1
|
Ehrenreich H, Gassmann M, Poustka L, Burtscher M, Hammermann P, Sirén AL, Nave KA, Miskowiak K. Exploiting moderate hypoxia to benefit patients with brain disease: Molecular mechanisms and translational research in progress. NEUROPROTECTION 2023; 1:9-19. [PMID: 37671067 PMCID: PMC7615021 DOI: 10.1002/nep3.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/17/2022] [Indexed: 09/07/2023]
Abstract
Hypoxia is increasingly recognized as an important physiological driving force. A specific transcriptional program, induced by a decrease in oxygen (O2) availability, for example, inspiratory hypoxia at high altitude, allows cells to adapt to lower O2 and limited energy metabolism. This transcriptional program is partly controlled by and partly independent of hypoxia-inducible factors. Remarkably, this same transcriptional program is stimulated in the brain by extensive motor-cognitive exercise, leading to a relative decrease in O2 supply, compared to the acutely augmented O2 requirement. We have coined the term "functional hypoxia" for this important demand-responsive, relative reduction in O2 availability. Functional hypoxia seems to be critical for enduring adaptation to higher physiological challenge that includes substantial "brain hardware upgrade," underlying advanced performance. Hypoxia-induced erythropoietin expression in the brain likely plays a decisive role in these processes, which can be imitated by recombinant human erythropoietin treatment. This article review presents hints of how inspiratory O2 manipulations can potentially contribute to enhanced brain function. It thereby provides the ground for exploiting moderate inspiratory plus functional hypoxia to treat individuals with brain disease. Finally, it sketches a planned multistep pilot study in healthy volunteers and first patients, about to start, aiming at improved performance upon motor-cognitive training under inspiratory hypoxia.
Collapse
Affiliation(s)
- Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Max Gassmann
- Institute of Veterinary Physiology and Zürich Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Martin Burtscher
- Faculty of Sports Science, University of Innsbruck, Innsbruck, Austria
| | | | - Anna-Leena Sirén
- Departments of Neurophysiology and Neurosurgery, University of Würzburg, Würzburg, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Kamilla Miskowiak
- Psychiatric Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Hashimoto Y, Tsuzuki-Nakao T, Kida N, Matsuo Y, Maruyama T, Okada H, Hirota K. Inflammatory Cytokine-Induced HIF-1 Activation Promotes Epithelial-Mesenchymal Transition in Endometrial Epithelial Cells. Biomedicines 2023; 11:biomedicines11010210. [PMID: 36672719 PMCID: PMC9855875 DOI: 10.3390/biomedicines11010210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The endometrium undergoes repeated proliferation and shedding during the menstrual cycle. Significant changes to this environment include fluctuations in the partial pressure of oxygen, exposure to a high-cytokine environment associated with intrauterine infection, and inflammation. Chronic endometritis is a condition wherein mild inflammation persists in the endometrium and is one of the causes of implantation failure and miscarriage in early pregnancy. It is thought that the invasion of embryos into the endometrium requires epithelial-mesenchymal transition (EMT)-associated changes in the endometrial epithelium. However, the effects of inflammation on the endometrium remain poorly understood. In this study, we investigated the effects of the intrauterine oxygen environment, hypoxia-inducible factor (HIF), and inflammation on the differentiation and function of endometrial epithelial cells. We elucidated the ways in which inflammatory cytokines affect HIF activity and EMT in an immortalized cell line (EM-E6/E7/TERT) derived from endometrial epithelium. Pro-inflammatory cytokines caused significant accumulation of HIF-1α protein, increased HIF-1α mRNA levels, and enhanced hypoxia-induced accumulation of HIF-1α protein. The combined effect of inflammatory cytokines and hypoxia increased the expression of EMT-inducing factors and upregulated cell migration. Our findings indicate that pro-inflammatory factors, including cytokines and LPS, work synergistically with hypoxia to activate HIF-1 and promote EMT in endometrial epithelial cells.
Collapse
Affiliation(s)
- Yoshiko Hashimoto
- Department of Obstetrics and Gynecology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1191, Japan
| | - Tomoko Tsuzuki-Nakao
- Department of Obstetrics and Gynecology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1191, Japan
| | - Naoko Kida
- Department of Obstetrics and Gynecology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1191, Japan
| | - Yoshiyuki Matsuo
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan
| | - Tetsuo Maruyama
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hidetaka Okada
- Department of Obstetrics and Gynecology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1191, Japan
| | - Kiichi Hirota
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan
- Correspondence: ; Tel.: +81-72-804-0101
| |
Collapse
|
3
|
Smith LA, Hidalgo Aguilar A, Owens DDG, Quelch RH, Knight E, Przyborski SA. Using Advanced Cell Culture Techniques to Differentiate Pluripotent Stem Cells and Recreate Tissue Structures Representative of Teratoma Xenografts. Front Cell Dev Biol 2021; 9:667246. [PMID: 34026759 PMCID: PMC8134696 DOI: 10.3389/fcell.2021.667246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/12/2021] [Indexed: 11/24/2022] Open
Abstract
Various methods are currently used to investigate human tissue differentiation, including human embryo culture and studies utilising pluripotent stem cells (PSCs) such as in vitro embryoid body formation and in vivo teratoma assays. Each method has its own distinct advantages, yet many are limited due to being unable to achieve the complexity and maturity of tissue structures observed in the developed human. The teratoma xenograft assay allows maturation of more complex tissue derivatives, but this method has ethical issues surrounding animal usage and significant protocol variation. In this study, we have combined three-dimensional (3D) in vitro cell technologies including the common technique of embryoid body (EB) formation with a novel porous scaffold membrane, in order to prolong cell viability and extend the differentiation of PSC derived EBs. This approach enables the formation of more complex morphologically identifiable 3D tissue structures representative of all three primary germ layers. Preliminary in vitro work with the human embryonal carcinoma line TERA2.SP12 demonstrated improved EB viability and enhanced tissue structure formation, comparable to teratocarcinoma xenografts derived in vivo from the same cell line. This is thought to be due to reduced diffusion distances as the shape of the spherical EB transforms and flattens, allowing for improved nutritional/oxygen support to the developing structures over extended periods. Further work with EBs derived from murine embryonic stem cells demonstrated that the formation of a wide range of complex, recognisable tissue structures could be achieved within 2–3 weeks of culture. Rudimentary tissue structures from all three germ layers were present, including epidermal, cartilage and epithelial tissues, again, strongly resembling tissue structure of teratoma xenografts of the same cell line. Proof of concept work with EBs derived from the human embryonic stem cell line H9 also showed the ability to form complex tissue structures within this system. This novel yet simple model offers a controllable, reproducible method to achieve complex tissue formation in vitro. It has the potential to be used to study human developmental processes, as well as offering an animal free alternative method to the teratoma assay to assess the developmental potential of novel stem cell lines.
Collapse
Affiliation(s)
- L A Smith
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - A Hidalgo Aguilar
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - D D G Owens
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - R H Quelch
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - E Knight
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - S A Przyborski
- Department of Biosciences, Durham University, Durham, United Kingdom.,Reprocell Europe, NETPark, Sedgefield, United Kingdom
| |
Collapse
|
4
|
Widowati W, Murti H, Widyastuti H, Laksmitawati DR, Rizal R, Widya Kusuma HS, Sumitro SB, Widodo MA, Bachtiar I. Decreased Inhibition of Proliferation and Induction of Apoptosis in Breast Cancer Cell Lines (T47D and MCF7) from Treatment with Conditioned Medium Derived from Hypoxia-Treated Wharton's Jelly MSCs Compared with Normoxia-Treated MSCs. Int J Hematol Oncol Stem Cell Res 2021; 15:77-89. [PMID: 34466206 PMCID: PMC8381107 DOI: 10.18502/ijhoscr.v15i2.6038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 12/15/2020] [Indexed: 11/24/2022] Open
Abstract
Background: Mesenchymal stem cells (MSCs) are an appealing source of adult stem cells for cell therapy due to the high rate of proliferation, self-renewal capability, and applicable therapy. Wharton’s jelly (WJ), the main component of the umbilical cord extracellular matrix, comprises multipotent stem cells with a high proliferation rate and self-renewal capability and has anti-cancer properties. MSCs have been reported to secrete a variety of cytokines that have a cytotoxic effect in various cancers. Oxygen tension affects MSCs proliferation, cytokines level but no in surface markers expression, MSCs’ differentiation. We explored the cytotoxic effect and inducing apoptosis of Wharton’s jelly derived mesenchymal stem cells (WJMSCs) secretions from normoxic WJMSCs (WJMSCs-norCM) (CM: conditioned medium) and hypoxic WJMSCs (WJMSCs-hypoCM) in breast cancer cell lines (T47D and MCF7). Materials and Methods: Cytotoxic activity was determined using the MTS assay. RT-PCR was performed to measure the expression of apoptosis-inducing genes, specifically P53, BAX, and CASP9, and the antiapoptotic gene BCL-2. Results: WJMSCs-norCM and WJMSCs-hypoCM were potent inhibitors of the proliferation in both cell lines. WJMSCs-norCM had more anticancer activity in T47D and MCF7. The IC50 value of WJMSCs-norCM on MCF7 was 42.34%, and on T47D was 42.36%. WJMSCs-norCM significantly induced the gene expression of apoptotic P53, BAX, and CASP9 and insignificantly decreased the antiapoptotic gene BCL-2 in both MCF7 and T47D cells. WJMSCs-CM has anticancer activity by inducing P53, BAX, and CASP9 apoptotic genes. Conclusion: WJMSCs-norCM has more anticancer activity than WJMSCs-hypoCM.
