1
|
Skovgaard O. An additional replication origin causes cell cycle specific DNA replication fork speed. Front Microbiol 2025; 16:1584664. [PMID: 40371120 PMCID: PMC12075136 DOI: 10.3389/fmicb.2025.1584664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 04/09/2025] [Indexed: 05/16/2025] Open
Abstract
Replication fork speed (RFS) in Escherichia coli has long been considered constant throughout the replication and cell cycles. In wild-type cells, the circular chromosome is duplicated bidirectionally from oriC, yielding two replication forks that converge at the ter region. Under slow-growth conditions, cells are smaller at initiation than at termination, so DNA replication consumes a larger fraction of cellular resources early in the cell cycle. To challenge this paradigm, we analyzed an E. coli strain with an additional ectopic copy of oriC-designated oriX-inserted midway along the left replichore. In this mutant, replication initiates simultaneously from both oriC and oriX, resulting in four active replication forks early in the cycle. Specifically, the rightward-moving fork from oriX and the leftward-moving fork from oriC converge first, while the leftward-moving fork from oriX is halted at the terA site until the arrival of the rightward-moving oriC fork. Consequently, the number of active replication forks varies dynamically-from zero to four, then two, then one, and finally zero-compared to the fixed zero-two-zero pattern observed in wild-type cells. RFS was calculated using marker frequency analysis of deep sequencing data. Our analysis revealed that RFS is reduced by approximately one third when four replication forks are active and increases by about one fourth when only one fork is active, resulting in a 2-fold variation in RFS during the replication cycle. Moreover, delaying replication initiation or increasing the available dNTP pool normalized these variations, indicating that nucleotide supply is the primary constraint on replication speed. These findings demonstrate that RFS is not inherently constant within a replication cycle and provide a basis for further studies into the factors that regulate replication kinetics.
Collapse
Affiliation(s)
- Ole Skovgaard
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
2
|
Huang J, Chen F, Lu B, Sun Y, Li Y, Hua C, Deng X. DNA methylome regulates virulence and metabolism in Pseudomonas syringae. eLife 2025; 13:RP96290. [PMID: 39992965 PMCID: PMC11850005 DOI: 10.7554/elife.96290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025] Open
Abstract
Bacterial pathogens employ epigenetic mechanisms, including DNA methylation, to adapt to environmental changes, and these mechanisms play important roles in various biological processes. Pseudomonas syringae is a model phytopathogenic bacterium, but its methylome is less well known than that of other species. In this study, we conducted single-molecule real-time sequencing to profile the DNA methylation landscape in three model pathovars of P. syringae. We identified one Type I restriction-modification system (HsdMSR), including the conserved sequence motif associated with N6-methyladenine (6mA). About 25-40% of the genes involved in DNA methylation were conserved in two or more of the strains, revealing the functional conservation of methylation in P. syringae. Subsequent transcriptomic analysis highlighted the involvement of HsdMSR in virulent and metabolic pathways, including the Type III secretion system, biofilm formation, and translational efficiency. The regulatory effect of HsdMSR on transcription was dependent on both strands being fully 6mA methylated. Overall, this work illustrated the methylation profile in P. syringae and the critical involvement of DNA methylation in regulating virulence and metabolism. Thus, this work contributes to a deeper understanding of epigenetic transcriptional control in P. syringae and related bacteria.
Collapse
Affiliation(s)
- Jiadai Huang
- Department of Biomedical Sciences, City University of Hong KongHong KongChina
- Shenzhen Research Institute, City University of Hong Kong, ShenzhenGuangdongChina
- Chengdu Research Institute, City University of Hong KongChengduChina
- Institute of Digital Medicine, City University of Hong KongHong KongChina
| | - Fang Chen
- Department of Biomedical Sciences, City University of Hong KongHong KongChina
| | - Beifang Lu
- Department of Biomedical Sciences, City University of Hong KongHong KongChina
| | - Yue Sun
- Department of Biomedical Sciences, City University of Hong KongHong KongChina
| | - Youyue Li
- Department of Biomedical Sciences, City University of Hong KongHong KongChina
| | - Canfeng Hua
- Department of Biomedical Sciences, City University of Hong KongHong KongChina
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong KongHong KongChina
- Shenzhen Research Institute, City University of Hong Kong, ShenzhenGuangdongChina
- Chengdu Research Institute, City University of Hong KongChengduChina
- Institute of Digital Medicine, City University of Hong KongHong KongChina
- Tung Research Centre, City University of Hong KongHong KongChina
| |
Collapse
|
3
|
Khan E, Mera PE. Cell size regulation in bacteria: a tale of old regulators with new mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.22.639668. [PMID: 40027726 PMCID: PMC11870628 DOI: 10.1101/2025.02.22.639668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Proper function in a bacterial cell relies on intrinsic cell size regulation. The molecular mechanisms underlying how bacteria maintain their cell size remain unclear. The conserved regulator DnaA, the initiator of chromosome replication, is associated to size regulation by controlling the number of origins of replication ( oriC ) per cell. In this study, we identify and characterize a new mechanism in which DnaA modulates cell size independently of oriC -copy number. By altering the levels of DnaA without impacting chromosome replication, we demonstrate that DnaA's activity as a transcription factor can slow down cell elongation rate resulting in cells that are ∼20% smaller. We identify the peptidoglycan biosynthetic enzyme MurD as a key player of cell size regulation in Caulobacter crescentus and in the evolutionarily distant bacterium Escherichia coli . Collectively, our findings provide mechanistic insights to the complex regulation of cell size in bacteria.
Collapse
Affiliation(s)
- Ezza Khan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Paola E. Mera
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
4
|
Abner K, Šverns P, Arold J, Lints T, Eller NA, Morell I, Seiman A, Adamberg K, Vilu R. The design of unit cells by combining the self-reproduction systems and metabolic cushioning loads. Commun Biol 2025; 8:241. [PMID: 39955448 PMCID: PMC11830011 DOI: 10.1038/s42003-025-07655-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 02/03/2025] [Indexed: 02/17/2025] Open
Abstract
Recently, we published a comprehensive theoretical analysis of the self-reproduction processes in proto-cells (doubling of their components) composed of different combinations of cellular subsystems. In this paper, we extend the detailed analysis of structural and functional peculiarities of self-reproduction processes to unit cells of the Cooper-Helmstetter-Donachie cell cycle theory. We show that: 1. Our modelling framework allows to calculate physiological parameters (numbers of cell components, flux patterns, cellular composition, etc.) of unit cells, including also unit cell mass that determines the DNA replication initiation conditions. 2. Unit cells might have additional cell (cushioning) components that are responsible not only for carrying out various special functions, but also for regulating cell size and stabilizing the growth of cells. 3. The optimal productivity of the synthesis of cushioning components (useful cellular load) is observed at doubling time approximately two times longer than the minimal doubling time of the unit cells.
Collapse
Affiliation(s)
- Kristo Abner
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Peter Šverns
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Janar Arold
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Taivo Lints
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Neeme-Andreas Eller
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Indrek Morell
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Andrus Seiman
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Kaarel Adamberg
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Raivo Vilu
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618, Tallinn, Estonia.
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.
| |
Collapse
|
5
|
Kanoh K, Su'etsugu M. Real-time analysis of initiation regulation systems during the progression of the reconstituted chromosomal replication cycle. Sci Rep 2025; 15:4727. [PMID: 39922869 PMCID: PMC11807186 DOI: 10.1038/s41598-025-88988-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/03/2025] [Indexed: 02/10/2025] Open
Abstract
Chromosome replication in Escherichia coli is primarily regulated at the initiation stage, where the DnaA protein activates replication at the chromosomal origin, oriC. Both DnaA and oriC undergo feedback regulation based on replication progression. Previously, we reconstituted the entire replication cycle using 26 purified proteins in a system termed replication cycle reaction (RCR). This system enables the exponential propagation of oriC circular DNA through autonomous replication cycles. In this study, we integrated regulatory mechanisms into the RCR and analyzed their effects on DNA propagation using real-time detection. The oriC sequestration system involves SeqA binding to hemimethylated oriC-generated during nascent DNA synthesis to prevent reinitiation. SeqA inhibited RCR, but the addition of Dam methylase relieved this inhibition. In the DnaA regulation system, active ATP-DnaA is inactivated by Hda in association with the DNA-loaded clamp, converting it to ADP-DnaA. Reactivation occurs through nucleotide exchange facilitated by the DnaA-reactivating sequence (DARS). Hda suppressed replication in RCR, while DARS restored activity. These results demonstrate that regulatory mechanisms controlling replication initiation in the RCR system faithfully replicate the cell cycle regulation of chromosome replication observed in vivo.
Collapse
Affiliation(s)
- Koki Kanoh
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
- Moderna Enzymatics Co., Ltd., 2-3-8 Shinkiba, Koto-ku, Tokyo, 136-0082, Japan
| | - Masayuki Su'etsugu
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan.
| |
Collapse
|
6
|
Iuliani I, Mbemba G, Lagomarsino MC, Sclavi B. Direct single-cell observation of a key Escherichia coli cell-cycle oscillator. SCIENCE ADVANCES 2024; 10:eado5398. [PMID: 39018394 PMCID: PMC466948 DOI: 10.1126/sciadv.ado5398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/10/2024] [Indexed: 07/19/2024]
Abstract
Initiation of DNA replication in Escherichia coli is coupled to cell size via the DnaA protein, whose activity is dependent on its nucleotide-bound state. However, the oscillations in DnaA activity have never been observed at the single-cell level. By measuring the volume-specific production rate of a reporter protein under control of a DnaA-regulated promoter, we could distinguish two distinct cell-cycle oscillators. The first, driven by both DnaA activity and SeqA repression, shows a causal relationship with cell size and divisions, similarly to initiation events. The second one, a reporter of DnaA activity alone, loses the synchrony and causality properties. Our results show that transient inhibition of gene expression by SeqA keeps the oscillation of volume-sensing DnaA activity in phase with the subsequent division event and suggest that DnaA activity peaks do not correspond directly to initiation events.
