1
|
Yilmaz M, Goksen S, Mender I, Esendagli G, Erdener SE, Ahmed A, Tenekeci AK, Birichevskaya LL, Gryaznov SM, Shay JW, Dikmen ZG. A Phosphatidyl Conjugated Telomerase-Dependent Telomere-Targeting Nucleoside Demonstrates Colorectal Cancer Direct Killing and Immune Signaling. Biomolecules 2024; 14:1616. [PMID: 39766323 PMCID: PMC11674679 DOI: 10.3390/biom14121616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Telomerase and telomeres are crucial in cancer cell immortalization, making them key targets for anticancer therapies. Currently, 6-thio-dG (THIO) combined with the anti-PD-1 inhibitor Cemiplimab is under phase II clinical investigation (NCT05208944) in NSCLC patients resistant to prior immunotherapies. This study presents the design, synthesis, and evaluation of novel bimodular conjugate molecules combining telomere-targeting nucleoside analogs and phosphatidyl diglyceride groups. Among them, dihexanoyl-phosphatidyl-THIO (diC6-THIO) showed high anticancer activity with sub-µM EC50 values in vitro across various cancer cell lines. In mouse colorectal cancer models, diC6-THIO demonstrated strong anticancer effects alone and in combination with PD1/PD-L1 inhibitors. Administration of this compound resulted in the efficient formation of Telomere dysfunction Induced Foci (TIFs) in vitro, indicating an on-target, telomerase-mediated telomere-modifying mechanism of action for the molecule. Systemic treatment also activated CD4+ and CD8+ T cells while reducing regulatory T cells, indicating immune system enhancement. Notably, diC6-THIO exhibits an improved solubility profile while maintaining comparable anticancer properties, further supporting its potential as a promising therapeutic candidate. These findings highlight diC6-THIO as a promising telomere-targeting prodrug with dual effects on telomere modification and immune activation.
Collapse
Affiliation(s)
- Merve Yilmaz
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey; (M.Y.); (A.K.T.); (Z.G.D.)
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Sibel Goksen
- Department of Medical and Surgical Research, Institute of Health Sciences, Hacettepe University, Ankara 06100, Turkey; (S.G.); (G.E.)
| | - Ilgen Mender
- MAIA Biotechnology, Inc., Chicago, IL 60606, USA; (I.M.); (S.M.G.)
| | - Gunes Esendagli
- Department of Medical and Surgical Research, Institute of Health Sciences, Hacettepe University, Ankara 06100, Turkey; (S.G.); (G.E.)
- Department of Basic Oncology, Cancer Institute, Hacettepe University, Ankara 06100, Turkey
| | - Sefik Evren Erdener
- Neurological and Psychiatric Research and Application Center, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey;
| | - Alessandra Ahmed
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Ates Kutay Tenekeci
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey; (M.Y.); (A.K.T.); (Z.G.D.)
| | | | | | - Jerry W. Shay
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Z. Gunnur Dikmen
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey; (M.Y.); (A.K.T.); (Z.G.D.)
| |
Collapse
|
2
|
Sanders FWB, Huang J, Alió Del Barrio JL, Hamada S, McAlinden C. Amniotic membrane transplantation: structural and biological properties, tissue preparation, application and clinical indications. Eye (Lond) 2024; 38:668-679. [PMID: 37875701 PMCID: PMC10920809 DOI: 10.1038/s41433-023-02777-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/20/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
The amniotic membrane is a single epithelial layer of the placenta. It has anti-inflammatory, anti-scarring, anti-angiogenic and possibly bactericidal properties. The basement membrane of the amniotic membrane acts as a substrate to encourage healing and re-epithelialisation. It has been used in many ocular surface diseases including persistent epithelial defects (corneal or conjunctival), chemical or thermal burns, limbal stem cell deficiency, cicatrising conjunctivitis, ocular graft versus host disease, microbial keratitis, corneal perforation, bullous keratopathy, dry eye disease, corneal haze following refractive surgery and cross-linking, band keratopathy, ocular surface neoplasia, pterygium surgery, and ligneous conjunctivitis. This review provides an up-to-date overview of amniotic membrane transplantation including the structural and biological properties, preparation and application, clinical indications, and commercially available products.
Collapse
Affiliation(s)
- Francis W B Sanders
- Department of Ophthalmology, Singleton Hospital, Swansea Bay University Health Board, Swansea, UK
| | - Jinhai Huang
- Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Jorge L Alió Del Barrio
- Division of Ophthalmology, School of Medicine, Universidad Miguel Hernández, Alicante, Spain; and Cornea, Cataract and Refractive Surgery Department, VISSUM Corporation, Alicante, Spain
| | - Samer Hamada
- Corneo Plastic Unit and Eye Bank, Queen Victoria Hospital, East Grinstead, UK
| | - Colm McAlinden
- Eye and ENT Hospital, Fudan University, Shanghai, China.
- Corneo Plastic Unit and Eye Bank, Queen Victoria Hospital, East Grinstead, UK.
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, UK.
| |
Collapse
|
3
|
Mao Y, Protzman NM, John N, Kuehn A, Long D, Sivalenka R, Junka RA, Shah AU, Gosiewska A, Hariri RJ, Brigido SA. An in vitro comparison of human corneal epithelial cell activity and inflammatory response on differently designed ocular amniotic membranes and a clinical case study. J Biomed Mater Res B Appl Biomater 2023; 111:684-700. [PMID: 36370413 PMCID: PMC10099462 DOI: 10.1002/jbm.b.35186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022]
Abstract
Amniotic membrane (AM) is a naturally derived biomaterial with biological and mechanical properties important to Ophthalmology. The epithelial side of the AM promotes epithelialization, while the stromal side regulates inflammation. However, not all AMs are equal. AMs undergo different processing with resultant changes in cellular content and structure. This study evaluates the effects of sidedness and processing on human corneal epithelial cell (HCEC) activity, the effect of processing on HCEC inflammatory response, and then a case study is presented. Three differently processed, commercially available ocular AMs were selected: (1) Biovance®3L Ocular, a decellularized, dehydrated human AM (DDHAM), (2) AMBIO2®, a dehydrated human AM (DHAM), and (3) AmnioGraft®, a cryopreserved human AM (CHAM). HCECs were seeded onto the AMs and incubated for 1, 4 and 7 days. Cell adhesion and viability were evaluated using alamarBlue assay. HCEC migration was evaluated using a scratch wound assay. An inflammatory response was induced by TNF-α treatment. The effect of AM on the expression of pro-inflammatory genes in HCECs was compared using quantitative polymerase chain reaction (qPCR). Staining confirmed complete decellularization and the absence of nuclei in DDHAM. HCEC activity was best supported on the stromal side of DDHAM. Under inflammatory stimulation, DDHAM promoted a higher initial inflammatory response with a declining trend across time. Clinically, DDHAM was used to successfully treat anterior basement membrane dystrophy. Compared with DHAM and CHAM, DDHAM had significant positive effects on the cellular activities of HCECs in vitro, which may suggest greater ocular cell compatibility in vivo.
