Collapse
Affiliation(s)
- Puneet Paul
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt Am Main, Germany
| | - Sascha Röth
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt Am Main, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt Am Main, Germany.
- Cluster of Excellence Frankfurt, Goethe University, 60438, Frankfurt Am Main, Germany.
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, 60438, Frankfurt Am Main, Germany.
| |
Collapse
|
13
|
Zhao N, Xu X, Wamboldt Y, Mackenzie SA, Yang X, Hu Z, Yang J, Zhang M. MutS HOMOLOG1 silencing mediates ORF220 substoichiometric shifting and causes male sterility in Brassica juncea. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:435-44. [PMID: 26516127 PMCID: PMC4682445 DOI: 10.1093/jxb/erv480] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cytoplasmic male sterility (CMS) has consistently been associated with the expression of mitochondrial open reading frames (ORFs) that arise from genomic rearrangements. Spontaneous fertility reversion in CMS has been observed in several cases, but a clear understanding of fertility reversion controlled by nuclear genetic influences has been lacking. Here, we identified spontaneous fertile revertant lines for Brassica juncea CMS cytoplasm in which the mitochondrial genome has undergone substoichiometric shifting (SSS) to suppress ORF220 copy number. We placed ORF220, with or without a mitochondrial targeting presequence, under the control of the CaMV35S and AP3 promoters in Arabidopsis to confirm that ORF220 causes male sterility when mitochondrially localized. We found that copy number of the ORF220 gene was altered under conditions that suppress MSH1, a nuclear gene that controls illegitimate recombination in plant mitochondria. MSH1-RNAi lines with increased ORF220 copy number were male sterile compared with wild type. We found that a wide range of genes involved in anther development were up- and down-regulated in revertant and MSH1-RNAi lines, respectively. The system that we have developed offers valuable future insight into the interplay of MSH1 and SSS in CMS induction and fertility reversion as a mediator of nuclear-mitochondrial crosstalk.
Collapse
Affiliation(s)
- Na Zhao
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Xinyue Xu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Yashitola Wamboldt
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588-0660, USA
| | - Sally A Mackenzie
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588-0660, USA
| | - Xiaodong Yang
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588-0660, USA.
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China. Key laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China. Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Jinghua Yang
- Key laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China. Key laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China. Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China.
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China. Key laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China. Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| |
Collapse
|
14
|
Chakraborty A, Mitra J, Bhattacharyya J, Pradhan S, Sikdar N, Das S, Chakraborty S, Kumar S, Lakhanpaul S, Sen SK. Transgenic expression of an unedited mitochondrial orfB gene product from wild abortive (WA) cytoplasm of rice (Oryza sativa L.) generates male sterility in fertile rice lines. PLANTA 2015; 241:1463-1479. [PMID: 25754232 DOI: 10.1007/s00425-015-2269-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 02/12/2015] [Indexed: 06/04/2023]
Abstract
Over-expression of the unedited mitochondrial orfB gene product generates male sterility in fertile indica rice lines in a dose-dependent manner. Cytoplasmic male sterility (CMS) and nuclear-controlled fertility restoration are widespread developmental features in plant reproductive systems. In self-pollinated crop plants, these processes often provide useful tools to exploit hybrid vigour. The wild abortive CMS has been employed in the majority of the "three-line" hybrid rice production since 1970s. In the present study, we provide experimental evidence for a positive functional relationship between the 1.1-kb unedited orfB gene transcript, and its translated product in the mitochondria with male sterility. The generation of the 1.1-kb unedited orfB gene transcripts increased during flowering, resulting in low ATP synthase activity in sterile plants. Following insertion of the unedited orfB gene into the genome of male-fertile plants, the plants became male sterile in a dose-dependent manner with concomitant reduction of ATPase activity of F1F0-ATP synthase (complex V). Fertility of the transgenic lines and normal activity of ATP synthase were restored by down-regulation of the unedited orfB gene expression through RNAi-mediated silencing. The genetic elements deciphered in this study could further be tested for their use in hybrid rice development.
Collapse
Affiliation(s)
- Anirban Chakraborty
- Advanced Laboratory for Plant Genetic Engineering, Indian Institute of Technology, Kharagpur, 721302, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ji JJ, Huang W, Li Z, Chai WG, Yin YX, Li DW, Gong ZH. Tapetum-specific expression of a cytoplasmic orf507 gene causes semi-male sterility in transgenic peppers. FRONTIERS IN PLANT SCIENCE 2015; 6:272. [PMID: 25954296 PMCID: PMC4406146 DOI: 10.3389/fpls.2015.00272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 04/05/2015] [Indexed: 06/04/2023]
Abstract
Though cytoplasmic male sterility (CMS) in peppers is associated with the orf507 gene, definitive and direct evidence that it directly causes male sterility is still lacking. In this study, differences in histochemical localization of anther cytochrome c oxidase between the pepper CMS line and maintainer line were observed mainly in the tapetal cells and tapetal membrane. Inducible and specific expression of the orf507 gene in the pepper maintainer line found that transformants were morphologically similar to untransformed and transformed control plants, but had shrunken anthers that showed little dehiscence and fewer pollen grains with lower germination rate and higher naturally damaged rate. These characters were different from those of CMS line which does not produce any pollen grains. Meanwhile a pollination test using transformants as the male parent set few fruit and there were few seeds in the limited number of fruits. At the tetrad stage, ablation of the tapetal cell induced by premature programmed cell death (PCD) occurred in the transformants and the microspores were distorted and degraded at the mononuclear stage. Stable transmission of induced semi-male sterility was confirmed by a test cross. In addition, expression of orf507 in the maintainer lines seemed to inhibit expression of atp6-2 to a certain extent, and lead to the increase of the activity of cytochrome c oxidase and the ATP hydrolysis of the mitochondrial F1Fo-ATP synthase. These results introduce the premature PCD caused by orf507 gene in tapetal cells and semi-male sterility, but not complete male sterility.
Collapse
Affiliation(s)
- Jiao-Jiao Ji
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Wei Huang
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
| | - Zheng Li
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
| | - Wei-Guo Chai
- Institute of Vegetables, Hangzhou Academy of Agricultural SciencesHangzhou, China
| | - Yan-Xu Yin
- College of Horticulture, Northwest A&F UniversityYangling, China
| | - Da-Wei Li
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
| |
Collapse
|
16
|
Dutt M, Dhekney SA, Soriano L, Kandel R, Grosser JW. Temporal and spatial control of gene expression in horticultural crops. HORTICULTURE RESEARCH 2014; 1:14047. [PMID: 26504550 PMCID: PMC4596326 DOI: 10.1038/hortres.2014.47] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 07/19/2014] [Accepted: 08/06/2014] [Indexed: 05/05/2023]
Abstract
Biotechnology provides plant breeders an additional tool to improve various traits desired by growers and consumers of horticultural crops. It also provides genetic solutions to major problems affecting horticultural crops and can be a means for rapid improvement of a cultivar. With the availability of a number of horticultural genome sequences, it has become relatively easier to utilize these resources to identify DNA sequences for both basic and applied research. Promoters play a key role in plant gene expression and the regulation of gene expression. In recent years, rapid progress has been made on the isolation and evaluation of plant-derived promoters and their use in horticultural crops, as more and more species become amenable to genetic transformation. Our understanding of the tools and techniques of horticultural plant biotechnology has now evolved from a discovery phase to an implementation phase. The availability of a large number of promoters derived from horticultural plants opens up the field for utilization of native sequences and improving crops using precision breeding. In this review, we look at the temporal and spatial control of gene expression in horticultural crops and the usage of a variety of promoters either isolated from horticultural crops or used in horticultural crop improvement.
