1
|
Gálvez-Reyes N, Salvador-Figueroa M, Santini NS, Mastretta-Yanes A, Núñez-Farfán J, Piñero D. Nuclear genetic diversity and structure of Anastrepha ludens wild populations evidenced by microsatellite markers. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.948640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Mexican fruit fly, Anastrepha ludens, is an important pest that causes widespread damage to a number of fruit crops in Mexico. The sterile insect technique (SIT) is commonly used for its control. However, the existence of natural barriers can give rise to a population structure in neutral loci and possibly behavioral or adaptive traits that interfere with SIT. For this reason, it is important to understand the genetic diversity and structure of A. ludens populations and to better understand the evolutionary ecology and population processes in view of possible expansions and possible host shifts due to climate change. We genotyped nine nuclear DNA (nDNA) microsatellite loci among fruit fly populations collected from five biogeographic areas within Mexico, namely, the Mexican Plateau, the Northeastern Coastal Plain, the Pacific Coast, the Gulf Coast of Mexico, and the Soconusco, and a laboratory strain. The nuclear genetic diversity was moderate (from He = 0.34 to He = 0.39) within the wild mexfly population. We found that populations were clustered in three genetic groups (K = 3). The diversity and the genetic structure of A. ludens are determined by environmental and geological conditions, as well as local conditions like anthropogenic perturbation, which would produce population expansion and the existence of possible predators that would affect the population density. Gene flow showed recent migration among populations. The laboratory strain showed fewer diversity than the wild samples. Large values of current and ancestral population size suggest high resistance to climatic changes, probably due to biological attributes, such as its polyphagous, multivoltine, and high dispersal characteristics. In particular, ecosystem fragmentation and perturbation as well as the existence of new plant hosts would probably increase the abundance of flies.
Collapse
|
2
|
Zhang C, Jia C, Liu X, Zhao H, Hou L, Li M, Cui B, Li Y. Genetic Diversity Study on Geographical Populations of the Multipurpose Species Elsholtzia stauntonii Using Transferable Microsatellite Markers. FRONTIERS IN PLANT SCIENCE 2022; 13:903674. [PMID: 35646027 PMCID: PMC9134938 DOI: 10.3389/fpls.2022.903674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Elsholtzia stauntonii Benth. (Lamiaceae) is an economically important ornamental, medicinal and aromatic plant species. To meet the increasing market demand for E. stauntonii, it is necessary to assess genetic diversity within the species to accelerate the process of genetic improvement. Analysis of the transferability of simple sequence repeat (SSR) markers from related species or genera is a fast and economical method to evaluate diversity, and can ensure the availability of molecular markers in crops with limited genomic resources. In this study, the cross-genera transferability of 497 SSR markers selected from other members of the Lamiaceae (Salvia L., Perilla L., Mentha L., Hyptis Jacq., Leonurus L., Pogostemon Desf., Rosmarinus L., and Scutella L.) to E. stauntonii was 9.05% (45 primers). Among the 45 transferable markers, 10 markers revealed relatively high polymorphism in E. stauntonii. The genetic variation among 825 individuals from 18 natural populations of E. stauntonii in Hebei Province of China was analyzed using the 10 polymorphic SSR markers. On the basis of the SSR data, the average number of alleles (N A), expected heterozygosity (H E), and Shannon's information index (I) of the 10 primers pairs were 7.000, 0.478, and 0.688, respectively. Lower gene flow (N m = 1.252) and high genetic differentiation (F st = 0.181) were detected in the populations. Analysis of molecular variance (AMOVA) revealed that most of the variation (81.47%) was within the populations. Integrating the results of STRUCTURE, UPGMA (Unweighted Pair Group Method with Arithmetic Mean) clustering, and principal coordinate analysis, the 825 samples were grouped into two clusters associated with geographical provenance (southwestern and northeastern regions), which was consistent with the results of a Mantel test (r = 0.56, p < 0.001). Overall, SSR markers developed in related genera were effective to study the genetic structure and genetic diversity in geographical populations of E. stauntonii. The results provide a theoretical basis for conservation of genetic resources, genetic improvement, and construction of a core collection for E. stauntonii.
Collapse
Affiliation(s)
- Chenxing Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Chunfeng Jia
- College of Biochemistry and Environmental Engineering, Baoding University, Baoding, China
| | - Xinru Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Hanqing Zhao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Lu Hou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Meng Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Binbin Cui
- College of Biochemistry and Environmental Engineering, Baoding University, Baoding, China
| | - Yingyue Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| |
Collapse
|
3
|
Alsalh MA, Bakai A, Feyzullaev FR, Bakai FR, Lepekhina TV, Mkrtchyan G, Krovikova A, Mekhtieva K, Alyaseen OA. Comparative characteristics of the genetic structure of the Syrian cattle breed compared to Holstein and Aberdeen-Angus breeds. J Adv Vet Anim Res 2021; 8:339-345. [PMID: 34395606 PMCID: PMC8280980 DOI: 10.5455/javar.2021.h520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 05/19/2021] [Accepted: 05/31/2021] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES The objective of this study was to perform a comparative analysis of allelic diversity to reveal population-genetic characteristics of animal breeds, namely Shami (SH), Holstein (HLS), and Aberdeen-Angus (A-A). MATERIALS AND METHODS The genetic materials of SH breed animals represented by wool with hair follicles were collected from 39 SH heads in Syria. Also, genetic materials of HLS breed of American selection (n = 55, HLS) and bulls and cows of A-A breed bred at breeding enterprises in Russia (n = 30, A-A) were collected. Genetic differences between the cattle groups were studied using 11 microsatellite markers. RESULTS The cattle breed in Syria was characterized by high genetic diversity, 107 alleles, while the average number of alleles per microsatellite locus was 9.23, which is significantly higher than that in the animals of HLS (6.18) and A-A (5.00). When analyzing the genetic equilibrium for individual locus in SH breed, a deviation from equilibrium at four loci was revealed: TGLA227, SPS115, TGLA122, and ETH225; at one locus in HLS breed: SPS115, for A-A breed: at two loci, i.e., TGLA122 and ETH225. When assessing the level of genetic consolidation, a deficiency of heterozygotes was observed in two of the three studied breeds: 4.8% for SH and 8.0% for A-A. A slight excess of heterozygotes was found in the HLS breed at the level of 0.2%. The average comparative measurement of genetic variation in different populations value for 11 loci for all breeds was 0.069, which indicates that 93.1% of the total variability is due to the intra-breed diversity, and only 6.9% is due to the differences between breeds. CONCLUSION The analysis of the animals belonging to their breed has shown a 100% genetic consolidation and the compliance of individual animals with the respective breeds. The study of genetic distances, adjusted for small samples, revealed the smallest genetic distance between the SH breed and HLS breed, equaling 0.107. The A-A breed, which has its separate origin and has never been imported into the Syrian Arab Republic, adjoins this cluster as an independent branch. Microsatellites can be used as an essential criterion for assessing the population-genetic characteristics of groups of cattle of various breeds (degree of polymorphism, level of heterozygosity, fixation indices, genetic group membership).
Collapse
Affiliation(s)
- Mohammad Almohammad Alsalh
- Department of Animal Breeding and Genetics, Federal State Budgetary Educational Institution of Higher Education, Moscow State Academy of Veterinary Medicine and Biotechnology- MVA by K.I. Skryabin, Moscow, Russia
- Department of Animal Husbandry, College of Veterinary Medicine, Al Furat University, Deirez-Zor, Syria
| | - Anatoly Bakai
- Department of Animal Breeding and Genetics, Federal State Budgetary Educational Institution of Higher Education, Moscow State Academy of Veterinary Medicine and Biotechnology- MVA by K.I. Skryabin, Moscow, Russia
| | - Feyzullah Ramazanovich Feyzullaev
- Department of Animal Breeding and Genetics, Federal State Budgetary Educational Institution of Higher Education, Moscow State Academy of Veterinary Medicine and Biotechnology- MVA by K.I. Skryabin, Moscow, Russia
| | - Ferdaus Rafailovna Bakai
- Department of Animal Breeding and Genetics, Federal State Budgetary Educational Institution of Higher Education, Moscow State Academy of Veterinary Medicine and Biotechnology- MVA by K.I. Skryabin, Moscow, Russia
| | - Tatyana Viktorovna Lepekhina
- Department of Animal Breeding and Genetics, Federal State Budgetary Educational Institution of Higher Education, Moscow State Academy of Veterinary Medicine and Biotechnology- MVA by K.I. Skryabin, Moscow, Russia
| | - Gayane Mkrtchyan
- Department of Animal Breeding and Genetics, Federal State Budgetary Educational Institution of Higher Education, Moscow State Academy of Veterinary Medicine and Biotechnology- MVA by K.I. Skryabin, Moscow, Russia
| | - Anna Krovikova
- Department of Animal Breeding and Genetics, Federal State Budgetary Educational Institution of Higher Education, Moscow State Academy of Veterinary Medicine and Biotechnology- MVA by K.I. Skryabin, Moscow, Russia
| | - Karina Mekhtieva
- Department of Animal Breeding and Genetics, Federal State Budgetary Educational Institution of Higher Education, Moscow State Academy of Veterinary Medicine and Biotechnology- MVA by K.I. Skryabin, Moscow, Russia
| | - Ousama Alhammoud Alyaseen
- Department of Animal Husbandry, College of Veterinary Medicine, Al Furat University, Deirez-Zor, Syria
| |
Collapse
|
4
|
Deng JY, van Noort S, Compton SG, Chen Y, Greeff JM. The genetic consequences of habitat specificity for fig trees in southern African fragmented forests. ACTA OECOLOGICA 2020. [DOI: 10.1016/j.actao.2019.103506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Isolation and Characterization of Polymorphic Microsatellite Loci for Caridina cantonensis and Transferability Across Eight Confamilial Species (Atyidae, Decapoda). Zool Stud 2018; 57:e19. [PMID: 31966259 DOI: 10.6620/zs.2018.57-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/03/2018] [Indexed: 11/18/2022]
Abstract
Lai Him Chow, Ka Yan Ma, Jerome H. L. Hui, and Ka Hou Chu (2018) Caridina cantonensis is a common freshwater shrimp found in Guangdong Province, China. The species is landlocked, and this life history contributes substantially to its strong population differentiation at the very small geographical scale. Given its widespread distribution, it serves as an excellent model for examining population connectivity and phylogeographical history of freshwater invertebrates in South China. This study isolated ten microsatellite loci from genome sequences of C. cantonensis and four from the transcriptome assemblies of Neocaridina davidi. The microsatellites were then characterized in 24 C. cantonensis individuals from one population. The number of alleles ranged from seven to 18. Observed and expected heterozygosities ranged from 0.050 to 0.958 (averaged 0.649) and 0.754 to 0.919 (averaged 0.833), respectively. We also assessed the cross-species transferability of the markers developed across eight confamilial species. On average, nine markers can be amplified in each species, and five markers can be amplified across all eight species. The markers developed in this study would enable evaluation of genetic diversity and population structure of these species for conservation management planning.
