1
|
Santoshi M, Tare P, Nagaraja V. Nucleoid-associated proteins of mycobacteria come with a distinctive flavor. Mol Microbiol 2025; 123:177-194. [PMID: 38922783 DOI: 10.1111/mmi.15287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
In every bacterium, nucleoid-associated proteins (NAPs) play crucial roles in chromosome organization, replication, repair, gene expression, and other DNA transactions. Their central role in controlling the chromatin dynamics and transcription has been well-appreciated in several well-studied organisms. Here, we review the diversity, distribution, structure, and function of NAPs from the genus Mycobacterium. We highlight the progress made in our understanding of the effects of these proteins on various processes and in responding to environmental stimuli and stress of mycobacteria in their free-living as well as during distinctive intracellular lifestyles. We project them as potential drug targets and discuss future studies to bridge the information gap with NAPs from well-studied systems.
Collapse
Affiliation(s)
- Meghna Santoshi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Priyanka Tare
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| |
Collapse
|
2
|
Debatisse K, Lopez P, Poli M, Rousseau P, Campos M, Coddeville M, Cocaign-Bousquet M, Le Bourgeois P. Redefining the bacteriophage mv4 site-specific recombination system and the sequence specificity of its attB and core-attP sites. Mol Microbiol 2024; 121:1200-1216. [PMID: 38705589 DOI: 10.1111/mmi.15275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024]
Abstract
Through their involvement in the integration and excision of a large number of mobile genetic elements, such as phages and integrative and conjugative elements (ICEs), site-specific recombination systems based on heterobivalent tyrosine recombinases play a major role in genome dynamics and evolution. However, despite hundreds of these systems having been identified in genome databases, very few have been described in detail, with none from phages that infect Bacillota (formerly Firmicutes). In this study, we reanalyzed the recombination module of Lactobacillus delbrueckii subsp. bulgaricus phage mv4, previously considered atypical compared with classical systems. Our results reveal that mv4 integrase is a 369 aa protein with all the structural hallmarks of recombinases from the Tn916 family and that it cooperatively interacts with its recombination sites. Using randomized DNA libraries, NGS sequencing, and other molecular approaches, we show that the 21-bp core-attP and attB sites have structural similarities to classical systems only if considering the nucleotide degeneracy, with two 7-bp inverted regions corresponding to mv4Int core-binding sites surrounding a 7-bp strand-exchange region. We also examined the different compositional constraints in the core-binding regions, which define the sequence space of permissible recombination sites.
Collapse
Affiliation(s)
- Kevin Debatisse
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Pierre Lopez
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Maryse Poli
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Philippe Rousseau
- CBI, LMGM, Université de Toulouse, CNRS, Toulouse, France
- Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Manuel Campos
- CBI, LMGM, Université de Toulouse, CNRS, Toulouse, France
- Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Michèle Coddeville
- CBI, LMGM, Université de Toulouse, CNRS, Toulouse, France
- Université Toulouse III - Paul Sabatier, Toulouse, France
| | | | - Pascal Le Bourgeois
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- Université Toulouse III - Paul Sabatier, Toulouse, France
| |
Collapse
|
3
|
Armianinova DK, Karpov DS, Kotliarova MS, Goncharenko AV. Genetic Engineering in Mycobacteria. Mol Biol 2022. [DOI: 10.1134/s0026893322060036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
Genetic tools for targeted modification of the mycobacterial genome contribute to the understanding of the physiology and virulence mechanisms of mycobacteria. Human and animal pathogens, such as the Mycobacterium tuberculosis complex, which causes tuberculosis, and M. leprae, which causes leprosy, are of particular importance. Genetic research opens up novel opportunities to identify and validate new targets for antibacterial drugs and to develop improved vaccines. Although mycobacteria are difficult to work with due to their slow growth rate and a limited possibility to transfer genetic information, significant progress has been made in developing genetic engineering methods for mycobacteria. The review considers the main approaches to changing the mycobacterial genome in a targeted manner, including homologous and site-specific recombination and use of the CRISPR/Cas system.
Collapse
|
4
|
Howell AA, Versoza CJ, Cerna G, Johnston T, Kakde S, Karuku K, Kowal M, Monahan J, Murray J, Nguyen T, Sanchez Carreon A, Streiff A, Su B, Youkhana F, Munig S, Patel Z, So M, Sy M, Weiss S, Pfeifer SP. Phylogenomic analyses and host range prediction of cluster P mycobacteriophages. G3 (BETHESDA, MD.) 2022; 12:jkac244. [PMID: 36094333 PMCID: PMC9635641 DOI: 10.1093/g3journal/jkac244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Bacteriophages, infecting bacterial hosts in every environment on our planet, are a driver of adaptive evolution in bacterial communities. At the same time, the host range of many bacteriophages-and thus one of the selective pressures acting on complex microbial systems in nature-remains poorly characterized. Here, we computationally inferred the putative host ranges of 40 cluster P mycobacteriophages, including members from 6 subclusters (P1-P6). A series of comparative genomic analyses revealed that mycobacteriophages of subcluster P1 are restricted to the Mycobacterium genus, whereas mycobacteriophages of subclusters P2-P6 are likely also able to infect other genera, several of which are commonly associated with human disease. Further genomic analysis highlighted that the majority of cluster P mycobacteriophages harbor a conserved integration-dependent immunity system, hypothesized to be the ancestral state of a genetic switch that controls the shift between lytic and lysogenic life cycles-a temperate characteristic that impedes their usage in antibacterial applications.
Collapse
Affiliation(s)
- Abigail A Howell
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Cyril J Versoza
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
| | - Gabriella Cerna
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Tyler Johnston
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Shriya Kakde
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Keith Karuku
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Maria Kowal
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Jasmine Monahan
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Jillian Murray
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Teresa Nguyen
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Aurely Sanchez Carreon
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Abigail Streiff
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Blake Su
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- School of Politics and Global Studies, Arizona State University, Tempe, AZ 85281, USA
| | - Faith Youkhana
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Saige Munig
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Zeel Patel
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Minerva So
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Makena Sy
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Sarah Weiss
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Susanne P Pfeifer
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
5
|
Amemiya HM, Schroeder J, Freddolino PL. Nucleoid-associated proteins shape chromatin structure and transcriptional regulation across the bacterial kingdom. Transcription 2021; 12:182-218. [PMID: 34499567 PMCID: PMC8632127 DOI: 10.1080/21541264.2021.1973865] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 01/21/2023] Open
Abstract
Genome architecture has proven to be critical in determining gene regulation across almost all domains of life. While many of the key components and mechanisms of eukaryotic genome organization have been described, the interplay between bacterial DNA organization and gene regulation is only now being fully appreciated. An increasing pool of evidence has demonstrated that the bacterial chromosome can reasonably be thought of as chromatin, and that bacterial chromosomes contain transcriptionally silent and transcriptionally active regions analogous to heterochromatin and euchromatin, respectively. The roles played by histones in eukaryotic systems appear to be shared across a range of nucleoid-associated proteins (NAPs) in bacteria, which function to compact, structure, and regulate large portions of bacterial chromosomes. The broad range of extant NAPs, and the extent to which they differ from species to species, has raised additional challenges in identifying and characterizing their roles in all but a handful of model bacteria. Here we review the regulatory roles played by NAPs in several well-studied bacteria and use the resulting state of knowledge to provide a working definition for NAPs, based on their function, binding pattern, and expression levels. We present a screening procedure which can be applied to any species for which transcriptomic data are available. Finally, we note that NAPs tend to play two major regulatory roles - xenogeneic silencers and developmental regulators - and that many unrecognized potential NAPs exist in each bacterial species examined.