Collapse
Affiliation(s)
- Manjul Dutt
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| | - Sadanand A Dhekney
- Department of Plant Sciences, Sheridan Research and Extension Center, University of Wyoming, Sheridan, WY 82801, USA
| | - Leonardo Soriano
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
- Universidade de Sao Paulo, Centro de Energia Nuclear na Agricultura, Piracicaba, Brazil
| | - Raju Kandel
- Department of Plant Sciences, Sheridan Research and Extension Center, University of Wyoming, Sheridan, WY 82801, USA
| | - Jude W Grosser
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| |
Collapse
|
17
|
Li Y, Liu T, Duan W, Song X, Shi G, Zhang J, Deng X, Zhang S, Hou X. Instability in mitochondrial membranes in Polima cytoplasmic male sterility of Brassica rapa ssp. chinensis. Funct Integr Genomics 2014; 14:441-51. [DOI: 10.1007/s10142-014-0368-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/27/2014] [Accepted: 03/02/2014] [Indexed: 10/25/2022]
|
18
|
Abstract
In plants, male sterility can be caused either by mitochondrial genes with coupled nuclear genes or by nuclear genes alone; the resulting conditions are known as cytoplasmic male sterility (CMS) and genic male sterility (GMS), respectively. CMS and GMS facilitate hybrid seed production for many crops and thus allow breeders to harness yield gains associated with hybrid vigor (heterosis). In CMS, layers of interaction between mitochondrial and nuclear genes control its male specificity, occurrence, and restoration of fertility. Environment-sensitive GMS (EGMS) mutants may involve epigenetic control by noncoding RNAs and can revert to fertility under different growth conditions, making them useful breeding materials in the hybrid seed industry. Here, we review recent research on CMS and EGMS systems in crops, summarize general models of male sterility and fertility restoration, and discuss the evolutionary significance of these reproductive systems.
Collapse
Affiliation(s)
- Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources
| | | |
Collapse
|
19
|
A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice. Nat Genet 2013; 45:573-7. [PMID: 23502780 DOI: 10.1038/ng.2570] [Citation(s) in RCA: 333] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 02/05/2013] [Indexed: 11/08/2022]
Abstract
Plant cytoplasmic male sterility (CMS) results from incompatibilities between the organellar and nuclear genomes and prevents self pollination, enabling hybrid crop breeding to increase yields. The Wild Abortive CMS (CMS-WA) has been exploited in the majority of 'three-line' hybrid rice production since the 1970s, but the molecular basis of this trait remains unknown. Here we report that a new mitochondrial gene, WA352, which originated recently in wild rice, confers CMS-WA because the protein it encodes interacts with the nuclear-encoded mitochondrial protein COX11. In CMS-WA lines, WA352 accumulates preferentially in the anther tapetum, thereby inhibiting COX11 function in peroxide metabolism and triggering premature tapetal programmed cell death and consequent pollen abortion. WA352-induced sterility can be suppressed by two restorer-of-fertility (Rf) genes, suggesting the existence of different mechanisms to counteract deleterious cytoplasmic factors. Thus, CMS-related cytoplasmic-nuclear incompatibility is driven by a detrimental interaction between a newly evolved mitochondrial gene and a conserved, essential nuclear gene.
Collapse
|
20
|
Fang Y, Wu H, Zhang T, Yang M, Yin Y, Pan L, Yu X, Zhang X, Hu S, Al-Mssallem IS, Yu J. A complete sequence and transcriptomic analyses of date palm (Phoenix dactylifera L.) mitochondrial genome. PLoS One 2012; 7:e37164. [PMID: 22655034 PMCID: PMC3360038 DOI: 10.1371/journal.pone.0037164] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 04/16/2012] [Indexed: 11/21/2022] Open
Abstract
Based on next-generation sequencing data, we assembled the mitochondrial (mt) genome of date palm (Phoenix dactylifera L.) into a circular molecule of 715,001 bp in length. The mt genome of P. dactylifera encodes 38 proteins, 30 tRNAs, and 3 ribosomal RNAs, which constitute a gene content of 6.5% (46,770 bp) over the full length. The rest, 93.5% of the genome sequence, is comprised of cp (chloroplast)-derived (10.3% with respect to the whole genome length) and non-coding sequences. In the non-coding regions, there are 0.33% tandem and 2.3% long repeats. Our transcriptomic data from eight tissues (root, seed, bud, fruit, green leaf, yellow leaf, female flower, and male flower) showed higher gene expression levels in male flower, root, bud, and female flower, as compared to four other tissues. We identified 120 potential SNPs among three date palm cultivars (Khalas, Fahal, and Sukry), and successfully found seven SNPs in the coding sequences. A phylogenetic analysis, based on 22 conserved genes of 15 representative plant mitochondria, showed that P. dactylifera positions at the root of all sequenced monocot mt genomes. In addition, consistent with previous discoveries, there are three co-transcribed gene clusters–18S-5S rRNA, rps3-rpl16 and nad3-rps12–in P. dactylifera, which are highly conserved among all known mitochondrial genomes of angiosperms.
Collapse
Affiliation(s)
- Yongjun Fang
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences (CAS), Beijing, China
| | - Hao Wu
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences (CAS), Beijing, China
| | - Tongwu Zhang
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences (CAS), Beijing, China
| | - Meng Yang
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences (CAS), Beijing, China
| | - Yuxin Yin
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences (CAS), Beijing, China
| | - Linlin Pan
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences (CAS), Beijing, China
| | - Xiaoguang Yu
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences (CAS), Beijing, China
| | - Xiaowei Zhang
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences (CAS), Beijing, China
- * E-mail: (JY); (XZ); (SH); (ISAM)
| | - Songnian Hu
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences (CAS), Beijing, China
- * E-mail: (JY); (XZ); (SH); (ISAM)
| | - Ibrahim S. Al-Mssallem
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences (CAS), Beijing, China
- Department of Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Hofuf, Kingdom of Saudi Arabia
- * E-mail: (JY); (XZ); (SH); (ISAM)
| | - Jun Yu
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences (CAS), Beijing, China
- * E-mail: (JY); (XZ); (SH); (ISAM)
| |
Collapse
|
21
|
Niazi AK, Mileshina D, Cosset A, Val R, Weber-Lotfi F, Dietrich A. Targeting nucleic acids into mitochondria: progress and prospects. Mitochondrion 2012; 13:548-58. [PMID: 22609422 DOI: 10.1016/j.mito.2012.05.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 05/14/2012] [Indexed: 12/18/2022]
Abstract
Given the essential functions of these organelles in cell homeostasis, their involvement in incurable diseases and their potential in biotechnological applications, genetic transformation of mitochondria has been a long pursued goal that has only been reached in a couple of unicellular organisms. The challenge led scientists to explore a wealth of different strategies for mitochondrial delivery of DNA or RNA in living cells. These are the subject of the present review. Targeting DNA into the organelles currently shows promise but remarkably a number of alternative approaches based on RNA trafficking were also established and will bring as well major contributions.