Collapse
Affiliation(s)
- Ilaria Iuliani
- LBPA, UMR 8113, CNRS, ENS Paris-Saclay, 91190 Gif-sur-Yvette, France
- LCQB, UMR 7238, CNRS, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
- IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Gladys Mbemba
- LBPA, UMR 8113, CNRS, ENS Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Marco Cosentino Lagomarsino
- IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
- Dipartimento di Fisica, Università degli Studi di Milano, and I.N.F.N, Via Celoria 16, 20133 Milan, Italy
| | - Bianca Sclavi
- LCQB, UMR 7238, CNRS, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
7
|
Hallgren J, Jonas K. Nutritional control of bacterial DNA replication. Curr Opin Microbiol 2024; 77:102403. [PMID: 38035509 DOI: 10.1016/j.mib.2023.102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023]
Abstract
All cells must ensure precise regulation of DNA replication initiation in coordination with growth rate and in response to nutrient availability. According to a long-standing model, DNA replication initiation is tightly coupled to cell mass increase in bacteria. Despite controversies regarding this model, recent studies have provided additional support of this idea. The exact molecular mechanisms linking cell growth with DNA replication under different nutrient conditions remain elusive. However, recent studies in Caulobacter crescentus and Escherichia coli have provided insights into the regulation of DNA replication initiation in response to starvation. These mechanisms include the starvation-dependent regulation of DnaA abundance as well as mechanisms involving the small signaling molecule (p)ppGpp. In this review, we discuss these mechanisms in the context of previous findings. We highlight species-dependent similarities and differences and consider the precise growth conditions, in which the different mechanisms are active.
Collapse
Affiliation(s)
- Joel Hallgren
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, 106 91 Stockholm, Sweden
| | - Kristina Jonas
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, 106 91 Stockholm, Sweden.
| |
Collapse
|
8
|
Govers SK, Campos M, Tyagi B, Laloux G, Jacobs-Wagner C. Apparent simplicity and emergent robustness in the control of the Escherichia coli cell cycle. Cell Syst 2024; 15:19-36.e5. [PMID: 38157847 DOI: 10.1016/j.cels.2023.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/15/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
To examine how bacteria achieve robust cell proliferation across diverse conditions, we developed a method that quantifies 77 cell morphological, cell cycle, and growth phenotypes of a fluorescently labeled Escherichia coli strain and >800 gene deletion derivatives under multiple nutrient conditions. This approach revealed extensive phenotypic plasticity and deviating mutant phenotypes were often nutrient dependent. From this broad phenotypic landscape emerged simple and robust unifying rules (laws) that connect DNA replication initiation, nucleoid segregation, FtsZ ring formation, and cell constriction to specific aspects of cell size (volume, length, or added length) at the population level. Furthermore, completion of cell division followed the initiation of cell constriction after a constant time delay across strains and nutrient conditions, identifying cell constriction as a key control point for cell size determination. Our work provides a population-level description of the governing principles by which E. coli integrates cell cycle processes and growth rate with cell size to achieve its robust proliferative capability. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Sander K Govers
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; de Duve Institute, UCLouvain, Brussels, Belgium; Department of Biology, KU Leuven, Leuven, Belgium
| | - Manuel Campos
- Centre de Biologie Intégrative de Toulouse, Laboratoire de Microbiologie et Génétique Moléculaires, Université de Toulouse, Toulouse, France
| | - Bhavyaa Tyagi
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Christine Jacobs-Wagner
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA; Sarafan Chemistry, Engineering Medicine for Human Health Institute, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
9
|
Cao Q, Huang W, Zhang Z, Chu P, Wei T, Zheng H, Liu C. The Quantification of Bacterial Cell Size: Discrepancies Arise from Varied Quantification Methods. Life (Basel) 2023; 13:1246. [PMID: 37374027 PMCID: PMC10302572 DOI: 10.3390/life13061246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/21/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023] Open
Abstract
The robust regulation of the cell cycle is critical for the survival and proliferation of bacteria. To gain a comprehensive understanding of the mechanisms regulating the bacterial cell cycle, it is essential to accurately quantify cell-cycle-related parameters and to uncover quantitative relationships. In this paper, we demonstrate that the quantification of cell size parameters using microscopic images can be influenced by software and by the parameter settings used. Remarkably, even if the consistent use of a particular software and specific parameter settings is maintained throughout a study, the type of software and the parameter settings can significantly impact the validation of quantitative relationships, such as the constant-initiation-mass hypothesis. Given these inherent characteristics of microscopic image-based quantification methods, it is recommended that conclusions be cross-validated using independent methods, especially when the conclusions are associated with cell size parameters that were obtained under different conditions. To this end, we presented a flexible workflow for simultaneously quantifying multiple bacterial cell-cycle-related parameters using microscope-independent methods.
Collapse
Affiliation(s)
- Qian’andong Cao
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqi Huang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Zhang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pan Chu
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Wei
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai Zheng
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenli Liu
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Ashour ME, Byrum AK, Meroni A, Xia J, Singh S, Galletto R, Rosenberg SM, Vindigni A, Mosammaparast N. Rapid profiling of DNA replication dynamics using mass spectrometry-based analysis of nascent DNA. J Cell Biol 2023; 222:e202207121. [PMID: 36795402 PMCID: PMC9960042 DOI: 10.1083/jcb.202207121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/09/2022] [Accepted: 01/19/2023] [Indexed: 02/17/2023] Open
Abstract
The primary method for probing DNA replication dynamics is DNA fiber analysis, which utilizes thymidine analog incorporation into nascent DNA, followed by immunofluorescent microscopy of DNA fibers. Besides being time-consuming and prone to experimenter bias, it is not suitable for studying DNA replication dynamics in mitochondria or bacteria, nor is it adaptable for higher-throughput analysis. Here, we present mass spectrometry-based analysis of nascent DNA (MS-BAND) as a rapid, unbiased, quantitative alternative to DNA fiber analysis. In this method, incorporation of thymidine analogs is quantified from DNA using triple quadrupole tandem mass spectrometry. MS-BAND accurately detects DNA replication alterations in both the nucleus and mitochondria of human cells, as well as bacteria. The high-throughput capability of MS-BAND captured replication alterations in an E. coli DNA damage-inducing gene library. Therefore, MS-BAND may serve as an alternative to the DNA fiber technique, with potential for high-throughput analysis of replication dynamics in diverse model systems.
Collapse
Affiliation(s)
- Mohamed E. Ashour
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Andrea K. Byrum
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Center for Childhood Cancer & Blood Diseases, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Alice Meroni
- Division of Oncology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Jun Xia
- Departments of Molecular and Human Genetics, Biochemistry and Molecular Biology, and Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Department of Biomedical Sciences, Creighton University, Omaha, NE, USA
| | - Saurabh Singh
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Susan M. Rosenberg
- Departments of Molecular and Human Genetics, Biochemistry and Molecular Biology, and Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Division of Oncology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| |
Collapse
|
11
|
Sanders S, Joshi K, Levin PA, Iyer-Biswas S. Beyond the average: An updated framework for understanding the relationship between cell growth, DNA replication, and division in a bacterial system. PLoS Genet 2023; 19:e1010505. [PMID: 36602967 DOI: 10.1371/journal.pgen.1010505] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Our understanding of the bacterial cell cycle is framed largely by population-based experiments that focus on the behavior of idealized average cells. Most famously, the contributions of Cooper and Helmstetter help to contextualize the phenomenon of overlapping replication cycles observed in rapidly growing bacteria. Despite the undeniable value of these approaches, their necessary reliance on the behavior of idealized average cells masks the stochasticity inherent in single-cell growth and physiology and limits their mechanistic value. To bridge this gap, we propose an updated and agnostic framework, informed by extant single-cell data, that quantitatively accounts for stochastic variations in single-cell dynamics and the impact of medium composition on cell growth and cell cycle progression. In this framework, stochastic timers sensitive to medium composition impact the relationship between cell cycle events, accounting for observed differences in the relationship between cell cycle events in slow- and fast-growing cells. We conclude with a roadmap for potential application of this framework to longstanding open questions in the bacterial cell cycle field.
Collapse
Affiliation(s)
- Sara Sanders
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Kunaal Joshi
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, United States of America
| | - Petra Anne Levin
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Srividya Iyer-Biswas
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| |
Collapse
|
12
|
Meunier A, Cornet F, Campos M. Bacterial cell proliferation: from molecules to cells. FEMS Microbiol Rev 2021; 45:fuaa046. [PMID: 32990752 PMCID: PMC7794046 DOI: 10.1093/femsre/fuaa046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
Bacterial cell proliferation is highly efficient, both because bacteria grow fast and multiply with a low failure rate. This efficiency is underpinned by the robustness of the cell cycle and its synchronization with cell growth and cytokinesis. Recent advances in bacterial cell biology brought about by single-cell physiology in microfluidic chambers suggest a series of simple phenomenological models at the cellular scale, coupling cell size and growth with the cell cycle. We contrast the apparent simplicity of these mechanisms based on the addition of a constant size between cell cycle events (e.g. two consecutive initiation of DNA replication or cell division) with the complexity of the underlying regulatory networks. Beyond the paradigm of cell cycle checkpoints, the coordination between the DNA and division cycles and cell growth is largely mediated by a wealth of other mechanisms. We propose our perspective on these mechanisms, through the prism of the known crosstalk between DNA replication and segregation, cell division and cell growth or size. We argue that the precise knowledge of these molecular mechanisms is critical to integrate the diverse layers of controls at different time and space scales into synthetic and verifiable models.