Collapse
Affiliation(s)
- Yong Mao
- Department of Chemistry and Chemical Biology, Rutgers University Laboratory for Biomaterials Research, Piscataway, New Jersey, USA
| | - Nicole M Protzman
- Department of Research, Healthcare Analytics, LLC, Easton, Pennsylvania, USA
| | - Nikita John
- Department of Chemistry and Chemical Biology, Rutgers University Laboratory for Biomaterials Research, Piscataway, New Jersey, USA
| | - Adam Kuehn
- Celularity Inc., Florham Park, New Jersey, USA
| | | | | | | | - Anish U Shah
- Ophthalmic Surgeon, Norwich Ophthalmology Group, Norwich, Connecticut, USA
| | | | | | | |
Collapse
|
4
|
Guo T, He C, Venado A, Zhou Y. Extracellular Matrix Stiffness in Lung Health and Disease. Compr Physiol 2022; 12:3523-3558. [PMID: 35766837 PMCID: PMC10088466 DOI: 10.1002/cphy.c210032] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The extracellular matrix (ECM) provides structural support and imparts a wide variety of environmental cues to cells. In the past decade, a growing body of work revealed that the mechanical properties of the ECM, commonly known as matrix stiffness, regulate the fundamental cellular processes of the lung. There is growing appreciation that mechanical interplays between cells and associated ECM are essential to maintain lung homeostasis. Dysregulation of ECM-derived mechanical signaling via altered mechanosensing and mechanotransduction pathways is associated with many common lung diseases. Matrix stiffening is a hallmark of lung fibrosis. The stiffened ECM is not merely a sequelae of lung fibrosis but can actively drive the progression of fibrotic lung disease. In this article, we provide a comprehensive view on the role of matrix stiffness in lung health and disease. We begin by summarizing the effects of matrix stiffness on the function and behavior of various lung cell types and on regulation of biomolecule activity and key physiological processes, including host immune response and cellular metabolism. We discuss the potential mechanisms by which cells probe matrix stiffness and convert mechanical signals to regulate gene expression. We highlight the factors that govern matrix stiffness and outline the role of matrix stiffness in lung development and the pathogenesis of pulmonary fibrosis, pulmonary hypertension, asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. We envision targeting of deleterious matrix mechanical cues for treatment of fibrotic lung disease. Advances in technologies for matrix stiffness measurements and design of stiffness-tunable matrix substrates are also explored. © 2022 American Physiological Society. Compr Physiol 12:3523-3558, 2022.
Collapse
Affiliation(s)
- Ting Guo
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA.,Department of Respiratory Medicine, the Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Chao He
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| | - Aida Venado
- Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Yong Zhou
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| |
Collapse
|
5
|
Use of dried amniotic membrane with glue to manage a corneal perforation. Eye (Lond) 2022; 36:894-895. [PMID: 33941874 PMCID: PMC8956622 DOI: 10.1038/s41433-021-01558-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/10/2021] [Accepted: 04/13/2021] [Indexed: 02/02/2023] Open
|
6
|
Khanna A, Zamani M, Huang NF. Extracellular Matrix-Based Biomaterials for Cardiovascular Tissue Engineering. J Cardiovasc Dev Dis 2021; 8:137. [PMID: 34821690 PMCID: PMC8622600 DOI: 10.3390/jcdd8110137] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/10/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Regenerative medicine and tissue engineering strategies have made remarkable progress in remodeling, replacing, and regenerating damaged cardiovascular tissues. The design of three-dimensional (3D) scaffolds with appropriate biochemical and mechanical characteristics is critical for engineering tissue-engineered replacements. The extracellular matrix (ECM) is a dynamic scaffolding structure characterized by tissue-specific biochemical, biophysical, and mechanical properties that modulates cellular behavior and activates highly regulated signaling pathways. In light of technological advancements, biomaterial-based scaffolds have been developed that better mimic physiological ECM properties, provide signaling cues that modulate cellular behavior, and form functional tissues and organs. In this review, we summarize the in vitro, pre-clinical, and clinical research models that have been employed in the design of ECM-based biomaterials for cardiovascular regenerative medicine. We highlight the research advancements in the incorporation of ECM components into biomaterial-based scaffolds, the engineering of increasingly complex structures using biofabrication and spatial patterning techniques, the regulation of ECMs on vascular differentiation and function, and the translation of ECM-based scaffolds for vascular graft applications. Finally, we discuss the challenges, future perspectives, and directions in the design of next-generation ECM-based biomaterials for cardiovascular tissue engineering and clinical translation.
Collapse
Affiliation(s)
| | - Maedeh Zamani
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA;
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Ngan F. Huang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA;
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| |
Collapse
|
7
|
Lobo DA, Ginestra P, Ceretti E, Miquel TP, Ciurana J. Cancer Cell Direct Bioprinting: A Focused Review. MICROMACHINES 2021; 12:764. [PMID: 34203530 PMCID: PMC8305105 DOI: 10.3390/mi12070764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022]
Abstract
Three-dimensional printing technologies allow for the fabrication of complex parts with accurate geometry and less production time. When applied to biomedical applications, two different approaches, known as direct or indirect bioprinting, may be performed. The classical way is to print a support structure, the scaffold, and then culture the cells. Due to the low efficiency of this method, direct bioprinting has been proposed, with or without the use of scaffolds. Scaffolds are the most common technology to culture cells, but bioassembly of cells may be an interesting methodology to mimic the native microenvironment, the extracellular matrix, where the cells interact between themselves. The purpose of this review is to give an updated report about the materials, the bioprinting technologies, and the cells used in cancer research for breast, brain, lung, liver, reproductive, gastric, skin, and bladder associated cancers, to help the development of possible treatments to lower the mortality rates, increasing the effectiveness of guided therapies. This work introduces direct bioprinting to be considered as a key factor above the main tissue engineering technologies.
Collapse
Affiliation(s)
- David Angelats Lobo
- Department of Mechanical and Industrial Engineering, University of Brescia, V. Branze 38, 25123 Brescia, Italy; (D.A.L.); (E.C.)
- New Therapeutic Targets Laboratory (TargetsLab), Oncology Unit, Department of Medical Sciences, Girona Institute for Biomedical Research, University of Girona, Emili Grahit 77, 17003 Girona, Spain;
| | - Paola Ginestra
- Department of Mechanical and Industrial Engineering, University of Brescia, V. Branze 38, 25123 Brescia, Italy; (D.A.L.); (E.C.)
| | - Elisabetta Ceretti
- Department of Mechanical and Industrial Engineering, University of Brescia, V. Branze 38, 25123 Brescia, Italy; (D.A.L.); (E.C.)