Collapse
Affiliation(s)
- Adnan Khan Niazi
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | | | | | | | | | | |
Collapse
|
22
|
Kumar P, Vasupalli N, Srinivasan R, Bhat SR. An evolutionarily conserved mitochondrial orf108 is associated with cytoplasmic male sterility in different alloplasmic lines of Brassica juncea and induces male sterility in transgenic Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2921-2932. [PMID: 22371076 DOI: 10.1093/jxb/err459] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Nuclear-mitochondrial gene interactions governing cytoplasmic male sterility (CMS) in angiosperms have been found to be unique to each system. Fertility restoration of three diverse alloplasmic CMS lines of Brassica juncea by a line carrying the fertility-restorer gene introgressed from Moricandia arvensis prompted this investigation to examine the molecular basis of CMS in these lines. Since previous studies had found altered atpA transcription associated with CMS in these lines, the atpA genes and transcripts of CMS, fertility-restored, and euplasmic lines were cloned and compared. atpA coding and downstream sequences were conserved among CMS and euplasmic lines but major differences were found in the 5' flanking sequences of atpA. A unique open reading frame (ORF), orf108, co-transcribed with atpA, was found in male sterile flowers of CMS lines carrying mitochondrial genomes of Diplotaxis berthautii, D. catholica, or D. erucoides. In presence of the restorer gene, the bicistronic orf108-atpA transcript was cleaved within orf108 to yield a monocistronic atpA transcript. Transgenic expression of orf108 with anther-specific Atprx18 promoter in Arabidopsis thaliana gave 50% pollen sterility, indicating that Orf108 is lethal at the gametophytic stage. Further, lack of transmission of orf108 to the progeny showed for the first time that mitochondrial ORFs could also cause female sterility. orf108 was found to be widely distributed among wild relatives of Brassica, indicating its ancient origin. This is the first report that shows that CMS lines of different origin and morphology could share common molecular basis. The gametic lethality of Orf108 offers a novel opportunity for transgene containment.
Collapse
Affiliation(s)
- Pankaj Kumar
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute, New Delhi 110012, India
| | | | | | | |
Collapse
|
23
|
Jing B, Heng S, Tong D, Wan Z, Fu T, Tu J, Ma C, Yi B, Wen J, Shen J. A male sterility-associated cytotoxic protein ORF288 in Brassica juncea causes aborted pollen development. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1285-95. [PMID: 22090439 PMCID: PMC3276091 DOI: 10.1093/jxb/err355] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/02/2011] [Accepted: 10/11/2011] [Indexed: 05/20/2023]
Abstract
Cytoplasmic male sterility (CMS) is a widespread phenomenon in higher plants, and several studies have established that this maternally inherited defect is often associated with a mitochondrial mutant. Approximately 10 chimeric genes have been identified as being associated with corresponding CMS systems in the family Brassicaceae, but there is little direct evidence that these genes cause male sterility. In this study, a novel chimeric gene (named orf288) was found to be located downstream of the atp6 gene and co-transcribed with this gene in the hau CMS sterile line. Western blotting analysis showed that this predicted open reading frame (ORF) was translated in the mitochondria of male-sterile plants. Furthermore, the growth of Escherichia coli was significantly repressed in the presence of ORF288, which indicated that this protein is toxic to the E. coli host cells. To confirm further the function of orf288 in male sterility, the gene was fused to a mitochondrial-targeting pre-sequence under the control of the Arabidopsis APETALA3 promoter and introduced into Arabidopsis thaliana. Almost 80% of transgenic plants with orf288 failed to develop anthers. It was also found that the independent expression of orf288 caused male sterility in transgenic plants, even without the transit pre-sequence. Furthermore, transient expression of orf288 and green fluorescent protein (GFP) as a fused protein in A. thaliana protoplasts showed that ORF288 was able to anchor to mitochondria even without the external mitochondrial-targeting peptide. These observations provide important evidence that orf288 is responsible for the male sterility of hau CMS in Brassica juncea.
Collapse
|
24
|
Shaya F, Gaiduk S, Keren I, Shevtsov S, Zemah H, Belausov E, Evenor D, Reuveni M, Ostersetzer-Biran O. Expression of mitochondrial gene fragments within the tapetum induce male sterility by limiting the biogenesis of the respiratory machinery in transgenic tobacco. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:115-30. [PMID: 22221327 DOI: 10.1111/j.1744-7909.2012.01099.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant mitochondrial genomes (mtDNAs) are large and undergo frequent recombination events. A common phenotype that emerges as a consequence of altered mtDNA structure is cytoplasmic-male sterility (CMS). The molecular basis for CMS remains unclear, but it seems logical that altered respiration activities would result in reduced pollen production. Analysis of tobacco (Nicotiana tabacum) mtDNAs indicated that CMS-associated loci often contain fragments of known organellar genes. These may assemble with organellar complexes and thereby interfere with normal respiratory functions. Here, we analyzed whether the expression of truncated fragments of mitochondrial genes (i.e. atp4, cox1 and rps3) may induce male sterility by limiting the biogenesis of the respiratory machinery. cDNA fragments corresponding to atp4f, cox1f and rps3f were cloned in-frame to a mitochondrial localization signal and a C-termini HA-tag under a tapetum-specific promoter and introduced to tobacco plants by Agrobacterium-mediated transformation. The constructs were then analyzed for their effect on mitochondrial activity and pollen fertility. Atp4f, Cox1f and Rps3f plants demonstrated male sterility phenotypes, which were tightly correlated with the expression of the recombinant fragments in the floral meristem. Fractionation of native organellar extracts showed that the recombinant ATP4f-HA, COX1f-HA and RPS3f-HA proteins are found in large membrane-associated particles. Analysis of the respiratory activities and protein profiles indicated that organellar complex I was altered in Atp4f, Cox1f and Rps3f plants.