Collapse
|
6
|
Examination of Clock and Adcyap1 gene variation in a neotropical migratory passerine. PLoS One 2018; 13:e0190859. [PMID: 29324772 PMCID: PMC5764313 DOI: 10.1371/journal.pone.0190859] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 12/21/2017] [Indexed: 11/19/2022] Open
Abstract
Complex behavioral traits, such as those making up a migratory phenotype, are regulated by multiple environmental factors and multiple genes. We investigated possible relationships between microsatellite variation at two candidate genes implicated in the control of migratory behavior, Clock and Adcyap1, and several aspects of migratory life-history and evolutionary divergence in the Painted Bunting (Passerina ciris), a species that shows wide variation in migratory and molting strategies across a disjunct distribution. We focused on Clock and Adcyap1 microsatellite variation across three Painted Bunting populations in Oklahoma, Louisiana, and North Carolina, and for the Oklahoma breeding population we used published migration tracking data on adult males to explore phenotypic variation in individual migratory behavior. We found no correlation between microsatellite allele size within either Clock and Adcyap1 relative to the initiation or duration of fall migration in adult males breeding in Oklahoma. We also show the lack of significant correlations with aspects of the migratory phenotype for the Louisiana population. Our research highlights the limitations of studying microsatellite allelic mutations that are of undetermined functional influence relative to complex behavioral phenotypes.
Collapse
|
7
|
Kato CD, Mugasa CM, Nanteza A, Matovu E, Alibu VP. Relationship between Trypanosoma brucei rhodesiense genetic diversity and clinical spectrum among sleeping sickness patients in Uganda. BMC Res Notes 2017; 10:518. [PMID: 29078807 PMCID: PMC5658916 DOI: 10.1186/s13104-017-2860-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/23/2017] [Indexed: 11/23/2022] Open
Abstract
Objective Human African trypanosomiasis (HAT) due to Trypanosoma brucei rhodesiense in East and southern Africa is reported to be clinically diverse. We tested the hypothesis that this clinical diversity is associated with a variation in trypanosome genotypes. Results Trypanosome DNA isolated from HAT patients was genotyped using 7 microsatellite markers directly from blood spotted FTA cards following a whole genome amplification. All markers were polymorphic and identified 17 multi-locus genotypes with 56% of the isolates having replicate genotypes. We did not observe any significant clustering between isolates and bootstrap values across major tree nodes were insignificant. When genotypes were compared among patients with varying clinical presentation or outcome, replicate genotypes were observed at both extremes showing no significant association between genetic diversity and clinical outcome. Our study shows that T. b. rhodesiense isolates are homogeneous within a focus and that observed clinical diversity may not be associated with parasite genetic diversity. Other factors like host genetics and environmental factors might be involved in determining clinical diversity. Our study may be important in designing appropriate control measures that target the parasite. Electronic supplementary material The online version of this article (10.1186/s13104-017-2860-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Charles D Kato
- School of Bio-security, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, P.O Box 7062, Kampala, Uganda.
| | - Claire M Mugasa
- School of Bio-security, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, P.O Box 7062, Kampala, Uganda
| | - Ann Nanteza
- School of Bio-security, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, P.O Box 7062, Kampala, Uganda
| | - Enock Matovu
- School of Bio-security, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, P.O Box 7062, Kampala, Uganda
| | - Vincent P Alibu
- College of Natural Sciences, Makerere University, P.O Box 7062, Kampala, Uganda
| |
Collapse
|
8
|
DeWoody JA, Fletcher DE, Wilkins SD, Nelson WS, Avise JC. MOLECULAR GENETIC DISSECTION OF SPAWNING, PARENTAGE, AND REPRODUCTIVE TACTICS IN A POPULATION OF REDBREAST SUNFISH,
LEPOMIS AURITUS. Evolution 2017; 52:1802-1810. [DOI: 10.1111/j.1558-5646.1998.tb02257.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/1998] [Accepted: 07/30/1998] [Indexed: 11/30/2022]
Affiliation(s)
| | - Dean E. Fletcher
- Savannah River Ecology Laboratory, Drawer E Aiken South Carolina 29802
| | - S. David Wilkins
- Savannah River Ecology Laboratory, Drawer E Aiken South Carolina 29802
| | | | - John C. Avise
- Department of Genetics University of Georgia Athens Georgia 30602
| |
Collapse
|
9
|
Gauthier N, Dalleau-Clouet C, Fargues J, Bon MC. Microsatellite variability in the entomopathogenic fungusPaecilomyces fumosoroseus: genetic diversity and population structure. Mycologia 2017. [DOI: 10.1080/15572536.2007.11832533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Nathalie Gauthier
- Centre de Biologie et de Gestion des Populations, Institut de Recherche pour le Développement (IRD) and Institut National de la Recherche Agronomique (INRA), Campus International de Baillarguet, CS30016, 34988 Montferrier sur lez, France
| | | | - Jacques Fargues
- Centre de Biologie et de Gestion des Populations, Institut National de la Recherche Agronomique (INRA), Campus International de Baillarguet, CS30016, 34988 Montferrier sur Lez, France
| | - Marie-Claude Bon
- USDA-ARS-European Biological Control Laboratory, Campus International de Baillarguet, CS90013, 34988 Montferrier sur Lez, France
| |
Collapse
|
10
|
FullSSR: Microsatellite Finder and Primer Designer. Adv Bioinformatics 2016; 2016:6040124. [PMID: 27366148 PMCID: PMC4913048 DOI: 10.1155/2016/6040124] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 05/02/2016] [Accepted: 05/16/2016] [Indexed: 11/17/2022] Open
Abstract
Microsatellites are genomic sequences comprised of tandem repeats of short nucleotide motifs widely used as molecular markers in population genetics. FullSSR is a new bioinformatic tool for microsatellite (SSR) loci detection and primer design using genomic data from NGS assay. The software was tested with 2000 sequences of Oryza sativa shotgun sequencing project from the National Center of Biotechnology Information Trace Archive and with partial genome sequencing with ROCHE 454® from Caiman latirostris, Salvator merianae, Aegla platensis, and Zilchiopsis collastinensis. FullSSR performance was compared against other similar SSR search programs. The results of the use of this kind of approach depend on the parameters set by the user. In addition, results can be affected by the analyzed sequences because of differences among the genomes. FullSSR simplifies the detection of SSRs and primer design on a big data set. The command line interface of FullSSR was intended to be used as part of genomic analysis tools pipeline; however, it can be used as a stand-alone program because the results are easily interpreted for a nonexpert user.
Collapse
|
11
|
Amos W, Nichols HJ, Churchyard T, Brooke MDL. Rat eradication comes within a whisker! A case study of a failed project from the South Pacific. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160110. [PMID: 27152226 PMCID: PMC4852649 DOI: 10.1098/rsos.160110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/16/2016] [Indexed: 06/05/2023]
Abstract
To enhance their conservation value, several hundred islands worldwide have been cleared of invasive alien rats, Rattus spp. One of the largest projects yet undertaken was on 43 km(2) Henderson Island in the Pitcairn group, South Pacific, in August 2011. Following massive immediate mortality, a single R. exulans was observed in March 2012 and, subsequently, rat numbers have recovered. The survivors show no sign of resistance to the toxicant used, brodifacoum. Using pre- and post-operation rat tissue samples from Henderson, plus samples from around the Pacific, we exclude re-introduction as the source of continued rat presence. Microsatellite analysis of 18 loci enabled comparison of genetic diversity of Henderson rats before and after the bait drop. The fall in diversity measured by allele frequency change indicated that the bottleneck (N e) through which the breeding population passed was probably around 50 individuals, representing a census population of about 60-80 animals. This is the first failed project that has estimated how close it was to success.