Collapse
Affiliation(s)
- Alix Meunier
- Centre de Biologie Intégrative de Toulouse (CBI Toulouse), Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Université de Toulouse, UPS, CNRS, IBCG, 165 rue Marianne Grunberg-Manago, 31062 Toulouse, France
| | - François Cornet
- Centre de Biologie Intégrative de Toulouse (CBI Toulouse), Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Université de Toulouse, UPS, CNRS, IBCG, 165 rue Marianne Grunberg-Manago, 31062 Toulouse, France
| | - Manuel Campos
- Centre de Biologie Intégrative de Toulouse (CBI Toulouse), Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Université de Toulouse, UPS, CNRS, IBCG, 165 rue Marianne Grunberg-Manago, 31062 Toulouse, France
| |
Collapse
|
13
|
Zhang Q, Zhang Z, Shi H. Cell Size Is Coordinated with Cell Cycle by Regulating Initiator Protein DnaA in E. coli. Biophys J 2020; 119:2537-2557. [PMID: 33189684 DOI: 10.1016/j.bpj.2020.10.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/22/2020] [Accepted: 10/16/2020] [Indexed: 10/23/2022] Open
Abstract
Sixty years ago, bacterial cell size was found to be an exponential function of growth rate. Fifty years ago, a more general relationship was proposed, in which cell mass was equal to the initiation mass multiplied by 2 to the power of the ratio of the total time of C and D periods to the doubling time. This relationship has recently been experimentally confirmed by perturbing doubling time, C period, D period, or initiation mass. However, the underlying molecular mechanism remains unclear. Here, we developed a theoretical model for initiator protein DnaA mediating DNA replication initiation in Escherichia coli. We introduced an initiation probability function for competitive binding of DnaA-ATP and DnaA-ADP at oriC. We established a kinetic description of regulatory processes (e.g., expression regulation, titration, inactivation, and reactivation) of DnaA. Cell size as a spatial constraint also participates in the regulation of DnaA. By simulating DnaA kinetics, we obtained a regular DnaA oscillation coordinated with cell cycle and a converged cell size that matches replication initiation frequency to the growth rate. The relationship between the simulated cell size and growth rate, C period, D period, or initiation mass reproduces experimental results. The model also predicts how DnaA number and initiation mass vary with perturbation parameters, comparable with experimental data. The results suggest that 1) when growth rate, C period, or D period changes, the regulation of DnaA determines the invariance of initiation mass; 2) ppGpp inhibition of replication initiation may be important for the growth rate independence of initiation mass because three possible mechanisms therein produce different DnaA dynamics, which is experimentally verifiable; and 3) perturbation of some DnaA regulatory process causes a changing initiation mass or even an abnormal cell cycle. This study may provide clues for concerted control of cell size and cell cycle in synthetic biology.
Collapse
Affiliation(s)
- Qing Zhang
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China.
| | - Zhichao Zhang
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China
| | - Hualin Shi
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
14
|
Leonard AC, Rao P, Kadam RP, Grimwade JE. Changing Perspectives on the Role of DnaA-ATP in Orisome Function and Timing Regulation. Front Microbiol 2019; 10:2009. [PMID: 31555240 PMCID: PMC6727663 DOI: 10.3389/fmicb.2019.02009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 08/16/2019] [Indexed: 01/20/2023] Open
Abstract
Bacteria, like all cells, must precisely duplicate their genomes before they divide. Regulation of this critical process focuses on forming a pre-replicative nucleoprotein complex, termed the orisome. Orisomes perform two essential mechanical tasks that configure the unique chromosomal replication origin, oriC to start a new round of chromosome replication: (1) unwinding origin DNA and (2) assisting with loading of the replicative DNA helicase on exposed single strands. In Escherichia coli, a necessary orisome component is the ATP-bound form of the bacterial initiator protein, DnaA. DnaA-ATP differs from DnaA-ADP in its ability to oligomerize into helical filaments, and in its ability to access a subset of low affinity recognition sites in the E. coli replication origin. The helical filaments have been proposed to play a role in both of the key mechanical tasks, but recent studies raise new questions about whether they are mandatory for orisome activity. It was recently shown that a version of E. coli oriC (oriCallADP), whose multiple low affinity DnaA recognition sites bind DnaA-ATP and DnaA-ADP similarly, was fully occupied and unwound by DnaA-ADP in vitro, and in vivo suppressed the lethality of DnaA mutants defective in ATP binding and ATP-specific oligomerization. However, despite their functional equivalency, orisomes assembled on oriCallADP were unable to trigger chromosome replication at the correct cell cycle time and displayed a hyper-initiation phenotype. Here we present a new perspective on DnaA-ATP, and suggest that in E. coli, DnaA-ATP is not required for mechanical functions, but rather is needed for site recognition and occupation, so that initiation timing is coupled to DnaA-ATP levels. We also discuss how other bacterial types may utilize DnaA-ATP and DnaA-ADP, and whether the high diversity of replication origins in the bacterial world reflects different regulatory strategies for how DnaA-ATP is used to control orisome assembly.
Collapse
Affiliation(s)
- Alan C Leonard
- Laboratory of Microbial Genetics, Department of Biomedical and Chemical Engineering and Science, Florida Institute of Technology, Melbourne, FL, United States
| | - Prassanna Rao
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Rohit P Kadam
- Laboratory of Microbial Genetics, Department of Biomedical and Chemical Engineering and Science, Florida Institute of Technology, Melbourne, FL, United States
| | - Julia E Grimwade
- Laboratory of Microbial Genetics, Department of Biomedical and Chemical Engineering and Science, Florida Institute of Technology, Melbourne, FL, United States
| |
Collapse
|
15
|
Beaulaurier J, Schadt EE, Fang G. Deciphering bacterial epigenomes using modern sequencing technologies. Nat Rev Genet 2019; 20:157-172. [PMID: 30546107 PMCID: PMC6555402 DOI: 10.1038/s41576-018-0081-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prokaryotic DNA contains three types of methylation: N6-methyladenine, N4-methylcytosine and 5-methylcytosine. The lack of tools to analyse the frequency and distribution of methylated residues in bacterial genomes has prevented a full understanding of their functions. Now, advances in DNA sequencing technology, including single-molecule, real-time sequencing and nanopore-based sequencing, have provided new opportunities for systematic detection of all three forms of methylated DNA at a genome-wide scale and offer unprecedented opportunities for achieving a more complete understanding of bacterial epigenomes. Indeed, as the number of mapped bacterial methylomes approaches 2,000, increasing evidence supports roles for methylation in regulation of gene expression, virulence and pathogen-host interactions.
Collapse
Affiliation(s)
- John Beaulaurier
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gang Fang
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
16
|
Kleckner NE, Chatzi K, White MA, Fisher JK, Stouf M. Coordination of Growth, Chromosome Replication/Segregation, and Cell Division in E. coli. Front Microbiol 2018; 9:1469. [PMID: 30038602 PMCID: PMC6046412 DOI: 10.3389/fmicb.2018.01469] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/12/2018] [Indexed: 11/13/2022] Open
Abstract
Bacterial cells growing in steady state maintain a 1:1:1 relationship between an appropriate mass increase, a round of DNA replication plus sister chromosome segregation, and cell division. This is accomplished without the cell cycle engine found in eukaryotic cells. We propose here a formal logic, and an accompanying mechanism, for how such coordination could be provided in E. coli. Completion of chromosomal and divisome-related events would lead, interactively, to a “progression control complex” (PCC) which provides integrated physical coupling between sister terminus regions and the nascent septum. When a cell has both (i) achieved a sufficient mass increase, and (ii) the PCC has developed, a conformational change in the PCC occurs. This change results in “progression permission,” which triggers both onset of cell division and release of terminus regions. Release of the terminus region, in turn, directly enables a next round of replication initiation via physical changes transmitted through the nucleoid. Division and initiation are then implemented, each at its own rate and timing, according to conditions present. Importantly: (i) the limiting step for progression permission may be either completion of the growth requirement or the chromosome/divisome processes required for assembly of the PCC; and, (ii) the outcome of the proposed process is granting of permission to progress, not determination of the absolute or relative timings of downstream events. This basic logic, and the accompanying mechanism, can explain coordination of events in both slow and fast growth conditions; can accommodate diverse variations and perturbations of cellular events; and is compatible with existing mathematical descriptions of the E. coli cell cycle. Also, while our proposition is specifically designed to provide 1:1:1 coordination among basic events on a “per-cell cycle” basis, it is a small step to further envision permission progression is also the target of basic growth rate control. In such a case, the rate of mass accumulation (or its equivalent) would determine the length of the interval between successive permission events and, thus, successive cell divisions and successive replication initiations.