Collapse
Affiliation(s)
- Felix Shaya
- Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan 50250, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Nizampatnam NR, Dinesh Kumar V. Intron hairpin and transitive RNAi mediated silencing of orfH522 transcripts restores male fertility in transgenic male sterile tobacco plants expressing orfH522. PLANT MOLECULAR BIOLOGY 2011; 76:557-73. [PMID: 21584859 DOI: 10.1007/s11103-011-9789-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 05/07/2011] [Indexed: 05/27/2023]
Abstract
The present work was aimed at developing vector construct(s) suitable for restoring fertility in transgenic male sterile tobacco plants expressing male-sterility-inducing ORFH522 in tapetal cell layer (Nizampatnam et al. Planta 229:987-1001, 2009). PTGS vectors that could produce either intron spliced hairpin RNA against the orfH522 or induce silencing of orfH522 by heterologous 3'UTR region were developed using the selected 316 bp (orf316) fragment of orfH522. The constructs were independently mobilized into Agrobacterium and used for transforming tobacco. The T(1) generation plants carrying the restorer gene cassettes in homozygous condition were identified and crossed with the male sterile transgenic tobacco plants to obtain the hybrid seeds. PCR analysis of hybrid plants indicated segregation for the sterility inducing cassette while all the plants carried the restorer cassette. Hybrid plants produced fertile pollen grains and formed normal capsules upon selfing. Further molecular analyses of these hybrid plants with RT-PCR, Northern blotting and siRNA detection, revealed that intron interrupted hairpin RNA (ihp-RNA) mediated gene silencing was more effective compared to silencing by heterologous 3'UTR (SHUTR) as indicated by the complete degradation of orfH522 transcripts and formation of higher levels of orf316 specific siRNA molecules in plants carrying ihp-RNA restorer construct. Segregation analyses of F(2) (selfed hybrid) plants confirmed the co-segregation of gene cassettes and the traits in Mendelian di-hybrid ratio (9:3:3:1). Taken together, the results established that intron hairpin and transitive RNAi mediated silencing of orfH522 transcripts restored fertility in transgenic male sterile tobacco plants expressing orfH522 and ihp-RNA was more efficient in silencing orfH522 transcripts.
Collapse
|
26
|
Substoichiometrically different mitotypes coexist in mitochondrial genomes of Brassica napus L. PLoS One 2011; 6:e17662. [PMID: 21423700 PMCID: PMC3053379 DOI: 10.1371/journal.pone.0017662] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 02/07/2011] [Indexed: 12/20/2022] Open
Abstract
Cytoplasmic male sterility (CMS) has been identified in numerous plant species. Brassica napus CMS plants, such as Polima (pol), MI, and Shaan 2A, have been identified independently by different researchers with different materials in conventional breeding processes. How this kind of CMS emerges is unclear. Here, we report the mitochondrial genome sequence of the prevalent mitotype in the most widely used pol-CMS line, which has a length of 223,412 bp and encodes 34 proteins, 3 ribosomal RNAs, and 18 tRNAs, including two near identical copies of trnH. Of these 55 genes, 48 were found to be identical to their equivalents in the “nap” cytoplasm. The nap mitotype carries only one copy of trnH, and the sequences of five of the six remaining genes are highly similar to their equivalents in the pol mitotype. Forty-four open reading frames (ORFs) with unknown function were detected, including two unique to the pol mitotype (orf122 and orf132). At least five rearrangement events are required to account for the structural differences between the pol and nap sequences. The CMS-related orf224 neighboring region (∼5 kb) rearranged twice. PCR profiling based on mitotype-specific primer pairs showed that both mitotypes are present in B. napus cultivars. Quantitative PCR showed that the pol cytoplasm consists mainly of the pol mitotype, and the nap mitotype is the main genome of nap cytoplasm. Large variation in the copy number ratio of mitotypes was found, even among cultivars sharing the same cytoplasm. The coexistence of mitochondrial mitotypes and substoichiometric shifting can explain the emergence of CMS in B. napus.
Collapse
|
27
|
Yang J, Liu X, Yang X, Zhang M. Mitochondrially-targeted expression of a cytoplasmic male sterility-associated orf220 gene causes male sterility in Brassica juncea. BMC PLANT BIOLOGY 2010; 10:231. [PMID: 20974011 PMCID: PMC3017852 DOI: 10.1186/1471-2229-10-231] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 10/26/2010] [Indexed: 05/19/2023]
Abstract
BACKGROUND The novel chimeric open reading frame (orf) resulting from the rearrangement of a mitochondrial genome is generally thought to be a causal factor in the occurrence of cytoplasmic male sterility (CMS). Both positive and negative correlations have been found between CMS-associated orfs and the occurrence of CMS when CMS-associated orfs were expressed and targeted at mitochondria. Some orfs cause male sterility or semi-sterility, while some do not. Little is currently known about how mitochondrial factor regulates the expression of the nuclear genes involved in male sterility. The purpose of this study was to investigate the biological function of a candidate CMS-associated orf220 gene, newly isolated from cytoplasmic male-sterile stem mustard, and show how mitochondrial retrograde regulated nuclear gene expression is related to male sterility. RESULTS It was shown that the ORF220 protein can be guided to the mitochondria using the mitochondrial-targeting sequence of the β subunit of F1-ATPase (atp2-1). Transgenic stem mustard plants expressed the chimeric gene containing the orf220 gene and a mitochondrial-targeting sequence of the β subunit of F1-ATPase (atp2-1). Transgenic plants were male-sterile, most being unable to produce pollen while some could only produce non-vigorous pollen. The transgenic stem mustard plants also showed aberrant floral development identical to that observed in the CMS stem mustard phenotype. Results obtained from oligooarray analysis showed that some genes related to mitochondrial energy metabolism were down-regulated, indicating a weakening of mitochondrial function in transgenic stem mustard. Some genes related to pollen development were shown to be down-regulated in transgenic stem mustard and the expression of some transcription factor genes was also altered. CONCLUSION The work presented furthers our understanding of how the mitochondrially-targeted expression of CMS-associated orf220 gene causes male sterility through retrograde regulation of nuclear gene expression in Brassica juncea.
Collapse
Affiliation(s)
- Jinghua Yang
- Laboratory of Genetic Resources & Functional Improvement for Horticultural Plants, Department of Horticulture, Zhejiang University, Hangzhou, 310029, P. R. China
- Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou, 310029, P. R. China
| | - Xunyan Liu
- Laboratory of Genetic Resources & Functional Improvement for Horticultural Plants, Department of Horticulture, Zhejiang University, Hangzhou, 310029, P. R. China
- Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou, 310029, P. R. China
| | - Xiaodong Yang
- Laboratory of Genetic Resources & Functional Improvement for Horticultural Plants, Department of Horticulture, Zhejiang University, Hangzhou, 310029, P. R. China
- Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou, 310029, P. R. China
| | - Mingfang Zhang
- Laboratory of Genetic Resources & Functional Improvement for Horticultural Plants, Department of Horticulture, Zhejiang University, Hangzhou, 310029, P. R. China
- Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou, 310029, P. R. China
| |
Collapse
|
28
|
Cost of Having the Largest Mitochondrial Genome: Evolutionary Mechanism of Plant Mitochondrial Genome. ACTA ACUST UNITED AC 2010. [DOI: 10.1155/2010/620137] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The angiosperm mitochondrial genome is the largest and least gene-dense among the eukaryotes, because its intergenic regions are expanded. There seems to be no functional constraint on the size of the intergenic regions; angiosperms maintain the large mitochondrial genome size by a currently unknown mechanism. After a brief description of the angiosperm mitochondrial genome, this review focuses on our current knowledge of the mechanisms that control the maintenance and alteration of the genome. In both processes, the control of homologous recombination is crucial in terms of site and frequency. The copy numbers of various types of mitochondrial DNA molecules may also be controlled, especially during transmission of the mitochondrial genome from one generation to the next. An important characteristic of angiosperm mitochondria is that they contain polypeptides that are translated from open reading frames created as byproducts of genome alteration and that are generally nonfunctional. Such polypeptides have potential to evolve into functional ones responsible for mitochondrially encoded traits such as cytoplasmic male sterility or may be remnants of the former functional polypeptides.