Collapse
Affiliation(s)
- Haley M. Amemiya
- University of Michigan Medical School, Ann Arbor, MI, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jeremy Schroeder
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Peter L. Freddolino
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Chen Y, Zhan Z, Zhang H, Bi L, Zhang XE, Fu YV. Kinetic analysis of DNA compaction by mycobacterial integration host factor at the single-molecule level. Tuberculosis (Edinb) 2019; 119:101862. [PMID: 31733417 DOI: 10.1016/j.tube.2019.101862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 08/14/2019] [Accepted: 09/08/2019] [Indexed: 11/19/2022]
Abstract
Nucleoid-associated proteins (NAPs) play an important role on chromosome condensation and organization. Mycobacterial integration host factor (mIHF) is one of the few mycobacterial NAPs identified so far. mIHF has the ability to stimulate mycobacteriophage L5 integration and compact DNA into nucleoid-like or higher order filamentous structures by atomic force microscopy observation. In this study, M. smegmatis IHF (MsIHF), which possesses the sequence essential for mIHF's functions, binds 30-bp dsDNA fragments in a sequence-independent manner and displays sensitivity to ion strength in bio-layer interferometry (BLI) experiments. The DNA compaction process of MsIHF was observed at the single-molecule level using the total internal reflection fluorescence microscopy (TIRFM). MsIHF efficiently compacted λ DNA into a highly condensed structure with the concentration of 0.25 and 1.0 μM, and the packing ratios were higher than 10. Further kinetic analysis revealed MsIHF compacts DNA in a three-step mechanism, which consists of two compaction steps with different compacting rates separated by a lag step. This study would help us better understand the mechanisms of chromosomal DNA organization in mycobacteria.
Collapse
Affiliation(s)
- Yuanyuan Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhengyan Zhan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongtai Zhang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lijun Bi
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yu Vincent Fu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Nanji T, Gehrke EJ, Shen Y, Gloyd M, Zhang X, Firby CD, Huynh A, Razi A, Ortega J, Elliot MA, Guarné A. Streptomyces IHF uses multiple interfaces to bind DNA. Biochim Biophys Acta Gen Subj 2019; 1863:129405. [PMID: 31376411 DOI: 10.1016/j.bbagen.2019.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/27/2019] [Accepted: 07/29/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Nucleoid associated proteins (NAPs) are essential for chromosome condensation in bacterial cells. Despite being a diverse group, NAPs share two common traits: they are small, oligomeric proteins and their oligomeric state is critical for DNA condensation. Streptomyces coelicolor IHF (sIHF) is an actinobacterial-specific nucleoid-associated protein that despite its name, shares neither sequence nor structural homology with the well-characterized Escherichia coli IHF. Like E. coli IHF, sIHF is needed for efficient nucleoid condensation, morphological development and antibiotic production in S. coelicolor. METHODS Using a combination of crystallography, small-angle X-ray scattering, electron microscopy and structure-guided functional assays, we characterized how sIHF binds and remodels DNA. RESULTS The structure of sIHF bound to DNA revealed two DNA-binding elements on opposite surfaces of the helix bundle. Using structure-guided functional assays, we identified an additional surface that drives DNA binding in solution. Binding by each element is necessary for both normal development and antibiotic production in vivo, while in vitro, they act collectively to restrain negative supercoils. CONCLUSIONS The cleft defined by the N-terminal and the helix bundle of sIHF drives DNA binding, but the two additional surfaces identified on the crystal structure are necessary to stabilize binding, remodel DNA and maintain wild-type levels of antibiotic production. We propose a model describing how the multiple DNA-binding elements enable oligomerization-independent nucleoid condensation. GENERAL SIGNIFICANCE This work provides a new dimension to the mechanistic repertoire ascribed to bacterial NAPs and highlights the power of combining structural biology techniques to study sequence unspecific protein-DNA interactions.
Collapse
Affiliation(s)
- Tamiza Nanji
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Emma J Gehrke
- Department of Biology, McMaster University, Hamilton, ON, Canada; Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Yao Shen
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada; Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Melanie Gloyd
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Xiafei Zhang
- Department of Biology, McMaster University, Hamilton, ON, Canada; Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Christopher D Firby
- Department of Biology, McMaster University, Hamilton, ON, Canada; Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Angela Huynh
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Aida Razi
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Marie A Elliot
- Department of Biology, McMaster University, Hamilton, ON, Canada; Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Alba Guarné
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada; Department of Biochemistry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
8
|
Kriel NL, Gallant J, van Wyk N, van Helden P, Sampson SL, Warren RM, Williams MJ. Mycobacterial nucleoid associated proteins: An added dimension in gene regulation. Tuberculosis (Edinb) 2018. [DOI: 10.1016/j.tube.2017.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Defining the Functionally Important Domain and Amino Acid Residues in Mycobacterium tuberculosis Integration Host Factor for Genome Stability, DNA Binding, and Integrative Recombination. J Bacteriol 2017; 199:JB.00357-17. [PMID: 28696279 DOI: 10.1128/jb.00357-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 06/25/2017] [Indexed: 11/20/2022] Open
Abstract
The integration host factor of Mycobacterium tuberculosis (mIHF) consists of a single polypeptide chain, the product of the ihf gene. We previously revealed that mIHF is a novel member of a new class of nucleoid-associated proteins that have important roles in DNA damage response, nucleoid compaction, and integrative recombination. The mIHF contains a region of 86 amino acids at its N terminus, absent from both α- and β-subunits of Escherichia coli IHF. However, the functional significance of an extra 86-amino-acid region in the full-length protein remains unknown. Here, we report the structure/function relationship of the DNA-binding and integrative recombination-stimulating activity of mIHF. Deletion mutagenesis showed that an extra 86-amino-acid region at the N terminus is dispensable; the C-terminal region possesses the sequences essential for its known biological functions, including the ability to suppress the sensitivity of E. coli ΔihfA and ΔihfB cells to DNA-damaging agents, DNA binding, DNA multimerization-circularization, and stimulation of phage L5 integrase-catalyzed integrative recombination. Single and double alanine substitutions at positions Arg170 and Arg171, located at the mIHF DNA-binding site, abrogated its capacity to suppress the sensitivity of E. coli ΔihfA and ΔihfB cells to DNA-damaging agents. The variants encoded by these mutant alleles failed to bind DNA and stimulate integrative recombination. Interestingly, the DNA-binding activity of the mIHF-R173A variant remained largely unaffected; however, it was unable to stimulate integrative recombination, thus revealing a separation-of-function allele of mIHF. The functional and structural characterization of this separation-of-function allele of mIHF could reveal previously unknown functions of IHF.IMPORTANCE The integration host factor of Mycobacterium tuberculosis is a novel nucleoid-associated protein. mIHF plays a vital role in DNA damage response, nucleoid compaction, and integrative recombination. Intriguingly, mIHF contains an extra 86-amino-acid region at its N terminus, absent from both α- and β-subunits of Escherichia coli IHF, whose functional significance is unknown. Furthermore, a triad of arginine residues located at the mIHF-DNA interface have been implicated in a range of its functions. Here, we reveal the roles of N- and C-terminal regions of mIHF and the individual residues in the Arg triad for their ability to provide protection in vivo against DNA damage, bind DNA, and stimulate integrase-catalyzed site-specific recombination.