Collapse
Affiliation(s)
- Nancy E Kleckner
- Department of Molecular and Cellular Biology Harvard University, Cambridge, MA, United States
| | - Katerina Chatzi
- Department of Molecular and Cellular Biology Harvard University, Cambridge, MA, United States
| | - Martin A White
- Department of Molecular and Cellular Biology Harvard University, Cambridge, MA, United States
| | | | - Mathieu Stouf
- Department of Molecular and Cellular Biology Harvard University, Cambridge, MA, United States
| |
Collapse
|
17
|
Jun S, Si F, Pugatch R, Scott M. Fundamental principles in bacterial physiology-history, recent progress, and the future with focus on cell size control: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:056601. [PMID: 29313526 PMCID: PMC5897229 DOI: 10.1088/1361-6633/aaa628] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Bacterial physiology is a branch of biology that aims to understand overarching principles of cellular reproduction. Many important issues in bacterial physiology are inherently quantitative, and major contributors to the field have often brought together tools and ways of thinking from multiple disciplines. This article presents a comprehensive overview of major ideas and approaches developed since the early 20th century for anyone who is interested in the fundamental problems in bacterial physiology. This article is divided into two parts. In the first part (sections 1-3), we review the first 'golden era' of bacterial physiology from the 1940s to early 1970s and provide a complete list of major references from that period. In the second part (sections 4-7), we explain how the pioneering work from the first golden era has influenced various rediscoveries of general quantitative principles and significant further development in modern bacterial physiology. Specifically, section 4 presents the history and current progress of the 'adder' principle of cell size homeostasis. Section 5 discusses the implications of coarse-graining the cellular protein composition, and how the coarse-grained proteome 'sectors' re-balance under different growth conditions. Section 6 focuses on physiological invariants, and explains how they are the key to understanding the coordination between growth and the cell cycle underlying cell size control in steady-state growth. Section 7 overviews how the temporal organization of all the internal processes enables balanced growth. In the final section 8, we conclude by discussing the remaining challenges for the future in the field.
Collapse
Affiliation(s)
- Suckjoon Jun
- Department of Physics, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States of America. Section of Molecular Biology, Division of Biology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States of America
| | | | | | | |
Collapse
|
18
|
Pedersen IB, Helgesen E, Flåtten I, Fossum-Raunehaug S, Skarstad K. SeqA structures behind Escherichia coli replication forks affect replication elongation and restart mechanisms. Nucleic Acids Res 2017; 45:6471-6485. [PMID: 28407100 PMCID: PMC5499823 DOI: 10.1093/nar/gkx263] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/07/2017] [Indexed: 12/13/2022] Open
Abstract
The SeqA protein binds hemi-methylated GATC sites and forms structures that sequester newly replicated origins and trail the replication forks. Cells that lack SeqA display signs of replication fork disintegration. The broken forks could arise because of over-initiation (the launching of too many forks) or lack of dynamic SeqA structures trailing the forks. To confirm one or both of these possible mechanisms, we compared two seqA mutants with the oriCm3 mutant. The oriCm3 mutant over-initiates because of a lack of origin sequestration but has wild-type SeqA protein. Cells with nonfunctional SeqA, but not oriCm3 mutant cells, had problems with replication elongation, were highly dependent on homologous recombination, and exhibited extensive chromosome fragmentation. The results indicate that replication forks frequently break in the absence of SeqA function and that the broken forks are rescued by homologous recombination. We suggest that SeqA may act in two ways to stabilize replication forks: (i) by enabling vital replication fork repair and restarting reactions and (ii) by preventing replication fork rear-end collisions.
Collapse
Affiliation(s)
- Ida Benedikte Pedersen
- Department of Molecular Cell Biology and Department of Microbiology, Oslo University Hospital, P.O. Box 4950, 0424 Oslo, Norway
| | - Emily Helgesen
- Department of Molecular Cell Biology and Department of Microbiology, Oslo University Hospital, P.O. Box 4950, 0424 Oslo, Norway
| | - Ingvild Flåtten
- Department of Molecular Cell Biology and Department of Microbiology, Oslo University Hospital, P.O. Box 4950, 0424 Oslo, Norway
| | - Solveig Fossum-Raunehaug
- Department of Molecular Cell Biology and Department of Microbiology, Oslo University Hospital, P.O. Box 4950, 0424 Oslo, Norway.,School of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, P.O. Box 4950, 0424 Oslo, Norway
| | - Kirsten Skarstad
- Department of Molecular Cell Biology and Department of Microbiology, Oslo University Hospital, P.O. Box 4950, 0424 Oslo, Norway.,School of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, P.O. Box 4950, 0424 Oslo, Norway
| |
Collapse
|
19
|
Abe Y, Shioi S, Kita S, Nakata H, Maenaka K, Kohda D, Katayama T, Ueda T. X-ray crystal structure of Escherichia coli HspQ, a protein involved in the retardation of replication initiation. FEBS Lett 2017; 591:3805-3816. [PMID: 29083032 DOI: 10.1002/1873-3468.12892] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/02/2017] [Accepted: 10/24/2017] [Indexed: 11/07/2022]
Abstract
The heat shock protein HspQ (YccV) of Escherichia coli has been proposed to participate in the retardation of replication initiation in cells with the dnaA508 allele. In this study, we have determined the 2.5-Å-resolution X-ray structure of the trimer of HspQ, which is also the first structure of a member of the YccV superfamily. The acidic character of the HspQ trimer suggests an interaction surface with basic proteins. From these results, we discuss the cellular function of HspQ, including its relationship with the DnaA508 protein.
Collapse
Affiliation(s)
- Yoshito Abe
- Department of Protein Structure, Function and Design, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Seijiro Shioi
- Department of Protein Structure, Function and Design, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Shunsuke Kita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hikaru Nakata
- Department of Protein Structure, Function and Design, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsumi Maenaka
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Daisuke Kohda
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tsutomu Katayama
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Tadashi Ueda
- Department of Protein Structure, Function and Design, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
20
|
|
21
|
Furse S, Jakubec M, Rise F, Williams HE, Rees CED, Halskau Ø. Evidence that Listeria innocua modulates its membrane's stored curvature elastic stress, but not fluidity, through the cell cycle. Sci Rep 2017; 7:8012. [PMID: 28808346 PMCID: PMC5556093 DOI: 10.1038/s41598-017-06855-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/20/2017] [Indexed: 01/22/2023] Open
Abstract
This paper reports that the abundances of endogenous cardiolipin and phosphatidylethanolamine halve during elongation of the Gram-positive bacterium Listeria innocua. The lyotropic phase behaviour of model lipid systems that describe these modulations in lipid composition indicate that the average stored curvature elastic stress of the membrane is reduced on elongation of the cell, while the fluidity appears to be maintained. These findings suggest that phospholipid metabolism is linked to the cell cycle and that changes in membrane composition can facilitate passage to the succeding stage of the cell cycle. This therefore suggests a means by which bacteria can manage the physical properties of their membranes through the cell cycle.
Collapse
Affiliation(s)
- Samuel Furse
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, NO-5006, Bergen, Norway
| | - Martin Jakubec
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, NO-5006, Bergen, Norway
| | - Frode Rise
- Department of Chemistry, University of Oslo, P. O. Box 1033, Blindern, NO-0315, Oslo, Norway
| | - Huw E Williams
- Centre for Biomolecular Sciences, University of Nottingham, University Park, NG7 2RD, Nottingham, United Kingdom
| | - Catherine E D Rees
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, LE12 5RD, Nottinghamshire, United Kingdom
| | - Øyvind Halskau
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, NO-5006, Bergen, Norway.
| |
Collapse
|
22
|
Ravoitytė B, Wellinger RE. Non-Canonical Replication Initiation: You're Fired! Genes (Basel) 2017; 8:genes8020054. [PMID: 28134821 PMCID: PMC5333043 DOI: 10.3390/genes8020054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/19/2017] [Indexed: 12/25/2022] Open
Abstract
The division of prokaryotic and eukaryotic cells produces two cells that inherit a perfect copy of the genetic material originally derived from the mother cell. The initiation of canonical DNA replication must be coordinated to the cell cycle to ensure the accuracy of genome duplication. Controlled replication initiation depends on a complex interplay of cis-acting DNA sequences, the so-called origins of replication (ori), with trans-acting factors involved in the onset of DNA synthesis. The interplay of cis-acting elements and trans-acting factors ensures that cells initiate replication at sequence-specific sites only once, and in a timely order, to avoid chromosomal endoreplication. However, chromosome breakage and excessive RNA:DNA hybrid formation can cause break-induced (BIR) or transcription-initiated replication (TIR), respectively. These non-canonical replication events are expected to affect eukaryotic genome function and maintenance, and could be important for genome evolution and disease development. In this review, we describe the difference between canonical and non-canonical DNA replication, and focus on mechanistic differences and common features between BIR and TIR. Finally, we discuss open issues on the factors and molecular mechanisms involved in TIR.
Collapse
Affiliation(s)
- Bazilė Ravoitytė
- Nature Research Centre, Akademijos g. 2, LT-08412 Vilnius, Lithuania.
| | - Ralf Erik Wellinger
- CABIMER-Universidad de Sevilla, Avd Americo Vespucio sn, 41092 Sevilla, Spain.
| |
Collapse
|
23
|
Jha JK, Chattoraj DK. Inactivation of Individual SeqA Binding Sites of the E. coli Origin Reveals Robustness of Replication Initiation Synchrony. PLoS One 2016; 11:e0166722. [PMID: 27930658 PMCID: PMC5145175 DOI: 10.1371/journal.pone.0166722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/02/2016] [Indexed: 01/08/2023] Open
Abstract
The Escherichia coli origin of replication, oriC, comprises mostly binding sites of two proteins: DnaA, a positive regulator, and SeqA, a negative regulator. SeqA, although not essential, is required for timely initiation, and during rapid growth, synchronous initiation from multiple origins. Unlike DnaA, details of SeqA binding to oriC are limited. Here we have determined that SeqA binds to all its sites tested (9/11) and with variable efficiency. Titration of DnaA alters SeqA binding to two sites, both of which have overlapping DnaA sites. The altered SeqA binding, however, does not affect initiation synchrony. Synchrony is also unaffected when individual SeqA sites are mutated. An apparent exception was one mutant where the mutation also changed an overlapping DnaA site. In this mutant, the observed asynchrony could be from altered DnaA binding, as selectively mutating this SeqA site did not cause asynchrony. These results reveal robust initiation synchrony against alterations of individual SeqA binding sites. The redundancy apparently ensures SeqA function in controlling replication in E. coli.