Collapse
Affiliation(s)
- W. Amos
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, UK
| | - H. J. Nichols
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, UK
- School of Natural Science and Psychology, Liverpool John Moores University, Liverpool, UK
| | - T. Churchyard
- RSPB Centre for Conservation Science, Royal Society for the Protection of Birds, Sandy, UK
| | - M. de L. Brooke
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, UK
| |
Collapse
|
12
|
Ambreen H, Kumar S, Variath MT, Joshi G, Bali S, Agarwal M, Kumar A, Jagannath A, Goel S. Development of Genomic Microsatellite Markers in Carthamus tinctorius L. (Safflower) Using Next Generation Sequencing and Assessment of Their Cross-Species Transferability and Utility for Diversity Analysis. PLoS One 2015; 10:e0135443. [PMID: 26287743 PMCID: PMC4545945 DOI: 10.1371/journal.pone.0135443] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 07/23/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Safflower (Carthamus tinctorius L.), an Asteraceae member, yields high quality edible oil rich in unsaturated fatty acids and is resilient to dry conditions. The crop holds tremendous potential for improvement through concerted molecular breeding programs due to the availability of significant genetic and phenotypic diversity. Genomic resources that could facilitate such breeding programs remain largely underdeveloped in the crop. The present study was initiated to develop a large set of novel microsatellite markers for safflower using next generation sequencing. PRINCIPAL FINDINGS Low throughput genome sequencing of safflower was performed using Illumina paired end technology providing ~3.5X coverage of the genome. Analysis of sequencing data allowed identification of 23,067 regions harboring perfect microsatellite loci. The safflower genome was found to be rich in dinucleotide repeats followed by tri-, tetra-, penta- and hexa-nucleotides. Primer pairs were designed for 5,716 novel microsatellite sequences with repeat length ≥ 20 bases and optimal flanking regions. A subset of 325 microsatellite loci was tested for amplification, of which 294 loci produced robust amplification. The validated primers were used for assessment of 23 safflower accessions belonging to diverse agro-climatic zones of the world leading to identification of 93 polymorphic primers (31.6%). The numbers of observed alleles at each locus ranged from two to four and mean polymorphism information content was found to be 0.3075. The polymorphic primers were tested for cross-species transferability on nine wild relatives of cultivated safflower. All primers except one showed amplification in at least two wild species while 25 primers amplified across all the nine species. The UPGMA dendrogram clustered C. tinctorius accessions and wild species separately into two major groups. The proposed progenitor species of safflower, C. oxyacantha and C. palaestinus were genetically closer to cultivated safflower and formed a distinct cluster. The cluster analysis also distinguished diploid and tetraploid wild species of safflower. CONCLUSION Next generation sequencing of safflower genome generated a large set of microsatellite markers. The novel markers developed in this study will add to the existing repertoire of markers and can be used for diversity analysis, synteny studies, construction of linkage maps and marker-assisted selection.
Collapse
Affiliation(s)
- Heena Ambreen
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Shivendra Kumar
- Department of Botany, University of Delhi, Delhi, 110007, India
| | | | - Gopal Joshi
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Sapinder Bali
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Manu Agarwal
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Amar Kumar
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Arun Jagannath
- Department of Botany, University of Delhi, Delhi, 110007, India
- * E-mail: (SG); (AJ)
| | - Shailendra Goel
- Department of Botany, University of Delhi, Delhi, 110007, India
- * E-mail: (SG); (AJ)
| |
Collapse
|
13
|
Kwong M, Pemberton TJ. Sequence differences at orthologous microsatellites inflate estimates of human-chimpanzee differentiation. BMC Genomics 2014; 15:990. [PMID: 25407736 PMCID: PMC4253012 DOI: 10.1186/1471-2164-15-990] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 10/30/2014] [Indexed: 02/06/2023] Open
Abstract
Background Microsatellites---contiguous arrays of 2–6 base-pair motifs---have formed the cornerstone of population-genetic studies for over two decades. Their genotype data typically takes the form of PCR fragment lengths obtained using locus-specific primer pairs to amplify the genomic region encompassing the microsatellite. Recently, we reported a dataset of 5,795 human and 84 chimpanzee individuals with genotypes at 246 human-derived autosomal microsatellites as a resource to facilitate interspecies comparisons. A major assumption underlying this dataset is that PCR amplicons at orthologous microsatellites are commensurable between species. Results We find this assumption to be frequently incorrect owing to discordance in microsatellite organization and variability, as well as nontrivial length imbalances caused by small species-specific indels in microsatellite flanking sequences. Converting PCR fragment lengths into the repeat numbers they represent at 138 microsatellites whose organization and variability was found to be highly similar in both species, we show that interspecies incommensurability among PCR amplicons can inflate FST and DPS estimates by up to 10.6%. Separate investigations of determinants of microsatellite variability in humans and chimpanzees uncover similar patterns with mean and maximum numbers of repeats, as well as numbers and ranges of distinct alleles, all important factors in predicting heterozygosity. In contrast, across microsatellites, numbers of repeats were significantly smaller in chimpanzees than in humans, while numbers and ranges of distinct alleles were instead larger. Conclusions Our findings have fundamental implications for interspecies comparisons using microsatellites and offer new opportunities for more accurate comparisons of patterns of human and chimpanzee genetic variation in numerous areas of application. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-990) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Trevor J Pemberton
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
14
|
Amos W, Filipe LN. Microsatellite frequencies vary with body mass and body temperature in mammals, suggesting correlated variation in mutation rate. PeerJ 2014; 2:e663. [PMID: 25392761 PMCID: PMC4226647 DOI: 10.7717/peerj.663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 10/21/2014] [Indexed: 11/20/2022] Open
Abstract
Substitution rate is often found to correlate with life history traits such as body mass, a predictor of population size and longevity, and body temperature. The underlying mechanism is unclear but most models invoke either natural selection or factors such as generation length that change the number of mutation opportunities per unit time. Here we use published genome sequences from 69 mammals to ask whether life history traits impact another form of genetic mutation, the high rates of predominantly neutral slippage in microsatellites. We find that the length-frequency distributions of three common dinucleotide motifs differ greatly between even closely related species. These frequency differences correlate with body mass and body temperature and can be used to predict the phenotype of an unknown species. Importantly, different length microsatellites show complicated patterns of excess and deficit that cannot be explained by a simple model where species with short generation lengths have experienced more mutations. Instead, the patterns probably require changes in mutation rate that impact alleles of different length to different extents. Body temperature plausibly influences mutation rate by modulating the propensity for slippage. Existing hypotheses struggle to account for a link between body mass and mutation rate. However, body mass correlates inversely with population size, which in turn predicts heterozygosity. We suggest that heterozygote instability, HI, the idea that heterozygous sites show increased mutability, could provide a plausible link between body mass and mutation rate.
Collapse
|
15
|
Saxena S, Singh A, Archak S, Behera TK, John JK, Meshram SU, Gaikwad AB. Development of novel simple sequence repeat markers in bitter gourd (Momordica charantia L.) through enriched genomic libraries and their utilization in analysis of genetic diversity and cross-species transferability. Appl Biochem Biotechnol 2014; 175:93-118. [PMID: 25240849 DOI: 10.1007/s12010-014-1249-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/10/2014] [Indexed: 11/24/2022]
Abstract
Microsatellite or simple sequence repeat (SSR) markers are the preferred markers for genetic analyses of crop plants. The availability of a limited number of such markers in bitter gourd (Momordica charantia L.) necessitates the development and characterization of more SSR markers. These were developed from genomic libraries enriched for three dinucleotide, five trinucleotide, and two tetranucleotide core repeat motifs. Employing the strategy of polymerase chain reaction-based screening, the number of clones to be sequenced was reduced by 81 % and 93.7 % of the sequenced clones contained in microsatellite repeats. Unique primer-pairs were designed for 160 microsatellite loci, and amplicons of expected length were obtained for 151 loci (94.4 %). Evaluation of diversity in 54 bitter gourd accessions at 51 loci indicated that 20 % of the loci were polymorphic with the polymorphic information content values ranging from 0.13 to 0.77. Fifteen Indian varieties were clearly distinguished indicative of the usefulness of the developed markers. Markers at 40 loci (78.4 %) were transferable to six species, viz. Momordica cymbalaria, Momordica subangulata subsp. renigera, Momordica balsamina, Momordica dioca, Momordica cochinchinesis, and Momordica sahyadrica. The microsatellite markers reported will be useful in various genetic and molecular genetic studies in bitter gourd, a cucurbit of immense nutritive, medicinal, and economic importance.
Collapse
Affiliation(s)
- Swati Saxena
- Division of Genomic Resources, National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India
| | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Abstract
Microsatellites are codominant molecular genetic markers, which are universally dispersed within genomes. These markers are highly popular because of their high level of polymorphism, relatively small size, and rapid detection protocols. They are widely used in a variety of fundamental and applied fields of biological sciences for plants and animal studies. Microsatellites are also extensively used in the field of agriculture, where they are used in characterizing genetic materials, plant selection, constructing dense linkage maps, mapping economically important quantitative traits, identifying genes responsible for these traits. In addition microsatellites are used for marker-assisted selection in breeding programs, thus speeding up the process. In this chapter, genomic distribution, evolution, and practical applications of microsatellites are considered, with special emphasis on plant breeding and agriculture. Moreover, novel advances in microsatellite technologies are also discussed.
Collapse
|
18
|
Tandem-repeat patterns and mutation rates in microsatellites of the nematode model organism Pristionchus pacificus. G3-GENES GENOMES GENETICS 2012; 2:1027-34. [PMID: 22973539 PMCID: PMC3429916 DOI: 10.1534/g3.112.003129] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 06/22/2012] [Indexed: 01/02/2023]
Abstract
Modern evolutionary biology requires integrative approaches that combine life history, population structure, ecology, and development. The nematode Pristionchus pacificus has been established as a model system in which these aspects can be studied in one organism. P. pacificus has well-developed genetic, genomic, and transgenic tools and its ecologic association with scarab beetles is well described. A recent study provided first mutation rate estimates based on mitochondrial genome sequencing and mutation accumulation line experiments that help resolve rather ancient evolutionary branches. Here, we analyzed the tandem-repeat pattern and studied spontaneous mutation rates for microsatellite markers by using the previously generated mutation accumulation lines. We found that 0.59%–3.83% of the genome is composed of short tandem repeats. We developed 41 microsatellite markers, randomly chosen throughout the genome and analyzed them in 82 mutation accumulation lines after 142 generations. A total of 31 mutations were identified in these lines. There was a strong correlation between allele size and mutation rate in P. pacificus, similar to Caenorhabditis elegans. In contrast to C. elegans, however, there is no evidence for a bias toward multistep mutations. The mutation spectrum of microsatellite loci in P. pacificus shows more insertions than deletions, indicating a tendency toward lengthening, a process that might have contributed to the increase in genome size. The mutation rates obtained for individual microsatellite markers provide guidelines for divergence time estimates that can be applied in P. pacificus next-generation sequencing approaches of wild isolates.