Collapse
|
29
|
Kausch AP, Hague J, Oliver M, Li Y, Daniell H, Mascia P, Stewart CN. Genetic Modification in Dedicated Bioenergy Crops and Strategies for Gene Confinement. PLANT BIOTECHNOLOGY FOR SUSTAINABLE PRODUCTION OF ENERGY AND CO-PRODUCTS 2010. [DOI: 10.1007/978-3-642-13440-1_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
30
|
Guo J, Liu Y. The genetic and molecular basis of cytoplasmic male sterility and fertility restoration in rice. CHINESE SCIENCE BULLETIN-CHINESE 2009. [DOI: 10.1007/s11434-009-0322-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Hahn MW. Distinguishing among evolutionary models for the maintenance of gene duplicates. J Hered 2009; 100:605-17. [PMID: 19596713 DOI: 10.1093/jhered/esp047] [Citation(s) in RCA: 275] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Determining the evolutionary forces responsible for the maintenance of gene duplicates is key to understanding the processes leading to evolutionary adaptation and novelty. In his highly prescient book, Susumu Ohno recognized that duplicate genes are fixed and maintained within a population with 3 distinct outcomes: neofunctionalization, subfunctionalization, and conservation of function. Subsequent researchers have proposed a multitude of population genetic models that lead to these outcomes, each differing largely in the role played by adaptive natural selection. In this paper, I present a nonmathematical review of these models, their predictions, and the evidence collected in support of each of them. Though the various outcomes of gene duplication are often strictly associated with the presence or absence of adaptive natural selection, I argue that determining the outcome of duplication is orthogonal to determining whether natural selection has acted. Despite an ever-growing field of research into the fate of gene duplicates, there is not yet clear evidence for the preponderance of one outcome over the others, much less evidence for the importance of adaptive or nonadaptive forces in maintaining these duplicates.
Collapse
Affiliation(s)
- Matthew W Hahn
- Department of Biology and School of Informatics, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
32
|
Woloszynska M, Trojanowski D. Counting mtDNA molecules in Phaseolus vulgaris: sublimons are constantly produced by recombination via short repeats and undergo rigorous selection during substoichiometric shifting. PLANT MOLECULAR BIOLOGY 2009; 70:511-21. [PMID: 19387845 DOI: 10.1007/s11103-009-9488-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 04/03/2009] [Indexed: 05/04/2023]
Abstract
Sublimons are substoichiometric DNA molecules which are generated by recombinations across short repeats, located in main mitochondrial genome of plants. Since short repeats are believed to recombine irreversibly and to be usually inactive, it is unknown how substoichiometric sequences are maintained. Occasionally, sublimons are amplified during substoichiometric shifting (SSS) and take the role of the main genome. Using the Phaseolus vulgaris system, we have addressed the questions concerning accumulation of sublimons, the role of recombination in their maintenance and selective amplification during SSS. We found that sublimons accompanied by parental recombination sequences were maintained by constant recombination across a short 314-bp repeat. The abundance of these sublimons was three orders of magnitude higher than accumulation of those which could not be maintained by recombination because their parental forms were absent from the main genome. As expected for active recombination, two recombination-derived sublimons were equimolar and so were their parental forms. One parental and one substoichiometric form shared the A/C polymorphism indicating their frequent inter-conversion. Only the C variant of the sublimon was amplified during substoichiometric shift implying strong selection of DNA molecules operating during SSS.
Collapse
Affiliation(s)
- Magdalena Woloszynska
- Laboratory of Molecular Cell Biology, Faculty of Biotechnology, University of Wroclaw, ul. Przybyszewskiego 63/77, Wroclaw, Poland.
| | | |
Collapse
|
33
|
Nizampatnam NR, Doodhi H, Kalinati Narasimhan Y, Mulpuri S, Viswanathaswamy DK. Expression of sunflower cytoplasmic male sterility-associated open reading frame, orfH522 induces male sterility in transgenic tobacco plants. PLANTA 2009; 229:987-1001. [PMID: 19151958 DOI: 10.1007/s00425-009-0888-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 01/03/2009] [Indexed: 05/22/2023]
Abstract
Sterility in the universally exploited PET1-CMS system of sunflower is associated with the expression of orfH522, a novel mitochondrial gene. Definitive evidence that ORFH522 is directly responsible for male sterility is lacking. To test the hypothesis that ORFH522 is sufficient to induce male sterility, a set of chimeric constructs were developed. The cDNA of orfH522 was cloned in-frame with yeast coxIV pre-sequence, and was expressed under tapetum-specific promoter TA29 (construct designated as TCON). For developing control vectors, orfH522 was cloned without the transit peptide under TA29 promoter (TON) or orfH522 was cloned with or without transit peptide under the constitutive CaMV35S promoter (SCOP and SOP). Among several independent transformants obtained with each of the gene cassettes, one third of the transgenics (6/17) with TCON were completely male sterile while more than 10 independent transformants obtained with each of the control vectors were fertile. The male sterile plants were morphologically similar to fertile plants, but had anthers that remained below the stigmatic surface at anthesis. RT-PCR analysis of the sterile plants confirmed the anther-specific expression of orfH522 and bright-field microscopy demonstrated ablation of the tapetal cell layer. Premature DNA fragmentation and programmed cell death was observed at meiosis stage in the anthers of sterile plants. Stable transmission of induced male sterility trait was confirmed in test cross progeny. This constitutes the first report at demonstrating the induction of male sterility by introducing orfH522 gene that could be useful for genetic engineering of male sterility.