Collapse
|
10
|
Lunt BL, Hatfull GF. Brujita Integrase: A Simple, Arm-Less, Directionless, and Promiscuous Tyrosine Integrase System. J Mol Biol 2016; 428:2289-2306. [PMID: 27113630 DOI: 10.1016/j.jmb.2016.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/13/2016] [Accepted: 04/15/2016] [Indexed: 11/29/2022]
Abstract
Mycobacteriophage Brujita is an unusual temperate phage in which establishment of superinfection immunity is dependent on chromosomal integration. Integration is mediated by a non-canonical tyrosine integrase (Int) lacking an N-terminal domain typically associated with binding to arm-type sites within the phage attachment site (attP). This raises the question as to how these Ints bind their DNA substrates, if they form higher-order protein DNA complexes, and how site selection and recombinational directionality are determined. Here we show that Brujita Int is a simple recombinase, whose properties more closely resemble those of FLP and Cre than it does the canonical phage Ints. Brujita Int uses relatively small DNA substrates, fails to discriminate between attP and attB, cleaves attachment site DNA to form a 6-base overlap region, and lacks directional control. Brujita Int also has an unusual pattern of binding to its DNA substrates. It binds to two half sites (B and B') at attB, although binding to the B half site is strongly dependent on occupancy of B'. In contrast, binding to the P half site is not observed, even when Int is bound at P'. However, an additional Int binding site (P1) is displaced to the left of the crossover site at attP, is required for recombination and is predicted to facilitate binding of Int to the P half site during synapsis. These simple phage Int systems may reflect ancestral states of phage evolution with the complexities of higher-order complex formation and directional control representing subsequent adaptations.
Collapse
Affiliation(s)
- Bryce L Lunt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
11
|
Sharadamma N, Harshavardhana Y, Ravishankar A, Anand P, Chandra N, Muniyappa K. Molecular Dissection of Mycobacterium tuberculosis Integration Host Factor Reveals Novel Insights into the Mode of DNA Binding and Nucleoid Compaction. Biochemistry 2015; 54:4142-60. [DOI: 10.1021/acs.biochem.5b00447] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Apoorva Ravishankar
- Department of
Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Praveen Anand
- Department of
Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Nagasuma Chandra
- Department of
Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - K. Muniyappa
- Department of
Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
12
|
Sharadamma N, Harshavardhana Y, Ravishankar A, Anand P, Chandra N, Muniyappa K. Molecular dissection of Mycobacterium tuberculosis integration host factor reveals novel insights into the mode of DNA binding and nucleoid compaction. J Biol Chem 2014; 289:34325-40. [PMID: 25324543 DOI: 10.1074/jbc.m114.608596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The annotated whole-genome sequence of Mycobacterium tuberculosis revealed that Rv1388 (Mtihf) is likely to encode for a putative 20-kDa integration host factor (mIHF). However, very little is known about the functional properties of mIHF or the organization of the mycobacterial nucleoid. Molecular modeling of the mIHF three-dimensional structure, based on the cocrystal structure of Streptomyces coelicolor IHF duplex DNA, a bona fide relative of mIHF, revealed the presence of Arg-170, Arg-171, and Arg-173, which might be involved in DNA binding, and a conserved proline (Pro-150) in the tight turn. The phenotypic sensitivity of Escherichia coli ΔihfA and ΔihfB strains to UV and methyl methanesulfonate could be complemented with the wild-type Mtihf but not its alleles bearing mutations in the DNA-binding residues. Protein-DNA interaction assays revealed that wild-type mIHF, but not its DNA-binding variants, binds with high affinity to fragments containing attB and attP sites and curved DNA. Strikingly, the functionally important amino acid residues of mIHF and the mechanism(s) underlying its binding to DNA, DNA bending, and site-specific recombination are fundamentally different from that of E. coli IHFαβ. Furthermore, we reveal novel insights into IHF-mediated DNA compaction depending on the placement of its preferred binding sites; mIHF promotes DNA compaction into nucleoid-like or higher order filamentous structures. We therefore propose that mIHF is a distinct member of a subfamily of proteins that serve as essential cofactors in site-specific recombination and nucleoid organization and that these findings represent a significant advance in our understanding of the role(s) of nucleoid-associated proteins.
Collapse
Affiliation(s)
| | | | - Apoorva Ravishankar
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Praveen Anand
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Nagasuma Chandra
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - K Muniyappa
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
13
|
Unexpected extensive lysine acetylation in the trump-card antibiotic producer Streptomyces roseosporus revealed by proteome-wide profiling. J Proteomics 2014; 106:260-9. [DOI: 10.1016/j.jprot.2014.04.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/14/2014] [Accepted: 04/09/2014] [Indexed: 01/10/2023]
|
14
|
Fogg PCM, Colloms S, Rosser S, Stark M, Smith MCM. New applications for phage integrases. J Mol Biol 2014; 426:2703-16. [PMID: 24857859 PMCID: PMC4111918 DOI: 10.1016/j.jmb.2014.05.014] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/09/2014] [Accepted: 05/16/2014] [Indexed: 11/28/2022]
Abstract
Within the last 25 years, bacteriophage integrases have rapidly risen to prominence as genetic tools for a wide range of applications from basic cloning to genome engineering. Serine integrases such as that from ϕC31 and its relatives have found an especially wide range of applications within diverse micro-organisms right through to multi-cellular eukaryotes. Here, we review the mechanisms of the two major families of integrases, the tyrosine and serine integrases, and the advantages and disadvantages of each type as they are applied in genome engineering and synthetic biology. In particular, we focus on the new areas of metabolic pathway construction and optimization, biocomputing, heterologous expression and multiplexed assembly techniques. Integrases are versatile and efficient tools that can be used in conjunction with the various extant molecular biology tools to streamline the synthetic biology production line. Phage integrases are site-specific recombinases that mediate controlled and precise DNA integration and excision. The serine integrases, such as ϕC31 integrase, can be used for efficient recombination in heterologous hosts as they use short recombination substrates, they are directional and they do not require host factors. Both serine and tyrosine integrases, such as λ integrase, are versatile tools for DNA cloning and assembly in vivo and in vitro. Controlled expression of orthologous serine integrases and their cognate recombination directionality factors can be used to generate living biocomputers. Serine integrases are increasingly being exploited for synthetic biology applications.