| | - Teresa Puig Miquel
- New Therapeutic Targets Laboratory (TargetsLab), Oncology Unit, Department of Medical Sciences, Girona Institute for Biomedical Research, University of Girona, Emili Grahit 77, 17003 Girona, Spain;
| | - Joaquim Ciurana
- Product, Process and Production Engineering Research Group (GREP), Department of Mechanical Engineering and Industrial Construction, University of Girona, Maria Aurèlia Capmany 61, 17003 Girona, Spain;
| |
Collapse
|
8
|
Kim K, Min S, Kim D, Kim H, Roh S. A Rho Kinase (ROCK) Inhibitor, Y-27632, Inhibits the Dissociation-Induced Cell Death of Salivary Gland Stem Cells. Molecules 2021; 26:molecules26092658. [PMID: 34062818 PMCID: PMC8124333 DOI: 10.3390/molecules26092658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 01/21/2023] Open
Abstract
Salivary gland stem cells (SGSCs) are potential cell sources for the treatment of salivary gland diseases. The control of cell survival is an essential factor for applying stem cells to regenerative medicine or stem cell-based research. The purpose of this study was to investigate the effects of the ROCK inhibitor Y-27632 on the survival of SGSCs and its underlying mechanisms. SGSCs were isolated from mouse submandibular glands and cultured in suspension. Treatment with Y-27632 restored the viability of SGSCs that was significantly decreased during isolation and the subsequent culture. Y-27632 upregulated the expression of anti-apoptotic protein BCL-2 in SGSCs and, in the apoptosis assay, significantly reduced apoptotic and necrotic cell populations. Matrigel was used to mimic the extracellular environment of an intact salivary gland. The expression of genes regulating apoptosis and the ROCK signaling pathway was significantly reduced when SGSCs were embedded in Matrigel. SGSCs cultured in Matrigel and treated with Y-27632 showed no difference in the total numbers of spheroids and expression levels of apoptosis-regulating genes. Matrigel-embedded SGSCs treated with Y-27632 increased the number of spheroids with budding structures and the expression of acinar cell-specific marker AQP5. We demonstrate the protective effects of Y-27632 against dissociation-induced apoptosis of SGSCs during their culture in vitro.
Collapse
Affiliation(s)
- Kichul Kim
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul 08826, Korea; (K.K.); (S.M.)
| | - Sol Min
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul 08826, Korea; (K.K.); (S.M.)
| | - Daehwan Kim
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA 94720, USA;
| | - Hyewon Kim
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Korea;
| | - Sangho Roh
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul 08826, Korea; (K.K.); (S.M.)
- Correspondence: ; Tel.: +82-2-880-2333
| |
Collapse
|
9
|
Gheytanchi E, Naseri M, Karimi-Busheri F, Atyabi F, Mirsharif ES, Bozorgmehr M, Ghods R, Madjd Z. Morphological and molecular characteristics of spheroid formation in HT-29 and Caco-2 colorectal cancer cell lines. Cancer Cell Int 2021; 21:204. [PMID: 33849536 PMCID: PMC8042991 DOI: 10.1186/s12935-021-01898-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/24/2021] [Indexed: 02/08/2023] Open
Abstract
Background Relapse and metastasis in colorectal cancer (CRC) are often attributed to cancer stem-like cells (CSCs), as small sub-population of tumor cells with ability of drug resistance. Accordingly, development of appropriate models to investigate CSCs biology and establishment of effective therapeutic strategies is warranted. Hence, we aimed to assess the capability of two widely used and important colorectal cancer cell lines, HT-29 and Caco-2, in generating spheroids and their detailed morphological and molecular characteristics. Methods CRC spheroids were developed using hanging drop and forced floating in serum-free and non-attachment conditions and their morphological features were evaluated by scanning electron microscopy (SEM). Then, the potential of CSCs enrichment in spheroids was compared to their adherent counterparts by analysis of serial sphere formation capacity, real-time PCR of key stemness genes (KLF4, OCT4, SOX2, NANOG, C-MYC) and the expression of potential CRC-CSCs surface markers (CD166, CD44, and CD133) by flow cytometry. Finally, the expression level of some EMT-related (Vimentin, SNAIL1, TWIST1, N-cadherin, E-cadherin, ZEB1) and multi-drug resistant (ABCB1, ABCC1, ABCG2) genes was evaluated. Results Although with different morphological features, both cell lines were formed CSCs-enriched spheroids, indicated by ability to serial sphere formation, significant up-regulation of stemness genes, SOX2, C-MYC, NANOG and OCT4 in HT-29 and SOX2, C-MYC and KLF4 in Caco-2 spheroids (p-value < 0.05) and increased expression of CRC-CSC markers compared to parental cells (p-value < 0.05). Additionally, HT-29 spheroids exhibited a significant higher expression of both ABCB1 and ABCG2 (p-value = 0.02). The significant up-regulation of promoting EMT genes, ZEB1, TWIST1, E-cadherin and SNAIL1 in HT-29 spheroids (p-value = 0.03), SNAIL1 and Vimentin in Caco-2 spheroids (p-value < 0.05) and N-cadherin down-regulation in both spheroids were observed. Conclusion Enrichment of CSC-related features in HT-29 and Caco-2 (for the first time without applying special scaffold/biochemical) spheroids, suggests spheroid culture as robust, reproducible, simple and cost-effective model to imitate the complexity of in vivo tumors including self-renewal, drug resistance and invasion for in vitro research of CRC-CSCs.
Collapse
Affiliation(s)
- Elmira Gheytanchi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Naseri
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Atyabi
- Nanotechnology Research Centre, Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mahmood Bozorgmehr
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran. .,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran. .,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Law ZJ, Khoo XH, Lim PT, Goh BH, Ming LC, Lee WL, Goh HP. Extracellular Vesicle-Mediated Chemoresistance in Oral Squamous Cell Carcinoma. Front Mol Biosci 2021; 8:629888. [PMID: 33768115 PMCID: PMC7985159 DOI: 10.3389/fmolb.2021.629888] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Oral Squamous Cell Carcinoma (OSCC) remains a cancer with poor prognosis and high recurrence rate. Even with multimodal treatment options available for OSCC, tumor drug resistance is still a persistent problem, leading to increased tumor invasiveness among OSCC patients. An emerging trend of thought proposes that extracellular vesicles (EVs) play a role in facilitating tumor progression and chemoresistance via signaling between tumor cells. In particular, exosomes and microvesicles are heavily implicated in this process by various studies. Where primary studies into a particular EV-mediated chemoresistance mechanism in OSCC are limited, similar studies on other cancer cell types will be used in the discussion below to provide ideas for a new line of investigation into OSCC chemoresistance. By understanding how EVs are or may be involved in OSCC chemoresistance, novel targeted therapies such as EV inhibition may be an effective alternative to current treatment options in the near future. In this review, the current understandings on OSCC drug mechanisms under the novel context of exosomes and microvesicles were reviewed, including shuttling of miRNA content, drug efflux, alteration of vesicular pH, anti-apoptotic signaling, modulation of DNA damage repair, immunomodulation, epithelial-to-mesenchymal transition and maintenance of tumor by cancer stem cells.
Collapse
Affiliation(s)
- Zhu-Jun Law
- School of Science, Monash University Malaysia, Selangor, Malaysia
| | - Xin Hui Khoo
- School of Science, Monash University Malaysia, Selangor, Malaysia
| | - Pei Tee Lim
- School of Science, Monash University Malaysia, Selangor, Malaysia
| | - Bey Hing Goh
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Wai-Leng Lee
- School of Science, Monash University Malaysia, Selangor, Malaysia
| | - Hui Poh Goh
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| |
Collapse
|
11
|
Abstract
Corneal perforation is a potentially devastating complication that can result from numerous conditions that precipitate corneal melting. It is associated with significant morbidity and prompt intervention is necessary to prevent further complications. Causes include microbial keratitis, ocular surface disease, and autoimmune disorders and trauma. Various management options have been described in the literature to facilitate visual rehabilitation. This rview discusses the treatment options that range from temporising measures such as corneal gluing through to corneal transplantation, with decision making guided by the location, size, and underlying aetiology of the perforation.