Collapse
|
19
|
Yates JL, Boerma HR, Fasoula VA. SSR-marker analysis of the intracultivar phenotypic variation discovered within 3 soybean cultivars. J Hered 2012; 103:570-8. [PMID: 22547666 DOI: 10.1093/jhered/ess015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Genetic variation within homogeneous gene pools in various crops is assumed to be very limited. One objective of this study was to use 144 simple sequence repeat (SSR) markers to determine if the single-plant lines selected at ultra-low plant density in honeycomb designs within the soybean cultivars Benning, Haskell, and Cook had unique SSR genetic fingerprints. Another objective was to investigate if the variation found was the result of residual genetic heterozygosity that could be detected in the original gene pool where selection initiated. Our results showed that the phenotypic variation for seed protein content and seed weight has a genotypic component identified by the SSR band variation. The 7 lines from Haskell had a total of 63 variant alleles, the 5 lines from Benning had 34 variant alleles, and the 7 lines from Cook had 34 variant alleles, therefore, possessing unique genetic fingerprints. Most of the intracultivar SSR band variation discovered was the result of residual heterozygosity in the initial plant selected to become the cultivar. More specifically, 82% of the SSR variant alleles were traced in the Benning Foundation seed source, 93% in the Haskell seed source, and 82% in the Cook seed source. The remaining variant bands (18% for Benning, 7% for Haskell, and 18% for Cook) could not be detected in the Foundation seed source and were likely the result of mutation or some other mechanism generating de novo variation. These results provide evidence that genetic variation among individual plants is present even in homogeneous gene pools and can be further utilized in breeding programs.
Collapse
|
20
|
Dudgeon CL, Blower DC, Broderick D, Giles JL, Holmes BJ, Kashiwagi T, Krück NC, Morgan JAT, Tillett BJ, Ovenden JR. A review of the application of molecular genetics for fisheries management and conservation of sharks and rays. JOURNAL OF FISH BIOLOGY 2012; 80:1789-1843. [PMID: 22497408 DOI: 10.1111/j.1095-8649.2012.03265.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Since the first investigation 25 years ago, the application of genetic tools to address ecological and evolutionary questions in elasmobranch studies has greatly expanded. Major developments in genetic theory as well as in the availability, cost effectiveness and resolution of genetic markers were instrumental for particularly rapid progress over the last 10 years. Genetic studies of elasmobranchs are of direct importance and have application to fisheries management and conservation issues such as the definition of management units and identification of species from fins. In the future, increased application of the most recent and emerging technologies will enable accelerated genetic data production and the development of new markers at reduced costs, paving the way for a paradigm shift from gene to genome-scale research, and more focus on adaptive rather than just neutral variation. Current literature is reviewed in six fields of elasmobranch molecular genetics relevant to fisheries and conservation management (species identification, phylogeography, philopatry, genetic effective population size, molecular evolutionary rate and emerging methods). Where possible, examples from the Indo-Pacific region, which has been underrepresented in previous reviews, are emphasized within a global perspective.
Collapse
Affiliation(s)
- C L Dudgeon
- The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Amos W, Bryant C. Using human demographic history to infer natural selection reveals contrasting patterns on different families of immune genes. Proc Biol Sci 2010; 278:1587-94. [PMID: 21068042 DOI: 10.1098/rspb.2010.2056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Detecting regions of the human genome that are, or have been, influenced by natural selection remains an important goal for geneticists. Many methods are used to infer selection, but there is a general reliance on an accurate understanding of how mutation and recombination events are distributed, and the well-known link between these processes and their evolutionary transience introduces uncertainty into inferences. Here, we present and apply two new, independent approaches; one based on single nucleotide polymorphisms (SNPs) that exploits geographical patterns in how humans lost variability as we colonized the world, the other based on the relationship between microsatellite repeat number and heterozygosity. We show that the two methods give concordant results. Of these, the SNP-based method is both widely applicable and detects selection over a well-defined time interval, the last 50 000 years. Analysis of all human genes by their Gene Ontology codes reveals how accelerated and decelerated loss of variability are both preferentially associated with immune genes. Applied to 168 immune genes used as the focus of a previous study, we show that members of the same gene family tend to yield similar indices of selection, even when located on different chromosomes. We hope our approach will provide a useful tool with which to infer where selection has acted to shape the human genome.
Collapse
Affiliation(s)
- William Amos
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| | | |
Collapse
|
23
|
Mutation biases and mutation rate variation around very short human microsatellites revealed by human-chimpanzee-orangutan genomic sequence alignments. J Mol Evol 2010; 71:192-201. [PMID: 20700734 DOI: 10.1007/s00239-010-9377-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 07/26/2010] [Indexed: 01/21/2023]
Abstract
I have studied mutation patterns around very short microsatellites, focusing mainly on sequences carrying only two repeat units. By using human-chimpanzee-orangutan alignments, inferences can be made about both the relative rates of mutations and which bases have mutated. I find remarkable non-randomness, with mutation rate depending on a base's position relative to the microsatellite, the identity of the base itself and the motif in the microsatellite. Comparing the patterns around AC2 with those around other four-base combinations reveals that AC2 does not stand out as being special in the sense that non-repetitive tetramers also generate strong mutation biases. However, comparing AC2 and AC3 with AC4 reveals a step change in both the rate and nature of mutations occurring, suggesting a transition state, AC4 exhibiting an alternating high-low mutation rate pattern consistent with the sequence patterning seen around longer microsatellites. Surprisingly, most changes in repeat number occur through base substitutions rather than slippage, and the relative probability of gaining versus losing a repeat in this way varies greatly with repeat number. Slippage mutations reveal rather similar patterns of mutability compared with point mutations, being rare at two repeats where most cause the loss of a repeat, with both mutation rate and the proportion of expansion mutations increasing up to 6-8 repeats. Inferences about longer repeat tracts are hampered by uncertainties about the proportion of multi-species alignments that fail due to multi-repeat mutations and other rearrangements.
Collapse
|
24
|
Heterogeneous distribution of SNPs in the human genome: microsatellites as predictors of nucleotide diversity and divergence. Genomics 2009; 95:151-9. [PMID: 20026267 DOI: 10.1016/j.ygeno.2009.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 12/10/2009] [Accepted: 12/11/2009] [Indexed: 01/22/2023]
Abstract
Understanding the forces that govern the distribution of single nucleotide polymorphisms is vital for many of their applications. Here we conducted a systematic search to quantify how both SNP density and human-chimpanzee divergence vary around different repetitive sequences. We uncovered a highly complicated picture in which these quantities often differ significantly from the genome-wide average in regions extending more than 20 kb, the direction of the deviation varying with repeat number and motif. AT microsatellites in particular are potent predictors of SNP density, long (AT)(n) repeat tracts tending to be found in regions of significantly reduced SNP density and low GC content. Although the causal relationships remain difficult to determine, our results indicate a strong relationship between microsatellites and the DNA that flanks them. Our results help to explain the mixed picture that emerges from other studies and have important implications for the way in which genetic diversity is distributed in our genomes.
Collapse
|
25
|
Pemberton TJ, Sandefur CI, Jakobsson M, Rosenberg NA. Sequence determinants of human microsatellite variability. BMC Genomics 2009; 10:612. [PMID: 20015383 PMCID: PMC2806349 DOI: 10.1186/1471-2164-10-612] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 12/16/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Microsatellite loci are frequently used in genomic studies of DNA sequence repeats and in population studies of genetic variability. To investigate the effect of sequence properties of microsatellites on their level of variability we have analyzed genotypes at 627 microsatellite loci in 1,048 worldwide individuals from the HGDP-CEPH cell line panel together with the DNA sequences of these microsatellites in the human RefSeq database. RESULTS Calibrating PCR fragment lengths in individual genotypes by using the RefSeq sequence enabled us to infer repeat number in the HGDP-CEPH dataset and to calculate the mean number of repeats (as opposed to the mean PCR fragment length), under the assumption that differences in PCR fragment length reflect differences in the numbers of repeats in the embedded repeat sequences. We find the mean and maximum numbers of repeats across individuals to be positively correlated with heterozygosity. The size and composition of the repeat unit of a microsatellite are also important factors in predicting heterozygosity, with tetra-nucleotide repeat units high in G/C content leading to higher heterozygosity. Finally, we find that microsatellites containing more separate sets of repeated motifs generally have higher heterozygosity. CONCLUSIONS These results suggest that sequence properties of microsatellites have a significant impact in determining the features of human microsatellite variability.
Collapse
Affiliation(s)
- Trevor J Pemberton
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | |
Collapse
|
26
|
|
27
|
Amos W, Hoffman JI. Evidence that two main bottleneck events shaped modern human genetic diversity. Proc Biol Sci 2009; 277:131-7. [PMID: 19812086 DOI: 10.1098/rspb.2009.1473] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
There is a strong consensus that modern humans originated in Africa and moved out to colonize the world approximately 50 000 years ago. During the process of expansion, variability was lost, creating a linear gradient of decreasing diversity with increasing distance from Africa. However, the exact way in which this loss occurred remains somewhat unclear: did it involve one, a few or a continuous series of population bottlenecks? We addressed this by analysing a large published dataset of 783 microsatellite loci genotyped in 53 worldwide populations, using the program 'Bottleneck'. Immediately following a sharp population decline, rare alleles are lost faster than heterozygosity, creating a transient excess of heterozygosity relative to allele number, a feature that is used by Bottleneck to infer historical events. We find evidence of two primary events, one 'out of Africa' and one placed around the Bering Strait, where an ancient land bridge allowed passage into the Americas. These findings agree well with the regions of the world where the largest founder events might have been expected, but contrast with the apparently smooth gradient of variability that is revealed when current heterozygosity is plotted against distance from Africa.