Collapse
Affiliation(s)
- Wahyu Widowati
- Faculty of Medicine, Maranatha Christian University, Jl. Prof. drg.. Suria Sumantri No.65, Bandung 40164, Indonesia
| | - Harry Murti
- Stem Cell and Cancer Institute, Jl. A Yani No 2 Pulo Mas, Jakarta 13210, Indonesia
| | - Halida Widyastuti
- Stem Cell and Cancer Institute, Jl. A Yani No 2 Pulo Mas, Jakarta 13210, Indonesia
| | - Dian Ratih Laksmitawati
- Faculty of Pharmacy, Pancasila University, Jl. Raya Lenteng Agung No.56-80 Jakarta 12640, Indonesia
| | - Rizal Rizal
- Biomolecular and Biomedical Research Center, Aretha Medika Utama,, Jl. Babakan Jeruk II No. 9, Bandung 40163, Indonesia.,Biomedical Engineering, Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Jl. Kampus UI, Depok 16426, West Java, Indonesia
| | - Hanna Sari Widya Kusuma
- Biomolecular and Biomedical Research Center, Aretha Medika Utama,, Jl. Babakan Jeruk II No. 9, Bandung 40163, Indonesia
| | - Sutiman Bambang Sumitro
- Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jl. Veteran, Ketawanggede Malang 65145, Indonesia
| | - M Aris Widodo
- Pharmacology Laboratories, Faculty of Medicine, Brawijaya University Jl. Veteran, Ketawanggede Malang 65145,, Indonesia
| | - Indra Bachtiar
- Stem Cell and Cancer Institute, Jl. A Yani No 2 Pulo Mas, Jakarta 13210, Indonesia
| |
Collapse
|
5
|
Tse HM, Gardner G, Dominguez-Bendala J, Fraker CA. The Importance of Proper Oxygenation in 3D Culture. Front Bioeng Biotechnol 2021; 9:634403. [PMID: 33859979 PMCID: PMC8042214 DOI: 10.3389/fbioe.2021.634403] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/09/2021] [Indexed: 12/15/2022] Open
Abstract
Cell culture typically employs inexpensive, disposable plasticware, and standard humidified CO2/room air incubators (5% CO2, ∼20% oxygen). These methods have historically proven adequate for the maintenance of viability, function, and proliferation of many cell types, but with broad variation in culture practices. With technological advances it is becoming increasingly clear that cell culture is not a “one size fits all” procedure. Recently, there is a shift toward comprehension of the individual physiological niches of cultured cells. As scale-up production of single cell and 3D aggregates for therapeutic applications has expanded, researchers have focused on understanding the role of many environmental metabolites/forces on cell function and viability. Oxygen, due to its role in cell processes and the requirement for adequate supply to maintain critical energy generation, is one such metabolite gaining increased focus. With the advent of improved sensing technologies and computational predictive modeling, it is becoming evident that parameters such as cell seeding density, culture media height, cellular oxygen consumption rate, and aggregate dimensions should be considered for experimental reproducibility. In this review, we will examine the role of oxygen in 3D cell culture with particular emphasis on primary islets of Langerhans and stem cell-derived insulin-producing SC-β cells, both known for their high metabolic demands. We will implement finite element modeling (FEM) to simulate historical and current culture methods in referenced manuscripts and innovations focusing on oxygen distribution. Our group and others have shown that oxygen plays a key role in proliferation, differentiation, and function of these 3D aggregates. Their culture in plastic consistently results in core regions of hypoxia/anoxia exacerbated by increased media height, aggregate dimensions, and oxygen consumption rates. Static gas permeable systems ameliorate this problem. The use of rotational culture and other dynamic culture systems also have advantages in terms of oxygen supply but come with the caveat that these endocrine aggregates are also exquisitely sensitive to mechanical perturbation. As recent work demonstrates, there is a strong rationale for the use of alternate in vitro systems to maintain physio-normal environments for cell growth and function for better phenotypic approximation of in vivo counterparts.
Collapse
Affiliation(s)
- Hubert M Tse
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Graeme Gardner
- Department of Surgery, Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Coral Gables, FL, United States
| | - Juan Dominguez-Bendala
- Department of Surgery, Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Coral Gables, FL, United States.,Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Christopher A Fraker
- Department of Surgery, Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Coral Gables, FL, United States
| |
Collapse
|
6
|
Cigarette Smoke Extract Activates Hypoxia-Inducible Factors in a Reactive Oxygen Species-Dependent Manner in Stroma Cells from Human Endometrium. Antioxidants (Basel) 2021; 10:antiox10010048. [PMID: 33401600 PMCID: PMC7823731 DOI: 10.3390/antiox10010048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
Cigarette smoking (CS) is a major contributing factor in the development of a large number of fatal and debilitating disorders, including degenerative diseases and cancers. Smoking and passive smoking also affect the establishment and maintenance of pregnancy. However, to the best of our knowledge, the effects of smoking on the human endometrium remain poorly understood. In this study, we investigated the regulatory mechanism underlying CS-induced hypoxia-inducible factor (HIF)-1α activation using primary human endometrial stromal cells and an immortalized cell line (KC02-44D). We found that the CS extract (CSE) increased reactive oxygen species levels and stimulated HIF-1α protein stabilization in endometrial stromal cells, and that CS-induced HIF-1α-dependent gene expression under non-hypoxic conditions in a concentration- and time-dependent manner. Additionally, we revealed the upregulated expression of a hypoxia-induced gene set following the CSE treatment, even under normoxic conditions. These results indicated that HIF-1α might play an important role in CS-exposure-induced cellular stress, inflammation, and endometrial remodeling.
Collapse
|
7
|
Hwang SJ, Lee HJ. Identification of differentially expressed genes in mouse embryonic stem cell under hypoxia. Genes Genomics 2020; 43:313-321. [PMID: 33094376 DOI: 10.1007/s13258-020-01009-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/07/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Under hypoxia, mouse embryonic stem cells (mESCs) lose the ability to self-renew and begin to differentiate through down-regulation of LIFR-STAT3 pathway via hypoxia-inducible factor-1α (HIF-1α). However, it remains largely unknown what kinds of factors are involved in hypoxia-induced differentiation of mESCs. PURPOSE This study aims to identify the differentially expressed genes (DEGs) in early differentiation of mESCs under hypoxia. METHODS Here we utilized a Genefishing techniqueTM to discover the new DEGs during hypoxia-induced early differentiation in CCE mESCs. Next, we investigated the role of DEGs using morphological observation, alkaline phosphatase (ALP) assay, STAT3 activation analysis, and biomarkers analysis for stemness. RESULTS We detected 19 DEGs under hypoxia and performed cloning with sequencing in six genes. We confirmed the expression patterns of five DEGs including H2afz and GOT1 by realtime PCR assay. Among them, H2afz was significantly decreased under hypoxia, depending on HIF-1α. H2afz-overexpressing CCE mESCs maintained their ALP activity and stem cell markers (Nanog and Rex1), even in hypoxic condition. On the other hand, the early differentiation markers such as FGF5 and STAT5a, which had been increased in hypoxic conditions, were reduced by H2afz overexpression. CONCLUSION We discovered that H2afz could be a new target gene that functions in hypoxia-induced differentiation in mESCs and have revealed that it is involved in maintaining the pluripotency of mESCs in the early stages of differentiation. These findings will provide insights into mechanisms of hypoxia-mediated differentiation of mESCs during early development.
Collapse
Affiliation(s)
- Su Jung Hwang
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyungnam, 50834, South Korea.,School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, South Korea
| | - Hyo-Jong Lee
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyungnam, 50834, South Korea. .,School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, South Korea.
| |
Collapse
|
8
|
Design of Advanced Polymeric Hydrogels for Tissue Regenerative Medicine: Oxygen-Controllable Hydrogel Materials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1250:63-78. [DOI: 10.1007/978-981-15-3262-7_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Bennemann J, Grothmann H, Wrenzycki C. Reduced oxygen concentration during in vitro oocyte maturation alters global DNA methylation in the maternal pronucleus of subsequent zygotes in cattle. Mol Reprod Dev 2018; 85:849-857. [PMID: 30307668 DOI: 10.1002/mrd.23073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 10/10/2018] [Indexed: 12/14/2022]
Abstract
Preimplantation epigenetic reprogramming is sensitive to the environment of the gametes and the embryo. In vitro maturation (IVM) of bovine oocytes is a critical step of embryo in vitro production procedures and several factors influence its efficiency, including atmospheric oxygen tension. The possibility that the IVM environment can alter this process is tested by determining whether the global DNA methylation pattern (measured via immunofluorescent labeling of 5-methylcytosine [5meC]) in the parental pronuclei of bovine zygotes produced from cumulus-oocyte complexes matured under low (5%) and atmospheric (~20%) oxygen tension. Normalized 5meC signals differed significantly between maternal and paternal pronuclei of oocytes matured in vitro at 5% oxygen (p ≤ 0.05). There was a significant difference of 5meC between maternal pronuclei of oocytes matured at 5% oxygen and 20% oxygen ( p ≤ 0.05). The relative methylation level (normalized fluorescence intensity of paternal pronucleus divided by the normalized fluorescence intensity of maternal pronucleus) subsequent to maturation in vitro at 5% and 20% oxygen was also significantly altered ( p ≤ 0.05). Our results show that the pattern of global DNA methylation in the maternal pronucleus of bovine zygotes is affected by maturing the oocytes under low oxygen tension which may have an impact on early embryonic development. These data may contribute to the understanding of possible effects of IVM conditions on pronucleus reprogramming.
Collapse
Affiliation(s)
- Johanna Bennemann
- Clinic for Cattle, University of Veterinary Medicine Hannover (Foundation), Hannover, Germany.,Clinic for Veterinary Obstetrics, Gynecology and Andrology, Chair for Molecular Reproductive Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Hanna Grothmann
- Clinic for Veterinary Obstetrics, Gynecology and Andrology, Chair for Molecular Reproductive Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Christine Wrenzycki
- Clinic for Veterinary Obstetrics, Gynecology and Andrology, Chair for Molecular Reproductive Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
10
|
SHIKU H. Characterization System of Embryos, Embryoid Bodies and Multicellular Spheroids Based on an Electrochemical Method. BUNSEKI KAGAKU 2018. [DOI: 10.2116/bunsekikagaku.67.653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Towards Multi-Organoid Systems for Drug Screening Applications. Bioengineering (Basel) 2018; 5:bioengineering5030049. [PMID: 29933623 PMCID: PMC6163436 DOI: 10.3390/bioengineering5030049] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 12/13/2022] Open
Abstract
A low percentage of novel drug candidates succeed and reach the end of the drug discovery pipeline, mainly due to poor initial screening and assessment of the effects of the drug and its metabolites over various tissues in the human body. For that, emerging technologies involving the production of organoids from human pluripotent stem cells (hPSCs) and the use of organ-on-a-chip devices are showing great promise for developing a more reliable, rapid and cost-effective drug discovery process when compared with the current use of animal models. In particular, the possibility of virtually obtaining any type of cell within the human body, in combination with the ability to create patient-specific tissues using human induced pluripotent stem cells (hiPSCs), broadens the horizons in the fields of drug discovery and personalized medicine. In this review, we address the current progress and challenges related to the process of obtaining organoids from different cell lineages emerging from hPSCs, as well as how to create devices that will allow a precise examination of the in vitro effects generated by potential drugs in different organ systems.