Collapse
Affiliation(s)
- Rashmi Deshmukh
- Division of Ophthalmology and Visual Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK
| | - Louis J Stevenson
- Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Rasik Vajpayee
- Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Maini S, Hurley-Bennett K, Dawson C. Case Series Describing the Use of Low-Temperature Vacuum-Dehydrated Amnion (Omnigen) for the Treatment of Corneal Ulcers in Cats and Dogs: 46 Cases (2016-2017). Top Companion Anim Med 2020; 41:100474. [PMID: 32919060 DOI: 10.1016/j.tcam.2020.100474] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022]
Abstract
Amniotic membrane is widely used in the treatment of ocular surface disorders in human and veterinary patients. Preservation and storage of amnion has proven challenging, prompting the development of new preservation techniques. Omnigen, a novel low-temperature vacuum-dehydrated amnion, is reported to possess enhanced structural properties and biochemical stability in vitro, but its clinical use in veterinary patients is not well described. This study aims to document and describe the varied use of Omnigen for the surgical treatment of corneal ulceration in cats and dogs. A total of 45 patients (46 eyes) were recruited from the clinical record system of the Royal Veterinary College (London) between January 2016 and December 2017. Brachycephalic breeds were over-represented (37/45; 82.2%). Omnigen was used as a standalone graft in 5/46 (10.9%) eyes, as a supplementary graft in 29/46 (63.0%) eyes and as a patch in 12/46 (26.1%) eyes. Graft failure occurred in 10/46 eyes (21.7%). At final examination 43/46 eyes (93.5%) had healed and 31/33 eyes (93.9%) were visual. This study demonstrates the successful use of Omnigen for the surgical treatment of corneal ulceration in cats and dogs. Further studies are needed to clarify its properties and benefits in the clinical field.
Collapse
Affiliation(s)
- Serena Maini
- Department of Clinical Science and Services, The Royal Veterinary College, Ophthalmology Service, University of London, North Mymms, Herts, UK.
| | - Kiera Hurley-Bennett
- Department of Clinical Science and Services, The Royal Veterinary College, Ophthalmology Service, University of London, North Mymms, Herts, UK
| | - Charlotte Dawson
- Department of Clinical Science and Services, The Royal Veterinary College, Ophthalmology Service, University of London, North Mymms, Herts, UK
| |
Collapse
|
13
|
Walkden A. Amniotic Membrane Transplantation in Ophthalmology: An Updated Perspective. Clin Ophthalmol 2020; 14:2057-2072. [PMID: 32801614 PMCID: PMC7383023 DOI: 10.2147/opth.s208008] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/22/2020] [Indexed: 01/23/2023] Open
Abstract
Aim The aim of this paper is to provide a succinct literature review of the different clinical applications for AMT usage in an ophthalmic setting, ranging from commonly used applications to less mainstream approaches. The hope is that this review enables the reader to have a better understanding of the biological properties of amnion as well as the indications and scenarios in which AMT can be used, whilst presenting relevant evidence from within the literature which may be of interest. We also provide an update on the methods of preservation of amniotic membrane and the application methodologies. Methods Literature search. A PubMed search was performed using the search terms “amniotic membrane transplant”, “amnion AND cornea”, amnion AND ophthalmology”, “amnion AND ocular surface” and “Amnion AND eye”. A full review of the literature using the PubMed database was conducted up until 01/05/20. The articles used were written in English, with all articles accessed in full. Both review articles and original articles were used for this review. All full publications related to ophthalmology were considered.
Collapse
Affiliation(s)
- Andrew Walkden
- Manchester Royal Eye Hospital, Manchester University Foundation Trust, Manchester, UK.,University of Manchester Faculty of Medical and Human Sciences, Manchester, Greater Manchester, UK
| |
Collapse
|
14
|
Walker CT, Godzik J, Kakarla UK, Turner JD, Whiting AC, Nakaji P. Human Amniotic Membrane for the Prevention of Intradural Spinal Cord Adhesions: Retrospective Review of its Novel Use in a Case Series of 14 Patients. Neurosurgery 2019; 83:989-996. [PMID: 29481675 DOI: 10.1093/neuros/nyx608] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 12/05/2017] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Tethering after spinal surgery is caused by adhesions that arise from intradural tissue manipulation. Microsurgical detethering is the only treatment for symptomatic patients, but retethering occurs commonly and no treatment is widely available to prevent this complication. OBJECTIVE To apply human amniotic membrane (HAM) grafts, which are immune-privileged and known to possess antifibrogenic properties, in patients requiring microsurgical detethering. For this first-in-human use, we evaluated the safety and potential efficacy of these grafts for preventing retethering. METHODS We retrospectively reviewed the medical records of all patients who required detethering surgery and received an HAM graft between 2013 and 2016 at our institution after various previous intradural spinal surgeries. In all 14 cases, intradural lysis of adhesions was achieved, an HAM graft was sewn in place intradurally, and a dural patch was closed in a watertight fashion over the graft. RESULTS Fourteen patients had received HAM grafts to prevent retethering. All patients had at least 6 mo of follow-up (mean follow-up, 14 mo). Retethering was noted in only 1 patient. Surgical re-exploration showed that the retethering occurred caudal to the edge of the HAM graft, with no tethering underneath the original graft. No complications were attributed specifically to the HAM graft placement. CONCLUSION This first-in-human series provides evidence that HAM grafts are a safe and potentially efficacious method for preventing retethering after microsurgical intradural lysis of adhesions. These results lay the groundwork for further prospective controlled trials in patients with this difficult-to-treat pathology.
Collapse
Affiliation(s)
- Corey T Walker
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Jakub Godzik
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - U Kumar Kakarla
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Jay D Turner
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Alexander C Whiting
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Peter Nakaji
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| |
Collapse
|
15
|
Wallace RM, Hart ML, Egen TE, Schmelzle A, Smith MF, Pohler KG, Green JA. Bovine pregnancy associated glycoproteins can alter selected transcripts in bovine endometrial explants. Theriogenology 2019; 131:123-132. [DOI: 10.1016/j.theriogenology.2019.03.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/27/2019] [Accepted: 03/30/2019] [Indexed: 12/11/2022]
|
16
|
Steinbichler TB, Dudás J, Skvortsov S, Ganswindt U, Riechelmann H, Skvortsova II. Therapy resistance mediated by exosomes. Mol Cancer 2019; 18:58. [PMID: 30925921 PMCID: PMC6441190 DOI: 10.1186/s12943-019-0970-x] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/21/2019] [Indexed: 12/21/2022] Open
Abstract
Therapy resistance can arise within tumor cells because of genetic or phenotypic changes (intrinsic resistance), or it can be the result of an interaction with the tumor microenvironment (extrinsic resistance). Exosomes are membranous vesicles 40 to 100 nm in diameter constitutively released by almost all cell types, and mediate cell-to-cell communication by transferring mRNAs, miRNAs, DNAs and proteins causing extrinsic therapy resistance. They transfer therapy resistance by anti-apoptotic signalling, increased DNA-repair or delivering ABC transporters to drug sensitive cells. As functional mediators of tumor-stroma interaction and of epithelial to mesenchymal transition, exosomes also promote environment-mediated therapy resistance. Exosomes may be used in anticancer therapy exploiting their delivery function. They may effectively transfer anticancer drugs or RNAs in the context of gene therapy reducing immune stimulatory effects of these drugs and hydrophilic qualities facilitating crossing of cell membranes.