Collapse
Affiliation(s)
- Jyoti K. Jha
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Dhruba K. Chattoraj
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
24
|
Riber L, Frimodt-Møller J, Charbon G, Løbner-Olesen A. Multiple DNA Binding Proteins Contribute to Timing of Chromosome Replication in E. coli. Front Mol Biosci 2016; 3:29. [PMID: 27446932 PMCID: PMC4924351 DOI: 10.3389/fmolb.2016.00029] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/14/2016] [Indexed: 11/24/2022] Open
Abstract
Chromosome replication in Escherichia coli is initiated from a single origin, oriC. Initiation involves a number of DNA binding proteins, but only DnaA is essential and specific for the initiation process. DnaA is an AAA+ protein that binds both ATP and ADP with similar high affinities. DnaA associated with either ATP or ADP binds to a set of strong DnaA binding sites in oriC, whereas only DnaAATP is capable of binding additional and weaker sites to promote initiation. Additional DNA binding proteins act to ensure that initiation occurs timely by affecting either the cellular mass at which DNA replication is initiated, or the time window in which all origins present in a single cell are initiated, i.e. initiation synchrony, or both. Overall, these DNA binding proteins modulate the initiation frequency from oriC by: (i) binding directly to oriC to affect DnaA binding, (ii) altering the DNA topology in or around oriC, (iii) altering the nucleotide bound status of DnaA by interacting with non-coding chromosomal sequences, distant from oriC, that are important for DnaA activity. Thus, although DnaA is the key protein for initiation of replication, other DNA-binding proteins act not only on oriC for modulation of its activity but also at additional regulatory sites to control the nucleotide bound status of DnaA. Here we review the contribution of key DNA binding proteins to the tight regulation of chromosome replication in E. coli cells.
Collapse
Affiliation(s)
- Leise Riber
- Section for Functional Genomics and Center for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen Copenhagen, Denmark
| | - Jakob Frimodt-Møller
- Section for Functional Genomics and Center for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen Copenhagen, Denmark
| | - Godefroid Charbon
- Section for Functional Genomics and Center for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen Copenhagen, Denmark
| | - Anders Løbner-Olesen
- Section for Functional Genomics and Center for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
25
|
Lack of the H-NS Protein Results in Extended and Aberrantly Positioned DNA during Chromosome Replication and Segregation in Escherichia coli. J Bacteriol 2016; 198:1305-16. [PMID: 26858102 DOI: 10.1128/jb.00919-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/02/2016] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED The architectural protein H-NS binds nonspecifically to hundreds of sites throughout the chromosome and can multimerize to stiffen segments of DNA as well as to form DNA-protein-DNA bridges. H-NS has been suggested to contribute to the orderly folding of the Escherichia coli chromosome in the highly compacted nucleoid. In this study, we investigated the positioning and dynamics of the origins, the replisomes, and the SeqA structures trailing the replication forks in cells lacking the H-NS protein. In H-NS mutant cells, foci of SeqA, replisomes, and origins were irregularly positioned in the cell. Further analysis showed that the average distance between the SeqA structures and the replisome was increased by ∼100 nm compared to that in wild-type cells, whereas the colocalization of SeqA-bound sister DNA behind replication forks was not affected. This result may suggest that H-NS contributes to the folding of DNA along adjacent segments. H-NS mutant cells were found to be incapable of adopting the distinct and condensed nucleoid structures characteristic of E. coli cells growing rapidly in rich medium. It appears as if H-NS mutant cells adopt a “slow-growth” type of chromosome organization under nutrient-rich conditions, which leads to a decreased cellular DNA content. IMPORTANCE It is not fully understood how and to what extent nucleoid-associated proteins contribute to chromosome folding and organization during replication and segregation in Escherichia coli. In this work, we find in vivo indications that cells lacking the nucleoid-associated protein H-NS have a lower degree of DNA condensation than wild-type cells. Our work suggests that H-NS is involved in condensing the DNA along adjacent segments on the chromosome and is not likely to tether newly replicated strands of sister DNA. We also find indications that H-NS is required for rapid growth with high DNA content and for the formation of a highly condensed nucleoid structure under such conditions.
Collapse
|
26
|
Abstract
Recent advancements in fluorescence imaging have shown that the bacterial nucleoid is surprisingly dynamic in terms of both behavior (movement and organization) and structure (density and supercoiling). Links between chromosome structure and replication initiation have been made in a number of species, and it is universally accepted that favorable chromosome structure is required for initiation in all cells. However, almost nothing is known about whether cells use changes in chromosome structure as a regulatory mechanism for initiation. Such changes could occur during natural cell cycle or growth phase transitions, or they could be manufactured through genetic switches of topoisomerase and nucleoid structure genes. In this review, we explore the relationship between chromosome structure and replication initiation and highlight recent work implicating structure as a regulatory mechanism. A three-component origin activation model is proposed in which thermal and topological structural elements are balanced with trans-acting control elements (DnaA) to allow efficient initiation control under a variety of nutritional and environmental conditions. Selective imbalances in these components allow cells to block replication in response to cell cycle impasse, override once-per-cell-cycle programming during growth phase transitions, and promote reinitiation when replication forks fail to complete.
Collapse
|
27
|
Furse S, Wienk H, Boelens R, de Kroon AIPM, Killian JA. E. coli MG1655 modulates its phospholipid composition through the cell cycle. FEBS Lett 2015; 589:2726-30. [PMID: 26272829 DOI: 10.1016/j.febslet.2015.07.043] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/07/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
Abstract
This paper describes a study of the phospholipid profile of Escherichia coli MG1655 cultures at the B and D periods of the cell cycle. The results indicate that the phosphatidyl glycerol fraction grows relatively rapidly and that the size of the cardiolipin (CL) fraction does not grow at all during cell elongation. This is consistent with observations that CL is located preferentially at the poles of E. coli. It also suggests that lipid production is controlled as a function of the cell cycle.
Collapse
Affiliation(s)
- Samuel Furse
- Membrane Biochemistry and Biophysics, Department of Chemistry, Universiteit Utrecht, Kruytgebouw, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Hans Wienk
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Universiteit Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Rolf Boelens
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Universiteit Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Anton I P M de Kroon
- Membrane Biochemistry and Biophysics, Department of Chemistry, Universiteit Utrecht, Kruytgebouw, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - J Antoinette Killian
- Membrane Biochemistry and Biophysics, Department of Chemistry, Universiteit Utrecht, Kruytgebouw, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
28
|
Robert L. Size sensors in bacteria, cell cycle control, and size control. Front Microbiol 2015; 6:515. [PMID: 26074903 PMCID: PMC4448035 DOI: 10.3389/fmicb.2015.00515] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/09/2015] [Indexed: 12/18/2022] Open
Abstract
Bacteria proliferate by repetitive cycles of cellular growth and division. The progression into the cell cycle is admitted to be under the control of cell size. However, the molecular basis of this regulation is still unclear. Here I will discuss which mechanisms could allow coupling growth and division by sensing size and transmitting this information to the division machinery. Size sensors could act at different stages of the cell cycle. During septum formation, mechanisms controlling the formation of the Z ring, such as MinCD inhibition or Nucleoid Occlusion (NO) could participate in the size-dependence of the division process. In addition or alternatively, the coupling of growth and division may occur indirectly through the control of DNA replication initiation. The relative importance of these different size-sensing mechanisms could depend on the environmental and genetic context. The recent demonstration of an incremental strategy of size control in bacteria, suggests that DnaA-dependent control of replication initiation could be the major size control mechanism limiting cell size variation.
Collapse
Affiliation(s)
- Lydia Robert
- UMR1319 Micalis, Institut National de la Recherche AgronomiqueJouy-en-Josas, France
- UMR Micalis, AgroParisTechJouy-en-Josas, France
- Laboratoire Jean Perrin (Université Pierre et Marie Curie-Centre National de la Recherche Scientifique UMR8237), Université Pierre et Marie CurieParis, France
| |
Collapse
|
29
|
Lies M, Visser BJ, Joshi MC, Magnan D, Bates D. MioC and GidA proteins promote cell division in E. coli. Front Microbiol 2015; 6:516. [PMID: 26074904 PMCID: PMC4446571 DOI: 10.3389/fmicb.2015.00516] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/09/2015] [Indexed: 11/24/2022] Open
Abstract
The well-conserved genes surrounding the E. coli replication origin, mioC and gidA, do not normally affect chromosome replication and have little known function. We report that mioC and gidA mutants exhibit a moderate cell division inhibition phenotype. Cell elongation is exacerbated by a fis deletion, likely owing to delayed replication and subsequent cell cycle stress. Measurements of replication initiation frequency and origin segregation indicate that mioC and gidA do not inhibit cell division through any effect on oriC function. Division inhibition is also independent of the two known replication/cell division checkpoints, SOS and nucleoid occlusion. Complementation analysis indicates that mioC and gidA affect cell division in trans, indicating their effect is at the protein level. Transcriptome analysis by RNA sequencing showed that expression of a cell division septum component, YmgF, is significantly altered in mioC and gidA mutants. Our data reveal new roles for the gene products of gidA and mioC in the division apparatus, and we propose that their expression, cyclically regulated by chromatin remodeling at oriC, is part of a cell cycle regulatory program coordinating replication initiation and cell division.