Collapse
|
12
|
Frohwitter G, Buerger H, Korsching E, van Diest PJ, Kleinheinz J, Fillies T. Site-specific gene expression patterns in oral cancer. Head Face Med 2017; 13:6. [PMID: 28486965 PMCID: PMC5424406 DOI: 10.1186/s13005-017-0138-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 04/19/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Squamous cell carcinomas (SCCs) are the most prevalent malignant tumours within the head and neck. Evidence exists that distinct genes are differentially regulated in SCCs of the oral cavity compared to other head and neck regions. Given this background, the aim of this study was to investigate whether such tumour site-specific gene expression can also be observed in different localizations within the oral cavity. METHODS Using tissue microarrays (TMAs), we investigated 76 SCCs of the floor of the mouth, 49 SCCs of the tongue and 68 SCCs of other anatomic regions within the oral cavity. The expression of 17 genes involved in cell cycle and growth control (p16, p21, p27, p53, cyclin D1, EGFR, c-kit, bcl-6), cell adhesion (alpha-, beta-, and gamma-catenin), and apoptosis/stress response genes (Hif-1-alpha, Glut 1, CA IX, caspase, hsp70, XIAP) were investigated by means of immunohistochemistry. The data were subjected to chi2, interdependency and Kaplan-Meier analysis. RESULTS Our study suggests a remote difference in the site-specific gene expression patterns of oral cancer. X-linked inhibitor of apoptosis (XIAP) showed a significantly higher expression (p <0.05) in SCCs of the floor of the mouth compared to SCCs of the tongue and other locations within the oral cavity. The increased XIAP expression was further associated with significantly decreased overall survival in all cases of SCCs of the oral cavity (p <0.05). Expression levels of p53, CA IX, beta-catenin, Hif-1-alpha, and c-kit were also observed to be inversely related between SCCs of the floor of the mouth and those of the tongue respectively, although these differences did not reach statistical significance. Overall and event-free survival did not differ in patients with T1/T2/N0 SCCs according to tumour localization. CONCLUSION In summary, the protein expression patterns of SCCs of the oral cavity suggest the existence of a molecular and morphological spectrum of SCCs in the oral cavity. In particular the expression pattern of XIAP indicates distinct gene expression patterns between carcinomas of the floor of the mouth and oral tongue cancer. Further studies are needed to identify possible tumour site-specific factors that influence patient prognosis and management.
Collapse
Affiliation(s)
- Gesche Frohwitter
- Institute of Pathology, Husener Str. 46a, 33098, Paderborn, Höxter, Germany.
| | - Horst Buerger
- Institute of Pathology, Husener Str. 46a, 33098, Paderborn, Höxter, Germany.,Institute of Pathology, University of Utrecht, Utrecht, The Netherlands
| | | | - Paul J van Diest
- Institute of Pathology, University of Utrecht, Utrecht, The Netherlands
| | - Johannes Kleinheinz
- Department of Cranio- and Maxillofacial Surgery, University Hospital Muenster, Muenster, Germany
| | - Thomas Fillies
- Department of Cranio- and Maxillofacial Surgery, Marienhospital Stuttgart, Stuttgart, Germany
| |
Collapse
|
13
|
Müller-Edenborn K, Léger K, Glaus Garzon JF, Oertli C, Mirsaidi A, Richards PJ, Rehrauer H, Spielmann P, Hoogewijs D, Borsig L, Hottiger MO, Wenger RH. Hypoxia attenuates the proinflammatory response in colon cancer cells by regulating IκB. Oncotarget 2016; 6:20288-301. [PMID: 25978030 PMCID: PMC4653005 DOI: 10.18632/oncotarget.3961] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 04/10/2015] [Indexed: 12/12/2022] Open
Abstract
Two main features common to all solid tumors are tissue hypoxia and inflammation, both of which cause tumor progression, metastasis, therapy resistance and increased mortality. Chronic inflammation is associated with increased cancer risk, as demonstrated for inflammatory bowel disease patients developing colon cancer. However, the interplay between hypoxia and inflammation on the molecular level remains to be elucidated. We found that MC-38 mouse colon cancer cells contain functional hypoxic (HIF-1α) and inflammatory (p65/RelA) signaling pathways. In contrast to cells of the myeloid lineage, HIF-1α levels remained unaffected in MC-38 cells treated with LPS, and hypoxia failed to induce NF-κB. A similar regulation of canonical HIF and NF-κB target genes confirmed these results. RNA deep sequencing of HIF-1α and p65/RelA knock-down cells revealed that a surprisingly large fraction of HIF target genes required p65/RelA for hypoxic regulation and a number of p65/RelA target genes required HIF-1α for proinflammatory regulation, respectively. Hypoxia attenuated the inflammatory response to LPS by inhibiting nuclear translocation of p65/RelA independently of HIF-1α, which was associated with enhanced IκBα levels and decreased IKKβ phosphorylation. These data demonstrate that the interaction between hypoxic and inflammatory signaling pathways needs to be considered when designing cancer therapies targeting HIF or NF-κB.
Collapse
Affiliation(s)
- Kamila Müller-Edenborn
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Karolin Léger
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Zurich, Switzerland
| | - Jesus F Glaus Garzon
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Carole Oertli
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Ali Mirsaidi
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland
| | - Peter J Richards
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland
| | - Hubert Rehrauer
- Functional Genomics Center, University of Zurich, Zurich, Switzerland
| | - Patrick Spielmann
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - David Hoogewijs
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Lubor Borsig
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Michael O Hottiger
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Zurich, Switzerland
| | - Roland H Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
McMurtrey RJ. Analytic Models of Oxygen and Nutrient Diffusion, Metabolism Dynamics, and Architecture Optimization in Three-Dimensional Tissue Constructs with Applications and Insights in Cerebral Organoids. Tissue Eng Part C Methods 2016; 22:221-249. [PMID: 26650970 PMCID: PMC5029285 DOI: 10.1089/ten.tec.2015.0375] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/02/2015] [Indexed: 12/12/2022] Open
Abstract
Diffusion models are important in tissue engineering as they enable an understanding of gas, nutrient, and signaling molecule delivery to cells in cell cultures and tissue constructs. As three-dimensional (3D) tissue constructs become larger, more intricate, and more clinically applicable, it will be essential to understand internal dynamics and signaling molecule concentrations throughout the tissue and whether cells are receiving appropriate nutrient delivery. Diffusion characteristics present a significant limitation in many engineered tissues, particularly for avascular tissues and for cells whose viability, differentiation, or function are affected by concentrations of oxygen and nutrients. This article seeks to provide novel analytic solutions for certain cases of steady-state and nonsteady-state diffusion and metabolism in basic 3D construct designs (planar, cylindrical, and spherical forms), solutions that would otherwise require mathematical approximations achieved through numerical methods. This model is applied to cerebral organoids, where it is shown that limitations in diffusion and organoid size can be partially overcome by localizing metabolically active cells to an outer layer in a sphere, a regionalization process that is known to occur through neuroglial precursor migration both in organoids and in early brain development. The given prototypical solutions include a review of metabolic information for many cell types and can be broadly applied to many forms of tissue constructs. This work enables researchers to model oxygen and nutrient delivery to cells, predict cell viability, study dynamics of mass transport in 3D tissue constructs, design constructs with improved diffusion capabilities, and accurately control molecular concentrations in tissue constructs that may be used in studying models of development and disease or for conditioning cells to enhance survival after insults like ischemia or implantation into the body, thereby providing a framework for better understanding and exploring the characteristics and behaviors of engineered tissue constructs.
Collapse
Affiliation(s)
- Richard J. McMurtrey
- Institute of Neural Regeneration & Tissue Engineering, Highland, Utah, United States
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Kumagai A, Suga M, Yanagihara K, Itoh Y, Takemori H, Furue MK. A Simple Method for Labeling Human Embryonic Stem Cells Destined to Lose Undifferentiated Potency. Stem Cells Transl Med 2016; 5:275-81. [PMID: 26819254 DOI: 10.5966/sctm.2015-0145] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/23/2015] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial oxidative phosphorylation is a major source of cellular ATP. Its usage as an energy source varies, not only according to the extracellular environment, but also during development and differentiation, as indicated by the reported changes in the flux ratio of glycolysis to oxidative phosphorylation during embryonic stem (ES) cell differentiation. The fluorescent probe JC-1 allows visualization of changes in the mitochondrial membrane potential produced by oxidative phosphorylation. Strong JC-1 signals were localized in the differentiated cells located at the edge of H9 ES colonies that expressed vimentin, an early differentiation maker. The JC-1 signals were further intensified when individual adjacent colonies were in contact with each other. Time-lapse analyses revealed that JC-1-labeled H9 cells under an overconfluent condition were highly differentiated after subculture, suggesting that monitoring oxidative phosphorylation in live cells might facilitate the prediction of induced pluripotent stem cells, as well as ES cells, that are destined to lose their undifferentiated potency.
Collapse
Affiliation(s)
- Ayako Kumagai
- Laboratory of Cell Signaling and Metabolic Disease, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Mika Suga
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Kana Yanagihara
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Yumi Itoh
- Laboratory of Cell Signaling and Metabolic Disease, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Hiroshi Takemori
- Laboratory of Cell Signaling and Metabolic Disease, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Miho K Furue
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| |
Collapse
|
16
|
Stoppel WL, Kaplan DL, Black LD. Electrical and mechanical stimulation of cardiac cells and tissue constructs. Adv Drug Deliv Rev 2016; 96:135-55. [PMID: 26232525 DOI: 10.1016/j.addr.2015.07.009] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/16/2015] [Accepted: 07/25/2015] [Indexed: 12/19/2022]
Abstract
The field of cardiac tissue engineering has made significant strides over the last few decades, highlighted by the development of human cell derived constructs that have shown increasing functional maturity over time, particularly using bioreactor systems to stimulate the constructs. However, the functionality of these tissues is still unable to match that of native cardiac tissue and many of the stem-cell derived cardiomyocytes display an immature, fetal like phenotype. In this review, we seek to elucidate the biological underpinnings of both mechanical and electrical signaling, as identified via studies related to cardiac development and those related to an evaluation of cardiac disease progression. Next, we review the different types of bioreactors developed to individually deliver electrical and mechanical stimulation to cardiomyocytes in vitro in both two and three-dimensional tissue platforms. Reactors and culture conditions that promote functional cardiomyogenesis in vitro are also highlighted. We then cover the more recent work in the development of bioreactors that combine electrical and mechanical stimulation in order to mimic the complex signaling environment present in vivo. We conclude by offering our impressions on the important next steps for physiologically relevant mechanical and electrical stimulation of cardiac cells and engineered tissue in vitro.
Collapse
|
17
|
Abstract
The measurement of intracellular analytes has been key in understanding cellular processes and function, and the use of biological nanosensors has revealed the spatial and temporal variation in their concentrations. In particular, ratiometric nanosensors allow quantitative measurements of analyte concentrations. The present review focuses on the recent advances in ratiometric intracellular biological nanosensors, with an emphasis on their utility in measuring analytes that are important in cell function.