Collapse
Affiliation(s)
- W Amos
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| | | |
Collapse
|
28
|
Stratikopoulos EE, Augustinos AA, Pavlopoulos ID, Economou KP, Mintzas A, Mathiopoulos KD, Zacharopoulou A. Isolation and characterization of microsatellite markers from the Mediterranean fruit fly, Ceratitis capitata: cross-species amplification in other Tephritidae species reveals a varying degree of transferability. Mol Genet Genomics 2009; 282:283-306. [PMID: 19544072 DOI: 10.1007/s00438-009-0465-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 06/05/2009] [Indexed: 11/25/2022]
Abstract
The Mediterranean fruit fly, Ceratitis capitata, is a pest of major economic importance and has become a model for the development of SIT control programs for insect pests. Significant information has been accumulated on classical and population genetics of this species during the past 2 decades. However, the availability of molecular markers is limited. Here, we present the isolation and characterization of 159 microsatellite clones and the development of 108 polymorphic microsatellite markers for this insect pest. Mapping by in situ hybridization to polytene chromosomes of 21 microsatellite clones enriched the cytogenetic map that was previously constructed by our group. The enriched map provides a large number of STSs for future genome mapping projects. Cross-species amplification of these microsatellite loci in 12 Tephritidae species and sequence analysis of several amplification products indicated a varying degree of transferability and their possible usefulness as molecular and genetic markers in these species where genetic and molecular tools are limited.
Collapse
|
29
|
Amos W, Acevedo-Whitehouse K. A new test for genotype-fitness associations reveals a single microsatellite allele that strongly predicts the nature of tuberculosis infections in wild boar. Mol Ecol Resour 2009; 9:1102-11. [PMID: 21564848 DOI: 10.1111/j.1755-0998.2009.02560.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is increasing interest in the basis of commonly observed heterozygosity-fitness correlations (HFCs). Two models appear possible, a genome-wide effect due to inbreeding depression, and a single-locus effect due to chance linkage to a gene(s) experiencing balancing selection. Recent studies suggest that the latter tends to be more important in the majority of studies, but tests for the presence of single-locus effects tend to be rather weak. One of the problems is that the linkage disequilibrium between a microsatellite and a nearby gene experiencing balancing selection is never likely to be 100%. With this in mind, we conduct stochastic simulations aimed at determining the conditions under which single-locus HFCs may develop. We also suggest a new approach that could offer improved detection of HFCs but which also offers a more general method for detecting genotype-fitness correlations. Our method is based on looking for the maximum possible strength of association between genotype and fitness, and then asking whether randomized data sets are able to generate similarly strong associations. This method is tested on both simulated and real data. In both cases, our method generates greater levels of significance than current tests. Applied to previously published data from wild boar affected by tuberculosis, the method uncovers a strong single-allele association that is strongly predictive of whether the disease is localized or spreads throughout the body. We further suggest a simple method for dealing with the problem of population structure, and believe this approach will help to identify genomic regions associated with fitness.
Collapse
Affiliation(s)
- William Amos
- Department of Zoology, Downing Street, Cambridge CB2 3EJ, UK.
| | | |
Collapse
|
30
|
Yin TM, Zhang XY, Gunter LE, Li SX, Wullschleger SD, Huang MR, Tuskan GA. Microsatellite primer resource for Populus developed from the mapped sequence scaffolds of the Nisqually-1 genome. THE NEW PHYTOLOGIST 2009; 181:498-503. [PMID: 19121044 DOI: 10.1111/j.1469-8137.2008.02663.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this study, 148 428 simple sequence repeat (SSR) primer pairs were designed from the unambiguously mapped sequence scaffolds of the Nisqually-1 genome. The physical position of the priming sites were identified along each of the 19 Populus chromosomes, and it was specified whether the priming sequences belong to intronic, intergenic, exonic or UTR regions. A subset of 150 SSR loci were amplified and a high amplification success rate (72%) was obtained in P. tremuloides, which belongs to a divergent subgenus of Populus relative to Nisqually-1. PCR reactions showed that the amplification success rate of exonic primer pairs was much higher than that of the intronic/intergenic primer pairs. Applying ANOVA and regression analyses to the flanking sequences of microsatellites, the repeat lengths, the GC contents of the repeats, the repeat motif numbers, the repeat motif length and the base composition of the repeat motif, it was determined that only the base composition of the repeat motif and the repeat motif length significantly affect the microsatellite variability in P. tremuloides samples. The SSR primer resource developed in this study provides a database for selecting highly transferable SSR markers with known physical position in the Populus genome and provides a comprehensive genetic tool to extend the genome sequence of Nisqually-1 to genetic studies in different Populus species.
Collapse
Affiliation(s)
- T M Yin
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA;The Key Lab of Forest Genetics and Gene Engineering, Nanjing Forestry University, Nanjing, China
| | - X Y Zhang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA;The Key Lab of Forest Genetics and Gene Engineering, Nanjing Forestry University, Nanjing, China
| | - L E Gunter
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA;The Key Lab of Forest Genetics and Gene Engineering, Nanjing Forestry University, Nanjing, China
| | - S X Li
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA;The Key Lab of Forest Genetics and Gene Engineering, Nanjing Forestry University, Nanjing, China
| | - S D Wullschleger
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA;The Key Lab of Forest Genetics and Gene Engineering, Nanjing Forestry University, Nanjing, China
| | - M R Huang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA;The Key Lab of Forest Genetics and Gene Engineering, Nanjing Forestry University, Nanjing, China
| | - G A Tuskan
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA;The Key Lab of Forest Genetics and Gene Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
31
|
Amos W, Flint J, Xu X. Heterozygosity increases microsatellite mutation rate, linking it to demographic history. BMC Genet 2008; 9:72. [PMID: 19014581 PMCID: PMC2615044 DOI: 10.1186/1471-2156-9-72] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 11/14/2008] [Indexed: 01/11/2023] Open
Abstract
Background Biochemical experiments in yeast suggest a possible mechanism that would cause heterozygous sites to mutate faster than equivalent homozygous sites. If such a process operates, it could undermine a key assumption at the core of population genetic theory, namely that mutation rate and population size are indpendent, because population expansion would increase heterozygosity that in turn would increase mutation rate. Here we test this hypothesis using both direct counting of microsatellite mutations in human pedigrees and an analysis of the relationship between microsatellite length and patterns of demographically-induced variation in heterozygosity. Results We find that microsatellite alleles of any given length are more likely to mutate when their homologue is unusually different in length. Furthermore, microsatellite lengths in human populations do not vary randomly, but instead exhibit highly predictable trends with both distance from Africa, a surrogate measure of genome-wide heterozygosity, and modern population size. This predictability remains even after statistically controlling for non-independence due to shared ancestry among populations. Conclusion Our results reveal patterns that are unexpected under classical population genetic theory, where no mechanism exists capable of linking allele length to extrinsic variables such as geography or population size. However, the predictability of microsatellite length is consistent with heterozygote instability and suggest that this has an important impact on microsatellite evolution. Whether similar processes impact on single nucleotide polymorphisms remains unclear.
Collapse
Affiliation(s)
- William Amos
- Department of Zoology, Downing Street, Cambridge, CB4 3DB, UK.
| | | | | |
Collapse
|
32
|
Amos W, Clarke A. Body temperature predicts maximum microsatellite length in mammals. Biol Lett 2008; 4:399-401. [PMID: 18522923 DOI: 10.1098/rsbl.2008.0209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A long-standing mystery in genome evolution is why short tandem repeats vary so much in length and frequency. Here, we test the hypothesis that body temperature acts to influence the rate and nature of slippage-based mutations. Using the data from both 28 species where genome sequencing is advanced and 76 species from which marker loci have been published, we show that in mammals, maximum repeat number is inversely correlated with body temperature, with warmer-blooded species having shorter 'long' microsatellites. Our results support a model of microsatellite evolution in which maximum length is limited by a temperature-dependent stability threshold.
Collapse
Affiliation(s)
- William Amos
- Department of Zoology, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
33
|
Wanner RM, Güthlein C, Springer B, Böttger EC, Ackermann M. Stabilization of the genome of the mismatch repair deficient Mycobacterium tuberculosis by context-dependent codon choice. BMC Genomics 2008; 9:249. [PMID: 18507851 PMCID: PMC2430213 DOI: 10.1186/1471-2164-9-249] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 05/28/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The rate at which a stretch of DNA mutates is determined by the cellular systems for DNA replication and repair, and by the nucleotide sequence of the stretch itself. One sequence feature with a particularly strong influence on the mutation rate are nucleotide repeats. Some microbial pathogens use nucleotide repeats in their genome to stochastically vary phenotypic traits and thereby evade host defense. However, such unstable sequences also come at a cost, as mutations are often deleterious. Here, we analyzed how these opposing forces shaped genome stability in the human pathogen Mycobacterium tuberculosis. M. tuberculosis lacks a mismatch repair system, and this renders nucleotide repeats particularly unstable. RESULTS We found that proteins of M. tuberculosis are encoded by using codons in a context-dependent manner that prevents the emergence of nucleotide repeats. This context-dependent codon choice leads to a strong decrease in the estimated frame-shift mutation rate and thus to an increase in genome stability. CONCLUSION These results indicate that a context-specific codon choice can partially compensate for the lack of a mismatch repair system, and helps to maintain genome integrity in this pathogen.