Collapse
Affiliation(s)
- Mark Lies
- Molecular and Human Genetics, Baylor College of Medicine Houston, TX, USA
| | - Bryan J Visser
- Integrative Molecular and Biomedical Sciences, Baylor College of Medicine Houston, TX, USA
| | - Mohan C Joshi
- Molecular and Human Genetics, Baylor College of Medicine Houston, TX, USA
| | - David Magnan
- Integrative Molecular and Biomedical Sciences, Baylor College of Medicine Houston, TX, USA
| | - David Bates
- Molecular and Human Genetics, Baylor College of Medicine Houston, TX, USA ; Integrative Molecular and Biomedical Sciences, Baylor College of Medicine Houston, TX, USA
| |
Collapse
|
30
|
|
31
|
Helgesen E, Fossum-Raunehaug S, Sætre F, Schink KO, Skarstad K. Dynamic Escherichia coli SeqA complexes organize the newly replicated DNA at a considerable distance from the replisome. Nucleic Acids Res 2015; 43:2730-43. [PMID: 25722374 PMCID: PMC4357733 DOI: 10.1093/nar/gkv146] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli SeqA protein binds to newly replicated, hemimethylated DNA behind replication forks and forms structures consisting of several hundred SeqA molecules bound to about 100 kb of DNA. It has been suggested that SeqA structures either direct the new sister DNA molecules away from each other or constitute a spacer that keeps the sisters together. We have developed an image analysis script that automatically measures the distance between neighboring foci in cells. Using this tool as well as direct stochastic optical reconstruction microscopy (dSTORM) we find that in cells with fluorescently tagged SeqA and replisome the sister SeqA structures were situated close together (less than about 30 nm apart) and relatively far from the replisome (on average 200–300 nm). The results support the idea that newly replicated sister molecules are kept together behind the fork and suggest the existence of a stretch of DNA between the replisome and SeqA which enjoys added stabilization. This could be important in facilitating DNA transactions such as recombination, mismatch repair and topoisomerase activity. In slowly growing cells without ongoing replication forks the SeqA protein was found to reside at the fully methylated origins prior to initiation of replication.
Collapse
Affiliation(s)
- Emily Helgesen
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, 0310 Oslo, Norway
| | - Solveig Fossum-Raunehaug
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, 0310 Oslo, Norway School of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Frank Sætre
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, 0310 Oslo, Norway
| | - Kay Oliver Schink
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, 0310 Oslo, Norway
| | - Kirsten Skarstad
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, 0310 Oslo, Norway School of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
32
|
Khlebodarova TM, Likhoshvai VA. New evidence of an old problem: The coupling of genome replication to cell growth in bacteria. RUSS J GENET+ 2014. [DOI: 10.1134/s102279541408002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Rotman E, Khan S, Kouzminova E, Kuzminov A. Replication fork inhibition in seqA mutants of Escherichia coli triggers replication fork breakage. Mol Microbiol 2014; 93:50-64. [PMID: 24806348 PMCID: PMC4078979 DOI: 10.1111/mmi.12638] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2014] [Indexed: 01/21/2023]
Abstract
SeqA protein negatively regulates replication initiation in Escherichia coli and is also proposed to organize maturation and segregation of the newly replicated DNA. The seqA mutants suffer from chromosomal fragmentation; since this fragmentation is attributed to defective segregation or nucleoid compaction, two-ended breaks are expected. Instead, we show that, in SeqA's absence, chromosomes mostly suffer one-ended DNA breaks, indicating disintegration of replication forks. We further show that replication forks are unexpectedly slow in seqA mutants. Quantitative kinetics of origin and terminus replication from aligned chromosomes not only confirm origin overinitiation in seqA mutants, but also reveal terminus under-replication, indicating inhibition of replication forks. Pre-/post-labelling studies of the chromosomal fragmentation in seqA mutants suggest events involving single forks, rather than pairs of forks from consecutive rounds rear-ending into each other. We suggest that, in the absence of SeqA, the sister-chromatid cohesion 'safety spacer' is destabilized and completely disappears if the replication fork is inhibited, leading to the segregation fork running into the inhibited replication fork and snapping the latter at single-stranded DNA regions.
Collapse
Affiliation(s)
- Ella Rotman
- Department of Microbiology, University of Illinois at Urbana-Champaign
| | - Sharik Khan
- Department of Microbiology, University of Illinois at Urbana-Champaign
| | - Elena Kouzminova
- Department of Microbiology, University of Illinois at Urbana-Champaign
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign
| |
Collapse
|
34
|
Kono N, Arakawa K, Sato M, Yoshikawa H, Tomita M, Itaya M. Undesigned selection for replication termination of bacterial chromosomes. J Mol Biol 2014; 426:2918-27. [PMID: 24946150 DOI: 10.1016/j.jmb.2014.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/09/2014] [Accepted: 06/09/2014] [Indexed: 11/15/2022]
Abstract
The oriC DNA replication origin in bacterial chromosomes, the location of which appears to be physically identified, is genetically regulated by relevant molecular machinery. In contrast, the location of the terminus remains obscure for many bacterial replicons, except for terC, the proposed and well-studied chromosome termination site in certain bacteria. The terC locus, which is composed of specific sequences for its binding protein, is located at a site opposite from oriC, exhibiting a symmetric structure around the oriC-terC axis. Here, we investigated Bacillus subtilis 168 strains whose axes were hindered and found that the native terC function was robust. However, eradication of terminus region specific binding protein resulted in the natural terC sites not being used for termination; instead, new termini were selected at a location exactly opposite to oriC. We concluded that replication generally terminates at the loci where the two approaching replisomes meet. This site was automatically selected, and two replisomes moving at the same rate supported symmetrical chromosome structures relative to oriC. The rule, which was even validated by artificial chromosomes irrespective of oriC, should be general for replicons administered by two replisomes.
Collapse
Affiliation(s)
- Nobuaki Kono
- Institute for Advanced Biosciences, Keio University, Yamagata 997-0017, Japan.
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Yamagata 997-0017, Japan
| | - Mitsuru Sato
- Institute for Advanced Biosciences, Keio University, Yamagata 997-0017, Japan
| | - Hirofumi Yoshikawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Yamagata 997-0017, Japan
| | - Mitsuhiro Itaya
- Institute for Advanced Biosciences, Keio University, Yamagata 997-0017, Japan.
| |
Collapse
|
35
|
Rybenkov VV. Maintenance of chromosome structure in Pseudomonas aeruginosa. FEMS Microbiol Lett 2014; 356:154-65. [PMID: 24863732 DOI: 10.1111/1574-6968.12478] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 04/11/2014] [Accepted: 05/19/2014] [Indexed: 11/30/2022] Open
Abstract
Replication and segregation of genetic information are the activities central to the well-being of all living cells. Concerted mechanisms have evolved that ensure that each cellular chromosome is replicated once and only once per cell cycle and then faithfully segregated into daughter cells. Despite remarkable taxonomic diversity, these mechanisms are largely conserved across eubacteria, although species-specific distinctions can often be noted. Here, we provide an overview of the current state of knowledge about maintenance of the chromosome structure in Pseudomonas aeruginosa. We focus on global chromosome organization and its dynamics during DNA replication and cell division. Special emphasis is made on contrasting these activities in P. aeruginosa and other bacteria. Among unique P. aeruginosa, features are the presence of two distinct autonomously replicating sequences and multiple condensins, which suggests existence of novel regulatory mechanisms.
Collapse
Affiliation(s)
- Valentin V Rybenkov
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
36
|
Likhoshvai VA, Khlebodarova TM. Mathematical modeling of bacterial cell cycle: the problem of coordinating genome replication with cell growth. J Bioinform Comput Biol 2014; 12:1450009. [PMID: 24969747 DOI: 10.1142/s0219720014500097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this paper, we perform an analysis of bacterial cell-cycle models implementing different strategies to coordinately regulate genome replication and cell growth dynamics. It has been shown that the problem of coupling these processes does not depend directly on the dynamics of cell volume expansion, but does depend on the type of cell growth law. Our analysis has distinguished two types of cell growth laws, "exponential" and "linear", each of which may include both exponential and linear patterns of cell growth. If a cell grows following a law of the "exponential" type, including the exponential V(t) = V(0) exp (kt) and linear V(t) = V(0)(1 + kt) dynamic patterns, then the cell encounters the problem of coupling growth rates and replication. It has been demonstrated that to solve the problem, it is sufficient for a cell to have a repressor mechanism to regulate DNA replication initiation. For a cell expanding its volume by a law of the "linear" type, including exponential V(t) = V(0) + V(1) exp (kt) and linear V(t) = V(0) + kt dynamic patterns, the problem of coupling growth rates and replication does not exist. In other words, in the context of the coupling problem, a repressor mechanism to regulate DNA replication, and cell growth laws of the "linear" type displays the attributes of universality. The repressor-type mechanism allows a cell to follow any growth dynamic pattern, while the "linear" type growth law allows a cell to use any mechanism to regulate DNA replication.