Collapse
|
18
|
Miranda CC, Fernandes TG, Pascoal JF, Haupt S, Brüstle O, Cabral JMS, Diogo MM. Spatial and temporal control of cell aggregation efficiently directs human pluripotent stem cells towards neural commitment. Biotechnol J 2015; 10:1612-24. [PMID: 25866360 DOI: 10.1002/biot.201400846] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/12/2015] [Accepted: 04/04/2015] [Indexed: 02/03/2023]
Abstract
3D suspension culture is generally considered a promising method to achieve efficient expansion and controlled differentiation of human pluripotent stem cells (hPSCs). In this work, we focused on developing an integrated culture platform for expansion and neural commitment of hPSCs into neural precursors using 3D suspension conditions and chemically-defined culture media. We evaluated different inoculation methodologies for hPSC expansion as 3D aggregates and characterized the resulting cultures in terms of aggregate size distribution. It was demonstrated that upon single-cell inoculation, after four days of culture, 3D aggregates were composed of homogenous populations of hPSC and were characterized by an average diameter of 139 ± 26 μm, which was determined to be the optimal size to initiate neural commitment. Temporal analysis revealed that upon neural specification it is possible to maximize the percentage of neural precursor cells expressing the neural markers Sox1 and Pax6 after nine days of culture. These results highlight our ability to define a robust method for production of hPSC-derived neural precursors that minimizes processing steps and that constitutes a promising alternative to the traditional planar adherent culture system due to a high potential for scaling-up.
Collapse
Affiliation(s)
- Cláudia C Miranda
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Tiago G Fernandes
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Jorge F Pascoal
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Simone Haupt
- Institute of Reconstructive Neurobiology, University of Bonn and Hertie Foundation, Bonn, Germany.,LIFE & BRAIN GmbH, Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn and Hertie Foundation, Bonn, Germany.,LIFE & BRAIN GmbH, Bonn, Germany
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Maria Margarida Diogo
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
19
|
Pimton P, Lecht S, Stabler CT, Johannes G, Schulman ES, Lelkes PI. Hypoxia enhances differentiation of mouse embryonic stem cells into definitive endoderm and distal lung cells. Stem Cells Dev 2014; 24:663-76. [PMID: 25226206 DOI: 10.1089/scd.2014.0343] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We investigated the effects of hypoxia on spontaneous (SP)- and activin A (AA)-induced definitive endoderm (DE) differentiation of mouse embryonic stem cells (mESCs) and their subsequent differentiation into distal pulmonary epithelial cells. SP differentiation for 6 days of mESCs toward endoderm at hypoxia of 1% O2, but not at 3% or 21% (normoxia), increased the expression of Sox17 and Foxa2 by 31- and 63-fold above maintenance culture, respectively. Treatment of mESCs with 20 ng/mL AA for 6 days under hypoxia further increased the expression of DE marker genes Sox17, Foxa2, and Cxcr4 by 501-, 1,483-, and 126-fold above maintenance cultures, respectively. Transient exposure to hypoxia, as short as 24 h, was sufficient to enhance AA-induced endoderm formation. The involvement of hypoxia-inducible factor (HIF)-1α and reactive oxygen species (ROS) in the AA-induced endoderm enrichment was assessed using HIF-1α(-/-) mESCs and the ROS scavenger N-acetylcysteine (NAC). Under SP conditions, HIF-1α(-/-) mESCs failed to increase the expression of endodermal marker genes but rather shifted toward ectoderm. Hypoxia induced only a marginal potentiation of AA-induced endoderm differentiation in HIF-1α(-/-) mESCs. Treatment of mESCs with AA and NAC led to a dose-dependent decrease in Sox17 and Foxa2 expression. In addition, the duration of exposure to hypoxia in the course of a recently reported lung differentiation protocol resulted in differentially enhanced expression of distal lung epithelial cell marker genes aquaporin 5 (Aqp5), surfactant protein C (Sftpc), and secretoglobin 1a1 (Scgb1a1) for alveolar epithelium type I, type II, and club cells, respectively. Our study is the first to show the effects of in vitro hypoxia on efficient formation of DE and lung lineages. We suggest that the extent of hypoxia and careful timing may be important components of in vitro differentiation bioprocesses for the differential generation of distal lung epithelial cells from pluripotent progenitors.
Collapse
Affiliation(s)
- Pimchanok Pimton
- 1 Department of Biology, School of Science, Walailak University , Nakhon Si Thammarat, Thailand
| | | | | | | | | | | |
Collapse
|
20
|
Shin H, Choi S, Lim HJ. Relationship between reactive oxygen species and autophagy in dormant mouse blastocysts during delayed implantation. Clin Exp Reprod Med 2014; 41:125-31. [PMID: 25309857 PMCID: PMC4192453 DOI: 10.5653/cerm.2014.41.3.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/19/2014] [Accepted: 09/15/2014] [Indexed: 12/12/2022] Open
Abstract
Objective Under estrogen deficiency, blastocysts cannot initiate implantation and enter dormancy. Dormant blastocysts live longer in utero than normal blastocysts, and autophagy has been suggested as a mechanism underlying the sustained survival of dormant blastocysts during delayed implantation. Autophagy is a cellular degradation pathway and a central component of the integrated stress response. Reactive oxygen species (ROS) are produced within cells during normal metabolism, but their levels increase dramatically under stressful conditions. We investigated whether heightened autophagy in dormant blastocysts is associated with the increased oxidative stress under the unfavorable condition of delayed implantation. Methods To visualize ROS production, day 8 (short-term dormancy) and day 20 (long-term dormancy) dormant blastocysts were loaded with 1-µM 5-(and-6)-chloromethyl-2', 7'-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA). To block autophagic activation, 3-methyladenine (3-MA) and wortmannin were used in vivo and in vitro, respectively. Results We observed that ROS production was not significantly affected by the status of dormancy; in other words, both dormant and activated blastocysts showed high levels of ROS. However, ROS production was higher in the dormant blastocysts of the long-term dormancy group than in those of the short-term group. The addition of wortmannin to dormant blastocysts in vitro and 3-MA injection in vivo significantly increased ROS production in the short-term dormant blastocysts. In the long-term dormant blastocysts, ROS levels were not significantly affected by the treatment of the autophagy inhibitor. Conclusion During delayed implantation, heightened autophagy in dormant blastocysts may be operative as a potential mechanism to reduce oxidative stress. Further, ROS may be one of the potential causes of compromised developmental competence of long-term dormant blastocysts after implantation.
Collapse
Affiliation(s)
- Hyejin Shin
- Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, Seoul, Korea
| | - Soyoung Choi
- Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, Seoul, Korea
| | - Hyunjung Jade Lim
- Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, Seoul, Korea. ; Department of Veterinary Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul, Korea
| |
Collapse
|
21
|
Wu J, Rostami MR, Cadavid Olaya DP, Tzanakakis ES. Oxygen transport and stem cell aggregation in stirred-suspension bioreactor cultures. PLoS One 2014; 9:e102486. [PMID: 25032842 PMCID: PMC4102498 DOI: 10.1371/journal.pone.0102486] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 06/19/2014] [Indexed: 01/16/2023] Open
Abstract
Stirred-suspension bioreactors are a promising modality for large-scale culture of 3D aggregates of pluripotent stem cells and their progeny. Yet, cells within these clusters experience limitations in the transfer of factors and particularly O2 which is characterized by low solubility in aqueous media. Cultured stem cells under different O2 levels may exhibit significantly different proliferation, viability and differentiation potential. Here, a transient diffusion-reaction model was built encompassing the size distribution and ultrastructural characteristics of embryonic stem cell (ESC) aggregates. The model was coupled to experimental data from bioreactor and static cultures for extracting the effective diffusivity and kinetics of consumption of O2 within mouse (mESC) and human ESC (hESC) clusters. Under agitation, mESC aggregates exhibited a higher maximum consumption rate than hESC aggregates. Moreover, the reaction-diffusion model was integrated with a population balance equation (PBE) for the temporal distribution of ESC clusters changing due to aggregation and cell proliferation. Hypoxia was found to be negligible for ESCs with a smaller radius than 100 µm but became appreciable for aggregates larger than 300 µm. The integrated model not only captured the O2 profile both in the bioreactor bulk and inside ESC aggregates but also led to the calculation of the duration that fractions of cells experience a certain range of O2 concentrations. The approach described in this study can be employed for gaining a deeper understanding of the effects of O2 on the physiology of stem cells organized in 3D structures. Such frameworks can be extended to encompass the spatial and temporal availability of nutrients and differentiation factors and facilitate the design and control of relevant bioprocesses for the production of stem cell therapeutics.
Collapse
Affiliation(s)
- Jincheng Wu
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts, United States of America
| | - Mahboubeh Rahmati Rostami
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts, United States of America
| | - Diana P. Cadavid Olaya
- Department of Chemical and Biological Engineering, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Emmanuel S. Tzanakakis
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
22
|
The impact of simulated and real microgravity on bone cells and mesenchymal stem cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:928507. [PMID: 25110709 PMCID: PMC4119729 DOI: 10.1155/2014/928507] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 06/06/2014] [Accepted: 06/06/2014] [Indexed: 01/03/2023]
Abstract
How microgravity affects the biology of human cells and the formation of 3D cell cultures in real and simulated microgravity (r- and s-µg) is currently a hot topic in biomedicine. In r- and s-µg, various cell types were found to form 3D structures. This review will focus on the current knowledge of tissue engineering in space and on Earth using systems such as the random positioning
machine (RPM), the 2D-clinostat, or the NASA-developed rotating wall vessel bioreactor (RWV) to create tissue from bone, tumor, and mesenchymal stem cells. To understand the development of 3D structures, in vitro experiments using s-µg devices can provide valuable information about modulations in signal-transduction, cell adhesion, or extracellular matrix induced by altered gravity conditions. These systems also facilitate the analysis of the impact of growth factors, hormones, or drugs on these tissue-like constructs. Progress has been made in bone tissue engineering using the RWV, and multicellular tumor spheroids (MCTS), formed in both r- and s-µg, have been reported and were analyzed in depth. Currently, these MCTS are available for drug testing and proteomic investigations. This review provides an overview of the influence of µg on the aforementioned cells and an outlook for future perspectives in tissue engineering.
Collapse
|
23
|
Abstract
Oxygen is vital for the existence of all multicellular organisms, acting as a signalling molecule regulating cellular activities. Specifically, hypoxia, which occurs when the partial pressure of oxygen falls below 5%, plays a pivotal role during development, regeneration and cancer. Here we report a novel hypoxia-inducible (HI) hydrogel composed of gelatin and ferulic acid that can form hydrogel networks via oxygen consumption in a laccase-mediated reaction. Oxygen levels and gradients within the hydrogels can be accurately controlled and precisely predicted. We demonstrate that HI hydrogels guide vascular morphogenesis in vitro via hypoxia-inducible factors activation of matrix metalloproteinases and promote rapid neovascularization from the host tissue during subcutaneous wound healing. The HI hydrogel is a new class of biomaterials that may prove useful in many applications, ranging from fundamental studies of developmental, regenerative and disease processes through the engineering of healthy and diseased tissue models towards the treatment of hypoxia-regulated disorders.