Collapse
Affiliation(s)
- Paul C M Fogg
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Sean Colloms
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Susan Rosser
- School of Biological Sciences, University of Edinburgh, King's Building, Edinburgh EH9 3JR, UK
| | - Marshall Stark
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Margaret C M Smith
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK.
| |
Collapse
|
15
|
Abstract
ABSTRACT
Mycobacteriophages have provided numerous essential tools for mycobacterial genetics, including delivery systems for transposons, reporter genes, and allelic exchange substrates, and components for plasmid vectors and mutagenesis. Their genetically diverse genomes also reveal insights into the broader nature of the phage population and the evolutionary mechanisms that give rise to it. The substantial advances in our understanding of the biology of mycobacteriophages including a large collection of completely sequenced genomes indicates a rich potential for further contributions in tuberculosis genetics and beyond.
Collapse
|
16
|
Hatfull GF. Molecular Genetics of Mycobacteriophages. Microbiol Spectr 2014; 2:1-36. [PMID: 25328854 PMCID: PMC4199240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023] Open
Abstract
Mycobacteriophages have provided numerous essential tools for mycobacterial genetics, including delivery systems for transposons, reporter genes, and allelic exchange substrates, and components for plasmid vectors and mutagenesis. Their genetically diverse genomes also reveal insights into the broader nature of the phage population and the evolutionary mechanisms that give rise to it. The substantial advances in our understanding of the biology of mycobacteriophages including a large collection of completely sequenced genomes indicates a rich potential for further contributions in tuberculosis genetics and beyond.
Collapse
Affiliation(s)
- Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
17
|
Singh S, Plaks JG, Homa NJ, Amrich CG, Héroux A, Hatfull GF, VanDemark AP. The structure of Xis reveals the basis for filament formation and insight into DNA bending within a mycobacteriophage intasome. J Mol Biol 2013; 426:412-22. [PMID: 24112940 DOI: 10.1016/j.jmb.2013.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/26/2013] [Accepted: 10/01/2013] [Indexed: 11/27/2022]
Abstract
The recombination directionality factor, Xis, is a DNA bending protein that determines the outcome of integrase-mediated site-specific recombination by redesign of higher-order protein-DNA architectures. Although the attachment site DNA of mycobacteriophage Pukovnik is likely to contain four sites for Xis binding, Xis crystals contain five subunits in the asymmetric unit, four of which align into a Xis filament and a fifth that is generated by an unusual domain swap. Extensive intersubunit contacts stabilize a bent filament-like arrangement with Xis monomers aligned head to tail. The structure implies a DNA bend of ~120°, which is in agreement with DNA bending measured in vitro. Formation of attR-containing intasomes requires only Int and Xis, distinguishing Pukovnik from lambda. Therefore, we conclude that, in Pukovnik, Xis-induced DNA bending is sufficient to promote intramolecular Int-mediated bridges during intasome formation.
Collapse
Affiliation(s)
- Shweta Singh
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Joseph G Plaks
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Nicholas J Homa
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA; Present address: N. J. Homa, 426 CARL Building, Duke University, Durham, NC 27710, USA.
| | - Christopher G Amrich
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Annie Héroux
- Department of Biology, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Andrew P VanDemark
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
18
|
Integration host factor of Mycobacterium tuberculosis, mIHF, compacts DNA by a bending mechanism. PLoS One 2013; 8:e69985. [PMID: 23922883 PMCID: PMC3724605 DOI: 10.1371/journal.pone.0069985] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 06/14/2013] [Indexed: 12/03/2022] Open
Abstract
The bacterial chromosomal DNA is folded into a compact structure called as ‘nucleoid’ so that the bacterial genome can be accommodated inside the cell. The shape and size of the nucleoid are determined by several factors including DNA supercoiling, macromolecular crowding and nucleoid associated proteins (NAPs). NAPs bind to different sites of the genome in sequence specific or non-sequence specific manner and play an important role in DNA compaction as well as regulation. Until recently, few NAPs have been discovered in mycobacteria owing to poor sequence similarities with other histone-like proteins of eubacteria. Several putative NAPs have now been identified in Mycobacteria on the basis of enriched basic residues or histone-like “PAKK” motifs. Here, we investigate mycobacterial Integration Host Factor (mIHF) for its architectural roles as a NAP using atomic force microscopy and DNA compaction experiments. We demonstrate that mIHF binds DNA in a non-sequence specific manner and compacts it by a DNA bending mechanism. AFM experiments also indicate a dual architectural role for mIHF in DNA compaction as well as relaxation. These results suggest a convergent evolution in the mechanism of E. coli and mycobacterial IHF in DNA compaction.
Collapse
|
19
|
Abstract
The study of mycobacteriophages provides insights into viral diversity and evolution, as well as the genetics and physiology of their pathogenic hosts. Genomic characterization of 80 mycobacteriophages reveals a high degree of genetic diversity and an especially rich reservoir of interesting genes. These include a vast number of genes of unknown function that do not match known database entries and many genes whose functions can be predicted but which are not typically found as components of phage genomes. Thus many mysteries surround these genomes, such as why the genes are there, what do they do, how are they expressed and regulated, how do they influence the physiology of the host bacterium, and what forces of evolution directed them to their genomic homes? Although the genetic diversity and novelty of these phages is full of intrigue, it is a godsend for the mycobacterial geneticist, presenting an abundantly rich toolbox that can be exploited to devise new and effective ways for understanding the genetics and physiology of human tuberculosis. As the number of sequenced genomes continues to grow, their mysteries continue to thicken, and the time has come to learn more about the secret lives of mycobacteriophages.
Collapse
Affiliation(s)
- Graham F Hatfull
- Department of Biological Sciences, Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, Pennslyvania, USA
| |
Collapse
|
20
|
Swiercz JP, Nanji T, Gloyd M, Guarné A, Elliot MA. A novel nucleoid-associated protein specific to the actinobacteria. Nucleic Acids Res 2013; 41:4171-84. [PMID: 23427309 PMCID: PMC3627587 DOI: 10.1093/nar/gkt095] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Effective chromosome organization is central to the functioning of any cell. In bacteria, this organization is achieved through the concerted activity of multiple nucleoid-associated proteins. These proteins are not, however, universally conserved, and different groups of bacteria have distinct subsets that contribute to chromosome architecture. Here, we describe the characterization of a novel actinobacterial-specific protein in Streptomyces coelicolor. We show that sIHF (SCO1480) associates with the nucleoid and makes important contributions to chromosome condensation and chromosome segregation during Streptomyces sporulation. It also affects antibiotic production, suggesting an additional role in gene regulation. In vitro, sIHF binds DNA in a length-dependent but sequence-independent manner, without any obvious structural preferences. It does, however, impact the activity of topoisomerase, significantly altering DNA topology. The sIHF–DNA co-crystal structure reveals sIHF to be composed of two domains: a long N-terminal helix and a C-terminal helix-two turns-helix domain with two separate DNA interaction sites, suggesting a potential role in bridging DNA molecules.