Collapse
Affiliation(s)
- Vitaly A Likhoshvai
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Prospekt Lavrentieva 10, Novosibirsk 630090, Russia , Novosibirsk State University, av. Pirogova 2, Novosibirsk 630090, Russia
| | | |
Collapse
|
37
|
Robert L, Hoffmann M, Krell N, Aymerich S, Robert J, Doumic M. Division in Escherichia coli is triggered by a size-sensing rather than a timing mechanism. BMC Biol 2014; 12:17. [PMID: 24580833 PMCID: PMC4016582 DOI: 10.1186/1741-7007-12-17] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 02/24/2014] [Indexed: 12/02/2022] Open
Abstract
Background Many organisms coordinate cell growth and division through size control mechanisms: cells must reach a critical size to trigger a cell cycle event. Bacterial division is often assumed to be controlled in this way, but experimental evidence to support this assumption is still lacking. Theoretical arguments show that size control is required to maintain size homeostasis in the case of exponential growth of individual cells. Nevertheless, if the growth law deviates slightly from exponential for very small cells, homeostasis can be maintained with a simple ‘timer’ triggering division. Therefore, deciding whether division control in bacteria relies on a ‘timer’ or ‘sizer’ mechanism requires quantitative comparisons between models and data. Results The timer and sizer hypotheses find a natural expression in models based on partial differential equations. Here we test these models with recent data on single-cell growth of Escherichia coli. We demonstrate that a size-independent timer mechanism for division control, though theoretically possible, is quantitatively incompatible with the data and extremely sensitive to slight variations in the growth law. In contrast, a sizer model is robust and fits the data well. In addition, we tested the effect of variability in individual growth rates and noise in septum positioning and found that size control is robust to this phenotypic noise. Conclusions Confrontations between cell cycle models and data usually suffer from a lack of high-quality data and suitable statistical estimation techniques. Here we overcome these limitations by using high precision measurements of tens of thousands of single bacterial cells combined with recent statistical inference methods to estimate the division rate within the models. We therefore provide the first precise quantitative assessment of different cell cycle models.
Collapse
Affiliation(s)
- Lydia Robert
- INRA, Micalis CNRS-UMR 1319, 78350 Jouy-en-Josas, France.
| | | | | | | | | | | |
Collapse
|
38
|
Flåtten I, Skarstad K. The Fis protein has a stimulating role in initiation of replication in Escherichia coli in vivo. PLoS One 2013; 8:e83562. [PMID: 24358293 PMCID: PMC3865182 DOI: 10.1371/journal.pone.0083562] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/13/2013] [Indexed: 12/31/2022] Open
Abstract
The Fis protein is a nucleoid associated protein that has previously been reported to act negatively in initiation of replication in Escherichia coli. In this work we have examined the influence of this protein on the initiation of replication under different growth conditions using flow cytometry. The Fis protein was found to be increasingly important with increasing growth rate. During multi-fork replication severe under-initiation occurred in cells lacking the Fis protein; the cells initiated at an elevated mass, had fewer origins per cell and the origins were not initiated in synchrony. These results suggest a positive role for the Fis protein in the initiation of replication.
Collapse
Affiliation(s)
- Ingvild Flåtten
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radiumhospital, Oslo University Hospital, Oslo, Norway
| | - Kirsten Skarstad
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radiumhospital, Oslo University Hospital, Oslo, Norway
- * E-mail:
| |
Collapse
|
39
|
Jin DJ, Cagliero C, Zhou YN. Role of RNA polymerase and transcription in the organization of the bacterial nucleoid. Chem Rev 2013; 113:8662-82. [PMID: 23941620 PMCID: PMC3830623 DOI: 10.1021/cr4001429] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ding Jun Jin
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory National Cancer Institute, NIH, P.O. Box B, Frederick, MD 21702
| | - Cedric Cagliero
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory National Cancer Institute, NIH, P.O. Box B, Frederick, MD 21702
| | - Yan Ning Zhou
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory National Cancer Institute, NIH, P.O. Box B, Frederick, MD 21702
| |
Collapse
|
40
|
Abstract
In both eukaryotes and prokaryotes, chromosomal DNA undergoes replication, condensation-decondensation and segregation, sequentially, in some fixed order. Other conditions, like sister-chromatid cohesion (SCC), may span several chromosomal events. One set of these chromosomal transactions within a single cell cycle constitutes the 'chromosome cycle'. For many years it was generally assumed that the prokaryotic chromosome cycle follows major phases of the eukaryotic one: -replication-condensation-segregation-(cell division)-decondensation-, with SCC of unspecified length. Eventually it became evident that, in contrast to the strictly consecutive chromosome cycle of eukaryotes, all stages of the prokaryotic chromosome cycle run concurrently. Thus, prokaryotes practice 'progressive' chromosome segregation separated from replication by a brief SCC, and all three transactions move along the chromosome at the same fast rate. In other words, in addition to replication forks, there are 'segregation forks' in prokaryotic chromosomes. Moreover, the bulk of prokaryotic DNA outside the replication-segregation transition stays compacted. I consider possible origins of this concurrent replication-segregation and outline the 'nucleoid administration' system that organizes the dynamic part of the prokaryotic chromosome cycle.
Collapse
Affiliation(s)
- Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
41
|
Abstract
The replication origin and the initiator protein DnaA are the main targets for regulation of chromosome replication in bacteria. The origin bears multiple DnaA binding sites, while DnaA contains ATP/ADP-binding and DNA-binding domains. When enough ATP-DnaA has accumulated in the cell, an active initiation complex can be formed at the origin resulting in strand opening and recruitment of the replicative helicase. In Escherichia coli, oriC activity is directly regulated by DNA methylation and specific oriC-binding proteins. DnaA activity is regulated by proteins that stimulate ATP-DnaA hydrolysis, yielding inactive ADP-DnaA in a replication-coupled negative-feedback manner, and by DnaA-binding DNA elements that control the subcellular localization of DnaA or stimulate the ADP-to-ATP exchange of the DnaA-bound nucleotide. Regulation of dnaA gene expression is also important for initiation. The principle of replication-coupled negative regulation of DnaA found in E. coli is conserved in eukaryotes as well as in bacteria. Regulations by oriC-binding proteins and dnaA gene expression are also conserved in bacteria.
Collapse
Affiliation(s)
- Kirsten Skarstad
- Department of Cell Biology, Institute for Cancer Research, The Radium Hospital, Oslo University Hospital, 0310 Oslo, Norway
| | | |
Collapse
|
42
|
Abstract
Like eukaryotes, bacteria must coordinate division with growth to ensure cells are the appropriate size for a given environmental condition or developmental fate. As single-celled organisms, nutrient availability is one of the strongest influences on bacterial cell size. Classic physiological experiments conducted over four decades ago first demonstrated that cell size is directly correlated with nutrient source and growth rate in the Gram-negative bacterium Salmonella typhimurium. This observation subsequently served as the basis for studies revealing a role for cell size in cell cycle progression in a closely related organism, Escherichia coli. More recently, the development of powerful genetic, molecular, and imaging tools has allowed us to identify and characterize the nutrient-dependent pathway responsible for coordinating cell division and cell size with growth rate in the Gram-positive model organism Bacillus subtilis. Here, we discuss the role of cell size in bacterial growth and development and propose a broadly applicable model for cell size control in this important and highly divergent domain of life.
Collapse
Affiliation(s)
- An-Chun Chien
- Department of Biology, Box 1137, Washington University, 1 Brookings Dr., Saint Louis, MO, USA
| | | | | |
Collapse
|
43
|
Hill NS, Kadoya R, Chattoraj DK, Levin PA. Cell size and the initiation of DNA replication in bacteria. PLoS Genet 2012; 8:e1002549. [PMID: 22396664 PMCID: PMC3291569 DOI: 10.1371/journal.pgen.1002549] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 01/06/2012] [Indexed: 11/30/2022] Open
Abstract
In eukaryotes, DNA replication is coupled to the cell cycle through the actions of cyclin-dependent kinases and associated factors. In bacteria, the prevailing view, based primarily from work in Escherichia coli, is that growth-dependent accumulation of the highly conserved initiator, DnaA, triggers initiation. However, the timing of initiation is unchanged in Bacillus subtilis mutants that are ∼30% smaller than wild-type cells, indicating that achievement of a particular cell size is not obligatory for initiation. Prompted by this finding, we re-examined the link between cell size and initiation in both E. coli and B. subtilis. Although changes in DNA replication have been shown to alter both E. coli and B. subtilis cell size, the converse (the effect of cell size on DNA replication) has not been explored. Here, we report that the mechanisms responsible for coordinating DNA replication with cell size vary between these two model organisms. In contrast to B. subtilis, small E. coli mutants delayed replication initiation until they achieved the size at which wild-type cells initiate. Modest increases in DnaA alleviated the delay, supporting the view that growth-dependent accumulation of DnaA is the trigger for replication initiation in E. coli. Significantly, although small E. coli and B. subtilis cells both maintained wild-type concentration of DnaA, only the E. coli mutants failed to initiate on time. Thus, rather than the concentration, the total amount of DnaA appears to be more important for initiation timing in E. coli. The difference in behavior of the two bacteria appears to lie in the mechanisms that control the activity of DnaA. DNA replication must be coordinated with growth and division to ensure the viability of cells and organisms. In bacteria, it is believed that cell growth–dependent accumulation of the initiator of DNA replication, DnaA, to critical levels determines the timing of initiation. This view is based primarily on data from the model bacterium E. coli, which initiates replication only upon achieving a particular size. However, recent data from another model organism, B. subtilis, where DnaA is also rate limiting for initiation, suggests that changes in cell size may not impact the timing of DNA replication. This finding prompted us to revisit the relationship between cell size and DNA replication in E. coli. While previous studies examined perturbations in DNA replication on cell size, we instead determined the consequences of cell size defects on DNA replication. This converse approach led to the conclusion that, irrespective of size, DnaA needs to accumulate to a critical amount to trigger initiation in E. coli, as is generally believed to be the case. In contrast, small B. subtilis cells could initiate replication with amounts of DnaA ∼30% less than wild type. Thus, while DnaA is rate limiting for initiation in both organisms, the mechanisms controlling its activity may vary in different bacteria.