Collapse
Affiliation(s)
- Kyung Min Park
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, and the Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Sharon Gerecht
- 1] Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, and the Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, USA [2] Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
24
|
Kusuma S, Peijnenburg E, Patel P, Gerecht S. Low oxygen tension enhances endothelial fate of human pluripotent stem cells. Arterioscler Thromb Vasc Biol 2014; 34:913-20. [PMID: 24526696 DOI: 10.1161/atvbaha.114.303274] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE A critical regulator of the developing or regenerating vasculature is low oxygen tension. Precise elucidation of the role of low oxygen environments on endothelial commitment from human pluripotent stem cells necessitates controlled in vitro differentiation environments. APPROACH AND RESULTS We used a feeder-free, 2-dimensional differentiation system in which we could monitor accurately dissolved oxygen levels during human pluripotent stem cell differentiation toward early vascular cells (EVCs). We found that oxygen uptake rate of differentiating human pluripotent stem cells is lower in 5% O2 compared with atmospheric conditions. EVCs differentiated in 5% O2 had an increased vascular endothelial cadherin expression with clusters of vascular endothelial cadherin+ cells surrounded by platelet-derived growth factor β+ cells. When we assessed the temporal effects of low oxygen differentiation environments, we determined that low oxygen environments during the early stages of EVC differentiation enhance endothelial lineage commitment. EVCs differentiated in 5% O2 exhibited an increased expression of vascular endothelial cadherin and CD31 along with their localization to the membrane, enhanced lectin binding and acetylated low-density lipoprotein uptake, rapid cord-like structure formation, and increased expression of arterial endothelial cell markers. Inhibition of reactive oxygen species generation during the early stages of differentiation abrogated the endothelial inductive effects of the low oxygen environments. CONCLUSIONS Low oxygen tension during early stages of EVC derivation induces endothelial commitment and maturation through the accumulation of reactive oxygen species, highlighting the importance of regulating oxygen tensions during human pluripotent stem cell-vascular differentiation.
Collapse
Affiliation(s)
- Sravanti Kusuma
- From the Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, Institute for NanoBioTechnology (S.K., P.P., S.G.), Department of Biomedical Engineering (S.K.), Cellular and Molecular Biology (E.P.), and Department of Materials Science and Engineering (S.G.), Johns Hopkins University, Baltimore, MD
| | | | | | | |
Collapse
|
25
|
Cechin S, Alvarez-Cubela S, Giraldo JA, Molano RD, Villate S, Ricordi C, Pileggi A, Inverardi L, Fraker CA, Domínguez-Bendala J. Influence of in vitro and in vivo oxygen modulation on β cell differentiation from human embryonic stem cells. Stem Cells Transl Med 2013; 3:277-89. [PMID: 24375542 DOI: 10.5966/sctm.2013-0160] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The possibility of using human embryonic stem (hES) cell-derived β cells as an alternative to cadaveric islets for the treatment of type 1 diabetes is now widely acknowledged. However, current differentiation methods consistently fail to generate meaningful numbers of mature, functional β cells. In order to address this issue, we set out to explore the role of oxygen modulation in the maturation of pancreatic progenitor (PP) cells differentiated from hES cells. We have previously determined that oxygenation is a powerful driver of murine PP differentiation along the endocrine lineage of the pancreas. We hypothesized that targeting physiological oxygen partial pressure (pO2) levels seen in mature islets would help the differentiation of PP cells along the β-cell lineage. This hypothesis was tested both in vivo (by exposing PP-transplanted immunodeficient mice to a daily hyperbaric oxygen regimen) and in vitro (by allowing PP cells to mature in a perfluorocarbon-based culture device designed to carefully adjust pO2 to a desired range). Our results show that oxygen modulation does indeed contribute to enhanced maturation of PP cells, as evidenced by improved engraftment, segregation of α and β cells, body weight maintenance, and rate of diabetes reversal in vivo, and by elevated expression of pancreatic endocrine makers, β-cell differentiation yield, and insulin production in vitro. Our studies confirm the importance of oxygen modulation as a key variable to consider in the design of β-cell differentiation protocols and open the door to future strategies for the transplantation of fully mature β cells.
Collapse
Affiliation(s)
- Sirlene Cechin
- Diabetes Research Institute, Department of Surgery, Department of Microbiology and Immunology, Department of Biomedical Engineering, Department of Medicine, and Department of Cell Biology and Anatomy, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Dmitriev RI, Zhdanov AV, Nolan YM, Papkovsky DB. Imaging of neurosphere oxygenation with phosphorescent probes. Biomaterials 2013; 34:9307-17. [DOI: 10.1016/j.biomaterials.2013.08.065] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 08/21/2013] [Indexed: 02/04/2023]
|
27
|
Lee HJ, Kim KW. Suppression of HIF-1α by Valproic Acid Sustains Self-Renewal of Mouse Embryonic Stem Cells under Hypoxia In Vitro. Biomol Ther (Seoul) 2013; 20:280-5. [PMID: 24130924 PMCID: PMC3794524 DOI: 10.4062/biomolther.2012.20.3.280] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 03/27/2012] [Accepted: 04/10/2012] [Indexed: 11/25/2022] Open
Abstract
The developing embryo naturally experiences relatively low oxygen conditions in vivo. Under in vitro hypoxia, mouse embryonic stem cells (mESCs) lose their self-renewal activity and display an early differentiated morphology mediated by the hypoxia-inducible factor-1α (HIF-1α). Previously, we demonstrated that histone deacetylase (HDAC) is activated by hypoxia and increases the protein stability and transcriptional activity of HIF-1α in many human cancer cells. Furthermore HDAC1 and 3 mediate the differentiation of mECSs and hematopoietic stem cells. However, the role of HDACs and their inhibitors in hypoxia-induced early differentiation of mESCs remains largely unknown. Here, we examined the effects of several histone deacetylase inhibitors (HDA-CIs) on the self-renewal properties of mESCs under hypoxia. Inhibition of HDAC under hypoxia effectively decreased the HIF-1α protein levels and substantially improved the expression of the LIF-specific receptor (LIFR) and phosphorylated-STAT3 in mESCs. In particular, valproic acid (VPA), a pan HDACI, showed dramatic changes in HIF-1α protein levels and LIFR protein expression levels compared to other HDACIs, including sodium butyrate (SB), trichostatin A (TSA), and apicidin (AP). Importantly, our RT-PCR data and alkaline phosphatase assays indicate that VPA helps to maintain the self-renewal activity of mESCs under hypoxia. Taken together, these results suggest that VPA may block the early differentiation of mESCs under hypoxia via the destabilization of HIF-1α.
Collapse
Affiliation(s)
- Hyo-Jong Lee
- College of Pharmacy, Inje University, Gimhae 621-749
| | | |
Collapse
|
28
|
Hypoxic culture conditions as a solution for mesenchymal stem cell based regenerative therapy. ScientificWorldJournal 2013; 2013:632972. [PMID: 24068884 PMCID: PMC3771429 DOI: 10.1155/2013/632972] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 07/26/2013] [Indexed: 12/21/2022] Open
Abstract
Cell-based regenerative therapies, based on in vitro propagation of stem cells, offer tremendous hope to many individuals suffering from degenerative diseases that were previously deemed untreatable. Due to the self-renewal capacity, multilineage potential, and immunosuppressive property, mesenchymal stem cells (MSCs) are considered as an attractive source of stem cells for regenerative therapies. However, poor growth kinetics, early senescence, and genetic instability during in vitro expansion and poor engraftment after transplantation are considered to be among the major disadvantages of MSC-based regenerative therapies. A number of complex inter- and intracellular interactive signaling systems control growth, multiplication, and differentiation of MSCs in their niche. Common laboratory conditions for stem cell culture involve ambient O2 concentration (20%) in contrast to their niche where they usually reside in 2–9% O2. Notably, O2 plays an important role in maintaining stem cell fate in terms of proliferation and differentiation, by regulating hypoxia-inducible factor-1 (HIF-1) mediated expression of different genes. This paper aims to describe and compare the role of normoxia (20% O2) and hypoxia (2–9% O2) on the biology of MSCs. Finally it is concluded that a hypoxic environment can greatly improve growth kinetics, genetic stability, and expression of chemokine receptors during in vitro expansion and eventually can increase efficiency of MSC-based regenerative therapies.
Collapse
|
29
|
Abbasalizadeh S, Baharvand H. Technological progress and challenges towards cGMP manufacturing of human pluripotent stem cells based therapeutic products for allogeneic and autologous cell therapies. Biotechnol Adv 2013; 31:1600-23. [PMID: 23962714 DOI: 10.1016/j.biotechadv.2013.08.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 06/20/2013] [Accepted: 08/12/2013] [Indexed: 12/16/2022]
Abstract
Recent technological advances in the generation, characterization, and bioprocessing of human pluripotent stem cells (hPSCs) have created new hope for their use as a source for production of cell-based therapeutic products. To date, a few clinical trials that have used therapeutic cells derived from hESCs have been approved by the Food and Drug Administration (FDA), but numerous new hPSC-based cell therapy products are under various stages of development in cell therapy-specialized companies and their future market is estimated to be very promising. However, the multitude of critical challenges regarding different aspects of hPSC-based therapeutic product manufacturing and their therapies have made progress for the introduction of new products and clinical applications very slow. These challenges include scientific, technological, clinical, policy, and financial aspects. The technological aspects of manufacturing hPSC-based therapeutic products for allogeneic and autologous cell therapies according to good manufacturing practice (cGMP) quality requirements is one of the most important challenging and emerging topics in the development of new hPSCs for clinical use. In this review, we describe main critical challenges and highlight a series of technological advances in all aspects of hPSC-based therapeutic product manufacturing including clinical grade cell line development, large-scale banking, upstream processing, downstream processing, and quality assessment of final cell therapeutic products that have brought hPSCs closer to clinical application and commercial cGMP manufacturing.