Collapse
Affiliation(s)
- Julia P Swiercz
- Department of Biology and Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
21
|
Nomoto R, Tezuka T, Miyazono KI, Tanokura M, Horinouchi S, Ohnishi Y. Purification, crystallization and preliminary X-ray analysis of SGR6054, a Streptomyces homologue of the mycobacterial integration host factor mIHF. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1085-8. [PMID: 22949201 DOI: 10.1107/s1744309112030631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 07/04/2012] [Indexed: 11/10/2022]
Abstract
The mycobacterial integration host factor (mIHF) is a small nonspecific DNA-binding protein that is essential for the growth of Mycobacterium smegmatis. mIHF homologues are widely distributed among Actinobacteria, and a Streptomyces homologue of mIHF is involved in control of sporulation and antibiotic production in S. coelicolor A3(2). Despite their important biological functions, a structure of mIHF or its homologues has not been elucidated to date. Here, the S. griseus mIHF homologue (SGR6054) was expressed and purified from Escherichia coli and crystallized in the presence of a 16-mer duplex DNA by the sitting-drop vapour-diffusion method. The plate-shaped crystal belonged to space group C2, with unit-cell parameters a = 88.53, b = 69.35, c = 77.71 Å, β = 96.63°, and diffracted X-rays to 2.22 Å resolution.
Collapse
Affiliation(s)
- Ryohei Nomoto
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Jakimowicz D, van Wezel GP. Cell division and DNA segregation in Streptomyces: how to build a septum in the middle of nowhere? Mol Microbiol 2012; 85:393-404. [PMID: 22646484 DOI: 10.1111/j.1365-2958.2012.08107.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Streptomycetes are antibiotic-producing filamentous microorganisms that have a mycelial life style. In many ways streptomycetes are the odd ones out in terms of cell division. While the basic components of the cell division machinery are similar to those found in rod-shaped bacteria such as Escherichia coli and Bacillus subtilis, many aspects of the control of cell division and its co-ordination with chromosome segregation are remarkably different. The rather astonishing fact that cell division is not essential for growth makes these bacteria unique. The fundamental difference between the cross-walls produced during normal growth and sporulation septa formed in aerial hyphae, and the role of the divisome in their formation are discussed. We then take a closer look at the way septum site localization is regulated in the long and multinucleoid Streptomyces hyphae, with particular focus on actinomycete-specific proteins and the role of nucleoid segregation and condensation.
Collapse
|
23
|
A novel function of Streptomyces integration host factor (sIHF) in the control of antibiotic production and sporulation in Streptomyces coelicolor. Antonie van Leeuwenhoek 2011; 101:479-92. [DOI: 10.1007/s10482-011-9657-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 10/11/2011] [Indexed: 10/15/2022]
|
24
|
Huff J, Czyz A, Landick R, Niederweis M. Taking phage integration to the next level as a genetic tool for mycobacteria. Gene 2010; 468:8-19. [PMID: 20692326 DOI: 10.1016/j.gene.2010.07.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 07/26/2010] [Accepted: 07/27/2010] [Indexed: 11/25/2022]
Abstract
Genes must be stably integrated into bacterial chromosomes for complementation of gene deletion mutants in animal infection experiments or to express antigens in vaccine strains. However, with currently available vectors it is cumbersome to create multiple, stable, unmarked chromosomal integrations in mycobacteria. Here, we have constructed a novel integration vector for mycobacteria that enables expression of genes from a cassette protected from transcriptional interference by bi-directional transcriptional terminators proven to be highly efficient in in vitro transcription termination assays. Removal of the integrase gene by a site-specific recombinase, easily identifiable by loss of a backbone reporter gene, stabilizes the integration cassette and makes this vector ideally suitable for infection experiments. This integration vector can be easily adapted to different mycobacteriophage attachment sites (attB) due to its modular design. Integration of a gfp expression cassette at the L5, Giles and Ms6 attB sites in the chromosomes of Mycobacterium smegmatis and Mycobacterium tuberculosis yielded identical gfp expression levels, indicating that none of these sites are compromised for gene expression. The copy number of pAL5000-based extrachromosomal plasmids is 23 in M. smegmatis as determined by quantitative real-time PCR and accounts for the previously observed drastic reduction of gene expression upon integration of plasmids into the chromosome of mycobacteria. Gfp expression and fluorescence of M. smegmatis and M. tuberculosis strains with multiple integrations of gfp increased concomitantly with the copy number demonstrating that these vectors can be used to generate stronger phenotypes and/or to analyze several genes simultaneously in vivo.
Collapse
Affiliation(s)
- Jason Huff
- Department of Microbiology, University of Alabama at Birmingham, 609 Bevill Biomedical Research Building, 845 19th Street South, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
25
|
Rapid assessment of antibacterial activity against Mycobacterium ulcerans by using recombinant luminescent strains. Antimicrob Agents Chemother 2010; 54:2806-13. [PMID: 20421401 DOI: 10.1128/aac.00400-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium ulcerans causes Buruli ulcer, an emerging infectious disease for which antimicrobial therapy has only recently proven to be beneficial. The discovery and development of new drugs against M. ulcerans are severely impeded by its very slow growth. Recombinant bioluminescent strains have proven useful in drug development for other mycobacterial infections, but the ability of such strains to discriminate bacteriostatic from bactericidal activity has not been well demonstrated. We engineered recombinant M. ulcerans strains to express luxAB from Vibrio harveyi. In drug susceptibility tests employing a wide range of antimicrobial agents and concentrations, the relative light unit (RLU) count measured in real time was a reliable surrogate marker for CFU counts available 3 months later, indicating utility for the rapid determination of drug susceptibility and discrimination of bacteriostatic and bactericidal effects. A second important finding of this study is that the addition of subinhibitory concentrations of the ATP-binding cassette transporter inhibitor reserpine increases the susceptibility of M. ulcerans to tetracycline and erythromycin, indicating that drug efflux may explain at least part of the intrinsic resistance of M. ulcerans to these agents.
Collapse
|
26
|
Saviola B. Phage L5 integrating vectors are present within the Mycobacterial Cell in an equilibrium between integrated and excised states. CANCER THERAPY 2009; 7:35-42. [PMID: 26316877 PMCID: PMC4548942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Integrating mycobacterial plasmids containing the phage L5 attachment site (attP) are able to insert into the mycobacterial chromosome attB site. Plasmids containing the attP site and chromosome containing the attB site are present in equilibrium between the inserted and the excised states in the presence of the phage L5 integrase.