Collapse
|
34
|
Fujii S, Toriyama K. Genome barriers between nuclei and mitochondria exemplified by cytoplasmic male sterility. PLANT & CELL PHYSIOLOGY 2008; 49:1484-94. [PMID: 18625609 PMCID: PMC2566927 DOI: 10.1093/pcp/pcn102] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 07/09/2008] [Indexed: 05/18/2023]
Abstract
Since plants retain genomes of an extremely large size in mitochondria (200-2,400 kb), and mitochondrial protein complexes are comprised of chimeric structures of nuclear- and mitochondrial-encoded subunits, coordination of gene expression between the nuclei and mitochondria is indispensable for sound plant development. It has been well documented that the nucleus regulates organelle gene expression. This regulation is called anterograde regulation. On the other hand, recent studies have demonstrated that signals emitted from organelles regulate nuclear gene expression. This process is known as retrograde signaling. Incompatibility caused by genome barriers between a nucleus and foreign mitochondria destines the fate of pollen to be dead in cytoplasmic male sterility (CMS), and studies of CMS confirm that pollen fertility is associated with anterograde/retrograde signaling. This review summarizes the current perspectives in CMS and fertility restoration, mainly from the viewpoint of anterograde/retrograde signaling.
Collapse
|
35
|
Li LG, Sokolov LN, Yang YH, Li DP, Ting J, Pandy GK, Luan S. A mitochondrial magnesium transporter functions in Arabidopsis pollen development. MOLECULAR PLANT 2008; 1:675-85. [PMID: 19825572 DOI: 10.1093/mp/ssn031] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Magnesium is an abundant divalent cation in plant cells and plays a critical role in many physiological processes. We have previously described the identification of a 10-member Arabidopsis gene family encoding putative magnesium transport (MGT) proteins. Here, we report that a member of the MGT family, AtMGT5, functions as a dual-functional Mg-transporter that operates in a concentration-dependent manner, namely it serves as a Mg-importer at micromolar levels and facilitates the efflux in the millimolar range. The AtMGT5 protein is localized in the mitochondria, suggesting that AtMGT5 mediates Mg-trafficking between the cytosol and mitochondria. The AtMGT5 gene was exclusively expressed in anthers at early stages of flower development. Examination of two independent T-DNA insertional mutants of AtMGT5 gene demonstrated that AtMGT5 played an essential role for pollen development and male fertility. This study suggests a critical role for Mg(2+) transport between cytosol and mitochondria in male gametogenesis in plants.
Collapse
Affiliation(s)
- Le-Gong Li
- College of Life Sciences, Capital Normal University, Beijing 100037, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Yamamoto MP, Shinada H, Onodera Y, Komaki C, Mikami T, Kubo T. A male sterility-associated mitochondrial protein in wild beets causes pollen disruption in transgenic plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:1027-36. [PMID: 18315539 DOI: 10.1111/j.1365-313x.2008.03473.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In higher plants, male reproductive (pollen) development is known to be disrupted in a class of mitochondrial mutants termed cytoplasmic male sterility (CMS) mutants. Despite the increase in knowledge regarding CMS-encoding genes and their expression, definitive evidence that CMS-associated proteins actually cause pollen disruption is not yet available in most cases. Here we compare the translation products of mitochondria between the normal fertile cytoplasm and the male-sterile I-12CMS(3) cytoplasm derived from wild beets. The results show a unique 12 kDa polypeptide that is present in the I-12CMS(3) mitochondria but is not detectable among the translation products of normal mitochondria. We also found that a mitochondrial open reading frame (named orf129) was uniquely transcribed in I-12CMS(3) and is large enough to encode the novel 12 kDa polypeptide. Antibodies against a GST-ORF129 fusion protein were raised to establish that this 12 kDa polypeptide is the product of orf129. ORF129 was shown to accumulate in flower mitochondria as well as in root and leaf mitochondria. As for the CMS-associated protein (PCF protein) in petunia, ORF129 is primarily present in the matrix and is loosely associated with the inner mitochondrial membrane. The orf129 sequence was fused to a mitochondrial targeting pre-sequence, placed under the control of the Arabidopsis apetala3 promoter, and introduced into the tobacco nuclear genome. Transgenic expression of ORF129 resulted in male sterility, which provides clear supporting evidence that ORF129 is responsible for the male-sterile phenotype in sugar beet with wild beet cytoplasm.
Collapse
Affiliation(s)
- Masayuki P Yamamoto
- Laboratory of Genetic Engineering, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Yang JH, Zhang MF, Yu JQ. Relationship between cytoplasmic male sterility and SPL-like gene expression in stem mustard. PHYSIOLOGIA PLANTARUM 2008; 133:426-434. [PMID: 18331407 DOI: 10.1111/j.1399-3054.2008.01064.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We studied how mitochondria-nuclear interactions may give rise to cytoplasmic male sterility (CMS) in stem mustard exhibiting abnormal microsporogenesis. In this system, expression of SPL-like, the counterpart of the Arabidopsis nuclear gene SPOROCYTELESS, is specifically lost in buds of CMS plants. When mitochondrial-specific inhibitors were applied to wild-type fertile stem mustard plants, expression of SPL-like was repressed to some extent. As a consequence, the shape and vigor of pollen grains were severely affected, whereas the fertility of pistils remained unaltered. Thereby, we suggest that a probable pathway responsible for CMS in stem mustard involves mitochondrial retrograde regulation, with SPL-like as a target nuclear gene for a mitochondrial signal.
Collapse
Affiliation(s)
- Jing-Hua Yang
- Laboratory of Genetic Resources & Functional Improvement for Horticultural Plants, Department of Horticulture, Zhejiang University, Hangzhou 310029, China
| | | | | |
Collapse
|
38
|
Lee LY, Kononov ME, Bassuner B, Frame BR, Wang K, Gelvin SB. Novel plant transformation vectors containing the superpromoter. PLANT PHYSIOLOGY 2007; 145:1294-300. [PMID: 17932307 PMCID: PMC2151713 DOI: 10.1104/pp.107.106633] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 09/28/2007] [Indexed: 05/19/2023]
Abstract
We developed novel plasmids and T-DNA binary vectors that incorporate a modified and more useful form of the superpromoter. The superpromoter consists of a trimer of the octopine synthase transcriptional activating element affixed to the mannopine synthase2' (mas2') transcriptional activating element plus minimal promoter. We tested a superpromoter-beta-glucuronidaseA fusion gene in stably transformed tobacco (Nicotiana tabacum) and maize (Zea mays) plants and in transiently transformed maize Black Mexican Sweet protoplasts. In both tobacco and maize, superpromoter activity was much greater in roots than in leaves. In tobacco, superpromoter activity was greater in mature leaves than in young leaves, whereas in maize activity differed little among the tested aerial portions of the plant. When compared with other commonly used promoters (cauliflower mosaic virus 35S, mas2', and maize ubiquitin), superpromoter activity was approximately equivalent to those of the other promoters in both maize Black Mexican Sweet suspension cells and in stably transformed maize plants. The addition of a maize ubiquitin intron downstream of the superpromoter did not enhance activity in stably transformed maize.