Collapse
Affiliation(s)
- Saeed Abbasalizadeh
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | |
Collapse
|
30
|
Shiku H, Arai T, Zhou Y, Aoki N, Nishijo T, Horiguchi Y, Ino K, Matsue T. Noninvasive measurement of respiratory activity of mouse embryoid bodies and its correlation with mRNA levels of undifferentiation/differentiation markers. MOLECULAR BIOSYSTEMS 2013; 9:2701-11. [DOI: 10.1039/c3mb70223e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
31
|
Mehta G, Hsiao AY, Ingram M, Luker GD, Takayama S. Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J Control Release 2012; 164:192-204. [PMID: 22613880 PMCID: PMC3436947 DOI: 10.1016/j.jconrel.2012.04.045] [Citation(s) in RCA: 854] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/24/2012] [Accepted: 04/29/2012] [Indexed: 12/14/2022]
Abstract
Multicellular spheroids are three dimensional in vitro microscale tissue analogs. The current article examines the suitability of spheroids as an in vitro platform for testing drug delivery systems. Spheroids model critical physiologic parameters present in vivo, including complex multicellular architecture, barriers to mass transport, and extracellular matrix deposition. Relative to two-dimensional cultures, spheroids also provide better target cells for drug testing and are appropriate in vitro models for studies of drug penetration. Key challenges associated with creation of uniformly sized spheroids, spheroids with small number of cells and co-culture spheroids are emphasized in the article. Moreover, the assay techniques required for the characterization of drug delivery and efficacy in spheroids and the challenges associated with such studies are discussed. Examples for the use of spheroids in drug delivery and testing are also emphasized. By addressing these challenges with possible solutions, multicellular spheroids are becoming an increasingly useful in vitro tool for drug screening and delivery to pathological tissues and organs.
Collapse
Affiliation(s)
- Geeta Mehta
- Department of Biomedical Engineering, University of Michigan School of Dentistry, Ann Arbor, MI, 48109-2099
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109-2099
| | - Amy Y. Hsiao
- Department of Biomedical Engineering, University of Michigan School of Dentistry, Ann Arbor, MI, 48109-2099
| | - Marylou Ingram
- Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, CA, 91101-1830
| | - Gary D. Luker
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI, 48109-2099
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109-2099
| | - Shuichi Takayama
- Department of Biomedical Engineering, University of Michigan School of Dentistry, Ann Arbor, MI, 48109-2099
- Department of Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI, 48109-2099
- Division of Nano-Bio and Chemical Engineering, WCU Project, UNIST, Ulsan, Republic of Korea
| |
Collapse
|
32
|
Aly H, Mohsen L, Badrawi N, Gabr H, Ali Z, Akmal D. Viability and neural differentiation of mesenchymal stem cells derived from the umbilical cord following perinatal asphyxia. J Perinatol 2012; 32:671-6. [PMID: 22134676 DOI: 10.1038/jp.2011.174] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Hypoxia-ischemia is the leading cause of neurological handicaps in newborns worldwide. Mesenchymal stem cells (MSCs) collected from fresh cord blood of asphyxiated newborns have the potential to regenerate damaged neural tissues. The aim of this study was to examine the capacity for MSCs to differentiate into neural tissue that could subsequently be used for autologous transplantation. STUDY DESIGN We collected cord blood samples from full-term newborns with perinatal hypoxemia (n=27), healthy newborns (n=14) and non-hypoxic premature neonates (n=14). Mononuclear cells were separated, counted, and then analyzed by flow cytometry to assess various stem cell populations. MSCs were isolated by plastic adherence and characterized by morphology. Cells underwent immunophenotyping and trilineage differentiation potential. They were then cultured in conditions favoring neural differentiation. Neural lineage commitment was detected using immunohistochemical staining for glial fibrillary acidic protein, tubulin III and oligodendrocyte marker O4 antibodies. RESULT Mononuclear cell count and viability did not differ among the three groups of infants. Neural differentiation was best demonstrated in the cells derived from hypoxia-ischemia term neonates, of which 69% had complete and 31% had partial neural differentiation. Cells derived from preterm neonates had the least amount of neural differentiation, whereas partial differentiation was observed in only 12%. CONCLUSION These findings support the potential utilization of umbilical cord stem cells as a source for autologous transplant in asphyxiated neonates.
Collapse
Affiliation(s)
- H Aly
- Department of Newborn Services, George Washington University and Children's National Medical Center, Washington, DC 20037, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Abbasalizadeh S, Larijani MR, Samadian A, Baharvand H. Bioprocess development for mass production of size-controlled human pluripotent stem cell aggregates in stirred suspension bioreactor. Tissue Eng Part C Methods 2012; 18:831-51. [PMID: 22559864 DOI: 10.1089/ten.tec.2012.0161] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Current protocols for the scalable suspension culture of human pluripotent stem cells (hPSCs) are limited by multiple biological and technical challenges that need to be addressed before their use in clinical trials. To overcome these challenges, we have developed a novel bioprocess platform for large-scale expansion of human embryonic and induced pluripotent stem cell lines as three-dimensional size-controlled aggregates. This novel bioprocess utilizes the stepwise optimization of both static and dynamic suspension culture conditions. After screening eight xeno-free media in static suspension culture and optimizing single-cell passaging in dynamic conditions, the scale-up from a static to a dynamic suspension culture in the stirred bioreactor resulted in a two- to threefold improvement in expansion rates, as measured by cell counts and metabolic activity. We successfully produced size-specific aggregates through optimization of bioreactor hydrodynamic conditions by using combinations of different agitation rates and shear protectant concentrations. The expansion rates were further improved by controlling oxygen concentration at normoxic conditions, and reached a maximum eightfold increase for both types of hPSCs. Subsequently, we demonstrated a simple and rapid scale-up strategy that produced clinically relevant numbers of hPSCs (∼2×10(9) cells) over a 1-month period by the direct transfer of "suspension-adapted frozen cells" to a stirred suspension bioreactor. We omitted the required preadaptation passages in the static suspension culture. The cells underwent proliferation over multiple passages in the demonstrated xeno-free dynamic suspension culture while maintaining their self-renewal capabilities, as determined by marker expressions and in vitro spontaneous differentiation. In conclusion, suspension culture protocols of hPSCs could be used to mass produce homogenous and pluripotent undifferentiated cells by identification and optimization of key bioprocess parameters that are complemented by a simple and rapid scale-up platform.
Collapse
Affiliation(s)
- Saeed Abbasalizadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | | | | |
Collapse
|
34
|
Kinney MA, Sargent CY, McDevitt TC. The multiparametric effects of hydrodynamic environments on stem cell culture. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:249-62. [PMID: 21491967 DOI: 10.1089/ten.teb.2011.0040] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stem cells possess the unique capacity to differentiate into many clinically relevant somatic cell types, making them a promising cell source for tissue engineering applications and regenerative medicine therapies. However, in order for the therapeutic promise of stem cells to be fully realized, scalable approaches to efficiently direct differentiation must be developed. Traditionally, suspension culture systems are employed for the scale-up manufacturing of biologics via bioprocessing systems that heavily rely upon various types of bioreactors. However, in contrast to conventional bench-scale static cultures, large-scale suspension cultures impart complex hydrodynamic forces on cells and aggregates due to fluid mixing conditions. Stem cells are exquisitely sensitive to environmental perturbations, thus motivating the need for a more systematic understanding of the effects of hydrodynamic environments on stem cell expansion and differentiation. This article discusses the interdependent relationships between stem cell aggregation, metabolism, and phenotype in the context of hydrodynamic culture environments. Ultimately, an improved understanding of the multifactorial response of stem cells to mixed culture conditions will enable the design of bioreactors and bioprocessing systems for scalable directed differentiation approaches.
Collapse
Affiliation(s)
- Melissa A Kinney
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0532, USA
| | | | | |
Collapse
|
35
|
Guaccio A, Guarino V, Perez MAA, Cirillo V, Netti PA, Ambrosio L. Influence of electrospun fiber mesh size on hMSC oxygen metabolism in 3D collagen matrices: Experimental and theoretical evidences. Biotechnol Bioeng 2011; 108:1965-76. [DOI: 10.1002/bit.23113] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 01/17/2011] [Accepted: 02/14/2011] [Indexed: 12/14/2022]
|
36
|
A microfluidic traps system supporting prolonged culture of human embryonic stem cells aggregates. Biomed Microdevices 2011; 12:1001-8. [PMID: 20665114 DOI: 10.1007/s10544-010-9454-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The unlimited proliferative and differentiative capacities of embryonic stem cells (ESCs) are tightly regulated by their microenvironment. Local concentrations of soluble factors, cell-cell interactions and extracellular matrix signaling are just a few variables that influence ESC fate. A common method employed to induce ESC differentiation involves the formation of cell aggregates called embryoid bodies (EBs), which recapitulate early stages of embryonic development. EBs are normally formed in suspension cultures, producing heterogeneously shaped and sized aggregates. The present study demonstrates the usage of a microfluidic traps system which supports prolonged EB culturing. The traps are uniquely designed to facilitate cell capture and aggregation while offering efficient gas/nutrients exchange. A finite element simulation is presented with emphasis on several aspects critical to appropriate design of such bioreactors for ESC culture. Finally, human ESC, mouse Nestin-GFP ESC and OCT4-EGFP ESCs were cultured using this technique and demonstrated extended viability for more than 5 days. In addition, EBs developed and maintained a polarized differentiation pattern, possibly as a result of the nutrient gradients imposed by the traps bioreactor. The novel microbioreactor presented here can enhance future embryogenesis research by offering tight control of culturing conditions.
Collapse
|
37
|
Lim HJ, Han J, Woo DH, Kim SE, Kim SK, Kang HG, Kim JH. Biochemical and morphological effects of hypoxic environment on human embryonic stem cells in long-term culture and differentiating embryoid bodies. Mol Cells 2011; 31:123-32. [PMID: 21347709 PMCID: PMC3932683 DOI: 10.1007/s10059-011-0016-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 11/06/2010] [Accepted: 11/17/2010] [Indexed: 12/17/2022] Open
Abstract
The mammalian reproductive tract is known to contain 1.5-5.3% oxygen (O(2)), but human embryonic stem cells (hESCs) derived from preimplantation embryos are typically cultured under 21% O(2) tension. The aim of this study was to investigate the effects of O(2) tension on the long-term culture of hESCs and on cell-fate determination during early differentiation. hESCs and embryoid bodies (EBs) were grown under different O(2) tensions (3, 12, and 21% O(2)). The expression of markers associated with pluripotency, embryonic germ layers, and hypoxia was analyzed using RTPCR, immunostaining, and Western blotting. Proliferation, apoptosis, and chromosomal aberrations were examined using BrdU incorporation, caspase-3 immunostaining, and karyotype analysis, respectively. Structural and morphological changes of EBs under different O(2) tensions were comparatively examined using azan- and hematoxylineosin staining, and scanning and transmission electron microscopy. Mild hypoxia (12% O(2)) increased the number of cells expressing Oct4/Nanog and reduced BrdU incorporation and aneuploidy. The percentage of cells positive for active caspase-3, which was high during normoxia (21% O(2)), gradually decreased when hESCs were continuously cultured under mild hypoxia. EBs subjected to hypoxia (3% O(2)) exhibited well-differentiated microvilli on their surface, secreted high levels of collagen, and showed enhanced differentiation into primitive endoderm. These changes were associated with increased expression of Foxa2, Sox17, AFP, and GATA4 on the EB periphery. Our data suggest that mild hypoxia facilitates the slow mitotic division of hESCs in long-term culture and reduces the frequency of chromosomal abnormalities and apoptosis. In addition, hypoxia promotes the differentiation of EBs into extraembryonic endoderm.