Collapse
Affiliation(s)
- Roger M Wanner
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30/32, CH-8006 Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
34
|
Varela MA, Sanmiguel R, Gonzalez-Tizon A, Martinez-Lage A. Heterogeneous nature and distribution of interruptions in dinucleotides may indicate the existence of biased substitutions underlying microsatellite evolution. J Mol Evol 2008; 66:575-80. [PMID: 18496726 DOI: 10.1007/s00239-008-9107-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 03/20/2008] [Accepted: 04/10/2008] [Indexed: 11/29/2022]
Abstract
Some aspects of microsatellite evolution, such as the role of base substitutions, are far from being fully understood. To examine the significance of base substitutions underlying the evolution of microsatellites we explored the nature and the distribution of interruptions in dinucleotide repeats from the human genome. The frequencies that we inferred in the repetitive sequences were statistically different from the frequencies observed in other noncoding sequences. Additionally, we detected that the interruptions tended to be towards the ends of the microsatellites and 5'-3' asymmetry. In all the estimates nucleotides forming the same repetitive motif seem to be affected by different base substitution rates in AC and AG. This tendency itself could generate patterning and similarity in flanking sequences and reconcile these phenomena with the high mutation rate found in flanking sequences without invoking convergent evolution. Nevertheless, our data suggest that there is a regional bias in the substitution pattern of microsatellites. The accumulation of random substitutions alone cannot explain the heterogeneity and the asymmetry of interruptions found in this study or the relative frequency of different compound microsatellites in the human genome. Therefore, we cannot rule out the possibility of a mutational bias leading to convergent or parallel evolution in flanking sequences.
Collapse
Affiliation(s)
- Miguel A Varela
- Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidade da Coruña, A Zapateira s/n, E-15071 La Coruña, Spain.
| | | | | | | |
Collapse
|
35
|
Gao LZ, Xu H. Comparisons of mutation rate variation at genome-wide microsatellites: evolutionary insights from two cultivated rice and their wild relatives. BMC Evol Biol 2008; 8:11. [PMID: 18199337 PMCID: PMC2241587 DOI: 10.1186/1471-2148-8-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Accepted: 01/16/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mutation rate (mu) per generation per locus is an important parameter in the models of population genetics. Studies on mutation rate and its variation are of significance to elucidate the extent and distribution of genetic variation, further infer evolutionary relationships among closely related species, and deeply understand genetic variation of genomes. However, patterns of rate variation of microsatellite loci are still poorly understood in plant species. Furthermore, how their mutation rates vary in di-, tri-, and tetra-nucleotide repeats within the species is largely uninvestigated across related plant genomes. RESULTS Genome-wide variation of mutation rates was first investigated by means of the composite population parameter theta (theta = 4Nmu, where N is the effective population size and mu is the mutation rate per locus per generation) in four subspecies of Asian cultivated rice O. sativa and its three related species, O. rufipogon, O. glaberrima, and O. officinalis. On the basis of three data sets of microsatellite allele frequencies throughout the genome, population mutation rate (theta) was estimated for each locus. Our results reveal that the variation of population mutation rates at microsatellites within each studied species or subspecies of cultivated rice can be approximated with a gamma distribution. The mean population mutation rates of microsatellites do not significantly differ in motifs of di-, tri-, and tetra-nucleotide repeats for the studied rice species. The shape parameter was also estimated for each subspecies of rice as well as other related rice species. Of them, different subspecies of O. sativa possesses similar shape parameters (alpha) of the gamma distribution, while other species extensively vary in their population mutation rates. CONCLUSION Through the analysis of genome-wide microsatellite data, the population mutation rate can be approximately fitted with a gamma distribution in most of the studied species. In general, different population histories occurred along different lineages may result in the observed variation of population mutation rates at microsatellites among the studied Oryza species.
Collapse
Affiliation(s)
- Li-Zhi Gao
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming 650204, PR China.
| | | |
Collapse
|
36
|
Gullberg A, Olsson M, Tegelström H. Colonization, genetic diversity, and evolution in the Swedish sand lizard, Lacerta agilis (Reptilia, Squamata). Biol J Linn Soc Lond 2008. [DOI: 10.1111/j.1095-8312.1998.tb01142.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Myres NM, Ekins JE, Lin AA, Cavalli-Sforza LL, Woodward SR, Underhill PA. Y-chromosome short tandem repeat DYS458.2 non-consensus alleles occur independently in both binary haplogroups J1-M267 and R1b3-M405. Croat Med J 2007; 48:450-9. [PMID: 17696299 PMCID: PMC2080563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
AIM To determine the human Y-chromosome haplogroup backgrounds of non-consensus DYS458.2 short tandem repeat alleles and evaluate their phylogenetic substructure and frequency in representative samples from the Middle East, Europe, and Pakistan. METHODS Molecular characterization of lineages was achieved using a combination of Y-chromosome haplogroup defining binary polymorphisms and up to 37 short tandem repeat loci, including DYS388 to construct haplotypes. DNA sequencing of the DYS458 locus and median-joining network analyses were used to evaluate Y-chromosome lineages displaying the DYS458.2 motif. RESULTS We showed that the DYS458.2 allelic innovation arose independently on at least two distinctive binary haplogroup backgrounds and possibly a third as well. The partial allele length pattern was fixed in all haplogroup J1 chromosomes examined, including its known rare sub-haplogroups. Within the alternative R1b3 associated M405 defined sub-haplogroup, both DYS458.0 and DYS458.2 allele classes occurred. A single chromosome also allocated to the R1b3-M269*(xM405) classification. The physical position of the partial insertion/deletion occurrence within the normal tetramer tract differed distinctly in each haplogroup context. CONCLUSIONS While unusual DYS458.2 alleles are informative, additional information for other linked polymorphic loci is required when using such non-conforming alleles to infer haplogroup background and common ancestry.
Collapse
Affiliation(s)
- Natalie M. Myres
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah, USA
| | - Jayne E. Ekins
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah, USA
| | - Alice A. Lin
- Department of Genetics, Stanford University School of Medicine, Stanford, Calif, USA
| | | | | | - Peter A. Underhill
- Department of Genetics, Stanford University School of Medicine, Stanford, Calif, USA
| |
Collapse
|
38
|
Doxiadis GGM, de Groot N, Claas FHJ, Doxiadis IIN, van Rood JJ, Bontrop RE. A highly divergent microsatellite facilitating fast and accurate DRB haplotyping in humans and rhesus macaques. Proc Natl Acad Sci U S A 2007; 104:8907-12. [PMID: 17502594 PMCID: PMC1868589 DOI: 10.1073/pnas.0702964104] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The DRB region of the MHC in primate species is known to display abundant region configuration polymorphism with regard to the number and content of genes present per haplotype. Furthermore, depending on the species studied, the different DRB genes themselves may display varying degrees of allelic polymorphism. Because of this combination of diversity (differential gene number) and polymorphism (allelic variation), molecular typing methods for the primate DRB region are cumbersome. All intact DRB genes present in humans and rhesus macaques appear to possess, however, a complex and highly divergent microsatellite. Microsatellite analysis of a sizeable panel of outbred rhesus macaques, covering most of the known Mamu-DRB haplotypes, resulted in the definition of unique genotyping patterns that appear to be specific for a given haplotype. Subsequent examination of a representative panel of human cells illustrated that this approach also facilitates high-resolution HLA-DRB typing in an easy, quick, and reproducible fashion. The genetic composition of this complex microsatellite is shown to be in concordance with the phylogenetic relationships of various HLA-DRB and Mamu-DRB exon 2 gene/lineage sequences. Moreover, its length variability segregates with allelic variation of the respective gene. This simple protocol may find application in a variety of research avenues such as transplantation biology, disease association studies, molecular ecology, paternity testing, and forensic medicine.
Collapse
Affiliation(s)
- Gaby G. M. Doxiadis
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands; and
- To whom correspondence may be addressed. E-mail: or
| | - Nanine de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands; and
| | - Frans H. J. Claas
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, E3-Q, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Ilias I. N. Doxiadis
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, E3-Q, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Jon J. van Rood
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, E3-Q, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
- To whom correspondence may be addressed. E-mail: or
| | - Ronald E. Bontrop
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands; and
| |
Collapse
|
39
|
Leclercq S, Rivals E, Jarne P. Detecting microsatellites within genomes: significant variation among algorithms. BMC Bioinformatics 2007; 8:125. [PMID: 17442102 PMCID: PMC1876248 DOI: 10.1186/1471-2105-8-125] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 04/18/2007] [Indexed: 11/25/2022] Open
Abstract
Background Microsatellites are short, tandemly-repeated DNA sequences which are widely distributed among genomes. Their structure, role and evolution can be analyzed based on exhaustive extraction from sequenced genomes. Several dedicated algorithms have been developed for this purpose. Here, we compared the detection efficiency of five of them (TRF, Mreps, Sputnik, STAR, and RepeatMasker). Results Our analysis was first conducted on the human X chromosome, and microsatellite distributions were characterized by microsatellite number, length, and divergence from a pure motif. The algorithms work with user-defined parameters, and we demonstrate that the parameter values chosen can strongly influence microsatellite distributions. The five algorithms were then compared by fixing parameters settings, and the analysis was extended to three other genomes (Saccharomyces cerevisiae, Neurospora crassa and Drosophila melanogaster) spanning a wide range of size and structure. Significant differences for all characteristics of microsatellites were observed among algorithms, but not among genomes, for both perfect and imperfect microsatellites. Striking differences were detected for short microsatellites (below 20 bp), regardless of motif. Conclusion Since the algorithm used strongly influences empirical distributions, studies analyzing microsatellite evolution based on a comparison between empirical and theoretical size distributions should therefore be considered with caution. We also discuss why a typological definition of microsatellites limits our capacity to capture their genomic distributions.