Collapse
Affiliation(s)
- Lan-Ying Lee
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA
| | | | | | | | | | | |
Collapse
|
39
|
Ivanov MK, Dymshits GM. Cytoplasmic male sterility and restoration of pollen fertility in higher plants. RUSS J GENET+ 2007. [DOI: 10.1134/s1022795407040023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Kim DH, Kang JG, Kim BD. Isolation and characterization of the cytoplasmic male sterility-associated orf456 gene of chili pepper (Capsicum annuum L.). PLANT MOLECULAR BIOLOGY 2007; 63:519-32. [PMID: 17238047 DOI: 10.1007/s11103-006-9106-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Accepted: 10/30/2006] [Indexed: 05/13/2023]
Abstract
Cytoplasmic male sterility (CMS) in plants is known to be associated with novel open reading frames (ORFs) that result from recombination events in the mitochondrial genome. In this study Southern and Northern blot analyses using several mitochondrial DNA probes were conducted to detect the presence of differing band patterns between male fertile and CMS lines of chili pepper (Capsicum annuum L.). In the CMS pepper, a novel ORF, termed orf456, was found at the 3'-end of the coxll gene. Western blot analysis revealed the expression of an approximately 17-kDa product in the CMS line, and the intensity of expression of this protein was severely reduced in the restorer pepper line. To investigate the functional role of the ORF456 protein in plant mitochondria, we carried out two independent experiments to transform Arabidopsis with a mitochondrion-targeted orf456 gene construct by Agrobacterium-mediated transformation. About 45 % of the T1 transgenic population showed the male-sterile phenotype and no seed set. Pollen grains from semi-sterile T1 plants were observed to have defects on the exine layer and vacuolated pollen phenotypes. It is concluded that this newly discovered orf456 may represent a strong candidate gene--from among the many CMS-associated mitochondrial genes--for determining the male-sterile phenotype of CMS in chili pepper.
Collapse
Affiliation(s)
- Dong Hwan Kim
- Department of Plant Science, College of Agriculture and Life Sciences, and Center for Plant Molecular Genetics and Breeding Research, Seoul National University, Seoul 151-921, Korea
| | | | | |
Collapse
|
41
|
Wang Z, Zou Y, Li X, Zhang Q, Chen L, Wu H, Su D, Chen Y, Guo J, Luo D, Long Y, Zhong Y, Liu YG. Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. THE PLANT CELL 2006; 18:676-87. [PMID: 16489123 PMCID: PMC1383642 DOI: 10.1105/tpc.105.038240] [Citation(s) in RCA: 391] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Cytoplasmic male sterility (CMS) and nucleus-controlled fertility restoration are widespread plant reproductive features that provide useful tools to exploit heterosis in crops. However, the molecular mechanism underlying this kind of cytoplasmic-nuclear interaction remains unclear. Here, we show in rice (Oryza sativa) with Boro II cytoplasm that an abnormal mitochondrial open reading frame, orf79, is cotranscribed with a duplicated atp6 (B-atp6) gene and encodes a cytotoxic peptide. Expression of orf79 in CMS lines and transgenic rice plants caused gametophytic male sterility. Immunoblot analysis showed that the ORF79 protein accumulates specifically in microspores. Two fertility restorer genes, Rf1a and Rf1b, were identified at the classical locus Rf-1 as members of a multigene cluster that encode pentatricopeptide repeat proteins. RF1A and RF1B are both targeted to mitochondria and can restore male fertility by blocking ORF79 production via endonucleolytic cleavage (RF1A) or degradation (RF1B) of dicistronic B-atp6/orf79 mRNA. In the presence of both restorers, RF1A was epistatic over RF1B in the mRNA processing. We have also shown that RF1A plays an additional role in promoting the editing of atp6 mRNAs, independent of its cleavage function.
Collapse
Affiliation(s)
- Zhonghua Wang
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Province, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Jones CD, Custer AW, Begun DJ. Origin and evolution of a chimeric fusion gene in Drosophila subobscura, D. madeirensis and D. guanche. Genetics 2005; 170:207-19. [PMID: 15781692 PMCID: PMC1449717 DOI: 10.1534/genetics.104.037283] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An understanding of the mutational and evolutionary mechanisms underlying the emergence of novel genes is critical to studies of phenotypic and genomic evolution. Here we describe a new example of a recently formed chimeric fusion gene that occurs in Drosophila guanche, D. madeirensis, and D. subobscura. This new gene, which we name Adh-Twain, resulted from an Adh mRNA that retrotransposed into the Gapdh-like gene, CG9010. Adh-Twain is transcribed; its 5' promoters and transcription patterns appear similar to those of CG9010. Population genetic and phylogenetic analyses suggest that the amino acid sequence of Adh-Twain evolved rapidly via directional selection shortly after it arose. Its more recent history, however, is characterized by slower evolution consistent with increasing functional constraints. We present a model for the origin of this new gene and discuss genetic and evolutionary factors affecting the evolution of new genes and functions.
Collapse
Affiliation(s)
- Corbin D Jones
- Center for Population Biology, University of California, Davis, 95616, USA.
| | | | | |
Collapse
|
43
|
Coppinger P, Repetti PP, Day B, Dahlbeck D, Mehlert A, Staskawicz BJ. Overexpression of the plasma membrane-localized NDR1 protein results in enhanced bacterial disease resistance in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:225-37. [PMID: 15447649 DOI: 10.1111/j.1365-313x.2004.02203.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Previous studies have established that mutations in the NDR1 gene in Arabidopsis thaliana suppress the resistance response of three resistance proteins, RPS2, RPM1, and RPS5, to Pseudomonas syringae pv. tomato (Pst) strain DC3000 containing the cognate effector genes, avrRpt2, avrRpm1, and avrpPhB, respectively. NDR1 is a plasma membrane (PM)-localized protein, and undergoes several post-translational modifications including carboxy-terminal processing and N-linked glycosylation. Expression of NDR1 under the NDR1 native promoter complements the ndr1-1 mutation, while overexpression of NDR1 results in enhanced resistance to virulent Pst. Sequence analysis and mass spectrometry suggest that NDR1 is localized to the PM via a C-terminal glycosylphosphatidyl-inositol (GPI) anchor. GPI modification would potentially place NDR1 on the outer surface of the PM, perhaps allowing NDR1 to act as a transducer of pathogen signals and/or interact directly with the pathogen.