Collapse
Affiliation(s)
- Hee-Joung Lim
- Laboratory of Stem Cell Biology, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Korea
- Biomedical Laboratory, Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Sungnam 461-713, Korea
| | - Jiyou Han
- Laboratory of Stem Cell Biology, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Korea
| | - Dong-Hun Woo
- Laboratory of Stem Cell Biology, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Korea
| | - Sung-Eun Kim
- Laboratory of Stem Cell Biology, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Korea
| | - Suel-Kee Kim
- Laboratory of Stem Cell Biology, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Korea
| | - Hee-Gyoo Kang
- Biomedical Laboratory, Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Sungnam 461-713, Korea
| | - Jong-Hoon Kim
- Laboratory of Stem Cell Biology, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Korea
| |
Collapse
|
38
|
Ramírez MÁ, Pericuesta E, Yáñez-Mó M, Palasz A, Gutiérrez-Adán A. Effect of long-term culture of mouse embryonic stem cells under low oxygen concentration as well as on glycosaminoglycan hyaluronan on cell proliferation and differentiation. Cell Prolif 2011; 44:75-85. [PMID: 21199012 DOI: 10.1111/j.1365-2184.2010.00732.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVES Maintaining undifferentiated stem cells in defined conditions is of critical importance to improve their in vitro culture. We have evaluated the effects of culturing mouse stem (mES) cells under physiological oxygen concentration as well as by replacing fibroblast feeder layer (mEF) with gelatin or glycosaminoglycan hyaluronan (HA), on cell proliferation and differentiation. MATERIALS AND METHODS After 3 days culture or after long-term cell culture under different conditions, levels of apoptotic cell death were determined by cell cycle and TUNEL (TdT-mediated dUTP nick end labelling) assays and levels of cell proliferation by CFSE (5-(and-6)-carboxyfluorescein diacetate succinimidyl ester) labelling. We assessed spontaneous differentiation into cardiomyocytes and mRNA expression of pluripotency and differentiation biomarkers. RESULTS After 3 days culture under hypoxic conditions, levels of proliferation and apoptosis of mES cells were higher, in correlation with increase in intracellular reactive oxygen species. However, when cells were continuously grown for 1 month under those conditions, the level of apoptosis was, in all cases, under 4%. Hypoxia reduced spontaneous differentiation of mES into cardiomyocytes. Long-term culture on HA was more effective in maintaining the pluripotent state of the mES cells when compared to that on gelatin. Level of terminal differentiation was highest on mEF, intermediate on HA and lowest on gelatin. CONCLUSIONS Our data suggest that hypoxia is not necessary for maintaining pluripotency of mES cells and appeared to be detrimental during ES differentiation. Moreover, HA may offer a valuable alternative for long-term culture of mES cells in vitro.
Collapse
Affiliation(s)
- M Á Ramírez
- Departamento de Reproducción Animal INIA, Madrid, Spain.
| | | | | | | | | |
Collapse
|
39
|
Kehoe DE, Jing D, Lock LT, Tzanakakis ES. Scalable stirred-suspension bioreactor culture of human pluripotent stem cells. Tissue Eng Part A 2010; 16:405-21. [PMID: 19739936 DOI: 10.1089/ten.tea.2009.0454] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Advances in stem cell biology have afforded promising results for the generation of various cell types for therapies against devastating diseases. However, a prerequisite for realizing the therapeutic potential of stem cells is the development of bioprocesses for the production of stem cell progeny in quantities that satisfy clinical demands. Recent reports on the expansion and directed differentiation of human embryonic stem cells (hESCs) in scalable stirred-suspension bioreactors (SSBs) demonstrated that large-scale production of therapeutically useful hESC progeny is feasible with current state-of-the-art culture technologies. Stem cells have been cultured in SSBs as aggregates, in microcarrier suspension and after encapsulation. The various modes in which SSBs can be employed for the cultivation of hESCs and human induced pluripotent stem cells (hiPSCs) are described. To that end, this is the first account of hiPSC cultivation in a microcarrier stirred-suspension system. Given that cultured stem cells and their differentiated progeny are the actual products used in tissue engineering and cell therapies, the impact of bioreactor's operating conditions on stem cell self-renewal and commitment should be considered. The effects of variables specific to SSB operation on stem cell physiology are discussed. Finally, major challenges are presented which remain to be addressed before the mainstream use of SSBs for the large-scale culture of hESCs and hiPSCs.
Collapse
Affiliation(s)
- Daniel E Kehoe
- Department of Chemical and Biological Engineering, State University of New York at Buffalo, Buffalo, New York 14260, USA
| | | | | | | |
Collapse
|
40
|
Lee HJ, Jeong CH, Cha JH, Kim KW. PKC-delta inhibitors sustain self-renewal of mouse embryonic stem cells under hypoxia in vitro. Exp Mol Med 2010; 42:294-301. [PMID: 20177147 DOI: 10.3858/emm.2010.42.4.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Under hypoxia, mouse embryonic stem cells (mESCs) lose their self-renewal activity and display an early differentiated morphology mediated by the hypoxia-inducible factor-1 alpha (HIF-1 alpha). Previous studies have demonstrated that PKC-delta is activated by hypoxia and increases the protein stability and transcriptional activity of HIF-1 alpha in human cancer cells. Furthermore, activation of PKC-delta mediates cardiac differentiation of ESCs and hematopoietic stem cells. However, the role of PKC-delta in hypoxia-induced early differentiation of mESCs remains largely unknown. Here, we show the inhibition of PKC-delta activity prevents the early differentiation of mESCs under hypoxia using PKC-delta inhibitors, GF 109203X and rottlerin. Reduction of PKC-delta activity under hypoxia effectively decreased HIF-1 alpha protein levels and substantially recovered the expression of LIF-specific receptor (LIFR) and phosphorylated-STAT3 in mESCs. Furthermore, PKC-delta inhibitors aid to sustain the expression of self-renewal markers and suppress the expression of early differentiation markers in mESCs under hypoxia. Taken together, these results suggest that PKC-delta inhibitors block the early differentiation of mESCs via destabilization of HIF-1 alpha under hypoxia.
Collapse
Affiliation(s)
- Hyo-Jong Lee
- Research Institute of Pharmaceutical Sciences, NeuroVascular Coordination Research Center, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | | | | | | |
Collapse
|
41
|
Nekanti U, Dastidar S, Venugopal P, Totey S, Ta M. Increased proliferation and analysis of differential gene expression in human Wharton's jelly-derived mesenchymal stromal cells under hypoxia. Int J Biol Sci 2010; 6:499-512. [PMID: 20877435 PMCID: PMC2945278 DOI: 10.7150/ijbs.6.499] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 08/27/2010] [Indexed: 02/02/2023] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) from Wharton's jelly (WJ) of umbilical cord bear higher proliferation rate and self-renewal capacity than adult tissue-derived MSCs and are a primitive stromal cell population. Stem cell niche or physiological microenvironment plays a crucial role in maintenance of stem cell properties and oxygen concentration is an important component of the stem cell niche. Low oxygen tension or hypoxia is prevalent in the microenvironment of embryonic stem cells and many adult stem cells at early stages of development. Again, in vivo, MSCs are known to home specifically to hypoxic events following tissue injuries. Here we examined the effect of hypoxia on proliferation and in vitro differentiation potential of WJ-MSCs. Under hypoxia, WJ-MSCs exhibited improved proliferative potential while maintaining multi-lineage differentiation potential and surface marker expression. Hypoxic WJ-MSCs expressed higher mRNA levels of hypoxia inducible factors, notch receptors and notch downstream gene HES1. Gene expression profile of WJ-MSCs exposed to hypoxia and normoxia was compared and we identified a differential gene expression pattern where several stem cells markers and early mesodermal/endothelial genes such as DESMIN, CD34, ACTC were upregulated under hypoxia, suggesting that in vitro culturing of WJ-MSCs under hypoxic conditions leads to adoption of a mesodermal/endothelial fate. Thus, we demonstrate for the first time the effect of hypoxia on gene expression and growth kinetics of WJ-MSCs. Finally, although WJ-MSCs do not induce teratomas, under stressful and long-term culture conditions, MSCs can occasionally undergo transformation. Though there were no chromosomal abnormalities, certain transformation markers were upregulated in a few of the samples of WJ-MSCs under hypoxia.
Collapse
Affiliation(s)
- Usha Nekanti
- Stempeutics Research Pvt Ltd, Manipal Hospital, Bangalore, India
| | | | | | | | | |
Collapse
|
42
|
Hypoxia and pluripotency in embryonic and embryonal carcinoma stem cell biology. Differentiation 2009; 78:159-68. [PMID: 19604622 DOI: 10.1016/j.diff.2009.06.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 06/01/2009] [Accepted: 06/18/2009] [Indexed: 01/16/2023]
Abstract
Low oxygen availability (hypoxia) is a hallmark of rapidly proliferating tumors and has been suggested to be a characteristic of the embryonic and adult stem cell niche. The idea of relating cancer to stem cells is increasingly popular due to the identification of specific cancer stem cells sharing the typical plasticity and motility of pluripotent stem cells. Hypoxia plays a critical role in early embryonic development and in tumor progression, participating in processes such as angiogenesis, apoptosis, cell migration, invasion and metastasis. Some of the molecular pathways that have been shown to mediate these hypoxia-induced responses, such as the hypoxia inducible factor (HIF)-1alpha and Notch signaling, appear to be active in both embryonic and neoplastic pluripotent stem cells. Nevertheless, the mechanisms underlying these regulatory processes are not yet fully understood. In this review, we attempt to shed some light on the mechanisms involved in hypoxia-dependent processes related to stem cell features and tumor progression, such as the maintenance of the undifferentiated state, cell proliferation, tumor neovascularization, extra-cellular matrix degradation and motility factor up-regulation. With this purpose in mind, we summarize recent observations in embryonic, adult and cancer stem cells that demonstrate the parallelism existing in their hypoxia responses. Finally, based on the observations of our own laboratory and others, we suggest that the comparative analysis of the response to low oxygen levels of embryonic stem cells and cancer stem cells (such as embryonal carcinoma cells), may throw fresh light on our understanding of the mechanisms underlying hypoxia-induced invasiveness and the resistance to anticancer treatments, thereby stimulating the development of novel therapeutic strategies.