Collapse
Affiliation(s)
- Norbert S. Hill
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Ryosuke Kadoya
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dhruba K. Chattoraj
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Petra Anne Levin
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
44
|
Waldminghaus T, Weigel C, Skarstad K. Replication fork movement and methylation govern SeqA binding to the Escherichia coli chromosome. Nucleic Acids Res 2012; 40:5465-76. [PMID: 22373925 PMCID: PMC3384311 DOI: 10.1093/nar/gks187] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In Escherichia coli, the SeqA protein binds specifically to GATC sequences which are methylated on the A of the old strand but not on the new strand. Such hemimethylated DNA is produced by progression of the replication forks and lasts until Dam methyltransferase methylates the new strand. It is therefore believed that a region of hemimethylated DNA covered by SeqA follows the replication fork. We show that this is, indeed, the case by using global ChIP on Chip analysis of SeqA in cells synchronized regarding DNA replication. To assess hemimethylation, we developed the first genome-wide method for methylation analysis in bacteria. Since loss of the SeqA protein affects growth rate only during rapid growth when cells contain multiple replication forks, a comparison of rapid and slow growth was performed. In cells with six replication forks per chromosome, the two old forks were found to bind surprisingly little SeqA protein. Cell cycle analysis showed that loss of SeqA from the old forks did not occur at initiation of the new forks, but instead occurs at a time point coinciding with the end of SeqA-dependent origin sequestration. The finding suggests simultaneous origin de-sequestration and loss of SeqA from old replication forks.
Collapse
Affiliation(s)
- Torsten Waldminghaus
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital and University of Oslo, 0310 Oslo, Norway
| | | | | |
Collapse
|
45
|
The rcbA gene product reduces spontaneous and induced chromosome breaks in Escherichia coli. J Bacteriol 2012; 194:2152-64. [PMID: 22343303 DOI: 10.1128/jb.06390-11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Elevated levels of DnaA cause excessive initiation, which leads to an increased level of double-strand breaks that are proposed to arise when newly formed replication forks collide from behind with stalled or collapsed forks. These double-strand breaks are toxic in mutants that are unable to repair them. Using a multicopy suppressor assay to identify genes that suppress this toxicity, we isolated a plasmid carrying a gene whose function had been unknown. This gene, carried by the cryptic rac prophage, has been named rcbA for its ability to reduce the frequency of chromosome breaks. Our study shows that the colony formation of strains bearing mutations in rep, recG, and rcbA, like recA and recB mutants, is inhibited by an oversupply of DnaA and that a multicopy plasmid carrying rcbA neutralizes this inhibition. These and other results suggest that rcbA helps to maintain the integrity of the bacterial chromosome by lowering the steady-state level of double-strand breaks.
Collapse
|
46
|
Grant MAA, Saggioro C, Ferrari U, Bassetti B, Sclavi B, Cosentino Lagomarsino M. DnaA and the timing of chromosome replication in Escherichia coli as a function of growth rate. BMC SYSTEMS BIOLOGY 2011; 5:201. [PMID: 22189092 PMCID: PMC3309966 DOI: 10.1186/1752-0509-5-201] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 12/21/2011] [Indexed: 11/16/2022]
Abstract
Background In Escherichia coli, overlapping rounds of DNA replication allow the bacteria to double in faster times than the time required to copy the genome. The precise timing of initiation of DNA replication is determined by a regulatory circuit that depends on the binding of a critical number of ATP-bound DnaA proteins at the origin of replication, resulting in the melting of the DNA and the assembly of the replication complex. The synthesis of DnaA in the cell is controlled by a growth-rate dependent, negatively autoregulated gene found near the origin of replication. Both the regulatory and initiation activity of DnaA depend on its nucleotide bound state and its availability. Results In order to investigate the contributions of the different regulatory processes to the timing of initiation of DNA replication at varying growth rates, we formulate a minimal quantitative model of the initiator circuit that includes the key ingredients known to regulate the activity of the DnaA protein. This model describes the average-cell oscillations in DnaA-ATP/DNA during the cell cycle, for varying growth rates. We evaluate the conditions under which this ratio attains the same threshold value at the time of initiation, independently of the growth rate. Conclusions We find that a quantitative description of replication initiation by DnaA must rely on the dependency of the basic parameters on growth rate, in order to account for the timing of initiation of DNA replication at different cell doubling times. We isolate two main possible scenarios for this, depending on the roles of DnaA autoregulation and DnaA ATP-hydrolysis regulatory process. One possibility is that the basal rate of regulatory inactivation by ATP hydrolysis must vary with growth rate. Alternatively, some parameters defining promoter activity need to be a function of the growth rate. In either case, the basal rate of gene expression needs to increase with the growth rate, in accordance with the known characteristics of the dnaA promoter. Furthermore, both inactivation and autorepression reduce the amplitude of the cell-cycle oscillations of DnaA-ATP/DNA.
Collapse
Affiliation(s)
- Matthew A A Grant
- BSS Group, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | | | | | | | | | | |
Collapse
|
47
|
Young TR, Fernandez B, Buckalew R, Moses G, Boczko EM. Clustering in cell cycle dynamics with general response/signaling feedback. J Theor Biol 2011; 292:103-15. [PMID: 22001733 DOI: 10.1016/j.jtbi.2011.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 09/14/2011] [Accepted: 10/03/2011] [Indexed: 10/16/2022]
Abstract
Motivated by experimental and theoretical work on autonomous oscillations in yeast, we analyze ordinary differential equations models of large populations of cells with cell-cycle dependent feedback. We assume a particular type of feedback that we call responsive/signaling (RS), but do not specify a functional form of the feedback. We study the dynamics and emergent behavior of solutions, particularly temporal clustering and stability of clustered solutions. We establish the existence of certain periodic clustered solutions as well as "uniform" solutions and add to the evidence that cell-cycle dependent feedback robustly leads to cell-cycle clustering. We highlight the fundamental differences in dynamics between systems with negative and positive feedback. For positive feedback systems the most important mechanism seems to be the stability of individual isolated clusters. On the other hand we find that in negative feedback systems, clusters must interact with each other to reinforce coherence. We conclude from various details of the mathematical analysis that negative feedback is most consistent with observations in yeast experiments.
Collapse
Affiliation(s)
- Todd R Young
- Department of Mathematics, Ohio University, Athens, OH, USA.
| | | | | | | | | |
Collapse
|
48
|
Aloui A, Tagourti J, El May A, Joseleau Petit D, Landoulsi A. The effect of methylation on some biological parameters in Salmonella enterica serovar Typhimurium. ACTA ACUST UNITED AC 2011; 59:192-8. [DOI: 10.1016/j.patbio.2009.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Accepted: 03/18/2009] [Indexed: 10/20/2022]
|
49
|
Charbon G, Riber L, Cohen M, Skovgaard O, Fujimitsu K, Katayama T, Løbner-Olesen A. Suppressors of DnaA(ATP) imposed overinitiation in Escherichia coli. Mol Microbiol 2010; 79:914-28. [PMID: 21299647 DOI: 10.1111/j.1365-2958.2010.07493.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chromosome replication in Escherichia coli is limited by the supply of DnaA associated with ATP. Cells deficient in RIDA (Regulatory Inactivation of DnaA) due to a deletion of the hda gene accumulate suppressor mutations (hsm) to counteract the overinitiation caused by an elevated DnaA(ATP) level. Eight spontaneous hda suppressor mutations were identified by whole-genome sequencing, and three of these were analysed further. Two mutations (hsm-2 and hsm-4) mapped in the dnaA gene and led to a reduced ability to initiate replication from oriC. One mutation (hsm-1) mapped to the seqA promoter and increased the SeqA protein level in the cell. hsm-1 cells had prolonged origin sequestration, reduced DnaA protein level and reduced DnaA-Reactivating Sequence (DARS)-mediated rejuvenation of DnaA(ADP) to DnaA(ATP) , all of which could contribute to the suppression of RIDA deficiency. Despite of these defects hsm-1 cells were quite similar to wild type with respect to cell cycle parameters. We speculate that since SeqA binding sites might overlap with DnaA binding sites spread throughout the chromosome, excess SeqA could interfere with DnaA titration and thereby increase free DnaA level. Thus, in spite of reduction in total DnaA, the amount of DnaA molecules available for initiation may not be reduced.
Collapse
Affiliation(s)
- Godefroid Charbon
- Department of Science, Systems and Models, Roskilde University, Building 18.1, 4000 Roskilde, Denmark
| | | | | | | | | | | | | |
Collapse
|
50
|
Johnsen L, Flåtten I, Morigen, Dalhus B, Bjørås M, Waldminghaus T, Skarstad K. The G157C mutation in the Escherichia coli sliding clamp specifically affects initiation of replication. Mol Microbiol 2010; 79:433-46. [PMID: 21219462 DOI: 10.1111/j.1365-2958.2010.07453.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Escherichia coli cells with a point mutation in the dnaN gene causing the amino acid change Gly157 to Cys, were found to underinitiate replication and grow with a reduced origin and DNA concentration. The mutant β clamp also caused excessive conversion of ATP-DnaA to ADP-DnaA. The DnaA protein was, however, not the element limiting initiation of replication. Overproduction of DnaA protein, which in wild-type cells leads to over-replication, had no effect in the dnaN(G157C) mutant. Origins already opened by DnaA seemed to remain open for a prolonged period, with a stage of initiation involving β clamp loading, presumably limiting the initiation process. The existence of opened origins led to a moderate SOS response. Lagging strand synthesis, which also requires loading of the β clamp, was apparently unaffected. The result indicates that some aspects of β clamp activity are specific to the origin. It is possible that the origin specific activities of β contribute to regulation of initiation frequency.
Collapse
Affiliation(s)
- Line Johnsen
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|