Collapse
Affiliation(s)
| | - József Dudás
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Sergej Skvortsov
- Laboratory for Experimental and Translational Research on Radiation Oncology (EXTRO-Lab), Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Anichstr. 35, A-6020, Innsbruck, Austria.,EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Ute Ganswindt
- Laboratory for Experimental and Translational Research on Radiation Oncology (EXTRO-Lab), Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Anichstr. 35, A-6020, Innsbruck, Austria
| | - Herbert Riechelmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Ira-Ida Skvortsova
- Laboratory for Experimental and Translational Research on Radiation Oncology (EXTRO-Lab), Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Anichstr. 35, A-6020, Innsbruck, Austria. .,EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria.
| |
Collapse
|
17
|
Krishna L, Dhamodaran K, Subramani M, Ponnulagu M, Jeyabalan N, Krishna Meka SR, Jayadev C, Shetty R, Chatterjee K, Khora SS, Das D. Protective Role of Decellularized Human Amniotic Membrane from Oxidative Stress-Induced Damage on Retinal Pigment Epithelial Cells. ACS Biomater Sci Eng 2018; 5:357-372. [DOI: 10.1021/acsbiomaterials.8b00769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lekshmi Krishna
- Stem Cell Research Lab, GROW Laboratories, Narayana Nethralaya Foundation, 258/A, Bommasandra Industrial Area, Bangalore, Karnataka, India
- School of Bioscience and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Kamesh Dhamodaran
- Stem Cell Research Lab, GROW Laboratories, Narayana Nethralaya Foundation, 258/A, Bommasandra Industrial Area, Bangalore, Karnataka, India
| | - Murali Subramani
- Stem Cell Research Lab, GROW Laboratories, Narayana Nethralaya Foundation, 258/A, Bommasandra Industrial Area, Bangalore, Karnataka, India
| | - Murugeswari Ponnulagu
- Stem Cell Research Lab, GROW Laboratories, Narayana Nethralaya Foundation, 258/A, Bommasandra Industrial Area, Bangalore, Karnataka, India
| | - Nallathambi Jeyabalan
- Grow Laboratories, Narayana Nethralaya Foundation, 258/A, Bommasandra Industrial Area, Bangalore, Karnataka, India
| | - Sai Rama Krishna Meka
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - Chaitra Jayadev
- Department of Vitreo-retinal Services, Narayana Nethralaya Eye Institute, 258/A, Bommasandra Industrial Area, Bangalore, Karnataka, India
| | - Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Institute, 258/A, Bommasandra Industrial Area, Bangalore, Karnataka, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | | | - Debashish Das
- Stem Cell Research Lab, GROW Laboratories, Narayana Nethralaya Foundation, 258/A, Bommasandra Industrial Area, Bangalore, Karnataka, India
| |
Collapse
|
18
|
Matrix Metalloproteinase-1 and Acid Phosphatase in the Degradation of the Lamina Propria of Eruptive Pathway of Rat Molars. Cells 2018; 7:cells7110206. [PMID: 30423799 PMCID: PMC6262441 DOI: 10.3390/cells7110206] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 01/08/2023] Open
Abstract
The comprehension of dental pathogenesis and disorders derived from eruption failure requires a deep understanding of the molecular mechanisms underlying normal tooth eruption. As intense remodelling is needed during tooth eruption, we hypothesize that matrix metalloproteinase-1 (MMP-1) and acid phosphatase (ACP) play a role in the eruptive pathway degradation. We evaluated MMP-1-immunoexpression and the collagen content in the lamina propria at different eruptive phases. Immunohistochemistry and ultrastructural cytochemistry for detection of ACP were also performed. In the maxillary sections containing first molars of 9-, 11-, 13-, and 16-day-old rats, the birefringent collagen of eruptive pathway was quantified. MMP-1 and ACP-2 immunohistochemical reactions were performed and the number of MMP-1-immunolabelled cells was computed. Data were analyzed by one-way ANOVA and Tukey post-test (p ≤ 0.05). ACP cytochemistry was evaluated in specimens incubated in sodium β-glycerophosphate. In the eruptive pathway of 13- and 16-day-old rats, the number of MMP-1-immunolabelled cells increased concomitantly to reduction of collagen in the lamina propria. Enhanced ACP-2-immunolabelling was observed in the lamina propria of 13- and 16-day-old rats. Fibroblasts and macrophages showed lysosomes and vacuoles containing fragmented material reactive to ACP. MMP-1 degrades extracellular matrix, including collagen fibers, being responsible for the reduction in the collagen content during tooth eruption. The enhanced ACP activity at the mucosal penetration stage indicates that this enzyme plays a role in the degradation of remnant material, which is engulfed by macrophages and fibroblasts of the eruptive pathway. Therefore, enzymatic failure in the eruptive pathway may disturbs tooth eruption.
Collapse
|
19
|
Peric Z, Skegro I, Durakovic N, Desnica L, Pulanic D, Serventi-Seiwerth R, Petricek I, Pavletic SZ, Vrhovac R. Amniotic membrane transplantation—a new approach to crossing the HLA barriers in the treatment of refractory ocular graft-versus-host disease. Bone Marrow Transplant 2018; 53:1466-1469. [DOI: 10.1038/s41409-018-0140-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/10/2018] [Indexed: 11/09/2022]
|
20
|
Fiore APZP, Ribeiro PDF, Bruni-Cardoso A. Sleeping Beauty and the Microenvironment Enchantment: Microenvironmental Regulation of the Proliferation-Quiescence Decision in Normal Tissues and in Cancer Development. Front Cell Dev Biol 2018; 6:59. [PMID: 29930939 PMCID: PMC6001001 DOI: 10.3389/fcell.2018.00059] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/18/2018] [Indexed: 01/18/2023] Open
Abstract
Cells from prokaryota to the more complex metazoans cease proliferating at some point in their lives and enter a reversible, proliferative-dormant state termed quiescence. The appearance of quiescence in the course of evolution was essential to the acquisition of multicellular specialization and compartmentalization and is also a central aspect of tissue function and homeostasis. But what makes a cell cease proliferating even in the presence of nutrients, growth factors, and mitogens? And what makes some cells "wake up" when they should not, as is the case in cancer? Here, we summarize and discuss evidence showing how microenvironmental cues such as those originating from metabolism, extracellular matrix (ECM) composition and arrangement, neighboring cells and tissue architecture control the cellular proliferation-quiescence decision, and how this complex regulation is corrupted in cancer.
Collapse
Affiliation(s)
| | | | - Alexandre Bruni-Cardoso
- e-Signal Laboratory, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
21
|
Perry G, Xiao W, Welsh GI, Perriman AW, Lennon R. Engineered basement membranes: from in vivo considerations to cell-based assays. Integr Biol (Camb) 2018; 10:680-695. [DOI: 10.1039/c8ib00138c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Engineered basement membranes are required to mimic in vivo properties within cell-based assays.