Collapse
|
43
|
Mehta G, Lee J, Cha W, Tung YC, Linderman JJ, Takayama S. Hard top soft bottom microfluidic devices for cell culture and chemical analysis. Anal Chem 2009; 81:3714-22. [PMID: 19382754 DOI: 10.1021/ac802178u] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We report fabrication and characterization of microfluidic devices made of thermoplastic and elastomeric polymers. These hard-soft hybrid material devices are motivated by the combined need for large scale manufacturability, enhanced barrier properties to gas permeation and evaporation of aqueous solutions compared to poly(dimethyl siloxane) (PDMS) devices, and compatibility with deformation-based actuation. Channel features are created on rigid polymers such as polyethylene terephthalate glycol (PETG), cyclic olefin copolymer (COC), and polystyrene (PS) by hot embossing. These "hard tops" are bonded to elastomeric "soft bottoms" (polyurethane (PU) or PDMS-parylene C-PDMS) to create devices that can be used for microfluidic cell culture where deformation-based fluid actuation schemes are used to perfuse and recirculate media. The higher barrier properties of this device compared to PDMS devices enable cell culture with less evaporation and creation of hypoxic conditions.
Collapse
Affiliation(s)
- Geeta Mehta
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48108, USA
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Beyond its role as an electron acceptor in aerobic respiration, oxygen is also a key effector of many developmental events. The oxygen-sensing machinery and the very fabric of cell identity and function have been shown to be deeply intertwined. Here we take a first look at how oxygen might lie at the crossroads of at least two of the major molecular pathways that shape pancreatic development. Based on recent evidence and a thorough review of the literature, we present a theoretical model whereby evolving oxygen tensions might choreograph to a large extent the sequence of molecular events resulting in the development of the organ. In particular, we propose that lower oxygenation prior to the expansion of the vasculature may favour HIF (hypoxia inducible factor)-mediated activation of Notch and repression of Wnt/beta-catenin signalling, limiting endocrine cell differentiation. With the development of vasculature and improved oxygen delivery to the developing organ, HIF-mediated support for Notch signalling may decline while the beta-catenin-directed Wnt signalling is favoured, which would support endocrine cell differentiation and perhaps exocrine cell proliferation/differentiation.
Collapse
|
45
|
Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S, Shi Q, Cao Y, Lathia J, McLendon RE, Hjelmeland AB, Rich JN. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 2009; 15:501-13. [PMID: 19477429 PMCID: PMC2693960 DOI: 10.1016/j.ccr.2009.03.018] [Citation(s) in RCA: 1027] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 12/17/2008] [Accepted: 03/20/2009] [Indexed: 12/15/2022]
Abstract
Glioblastomas are lethal cancers characterized by florid angiogenesis promoted in part by glioma stem cells (GSCs). Because hypoxia regulates angiogenesis, we examined hypoxic responses in GSCs. We now demonstrate that hypoxia-inducible factor HIF2alpha and multiple HIF-regulated genes are preferentially expressed in GSCs in comparison to non-stem tumor cells and normal neural progenitors. In tumor specimens, HIF2alpha colocalizes with cancer stem cell markers. Targeting HIFs in GSCs inhibits self-renewal, proliferation, and survival in vitro, and attenuates tumor initiation potential of GSCs in vivo. Analysis of a molecular database reveals that HIF2A expression correlates with poor glioma patient survival. Our results demonstrate that GSCs differentially respond to hypoxia with distinct HIF induction patterns, and HIF2alpha might represent a promising target for antiglioblastoma therapies.
Collapse
Affiliation(s)
- Zhizhong Li
- Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Shideng Bao
- Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Qiulian Wu
- Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Hui Wang
- Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Christine Eyler
- Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Sith Sathornsumetee
- Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Qing Shi
- Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Yiting Cao
- Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Justin Lathia
- Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Roger E. McLendon
- Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Anita B. Hjelmeland
- Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jeremy N. Rich
- Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
46
|
Ma T, Grayson WL, Fröhlich M, Vunjak-Novakovic G. Hypoxia and stem cell-based engineering of mesenchymal tissues. Biotechnol Prog 2009; 25:32-42. [PMID: 19198002 DOI: 10.1002/btpr.128] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Stem cells have the ability for prolonged self-renewal and differentiation into mature cells of various lineages, which makes them important cell sources for tissue engineering applications. Their remarkable ability to replenish and differentiate in vivo is regulated by both intrinsic and extrinsic cellular mechanisms. The anatomical location where the stem cells reside, known as the "stem cell niche or microenvironment," provides signals conducive to the maintenance of definitive stem cell properties. Physiological condition including oxygen tension is an important component of the stem cell microenvironment and has been shown to play a role in regulating both embryonic and adult stem cells. This review focuses on oxygen as a signaling molecule and the way it regulates the stem cells' development into mesenchymal tissues in vitro. The physiological relevance of low oxygen tension as an environmental parameter that uniquely benefits stem cells' expansion and maintenance is described along with recent findings on the regulatory effects of oxygen on embryonic stem cells and adult mesenchymal stem cells. The relevance to tissue engineering is discussed in the context of the need to specifically regulate the oxygen content in the cellular microenvironment in order to optimize in vitro tissue development.
Collapse
Affiliation(s)
- Teng Ma
- Dept. of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA.
| | | | | | | |
Collapse
|
47
|
Mansergh FC, Daly CS, Hurley AL, Wride MA, Hunter SM, Evans MJ. Gene expression profiles during early differentiation of mouse embryonic stem cells. BMC DEVELOPMENTAL BIOLOGY 2009; 9:5. [PMID: 19134196 PMCID: PMC2656490 DOI: 10.1186/1471-213x-9-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 01/09/2009] [Indexed: 11/18/2022]
Abstract
Background Understanding the mechanisms controlling stem cell differentiation is the key to future advances in tissue and organ regeneration. Embryonic stem (ES) cell differentiation can be triggered by embryoid body (EB) formation, which involves ES cell aggregation in suspension. EB growth in the absence of leukaemia inhibitory factor (LIF) leads EBs to mimic early embryonic development, giving rise to markers representative of endoderm, mesoderm and ectoderm. Here, we have used microarrays to investigate differences in gene expression between 3 undifferentiated ES cell lines, and also between undifferentiated ES cells and Day 1–4 EBs Results An initial array study identified 4 gene expression changes between 3 undifferentiated ES cell lines. Tissue culture conditions for ES differentiation were then optimized to give the maximum range of gene expression and growth. -Undifferentiated ES cells and EBs cultured with and without LIF at each day for 4 days were subjected to microarray analysis. -Differential expression of 23 genes was identified. 13 of these were also differentially regulated in a separate array comparison between undifferentiated ES cells and compartments of very early embryos. A high degree of inter-replicate variability was noted when confirming array results. Using a panel of marker genes, RNA amplification and RT-PCR, we examined expression pattern variation between individual -D4-Lif EBs. We found that individual EBs selected from the same dish were highly variable in gene expression profile. Conclusion ES cell lines derived from different mouse strains and carrying different genetic modifications are almost invariant in gene expression profile under conditions used to maintain pluripotency. Tissue culture conditions that give the widest range of gene expression and maximise EB growth involve the use of 20% serum and starting cell numbers of 1000 per EB. 23 genes of importance to early development have been identified; more than half of these are also identified using similar studies, thus validating our results. EBs cultured in the same dish vary widely in terms of their gene expression (and hence, undoubtedly, in their future differentiation potential). This may explain some of the inherent variability in differentiation protocols that use EBs.
Collapse
|
48
|
Hanjaya-Putra D, Gerecht S. Vascular engineering using human embryonic stem cells. Biotechnol Prog 2009; 25:2-9. [DOI: 10.1002/btpr.129] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
49
|
Fernandes TG, Kwon SJ, Lee MY, Clark DS, Cabral JMS, Dordick JS. On-chip, cell-based microarray immunofluorescence assay for high-throughput analysis of target proteins. Anal Chem 2008; 80:6633-9. [PMID: 18656951 PMCID: PMC5292206 DOI: 10.1021/ac800848j] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have developed an immunofluorescence-based assay for high-throughput analysis of target proteins on a three-dimensional cellular microarray platform. This process integrates the use of three-dimensional cellular microarrays, which should better mimic the cellular microenvironment, with sensitive immunofluorescence detection and provides quantitative information on cell function. To demonstrate this assay platform, we examined the accumulation of the alpha subunit of the hypoxia-inducible factor (HIF-1alpha) after chemical stimulation of human pancreatic tumor cells encapsulated in 3D alginate spots in volumes as low as 60 nL. We also tested the effect of the known dysregulator of HIF-1alpha, 2-methoxyestradiol (2ME2), on the levels of HIF-1alpha using a dual microarray stamping technique. This chip-based in situ Western immunoassay protocol was able to provide quantitative information on cell function, namely, the cellular response to hypoxia mimicking conditions and the reduction of HIF-1alpha levels after cell treatment with 2ME2. This system is the first to enable high-content screening of cellular protein levels on a 3D human cell microarray platform.
Collapse
|
50
|
Cameron CM, Harding F, Hu WS, Kaufman DS. Activation of hypoxic response in human embryonic stem cell-derived embryoid bodies. Exp Biol Med (Maywood) 2008; 233:1044-57. [PMID: 18535160 DOI: 10.3181/0709-rm-263] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Oxygen tension can provide an important determinant for differentiation and development of many cells and tissues. Genetic regulation of hemato-endothelial commitment is known to respond to oxygen deprivation via stimulation of hypoxia inducible factors (HIFs). Here, we use a closed bioreactor system to monitor and control the dissolved oxygen during differentiation of human embryonic stem cells (hESCs) via formation of embryoid bodies (hEBs). Exposing hESC-derived EBs to ambient oxygen at or below 5% results in stabilization of HIF-1alpha and increased transcription of hypoxic responsive genes. Interestingly, we find that rather than HIF-1alpha expression being stable over prolonged (7-16 days) culture in hypoxic conditions, HIF-1alpha expression peaks after approximately 48 hours of hypoxic exposure, and then declines to near undetectable levels, despite constant hypoxic exposure. This transient stabilization of HIF-1alpha during hESC-derived EB culture is demonstrated for four distinct stages of differentiation. Furthermore, we demonstrate hEB cell expansion is slowed by hypoxic exposure, with increased apoptosis. However, hEB cell proliferation returns to normal rates upon return to normoxic conditions. Therefore, although hypoxia effectively stimulates hypoxic responsive genes, this single variable was not sufficient to improve development of hemato-endothelial cells from hESCs.
Collapse
Affiliation(s)
- C M Cameron
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|