Collapse
Affiliation(s)
- Sébastien Leclercq
- LIRMM, UMR 5506 CNRS – Université de Montpellier II, 161 rue Ada, Montpellier, France
- CEFE, UMR 5175 CNRS – Université de Montpellier II, 1919 route de Mende, Montpellier, France
| | - Eric Rivals
- LIRMM, UMR 5506 CNRS – Université de Montpellier II, 161 rue Ada, Montpellier, France
| | - Philippe Jarne
- CEFE, UMR 5175 CNRS – Université de Montpellier II, 1919 route de Mende, Montpellier, France
| |
Collapse
|
40
|
Chapuis MP, Estoup A. Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 2006; 24:621-31. [PMID: 17150975 DOI: 10.1093/molbev/msl191] [Citation(s) in RCA: 1478] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Microsatellite null alleles are commonly encountered in population genetics studies, yet little is known about their impact on the estimation of population differentiation. Computer simulations based on the coalescent were used to investigate the evolutionary dynamics of null alleles, their impact on F(ST) and genetic distances, and the efficiency of estimators of null allele frequency. Further, we explored how the existing method for correcting genotype data for null alleles performed in estimating F(ST) and genetic distances, and we compared this method with a new method proposed here (for F(ST) only). Null alleles were likely to be encountered in populations with a large effective size, with an unusually high mutation rate in the flanking regions, and that have diverged from the population from which the cloned allele state was drawn and the primers designed. When populations were significantly differentiated, F(ST) and genetic distances were overestimated in the presence of null alleles. Frequency of null alleles was estimated precisely with the algorithm presented in Dempster et al. (1977). The conventional method for correcting genotype data for null alleles did not provide an accurate estimate of F(ST) and genetic distances. However, the use of the genetic distance of Cavalli-Sforza and Edwards (1967) corrected by the conventional method gave better estimates than those obtained without correction. F(ST) estimation from corrected genotype frequencies performed well when restricted to visible allele sizes. Both the proposed method and the traditional correction method have been implemented in a program that is available free of charge at http://www.montpellier.inra.fr/URLB/. We used 2 published microsatellite data sets based on original and redesigned pairs of primers to empirically confirm our simulation results.
Collapse
Affiliation(s)
- Marie-Pierre Chapuis
- Centre de Biologie et de Gestion des Populations, Institut National pour la Recherche Agronomique, Campus International de Baillarguet, Montferrier/Lez, France.
| | | |
Collapse
|
41
|
Buschiazzo E, Gemmell NJ. The rise, fall and renaissance of microsatellites in eukaryotic genomes. Bioessays 2006; 28:1040-50. [PMID: 16998838 DOI: 10.1002/bies.20470] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Microsatellites are among the most versatile of genetic markers, being used in an impressive number of biological applications. However, the evolutionary dynamics of these markers remain a source of contention. Almost 20 years after the discovery of these ubiquitous simple sequences, new genomic data are clarifying our understanding of the structure, distribution and variability of microsatellites in genomes, especially for the eukaryotes. While these new data provide a great deal of descriptive information about the nature and abundance of microsatellite sequences within eukaryotic genomes, there have been few attempts to synthesise this information to develop a global concept of evolution. This review provides an up-to-date account of the mutational processes, biases and constraints believed to be involved in the evolution of microsatellites, particularly with respect to the creation and degeneration of microsatellites, which we assert may be broadly viewed as a life cycle. In addition, we identify areas of contention that require further research and propose some possible directions for future investigation.
Collapse
Affiliation(s)
- Emmanuel Buschiazzo
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
| | | |
Collapse
|
42
|
Sethy NK, Shokeen B, Edwards KJ, Bhatia S. Development of microsatellite markers and analysis of intraspecific genetic variability in chickpea (Cicer arietinum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 112:1416-28. [PMID: 16534564 DOI: 10.1007/s00122-006-0243-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Accepted: 02/13/2006] [Indexed: 05/07/2023]
Abstract
Paucity of polymorphic molecular markers in chickpea (Cicer arietinum L.) has been a major limitation in the improvement of this important legume. Hence, in an attempt to develop sequence-tagged microsatellite sites (STMS) markers from chickpea, a microsatellite enriched library from the C. arietinum cv. Pusa362 nuclear genome was constructed for the identification of (CA/GT)n and (CT/GA)n microsatellite motifs. A total of 92 new microsatellites were identified, of which 74 functional STMS primer pairs were developed. These markers were validated using 9 chickpea and one C. reticulatum accession. Of the STMS markers developed, 25 polymorphic markers were used to analyze the intraspecific genetic diversity within 36 geographically diverse chickpea accessions. The 25 primer pairs amplified single loci producing a minimum of 2 and maximum of 11 alleles. A total of 159 alleles were detected with an average of 6.4 alleles per locus. The observed and expected heterozygosity values averaged 0.32 (0.08-0.91) and 0.74 (0.23-0.89) respectively. The UPGMA based dendrogram was able to distinguish all the accessions except two accessions from Afghanistan establishing that microsatellites could successfully detect intraspecific genetic diversity in chickpea. Further, cloning and sequencing of size variant alleles at two microsatellite loci revealed that the variable numbers of AG repeats in different alleles were the major source of polymorphism. Point mutations were found to occur both within and immediately upstream of the long tracts of perfect repeats, thereby bringing about a conversion of perfect motifs into imperfect or compound motifs. Such events possibly occurred in order to limit the expansion of microsatellites and also lead to the birth of new microsatellites. The microsatellite markers developed in this study will be useful for genetic diversity analysis, linkage map construction as well as for depicting intraspecific microsatellite evolution.
Collapse
Affiliation(s)
- Niroj Kumar Sethy
- National Centre for Plant Genome Research, Jawaharlal Nehru University Campus, Post Box No. 10531, New Delhi, 110067, India
| | | | | | | |
Collapse
|
43
|
Weetman D, Hauser L, Carvalho GR. Heterogeneous evolution of microsatellites revealed by reconstruction of recent mutation history in an invasive apomictic snail, Potamopyrgus antipodarum. Genetica 2006; 127:285-93. [PMID: 16850232 DOI: 10.1007/s10709-005-4847-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Accepted: 11/07/2005] [Indexed: 10/24/2022]
Abstract
Heterogeneous patterns of microsatellite evolution present a major challenge for the development of mutation models, and an improved understanding of the determinants of variation in mutation rates and patterns among loci, alleles and taxa is required. A 19th Century bottleneck associated with the introduction of clones of the snail Potamopyrgus antipodarum to Britain presented an opportunity to reconstruct recent microsatellite evolution within the most common apomictic lineage. There was significant variation in both the number and step size of mutations among the seven loci studied. Patterns of mutability were consistent with higher mutation rates for di- than trinucleotides and for longer alleles at a locus. Mutation size was influenced in a more complex way, decreasing with relative allele length much more strongly for tri-, than dinucleotides. We found support for this latter, highly novel result in the literature via reanalysis of data in a recent genome-scan study of human microsatellites, which showed a similarly disparate pattern of length-dependence between di- and trinucleotides. In spite of the apomictic form of reproduction and an unusually strong excess of microsatellite contractions in P. antipodarum, there were notable similarities with mutation processes of human microsatellites, supporting the wider taxonomic generality of such evolutionary mechanisms.
Collapse
Affiliation(s)
- David Weetman
- Department of Biological Sciences, University of Hull, HU6 7RX, Hull, UK.
| | | | | |
Collapse
|
44
|
Sreenu VB, Kumar P, Nagaraju J, Nagarajaram HA. Microsatellite polymorphism across the M. tuberculosis and M. bovis genomes: implications on genome evolution and plasticity. BMC Genomics 2006; 7:78. [PMID: 16603092 PMCID: PMC1501019 DOI: 10.1186/1471-2164-7-78] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Accepted: 04/10/2006] [Indexed: 11/10/2022] Open
Abstract
Background Microsatellites are the tandem repeats of nucleotide motifs of size 1–6 bp observed in all known genomes. These repeats show length polymorphism characterized by either insertion or deletion (indels) of the repeat units, which in and around the coding regions affect transcription and translation of genes. Results Systematic comparison of all the equivalent microsatellites in the coding regions of the three mycobacterial genomes, viz. Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis CDC1551 and Mycobacterium bovis, revealed for the first time the presence of several polymorphic microsatellites. The coding regions affected by frame-shifts owing to microsatellite indels have undergone changes indicative of gene fission/fusion, premature termination and length variation. Interestingly, the genes affected by frame-shift mutations code for membrane proteins, transporters, PPE, PE_PGRS, cell-wall synthesis proteins and hypothetical proteins. Conclusion This study has revealed the role of microsatellite indel mutations in imparting novel functions and a certain degree of plasticity to the mycobacterial genomes. There seems to be some correlation between microsatellite polymorphism and the variations in virulence, host-pathogen interactions mediated by surface antigen variations, and adaptation of the pathogens. Several of the polymorphic microsatellites reported in this study can be tested for their polymorphic nature by screening clinical isolates and various mycobacterial strains, for establishing correlations between microsatellite polymorphism and the phenotypic variations among these pathogens.