Collapse
Affiliation(s)
- Beatrice Saviola
- Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, 309 E. Second St. Pomona CA 91766
| |
Collapse
|
27
|
Bibb LA, Hancox MI, Hatfull GF. Integration and excision by the large serine recombinase phiRv1 integrase. Mol Microbiol 2005; 55:1896-910. [PMID: 15752208 DOI: 10.1111/j.1365-2958.2005.04517.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Mycobacterium tuberculosis prophage-like element phiRv1 encodes a site-specific recombination system utilizing an integrase of the serine recombinase family. Recombination occurs between a putative attP site and the host chromosome, but is unusual in that the attB site lies within a redundant repetitive element (REP13E12) of which there are seven copies in the M. tuberculosis genome; four of these elements contain attB sites suitable for phiRv1 integration in vivo. Although the mechanism of directional control of large serine integrases is poorly understood, a recombination directionality factor (RDF) has been identified that is required for phiRv1 integrase-mediated excisive recombination in vivo. Here we describe defined in vitro recombination reactions for both phiRv1 integrase-mediated integration and excision and show that the phiRv1 RDF is not only required for excision but inhibits integrative recombination; neither reaction requires DNA supercoiling, host factors, or high-energy cofactors. Integration, excision and excise-mediated inhibition of integration require simple substrates sites, indicating that the control of directionality does not involve the manipulation of higher-order protein-DNA architectures as described for the tyrosine integrases.
Collapse
Affiliation(s)
- Lori A Bibb
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
28
|
Frumerie C, Sylwan L, Ahlgren-Berg A, Haggård-Ljungquist E. Cooperative interactions between bacteriophage P2 integrase and its accessory factors IHF and Cox. Virology 2005; 332:284-94. [PMID: 15661160 DOI: 10.1016/j.virol.2004.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 11/09/2004] [Accepted: 11/15/2004] [Indexed: 10/26/2022]
Abstract
Bacteriophage P2 integrase (Int) mediates site-specific recombination leading to integration or excision of the phage genome in or out of the bacterial chromosome. Int belongs to the large family of tyrosine recombinases that have two different DNA recognition motifs binding to the arm and core sites, respectively, which are located within the phage attachment sites (attP). In addition to the P2 integrase, the accessory proteins Escherichia coli IHF and P2 Cox are needed for recombination. IHF is a structural protein needed for integration and excision by bending the DNA. As opposed to lambda, only one IHF site is found in P2 attP. P2 Cox controls the direction of recombination by inhibiting integration but being required for excision. In this work, the effects of accessory proteins on the capacity of Int to bind to its DNA recognition sequences are analyzed using electromobility shifts. P2 Int binds with low affinity to the arm site, and this binding is greatly enhanced by IHF. The arm binding domain of Int is located at the N-terminus. P2 Int binds with high affinity to the core site, and this binding is also enhanced by IHF. The fact that the cooperative binding of Int and IHF is strongly reduced by lengthening the distance between the IHF and core binding sites indicates that the distance between these sites may be important for cooperative binding. The Int and Cox proteins also bind cooperatively to attP.
Collapse
Affiliation(s)
- Clara Frumerie
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Svante Arrhenius väg 16, S-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
29
|
Abstract
Phage integrases are enzymes that mediate unidirectional site-specific recombination between two DNA recognition sequences, the phage attachment site, attP, and the bacterial attachment site, attB. Integrases may be grouped into two major families, the tyrosine recombinases and the serine recombinases, based on their mode of catalysis. Tyrosine family integrases, such as lambda integrase, utilize a catalytic tyrosine to mediate strand cleavage, tend to recognize longer attP sequences, and require other proteins encoded by the phage or the host bacteria. Phage integrases from the serine family are larger, use a catalytic serine for strand cleavage, recognize shorter attP sequences, and do not require host cofactors. Phage integrases mediate efficient site-specific recombination between two different sequences that are relatively short, yet long enough to be specific on a genomic scale. These properties give phage integrases growing importance for the genetic manipulation of living eukaryotic cells, especially those with large genomes such as mammals and most plants, for which there are few tools for precise manipulation of the genome. Integrases of the serine family have been shown to work efficiently in mammalian cells, mediating efficient integration at introduced att sites or native sequences that have partial identity to att sites. This reaction has applications in areas such as gene therapy, construction of transgenic organisms, and manipulation of cell lines. Directed evolution can be used to increase further the affinity of an integrase for a particular native sequence, opening up additional applications for genomic modification.
Collapse
Affiliation(s)
- Amy C Groth
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5120, USA
| | | |
Collapse
|
30
|
Saviola B, Bishai WR. Method to integrate multiple plasmids into the mycobacterial chromosome. Nucleic Acids Res 2004; 32:e11. [PMID: 14718555 PMCID: PMC373307 DOI: 10.1093/nar/gnh005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In order to create a system in which two independent plasmids can be integrated into a mycobacterial chromosome, a mycobacterial plasmid was constructed containing the phage attachment site attP from the mycobacteriophage L5 genome and additionally containing the bacterial attachment site, attB. This plasmid will integrate into the mycobacterial chromosome via recombination of the plasmid-borne attP site with the chromosomal attB site in the presence of a mycobacterial vector carrying the L5 integrase (int) gene. The integrated plasmid has a plasmid-borne attB site that is preserved and will accept the integration of additional mycobacterial plasmids containing the L5 attP site. This system should be useful in the construction of novel mycobacterial strains. In particular, this system provides a method by which several recombinant antigens or reporter constructs can be sequentially inserted into a mycobacterial strain and subsequently tested.
Collapse
Affiliation(s)
- Beatrice Saviola
- Basic Medical Sciences, College of Osteopathic Medicine, Western University, 309 E. Second Street, Pomona, CA 91766-1854, USA.
| | | |
Collapse
|
31
|
Abstract
Mycobacteriophage L5 is a temperate phage that forms lysogens in Mycobacterium smegmatis. These lysogens carry an integrated L5 prophage inserted at a specific chromosomal location and undergo subsequent excision during induction of lytic growth. Both the integrative and excisive site-specific recombination events are catalyzed by the phage-encoded tyrosine integrase (Int-L5) and require the host-encoded protein, mIHF. The directionality of these recombination events is determined by a second phage-encoded protein, Excise, the product of gene 36 (Xis-L5); integration occurs efficiently in the absence of Xis-L5 while excision is dependent upon it. We show here that Xis-L5 binds to attR DNA, introduces a DNA bend, and facilitates the formation of an intasome-R complex. This complex, which requires mIHF, Xis-L5 and Int-L5, readily recombines with a second intasome formed by Int-L5, mIHF and attL DNA (intasome-L) to generate the attP and attB products of excision. Xis-L5 also strongly inhibits Int-L5-mediated integrative recombination but does not prevent either the protein-DNA interactions that form the attP intasome (intasome-P) or the capture of attB, but acts later in the reaction presumably by preventing the formation of a recombinagenic synaptic intermediate. The mechanism of action of Xis-L5 appears to be purely architectural, influencing the assembly of protein-DNA structures solely through its DNA-binding and DNA-bending properties.
Collapse
Affiliation(s)
- John A Lewis
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
32
|
Springer B, Sander P, Sedlacek L, Ellrott K, Böttger EC. Instability and site-specific excision of integration-proficient mycobacteriophage L5 plasmids: development of stably maintained integrative vectors. Int J Med Microbiol 2001; 290:669-75. [PMID: 11310445 DOI: 10.1016/s1438-4221(01)80004-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
Integrative vectors expressing foreign genes are used as tools for the development of recombinant vaccines in mycobacteria since it is assumed that these vectors are stably maintained even without antibiotic selection. We here demonstrate that integration-proficient vectors are lost from the mycobacterial genome in high frequency. Loss of integrated vectors occurred in recA+ and in recA-strains, indicating a RecA-independent mechanism. Loss of the integrated vector was prevented when integrase gene function was carried on a separate plasmid that is unable to replicate in mycobacteria, indicating that excision is a function of integrase. By providing attP in cis and integrase function in trans, vectors integrating at the attB site are stably maintained, even when carrying genes that deleteriously affect the host.