Collapse
Affiliation(s)
- Guillaume Perry
- Sorbonne Université, Laboratoire d’Electronique et d’Electromagnétisme
- F-75005 Paris
- France
| | - Wenjin Xiao
- School of Cellular and Molecular Medicine, University of Bristol
- BS8 1TD Bristol
- UK
| | - Gavin I. Welsh
- Bristol Renal, Bristol Medical School, University of Bristol
- BS1 3NY Bristol
- UK
| | - Adam W. Perriman
- School of Cellular and Molecular Medicine, University of Bristol
- BS8 1TD Bristol
- UK
| | - Rachel Lennon
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester
- M13 9PT Manchester
- UK
| |
Collapse
|
22
|
Kalogeropoulos D, Geka A, Malamos K, Kanari M, Kalogeropoulos C. New Therapeutic Perceptions in a Patient with Complicated Herpes Simplex Virus 1 Keratitis: A Case Report and Review of the Literature. AMERICAN JOURNAL OF CASE REPORTS 2017; 18:1382-1389. [PMID: 29279602 PMCID: PMC5753617 DOI: 10.12659/ajcr.906506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Patient: Male, 80 Final Diagnosis: Unilateral complicated Herpetic Simplex Virus 1 Keratitis Symptoms: Visual impairment Medication: Anti-herpetic treatment • Anti-VEGF • Cyclosporine A • Matrix regeneration therapy Clinical Procedure: Amniotic membrane and limbal stem cell transplantation Specialty: Ophthalmology
Collapse
Affiliation(s)
- Dimitrios Kalogeropoulos
- Department of Ophthalmology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Aliki Geka
- Department of Ophthalmology, Olympion Private Hospital, Patras, Greece
| | - Konstantinos Malamos
- Department of Ophthalmology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Maria Kanari
- Department of Ophthalmology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Chris Kalogeropoulos
- Department of Ophthalmology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| |
Collapse
|
23
|
Saemisch M, Nickmann M, Riesinger L, Edelman ER, Methe H. 3D matrix-embedding inhibits cycloheximide-mediated sensitization to TNF-alpha-induced apoptosis of human endothelial cells. J Tissue Eng Regen Med 2017; 12:1085-1096. [PMID: 29131527 DOI: 10.1002/term.2609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 10/23/2017] [Accepted: 10/28/2017] [Indexed: 12/30/2022]
Abstract
The programmed form of cell death (apoptosis) is essential for normal development of multicellular organisms. Dysregulation of apoptosis has been linked with embryonal death and is involved in the pathophysiology of various diseases. Others and we previously demonstrated endothelial biology being intertwined with biochemical and structural composition of the subendothelial basement membrane. We now demonstrate that a three-dimensional growing environment significantly shields endothelial cells from cytokine-induced apoptosis. Detailed analysis reveals differences in intracellular signaling pathways in naive endothelial cells and cytokine-stimulated endothelial cells when cells are grown within a three-dimensional collagen-based matrix compared to cells grown on two-dimensional tissue culture plates. Main findings are significantly reduced p53 expression and level of p38-phosphorylation in three-dimensional grown endothelial cells. Despite similar concentrations of focal adhesion kinase, three-dimensional matrix-embedded endothelial cells express significantly less tyrosine-phosphorylated focal adhesion kinase. Pretreatment with antibodies against integrin αv β3 partially reversed the protective effect of three-dimensional matrix-embedding on endothelial apoptosis. Our findings provide detailed insights into the mechanisms of endothelial apoptosis with respect to the spatial matrix environment. These results enhance our understanding of endothelial biology and may otherwise help in the design of tissue-engineered materials. Furthermore, findings on focal adhesion kinase phosphorylation might enhance our understanding of clinical studies with tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Michael Saemisch
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany.,Department of Cardiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Lisa Riesinger
- Department of Cardiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Elazer R Edelman
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Heiko Methe
- Department of Cardiology, Ludwig-Maximilians-University Munich, Munich, Germany.,Kliniken an der Paar, Aichach, Germany.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
24
|
Kretschmer S, Pieper M, Klinger A, Hüttmann G, König P. Imaging of Wound Closure of Small Epithelial Lesions in the Mouse Trachea. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2451-2460. [DOI: 10.1016/j.ajpath.2017.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 06/26/2017] [Accepted: 07/13/2017] [Indexed: 12/28/2022]
|
25
|
Bone Marrow-Derived Tenascin-C Attenuates Cardiac Hypertrophy by Controlling Inflammation. J Am Coll Cardiol 2017; 70:1601-1615. [PMID: 28935038 DOI: 10.1016/j.jacc.2017.07.789] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 07/24/2017] [Accepted: 07/31/2017] [Indexed: 01/19/2023]
Abstract
BACKGROUND Tenascin-C (TNC) is a highly conserved matricellular protein with a distinct expression pattern during development and disease. Remodeling of the left ventricle (LV) in response to pressure overload leads to the re-expression of the fetal gene program. OBJECTIVES The aim of this study was to investigate the function of TNC in cardiac hypertrophy in response to pressure overload. METHODS Pressure overload was induced in TNC knockout and wild-type mice by constricting their abdominal aorta or by infusion of angiotensin II. Echocardiography, immunostaining, flow cytometry, quantitative real-time polymerase chain reaction, and reciprocal bone marrow transplantation were used to evaluate the effect of TNC deficiency. RESULTS Echocardiographic analysis of pressure overloaded hearts revealed that all LV parameters (LV end-diastolic and -systolic dimensions, ejection fraction, and fractional shortening) deteriorated in TNC-deficient mice compared with their wild-type counterparts. Cardiomyocyte size and collagen accumulation were significantly greater in the absence of TNC. Mechanistically, TNC deficiency promoted rapid accumulation of the CCR2+/Ly6Chi monocyte/macrophage subset into the myocardium in response to pressure overload. Further, echocardiographic and immunohistochemical analyses of recipient hearts showed that expression of TNC in the bone marrow, but not the myocardium, protected the myocardium against excessive remodeling of the pressure-overloaded heart. CONCLUSIONS TNC deficiency further impaired cardiac function in response to pressure overload and exacerbated fibrosis by enhancing inflammation. In addition, expression of TNC in the bone marrow, but not the myocardium, protected the myocardium against excessive remodeling in response to mild pressure overload.
Collapse
|
26
|
Treatment of acute ocular chemical burns. Surv Ophthalmol 2017; 63:214-235. [PMID: 28935121 DOI: 10.1016/j.survophthal.2017.09.005] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 01/15/2023]
Abstract
Ocular chemical burns are an ophthalmic emergency and are responsible for 11.5%-22.1% of ocular injuries. Immediate copious irrigation is universally recommended in acute ocular burns to remove the offending agent and minimize damage. Conventional medical therapy consists of the use of agents that promote epithelialization, minimize inflammation, and prevent cicatricial complications. Biological fluids such as autologous serum, umbilical cord blood serum, platelet-rich plasma, and amniotic membrane suspension are a rich source of growth factors and promote healing when used as adjuncts to conventional therapy. Surgical treatment of acute ocular burns includes the debridement of the necrotic tissue, application of tissue adhesives, tenoplasty, and tectonic keratoplasty. Amniotic membrane transplantation is a novel surgical treatment that is increasingly being used as an adjunct to conventional treatment to promote epithelial healing, minimize pain, and restore visual acuity. Various experimental treatments that aim to promote wound healing and minimize inflammation are being evaluated such as human mesenchymal and adipose stem cells, beta-1,3 glucan, angiotensin-converting enzyme inhibitors, cultivated fibroblasts, zinc desferrioxamine, antifibrinolytic agents, antioxidants, collagen cross-linking, and inhibitors of corneal neovascularization.