Collapse
Affiliation(s)
- Vattipally B Sreenu
- Laboratory of Computational Biology, Centre for DNA Fingerprinting and Diagnostics, ECIL Road, Nacharam, Hyderabad-76, A.P., India
| | - Pankaj Kumar
- Laboratory of Computational Biology, Centre for DNA Fingerprinting and Diagnostics, ECIL Road, Nacharam, Hyderabad-76, A.P., India
| | - Javaregowda Nagaraju
- Laboratory of Molecular Genetics, Centre for DNA Fingerprinting and Diagnostics, ECIL Road, Nacharam, Hyderabad-76, A.P., India
| | - Hampapathalu A Nagarajaram
- Laboratory of Computational Biology, Centre for DNA Fingerprinting and Diagnostics, ECIL Road, Nacharam, Hyderabad-76, A.P., India
| |
Collapse
|
45
|
Coulibaly I, Gharbi K, Danzmann RG, Yao J, Rexroad CE. Characterization and comparison of microsatellites derived from repeat-enriched libraries and expressed sequence tags. Anim Genet 2005; 36:309-15. [PMID: 16026341 DOI: 10.1111/j.1365-2052.2005.01305.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The construction of high-density linkage maps for use in identifying loci underlying important traits requires the development of large numbers of polymorphic genetic markers spanning the entire genome at regularly spaced intervals. As part of our efforts to develop markers for rainbow trout (Oncorhynchus mykiss), we performed a comparison of allelic variation between microsatellite markers developed from expressed sequence tag (EST) data and anonymous markers identified from repeat-enriched libraries constructed from genomic DNA. A subset of 70 markers (37 from EST databases and 33 from repeat enriched libraries) was characterized with respect to polymorphism information content (PIC), number of alleles, repeat number, locus duplication within the genome and ability to amplify in other salmonid species. Higher PIC was detected in dinucleotide microsatellites derived from ESTs than anonymous markers (72.7% vs. 54.0%). In contrast, dinucleotide repeat numbers were higher for anonymous microsatellites than for EST derived microsatellites (27.4 vs.18.1). A higher rate of cross-species amplification was observed for EST microsatellites. Approximately half of each marker type was duplicated within the genome. Unlike single-copy markers, amplification of duplicated microsatellites in other salmonids was not correlated to phylogenetic distance. Genomic microsatellites proved more useful than EST derived microsatellites in discriminating among the salmonids. In total, 428 microsatellite markers were developed in this study for mapping and population genetic studies in rainbow trout.
Collapse
Affiliation(s)
- I Coulibaly
- Animal and Veterinary Sciences Division, West Virginia University, PO Box 6108, Morgantown, WV 26506, USA
| | | | | | | | | |
Collapse
|
46
|
Peischl T, Kuss AW, Melchinger-Wild E, Geldermann H. Nine porcine microsatellite loci tested for size homoplasy in genetically diverse breeds. Anim Genet 2005; 36:244-7. [PMID: 15932407 DOI: 10.1111/j.1365-2052.2005.01283.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Kind and probability of homoplasy across allelic microsatellite fragments can be investigated using DNA of genetically diverse pig breeds. In this study, nine microsatellite loci (SW1897, SW2427, SW489, SW957, TNFB, IFNG, SW2410, SW2019 and S0215) were analysed using DNA samples of pigs from Vietnam (Indigenous breeds Co, Meo, Muong Khuong, Tap Na) and Germany (European Wild Boar, Pietrain). In a total of 39 sequences, 20 differences within isomorphic alleles were observed in comparison with the respective reference sequences. They affected five of the nine tested microsatellite loci. The majority (18) of SNPs occurred in the 5'-flanking regions of the microsatellite repeats, 10 were found in the 3'-flanking regions and only one SNP occurred within the repeat of the Wild Boar sequence of SW2427. The compound microsatellites IFNG and S0215 were unaffected by size homoplasy (SH) within our material. We conclude that the fragment length analysis of microsatellites is a reliable tool for intraspecific phylogenetic studies because SH rates within a species were low.
Collapse
Affiliation(s)
- T Peischl
- Department of Animal Breeding and Biotechnology, University of Hohenheim, D-70593 Stuttgart, Germany
| | | | | | | |
Collapse
|
47
|
Muir G, Schlötterer C. Evidence for shared ancestral polymorphism rather than recurrent gene flow at microsatellite loci differentiating two hybridizing oaks (Quercus spp.). Mol Ecol 2004; 14:549-61. [PMID: 15660945 DOI: 10.1111/j.1365-294x.2004.02418.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Quercus petraea and Quercus robur are two closely related oak species, considered to hybridize. Genetic markers, however, indicate that despite sharing most alleles, the two species remain separate genetic units. Analysis of 20 microsatellite loci in multiple populations from both species suggested a genome-wide differentiation. Thus, the allele sharing between both species could be explained either by low rates of gene flow or shared ancestral variation. We performed further analyses of population differentiation in a biogeographical setting and an admixture analysis in mixed oak stands to distinguish between both hypotheses. Based on our results we propose that the low genetic differentiation among these species results from shared ancestry rather than high rates of gene flow.
Collapse
Affiliation(s)
- Graham Muir
- Institut für Tierzucht und Genetik, Veterinärmedizinische Universität Wien, Josef Baumann Gasse 1, 1210, Wien, Austria
| | | |
Collapse
|
48
|
Dettman JR, Taylor JW. Mutation and evolution of microsatellite loci in Neurospora. Genetics 2004; 168:1231-48. [PMID: 15579682 PMCID: PMC1448800 DOI: 10.1534/genetics.104.029322] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Accepted: 07/14/2004] [Indexed: 11/18/2022] Open
Abstract
The patterns of mutation and evolution at 13 microsatellite loci were studied in the filamentous fungal genus Neurospora. First, a detailed investigation was performed on five microsatellite loci by sequencing each microsatellite, together with its nonrepetitive flanking regions, from a set of 147 individuals from eight species of Neurospora. To elucidate the genealogical relationships among microsatellite alleles, repeat number was mapped onto trees constructed from flanking-sequence data. This approach allowed the potentially convergent microsatellite mutations to be placed in the evolutionary context of the less rapidly evolving flanking regions, revealing the complexities of the mutational processes that have generated the allelic diversity conventionally assessed in population genetic studies. In addition to changes in repeat number, frequent substitution mutations within the microsatellites were detected, as were substitutions and insertion/deletions within the flanking regions. By comparing microsatellite and flanking-sequence divergence, clear evidence of interspecific allele length homoplasy and microsatellite mutational saturation was observed, suggesting that these loci are not appropriate for inferring phylogenetic relationships among species. In contrast, little evidence of intraspecific mutational saturation was observed, confirming the utility of these loci for population-level analyses. Frequency distributions of alleles within species were generally consistent with the stepwise mutational model. By comparing variation within species at the microsatellites and the flanking-sequence, estimated microsatellite mutation rates were approximately 2500 times greater than mutation rates of flanking DNA and were consistent with estimates from yeast and fruit flies. A positive relationship between repeat number and variance in repeat number was significant across three genealogical depths, suggesting that longer microsatellite alleles are more mutable than shorter alleles. To test if the observed patterns of microsatellite variation and mutation could be generalized, an additional eight microsatellite loci were characterized and sequenced from a subset of the same Neurospora individuals.
Collapse
Affiliation(s)
- Jeremy R Dettman
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.
| | | |
Collapse
|
49
|
Preuss S, Peischl T, Melchinger E, Geldermann H. Numerous polymorphic microsatellites in the human prion gene complex (including PRNP, PRND and PRNT). Gene 2004; 329:197-203. [PMID: 15033541 DOI: 10.1016/j.gene.2003.12.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Revised: 10/27/2003] [Accepted: 12/30/2003] [Indexed: 11/29/2022]
Abstract
Microsatellite sites were analysed with DNA screening software by using about 148 kilobases (kb) of the human genomic DNA sequence GenBank accession number (acc. no.) which includes the genes PRNP, PRND and PRNT. Regarding microsatellites (MS) with at least four repeats and base replacements within the repetitive motifs<10%, 127 sites were found. Sixteen of the sites were analysed and nine of them proved to be polymorphic with up to nine alleles per site. Frequencies<0.95 of the predominant allele were observed for all polymorphic sites, and frequencies<0.4 for four sites. Some allelic DNA sequences were not only different in microsatellite repeats but also in flanking regions. Distances between microsatellite sites were in average of 1.2 kb and allow the identification of a number of further informative markers in the prion protein gene complex. The large number of polymorphic sites within a narrow chromosomal interval can be applied to study the origin of alleles as well as the association to the incidence of diseases.
Collapse
Affiliation(s)
- Siegfried Preuss
- Department of Animal Breeding and Biotechnology, University of Hohenheim, D-70593 Stuttgart, Germany
| | | | | | | |
Collapse
|
50
|
Kayser M, Kittler R, Erler A, Hedman M, Lee AC, Mohyuddin A, Mehdi SQ, Rosser Z, Stoneking M, Jobling MA, Sajantila A, Tyler-Smith C. A comprehensive survey of human Y-chromosomal microsatellites. Am J Hum Genet 2004; 74:1183-97. [PMID: 15195656 PMCID: PMC1182082 DOI: 10.1086/421531] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Accepted: 03/17/2004] [Indexed: 11/03/2022] Open
Abstract
We have screened the nearly complete DNA sequence of the human Y chromosome for microsatellites (short tandem repeats) that meet the criteria of having a repeat-unit size of > or = 3 and a repeat count of > or = 8 and thus are likely to be easy to genotype accurately and to be polymorphic. Candidate loci were tested in silico for novelty and for probable Y specificity, and then they were tested experimentally to identify Y-specific loci and to assess their polymorphism. This yielded 166 useful new Y-chromosomal microsatellites, 139 of which were polymorphic, in a sample of eight diverse Y chromosomes representing eight Y-SNP haplogroups. This large sample of microsatellites, together with 28 previously known markers analyzed here--all sharing a common evolutionary history--allowed us to investigate the factors influencing their variation. For simple microsatellites, the average repeat count accounted for the highest proportion of repeat variance (approximately 34%). For complex microsatellites, the largest proportion of the variance (again, approximately 34%) was explained by the average repeat count of the longest homogeneous array, which normally is variable. In these complex microsatellites, the additional repeats outside the longest homogeneous array significantly increased the variance, but this was lower than the variance of a simple microsatellite with the same total repeat count. As a result of this work, a large number of new, highly polymorphic Y-chromosomal microsatellites are now available for population-genetic, evolutionary, genealogical, and forensic investigations.
Collapse
Affiliation(s)
- Manfred Kayser
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|