Collapse
Affiliation(s)
- Peter Coppinger
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720-3102, USA
| | | | | | | | | | | |
Collapse
|
44
|
Mitochondria-Nuclear Interaction in Male Sterility and Heterosis for Productivity Enhancement in Crop Plants. ACTA ACUST UNITED AC 2004. [DOI: 10.1300/j064v23n04_06] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
45
|
Hanson MR, Bentolila S. Interactions of mitochondrial and nuclear genes that affect male gametophyte development. THE PLANT CELL 2004; 16 Suppl:S154-69. [PMID: 15131248 PMCID: PMC2643387 DOI: 10.1105/tpc.015966] [Citation(s) in RCA: 468] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Affiliation(s)
- Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-0001, USA.
| | | |
Collapse
|
46
|
Tsunewaki K, Wang GZ, Matsuoka Y. Plasmon analysis of Triticum (wheat) and Aegilops. 2. Characterization and classification of 47 plasmons based on their effects on common wheat phenotype. Genes Genet Syst 2002; 77:409-27. [PMID: 12589076 DOI: 10.1266/ggs.77.409] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This article comprises our final remarks on the phenotypic effects of alien plasmons on common wheat. Twenty-one vegetative, reproductive, and seed characters of 551 alloplasmic lines of 12 common wheat genotypes with 46 alloplasmons, and as the control, their euplasmic lines were investigated. Effects of genotype, plasmon, and their interaction had high statistical significance for all the characters investigated, whereas phenotypic variations attributable to the alien plasmons were relatively small. Individual plasmon types are characterized by their primary effects on 21 characters. Genotype x plasmon effects on two representative characters, heading date and plant height, are described in detail. Cluster and principal component analyses of the phenotypic effects of the 47 plasmons yielded 22 groups. The relationships between these phenotype-based groups and those defined by molecular differences in organellar genomes were examined. A significant correlation was found with some explainable discrepancies. For efficient plasmon identification, use of six of the present 12 genotypes is proposed. The key for plasmon classification is provided. Our findings indicate that alien plasmons may be of limited value in future wheat breeding, but that the plasmon diversity that exists in Triticum and Aegilops species is of great significance for understanding the evolution of these genera.
Collapse
|
47
|
Burgess DG, Ralston EJ, Hanson WG, Heckert M, Ho M, Jenq T, Palys JM, Tang K, Gutterson N. A novel, two-component system for cell lethality and its use in engineering nuclear male-sterility in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 31:113-125. [PMID: 12100487 DOI: 10.1046/j.1365-313x.2002.01330.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Ablation of cells by the controlled expression of a lethal gene can be used to engineer plant traits such as male sterility and disease resistance. However, it may not be possible to achieve sufficient specificity of expression to prevent secondary effects in non-targeted tissues. In this paper we demonstrate that the extracellular ribonuclease, barnase, can be engineered into two complementary fragments, allowing overlapping promoter specificity to be used to enhance targeting specificity. Using a transient system, we first show that barnase can be split into two inactive peptide fragments, that when co-expressed can complement each other to reconstitute barnase activity. When a luciferase reporter gene was introduced into plant cells along with genes encoding both partial barnase peptides, a substantial reduction in luciferase activity was seen. Cytotoxicity of the reconstituted barnase was demonstrated by crossing together parents constitutively expressing each of the barnase fragments, then assaying their progeny for the presence of both partial barnase genes. None of over 300 tomato seeds planted resulted in a viable progeny that inherited both transgenes. When expression of the partial barnase genes was instead targeted to the tapetum, male sterility resulted. All 13 tomato progeny that inherited both transgenes were male sterile, whereas the three progeny inheriting only the N-terminal barnase gene were male fertile. Finally, we describe how male sterility generated by this type of two-component system can be used in hybrid seed production.
Collapse
Affiliation(s)
- Diane G Burgess
- DNA Plant Technologies, 6701 San Pablo Avenue, Oakland, CA 94608, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Zhou PJ, Zhou HT, Yi P, Liu Y, Wu ZB, Qu SS, Zhu YG. Microcalorimetric studies on the thermogenesis of energy release of mitochondria isolated from rice. Microchem J 2001. [DOI: 10.1016/s0026-265x(00)00160-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Liu F, Cui X, Horner HT, Weiner H, Schnable PS. Mitochondrial aldehyde dehydrogenase activity is required for male fertility in maize. THE PLANT CELL 2001; 13:1063-78. [PMID: 11340182 PMCID: PMC135560 DOI: 10.1105/tpc.13.5.1063] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2000] [Accepted: 03/04/2001] [Indexed: 05/18/2023]
Abstract
Some plant cytoplasms express novel mitochondrial genes that cause male sterility. Nuclear genes that disrupt the accumulation of the corresponding mitochondrial gene products can restore fertility to such plants. The Texas (T) cytoplasm mitochondrial genome of maize expresses a novel protein, URF13, which is necessary for T cytoplasm-induced male sterility. Working in concert, functional alleles of two nuclear genes, rf1 and rf2, can restore fertility to T cytoplasm plants. Rf1 alleles, but not Rf2 alleles, reduce the accumulation of URF13. Hence, Rf2 differs from typical nuclear restorers in that it does not alter the accumulation of the mitochondrial protein necessary for T cytoplasm-induced male sterility. This study established that the rf2 gene encodes a soluble protein that accumulates in the mitochondrial matrix. Three independent lines of evidence establish that the RF2 protein is an aldehyde dehydrogenase (ALDH). The finding that T cytoplasm plants that are homozygous for the rf2-R213 allele are male sterile but accumulate normal amounts of RF2 protein that lacks normal mitochondrial (mt) ALDH activity provides strong evidence that rf2-encoded mtALDH activity is required to restore male fertility to T cytoplasm maize. Detailed genetic analyses have established that the rf2 gene also is required for anther development in normal cytoplasm maize. Hence, it appears that the rf2 gene was recruited recently to function as a nuclear restorer. ALDHs typically have very broad substrate specificities. Indeed, the RF2 protein is capable of oxidizing at least three aldehydes. Hence, the specific metabolic pathway(s) within which the rf2-encoded mtALDH acts remains to be discovered.
Collapse
Affiliation(s)
- F Liu
- Department of Zoology and Genetics, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | |
Collapse
|
50
|
Zhou PJ, Zhou HT, Liu Y, Qu SS, Zhu YG, Wu ZB. Studies on the energy release of rice mitochondria under different conditions by means of microcalorimetry. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 2001; 48:1-11. [PMID: 11282397 DOI: 10.1016/s0165-022x(00)00123-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The thermodynamic and kinetic behaviors of energy release of mitochondria isolated from rice (Oryza sative L.) were studied by using a LKB 2277 Bioactivity Monitor under different conditions. The thermogenesis curves of energy release of the rice mitochondria (which had been kept at 0-3 degrees C for 15 h and 40 day before the determination) were determined respectively at 25 and 30 degrees C, and the difference in shape of the thermogenesis curves and thermodynamic and kinetic characteristics were compared. The thermodynamic and kinetic parameters of energy release of the mitochondria in the thermogenesis increasing stage have been calculated, and the experimental thermokinetic equations of the thermogenesis have been established. The results indicated that the lower the temperature, the slower the energy release of the rice mitochondria. Both the thermogenesis and the energy release rate of the rice mitochondria increased after the mitochondria was kept at lower temperature for 40 days. One can use the methods to characterize the ability of the rice mitochondria to release energy under different conditions.
Collapse
Affiliation(s)
- P J Zhou
- College of Chemistry and Environmental Sciences, Wuhan University, 430072, Wuhan, China
| | | | | | | | | | | |
Collapse
|