Collapse
Affiliation(s)
- B Springer
- Institut für Medizinische Mikrobiologie, Medizinische Hochschule Hannover, Germany.
| | | | | | | | | |
Collapse
|
33
|
Mediavilla J, Jain S, Kriakov J, Ford ME, Duda RL, Jacobs WR, Hendrix RW, Hatfull GF. Genome organization and characterization of mycobacteriophage Bxb1. Mol Microbiol 2000; 38:955-70. [PMID: 11123671 DOI: 10.1046/j.1365-2958.2000.02183.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mycobacteriophage Bxb1 is a temperate phage of Mycobacterium smegmatis. The morphology of Bxb1 particles is similar to that of mycobacteriophages L5 and D29, although Bxb1 differs from these phages in other respects. First, it is heteroimmune with L5 and efficiently forms plaques on an L5 lysogen. Secondly, it has a different host range and fails to infect slow-growing mycobacteria, using a receptor system that is apparently different from that of L5 and D29. Thirdly, it is the first mycobacteriophage to be described that forms a large prominent halo around plaques on a lawn of M. smegmatis. The sequence of the Bxb1 genome shows that it possesses a similar overall organization to the genomes of L5 and D29 and shares weak but detectable DNA sequence similarity to these phages within the structural genes. However, Bxb1 uses a different system of integration and excision, a repressor with different specificity to that of L5 and encodes a large number of novel gene products including several with enzymatic functions that could degrade or modify the mycobacterial cell wall.
Collapse
Affiliation(s)
- J Mediavilla
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Peña CE, Kahlenberg JM, Hatfull GF. Assembly and activation of site-specific recombination complexes. Proc Natl Acad Sci U S A 2000; 97:7760-5. [PMID: 10869430 PMCID: PMC16618 DOI: 10.1073/pnas.140014297] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Site-specific recombination is responsible for a broad range of biological phenomena, including DNA inversion, resolution of transposition intermediates, and the integration and excision of bacteriophage genomes. Integration of mycobacteriophage L5 is catalyzed by a phage-encoded integrase with recombination occurring between specific attachment sites on the phage and mycobacterial chromosomes (attP and attB, respectively). Although some site-specific recombination systems simply involve binding of the recombinase to the sites of strand exchange, synapsis, and recombination, phage systems typically require the assembly of higher-order structures within which the recombinational potential of integrase is activated. The requirement for these structures derives from the necessity to regulate the directionality of recombination-either integration or excision-which must be closely coordinated with other aspects of the phage growth cycles. We show herein that there are multiple pathways available for the assembly of L5 recombination complexes, including the early synapsis of the attP and attB DNAs. This process is in contrast to the model for lambda integration and illustrates the different usage of molecular machineries to accomplish the same biological outcome.
Collapse
Affiliation(s)
- C E Peña
- Department of Biological Sciences and Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
35
|
Cotmore SF, Christensen J, Tattersall P. Two widely spaced initiator binding sites create an HMG1-dependent parvovirus rolling-hairpin replication origin. J Virol 2000; 74:1332-41. [PMID: 10627544 PMCID: PMC111468 DOI: 10.1128/jvi.74.3.1332-1341.2000] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Minute virus of mice (MVM) replicates via a linearized form of rolling-circle replication in which the viral nickase, NS1, initiates DNA synthesis by introducing a site-specific nick into either of two distinct origin sequences. In vitro nicking and replication assays with substrates that had deletions or mutations were used to explore the sequences and structural elements essential for activity of one of these origins, located in the right-end (5') viral telomere. This structure contains 248 nucleotides, most-favorably arranged as a simple hairpin with six unpaired bases. However, a pair of opposing NS1 binding sites, located near its outboard end, create a 33-bp palindrome that could potentially assume an alternate cruciform configuration and hence directly bind HMG1, the essential cofactor for this origin. The palindromic nature of this sequence, and thus its ability to fold into a cruciform, was dispensable for origin function, as was the NS1 binding site occupying the inboard arm of the palindrome. In contrast, the NS1 site in the outboard arm was essential for initiation, even though positioned 120 bp from the nick site. The specific sequence of the nick site and an additional NS1 binding site which directly orients NS1 over the initiation site were also essential and delimited the inboard border of the minimal right-end origin. DNase I and hydroxyl radical footprints defined sequences protected by NS1 and suggest that HMG1 allows the NS1 molecules positioned at each end of the origin to interact, creating a distortion characteristic of a double helical loop.
Collapse
Affiliation(s)
- S F Cotmore
- Departments of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|
36
|
Abstract
The well-characterized mycobacteriophage L5 forms stable lysogens in Mycobacterium smegmatis. Establishment of lysogeny involves integration of the phage genome into the chromosome of its mycobacterial hosts through an integrase-mediated site-specific recombination event. As L5 lysogens spontaneously generate free phage particles, prophage excision must also occur, although an L5 excisionase gene had not been identified. We show here that L5 gene 36 encodes the phage excisionase and is a small, heat-stable 56-amino-acid protein that strongly stimulates excisive recombination both in vivo and in vitro. The ability to manipulate the highly directional phage integration and excision reactions will provide powerful tools for the introduction, curing and recovery of foreign genes in recombinant mycobacterial strains.
Collapse
Affiliation(s)
- J A Lewis
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
37
|
Stolt P, Zhang Q, Ehlers S. Identification of promoter elements in mycobacteria: mutational analysis of a highly symmetric dual promoter directing the expression of replication genes of the Mycobacterium plasmid pAL5000. Nucleic Acids Res 1999; 27:396-402. [PMID: 9862957 PMCID: PMC148192 DOI: 10.1093/nar/27.2.396] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The 120 bp origin of replication (ori) for the Mycobacterium plasmid pAL5000 has been shown to comprise the binding sites for the replication protein RepB as well as the start site of transcription for the repA and repB genes, encoding the replication proteins RepA and RepB. In this work it is demonstrated that a third gene product, Rap, is involved in replication in addition to the previously described proteins. Mycobacterium smegmatis cells transformed with replicons carrying the rap gene recover markedly faster upon electroporation than those transformed with the minimal replicon, which lacks rap. The rap gene, oppositely orientated to repA/B, was shown to be transcribed from a promoter orientated back-to-back to and overlapping the repA/B promoter. As a consequence of the extensive dyad symmetry in this region the two promoters share several elements, most of which are situated inside the high-affinity RepB-binding motif in the ori. Transcription of rap runs through the low-affinity RepB-binding site, which is part of the ori and necessary for replication. Both promoters were shown to be repressed by RepB. These divergent promoters were studied through site-specific mutagenesis in a xylE reporter gene assay. The analysis furnished evidence supporting the existence of a distal as well as a proximal element in mycobacterial promoters.