Collapse
|
27
|
Margo JA, Jeng BH. Corneal Transplantation in the Setting of Neurotrophic Keratopathy—Risks and Considerations. CURRENT OPHTHALMOLOGY REPORTS 2017. [DOI: 10.1007/s40135-017-0118-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
EP4 receptor promotes invadopodia and invasion in human breast cancer. Eur J Cell Biol 2017; 96:218-226. [PMID: 28094049 DOI: 10.1016/j.ejcb.2016.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 12/20/2016] [Accepted: 12/23/2016] [Indexed: 11/24/2022] Open
Abstract
The production of Prostaglandin E2 (PGE2) is elevated in human breast cancer cells. The abnormal expression of COX-2, which is involved in the synthesis of PGE2, was recently reported as a critical determinant for invasiveness of human breast cancer cells. Autocrine and paracrine PGE2-mediated stimulation of the PGE2 receptor EP4 transduces multiple signaling pathways leading to diverse patho-physiological effects, including tumor cell invasion and metastasis. It is known that PGE2-induced EP4 activation can transactivate the intracellular signaling pathway of the epidermal growth factor receptor (EGFR). In malignant cancer cells, EGFR pathway activation promotes invadopodia protrusions, which further leads to degradation of the surrounding extracellular matrix (ECM). Despite the known influence of EP4 on the EGFR signaling pathway, the effect of EP4 stimulation on invadopodia formation in human breast cancer was never tested directly. Here we demonstrate the involvement of EP4 in invasion and its effect on invadopodia in breast cancer MDA-MB-231 cells using 2D invadopodia and 3D invasion in vitro assays as well as intravital microscopy. The results show that stimulation with the selective EP4 agonist CAY10598 or PGE2 promotes invadopodia-mediated degradation of the ECM, as well as the invasion of breast cancer cells in in vitro models. The effect on matrix degradation can be abrogated via direct inhibition of EP4 signaling as well as via inhibition of EGFR tyrosine kinase, indicating that EP4-mediated effects on invadopodia-driven degradation are EGFR dependent. Finally, using xenograft mouse models, we show that short-term systemic treatment with CAY10598 results in a >9-fold increase in the number of invadopodia. These findings highlight the importance of further investigation on the role of EP4-EGFR crosstalk in invadopodia formation.
Collapse
|
29
|
Tsunenaga M. Heparanase Inhibitors Facilitate the Assembly of the Basement Membrane in Artificial Skin. ACTA ACUST UNITED AC 2016; 5:113-122. [PMID: 27853671 PMCID: PMC5070419 DOI: 10.2174/2211542005666160725154356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent research suggests that the basement membrane at the dermal-epidermal junction of the skin plays an important role in maintaining a healthy epidermis and dermis, and repeated damage to the skin can destabilize the skin and accelerate the aging process. Skin-equivalent models are suitable for studying the reconstruction of the basement membrane and its contribution to epidermal homeostasis because they lack the basement membrane and show abnormal expression of epidermal differentiation markers. By using these models, it has been shown that reconstruction of the basement membrane is enhanced not only by supplying basement membrane components, but also by inhibiting proteinases such as urokinase and matrix metalloproteinase. Although matrix metalloproteinase inhibitors assist in the reconstruction of the basement membrane structure, their action is not sufficient to promote its functional recovery. However, heparanase inhibitors stabilize the heparan sulfate chains of perlecan (a heparan sulfate proteoglycan) and promote the regulation of heparan sulfate binding growth factors in the basement membrane. Heparan sulfate promotes effective protein-protein interactions, thereby facilitating the assembly of type VII collagen anchoring fibrils and elastin-associated microfibrils. Using both matrix metalloproteinase inhibitors and heparanase inhibitors, the basement membrane in a skin-equivalent model comes close to recapitulating the structure and function of an in vivo basement membrane. Therefore, by using an appropriate dermis model and suitable protease inhibitors, it may be possible to produce skin-equivalent models that are more similar to natural skin
Collapse
Affiliation(s)
- Makoto Tsunenaga
- Shiseido Research Center, 2-2-1 Hayabuchi, Tsuzuki-ku, Yokohama 224-8558, Japan
| |
Collapse
|
30
|
Čunderlíková B. Clinical significance of immunohistochemically detected extracellular matrix proteins and their spatial distribution in primary cancer. Crit Rev Oncol Hematol 2016; 105:127-44. [DOI: 10.1016/j.critrevonc.2016.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 04/03/2016] [Accepted: 04/27/2016] [Indexed: 02/07/2023] Open
|
31
|
Godin-Heymann N, Brabetz S, Murillo MM, Saponaro M, Santos CR, Lobley A, East P, Chakravarty P, Matthews N, Kelly G, Jordan S, Castellano E, Downward J. Tumour-suppression function of KLF12 through regulation of anoikis. Oncogene 2016; 35:3324-34. [PMID: 26455320 PMCID: PMC4929484 DOI: 10.1038/onc.2015.394] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 08/11/2015] [Accepted: 09/05/2015] [Indexed: 12/14/2022]
Abstract
Suppression of detachment-induced cell death, known as anoikis, is an essential step for cancer metastasis to occur. We report here that expression of KLF12, a member of the Kruppel-like family of transcription factors, is downregulated in lung cancer cell lines that have been selected to grow in the absence of cell adhesion. Knockdown of KLF12 in parental cells results in decreased apoptosis following cell detachment from matrix. KLF12 regulates anoikis by promoting the cell cycle transition through S phase and therefore cell proliferation. Reduced expression levels of KLF12 results in increased ability of lung cancer cells to form tumours in vivo and is associated with poorer survival in lung cancer patients. We therefore identify KLF12 as a novel metastasis-suppressor gene whose loss of function is associated with anoikis resistance through control of the cell cycle.