Collapse
Affiliation(s)
- P Stolt
- Division of Molecular Infection Biology, Research Centre Borstel, Parkallee 22, D-23845 Borstel, Germany.
| | | | | |
Collapse
|
38
|
Peña CE, Kahlenberg JM, Hatfull GF. Protein-DNA complexes in mycobacteriophage L5 integrative recombination. J Bacteriol 1999; 181:454-61. [PMID: 9882658 PMCID: PMC93398 DOI: 10.1128/jb.181.2.454-461.1999] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The temperate mycobacteriophage L5 integrates site specifically into the genomes of Mycobacterium smegmatis, Mycobacterium tuberculosis, and Mycobacterium bovis bacillus Calmette-Guérin. This integrative recombination event occurs between the phage L5 attP site and the mycobacterial attB site and requires the phage-encoded integrase and mycobacterial-encoded integration host factor mIHF. Here we show that attP, Int-L5, and mIHF assemble into a recombinationally active complex, the intasome, which is capable of attB capture and formation of products. The arm-type integrase binding sites within attP play specialized roles in the formation of specific protein-DNA architectures; the intasome is constructed by the formation of intramolecular integrase bridges between one pair of sites, P4-P5, and the attP core, while an additional pair of sites, P1-P2, is required for interaction with attB.
Collapse
Affiliation(s)
- C E Peña
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | |
Collapse
|
39
|
Hatfull GF. 9 Genetic Methods in Mycobacteria. METHODS IN MICROBIOLOGY 1999. [DOI: 10.1016/s0580-9517(08)70120-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Peña CE, Stoner J, Hatfull GF. Mycobacteriophage D29 integrase-mediated recombination: specificity of mycobacteriophage integration. Gene X 1998; 225:143-51. [PMID: 9931474 DOI: 10.1016/s0378-1119(98)00490-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Mycobacteriophage D29 is a lytic phage that infects both fast- and slow-growing species of the mycobacteria. D29 forms clear plaques on lawns of Mycobacterium smegmatis and Mycobacterium bovis bacille Calmette-Guérin (BCG) in which a very high proportion of infected cells are killed. However, genomic analysis of D29 demonstrates that it is a close relative of the temperate mycobacteriophage L5, and is presumably a non-temperate derivative of a temperate parent. The D29 genome encodes a putative integrase protein with a primary amino acid sequence similar to that of the L5 integrase; the corresponding int genes fall in colinear positions within the D29 and L5 genomes, immediately flanking and transcribed away from their associated attP sites. We show here that the D29 integrase is functional and catalyzes integrative recombination between the D29 attP site and the M. smegmatis attB site in vitro in an mIHF-dependent manner. D29 integrase also mediates recombination between the L5 attP site and attB DNA and, reciprocally, L5 integrase catalyzes recombination with D29 attP DNA. However, in both in-vitro and in-vivo assays, the D29-encoded integrase recombines the D29 attP more efficiently than the L5 attP, and vice versa, suggesting that each integration system has evolved a degree of specificity of attP recognition. We also present the sequences of the putative attP site and integrase protein of the cryptic prophage-like element phiRv2, and compare them to those of mycobacteriophages L5 and D29.
Collapse
Affiliation(s)
- C E Peña
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
41
|
Abstract
Integration of mycobacteriophage L5 requires the mycobacterial integration host factor (mIHF) in vitro. mIHF is a 105-residue heat-stable polypeptide that is not obviously related to HU or any other small DNA-binding proteins. mIHF is most abundant just prior to entry into stationary phase and is essential for the viability of Mycobacterium smegmatis.
Collapse
Affiliation(s)
- M L Pedulla
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
42
|
Ghosh S, Jain A, Mukherjee B, Habib S, Hasnain SE. The host factor polyhedrin promoter binding protein (PPBP) is involved in transcription from the baculovirus polyhedrin gene promoter. J Virol 1998; 72:7484-93. [PMID: 9696845 PMCID: PMC109984 DOI: 10.1128/jvi.72.9.7484-7493.1998] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hypertranscription and temporal expression from the Autographa californica nuclear polyhedrosis (AcNPV) baculovirus polyhedrin promoter involves an alpha-amanitin-resistant RNA polymerase and requires a trans-acting viral factor(s). We previously reported that a 30-kDa host factor, polyhedrin promoter binding protein (PPBP), binds with unusual affinity, specificity, and stability to the transcriptionally important motif AATAAATAAGTATT within the polyhedrin (polh) initiator promoter and also displays coding strand-specific single-stranded DNA (ssDNA)-binding activity (S. Burma, B. Mukherjee, A. Jain, S. Habib, and S. E. Hasnain, J. Biol. Chem. 269:2750-2757, 1994; B. Mukherjee, S. Burma, and S. E. Hasnain, J. Biol. Chem. 270:4405-4411, 1995). We now present evidence which indicates that an additional factor(s) is involved in stabilizing PPBP-duplex promoter and PPBP-ssDNA interactions. TBP (TATA box binding protein) present in Spodoptera frugiperda (Sf9) cells is characteristically distinct from PPBP and does not interact directly with the polh promoter. Replacement of PPBP cognate sequences within the polh promoter with random nucleotides abolished PPBP binding in vitro and also failed to express the luciferase reporter gene in vivo. Phosphocellulose fractions of total nuclear extract from virus-infected cells which support in vitro transcription from the polh promoter contain PPBP activity. When PPBP was sequestered by the presence of oligonucleotides containing PPBP cognate sequence motifs, in vitro transcription of a C-free reporter cassette was affected but was restored by the exogenous addition of nuclear extract containing PPBP. When PPBP was mopped out in vivo by a plasmid carrying PPBP cognate sequence present in trans, polh promoter-driven expression of the luciferase reporter was abolished, demonstrating that binding of PPBP to the polh promoter is essential for transcription.
Collapse
Affiliation(s)
- S Ghosh
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | |
Collapse
|
43
|
Peña CE, Kahlenberg JM, Hatfull GF. The role of supercoiling in mycobacteriophage L5 integrative recombination. Nucleic Acids Res 1998; 26:4012-8. [PMID: 9705513 PMCID: PMC147811 DOI: 10.1093/nar/26.17.4012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The genome of temperate mycobacteriophage L5 integrates into the chromosomes of its hosts, including Mycobacterium smegmatis , Mycobacterium tuberculosis and bacille Calmette-Guérin. This integrase-mediated site-specific recombination reaction occurs between the phage attP site and the mycobacterial attB site and requires the mycobacterial integration host factor. Here we examine the role of supercoiling in this reaction and show that integration is stimulated by DNA supercoiling but that supercoiling of either the attP or the attB substrate enhances recombination. Supercoiling thus facilitates a post-synaptic recombination event. We also show that, while supercoiling is not required for the production of a recombinagenic intasome, a mutant attP DNA deficient in binding of the host factor acquires a dependence on supercoiling for intasome formation and recombination.
Collapse
Affiliation(s)
- C E Peña
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|