Collapse
Affiliation(s)
- N Godin-Heymann
- Signal Transduction, Cancer Research UK London Research Institute, London, UK
| | - S Brabetz
- Signal Transduction, Cancer Research UK London Research Institute, London, UK
| | - M M Murillo
- Signal Transduction, Cancer Research UK London Research Institute, London, UK
- The Institute of Cancer Research, London, UK
| | - M Saponaro
- Mechanisms of Gene Transcription Laboratory, Cancer Research UK London Research Institute, Clare Hall Laboratories, Hertfordshire, UK
| | - C R Santos
- Translational Cancer Therapeutics, Cancer Research UK London Research Institute, London, UK
| | - A Lobley
- Bioinformatics and Biostatistics Laboratories, Cancer Research UK London Research Institute, London, UK
| | - P East
- Bioinformatics and Biostatistics Laboratories, Cancer Research UK London Research Institute, London, UK
| | - P Chakravarty
- Bioinformatics and Biostatistics Laboratories, Cancer Research UK London Research Institute, London, UK
| | - N Matthews
- Advanced Sequencing Facility, Cancer Research UK London Research Institute, London, UK
| | - G Kelly
- Bioinformatics and Biostatistics Laboratories, Cancer Research UK London Research Institute, London, UK
| | - S Jordan
- Signal Transduction, Cancer Research UK London Research Institute, London, UK
| | - E Castellano
- Signal Transduction, Cancer Research UK London Research Institute, London, UK
| | - J Downward
- Signal Transduction, Cancer Research UK London Research Institute, London, UK
- The Institute of Cancer Research, London, UK
| |
Collapse
|
32
|
Tominac Trcin M, Dekaris I, Mijović B, Bujić M, Zdraveva E, Dolenec T, Pauk-Gulić M, Primorac D, Crnjac J, Špoljarić B, Mršić G, Kuna K, Špoljarić D, Popović M. Synthetic vs natural scaffolds for human limbal stem cells. Croat Med J 2016; 56:246-56. [PMID: 26088849 PMCID: PMC4500975 DOI: 10.3325/cmj.2015.56.246] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim To investigate the impact of synthetic electrospun polyurethane (PU) and polycaprolactone (PCL) nanoscaffolds, before and after hydrolytic surface modification, on viability and differentiation of cultured human eye epithelial cells, in comparison with natural scaffolds: fibrin and human amniotic membrane. Methods Human placenta was taken at elective cesarean delivery. Fibrin scaffolds were prepared from commercial fibrin glue kits. Nanoscaffolds were fabricated by electrospinning. Limbal cells were isolated from surpluses of human cadaveric cornea and seeded on feeder 3T3 cells. The scaffolds used for viability testing and immunofluorescence analysis were amniotic membrane, fibrin, PU, and PCL nanoscaffolds, with or without prior NaOH treatment. Results Scanning electron microscope photographs of all tested scaffolds showed good colony spreading of seeded limbal cells. There was a significant difference in viability performance between cells with highest viability cultured on tissue culture plastic and cells cultured on all other scaffolds. On the other hand, electrospun PU, PCL, and electrospun PCL treated with NaOH had more than 80% of limbal cells positive for stem cell marker p63 compared to only 27%of p63 positive cells on fibrin. Conclusion Natural scaffolds, fibrin and amniotic membrane, showed better cell viability than electrospun scaffolds. On the contrary, high percentages of p63 positive cells obtained on these scaffolds still makes them good candidates for efficient delivery systems for therapeutic purposes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Maja Popović
- Maja Popović, Department of Biology, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, Zagreb, Croatia,
| |
Collapse
|
33
|
Aijian AP, Garrell RL. Digital microfluidics for automated hanging drop cell spheroid culture. ACTA ACUST UNITED AC 2014; 20:283-95. [PMID: 25510471 DOI: 10.1177/2211068214562002] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Indexed: 11/15/2022]
Abstract
Cell spheroids are multicellular aggregates, grown in vitro, that mimic the three-dimensional morphology of physiological tissues. Although there are numerous benefits to using spheroids in cell-based assays, the adoption of spheroids in routine biomedical research has been limited, in part, by the tedious workflow associated with spheroid formation and analysis. Here we describe a digital microfluidic platform that has been developed to automate liquid-handling protocols for the formation, maintenance, and analysis of multicellular spheroids in hanging drop culture. We show that droplets of liquid can be added to and extracted from through-holes, or "wells," and fabricated in the bottom plate of a digital microfluidic device, enabling the formation and assaying of hanging drops. Using this digital microfluidic platform, spheroids of mouse mesenchymal stem cells were formed and maintained in situ for 72 h, exhibiting good viability (>90%) and size uniformity (% coefficient of variation <10% intraexperiment, <20% interexperiment). A proof-of-principle drug screen was performed on human colorectal adenocarcinoma spheroids to demonstrate the ability to recapitulate physiologically relevant phenomena such as insulin-induced drug resistance. With automatable and flexible liquid handling, and a wide range of in situ sample preparation and analysis capabilities, the digital microfluidic platform provides a viable tool for automating cell spheroid culture and analysis.
Collapse
Affiliation(s)
- Andrew P Aijian
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Robin L Garrell
- Department of Bioengineering, University of California, Los Angeles, CA, USA Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA California NanoSystems Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
34
|
Malhotra C, Jain AK. Human amniotic membrane transplantation: Different modalities of its use in ophthalmology. World J Transplant 2014; 4:111-21. [PMID: 25032100 PMCID: PMC4094946 DOI: 10.5500/wjt.v4.i2.111] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 03/01/2014] [Accepted: 05/08/2014] [Indexed: 02/05/2023] Open
Abstract
The amniotic membrane (AM) is the inner layer of the fetal membranes and consist of 3 different layers: the epithelium, basement membrane and stroma which further consists of three contiguous but distinct layers: the inner compact layer, middle fibroblast layer and the outermost spongy layer. The AM has been shown to have anti-inflammatory, anti-fibrotic, anti-angiogenic as well as anti-microbial properties. Also because of its transparent structure, lack of immunogenicity and the ability to provide an excellent substrate for growth, migration and adhesion of epithelial corneal and conjunctival cells, it is being used increasingly for ocular surface reconstruction in a variety of ocular pathologies including corneal disorders associated with limbal stem cell deficiency, surgeries for conjunctival reconstruction, as a carrier for ex vivo expansion of limbal epithelial cells, glaucoma surgeries and sceral melts and perforations. However indiscriminate use of human AM needs to be discouraged as complications though infrequent can occur. These include risk of transmission of bacterial, viral or fungal infections to the recipient if the donors are not adequately screened for communicable diseases, if the membrane is not processed under sterile conditions or if storage is improper. Optimal outcomes can be achieved only with meticulous case selection. This review explores the ever expanding ophthalmological indications for the use of human AM.
Collapse
|
35
|
Ries C. Cytokine functions of TIMP-1. Cell Mol Life Sci 2014; 71:659-72. [PMID: 23982756 PMCID: PMC11113289 DOI: 10.1007/s00018-013-1457-3] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 12/13/2022]
Abstract
The tissue inhibitors of metalloproteinases (TIMPs) are well recognized for their role in extracellular matrix remodeling by controlling the activity of matrix metalloproteinases (MMPs). Independent of MMP inhibition, TIMPs act as signaling molecules with cytokine-like activities thereby influencing various biological processes including cell growth, apoptosis, differentiation, angiogenesis, and oncogenesis. Recent studies on TIMP-1's cytokine functions have identified complex regulatory networks involving a specific surface receptor and subsequent signaling pathways including miRNA-mediated posttranscriptional regulation of gene expression that ultimately control the fate and behavior of the cells. The present review summarizes the current knowledge on TIMP-1 as a cytokine modulator of cell functions, outlines recent progress in defining molecular pathways that transmit TIMP-1 signals from the cell periphery into the nucleus, and discusses TIMP-1's role as a cytokine in the pathophysiology of cancer and other human diseases.
Collapse
Affiliation(s)
- Christian Ries
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University of Munich, Pettenkoferstrasse 9b, 80336, Munich, Germany,
| |
Collapse
|
36
|
Impact of simulated microgravity on the normal developmental time line of an animal-bacteria symbiosis. Sci Rep 2013; 3:1340. [PMID: 23439280 PMCID: PMC3581829 DOI: 10.1038/srep01340] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 02/08/2013] [Indexed: 11/09/2022] Open
Abstract
The microgravity environment during space flight imposes numerous adverse effects on animal and microbial physiology. It is unclear, however, how microgravity impacts those cellular interactions between mutualistic microbes and their hosts. Here, we used the symbiosis between the host squid Euprymna scolopes and its luminescent bacterium Vibrio fischeri as a model system. We examined the impact of simulated microgravity on the timeline of bacteria-induced development in the host light organ, the site of the symbiosis. To simulate the microgravity environment, host squid and symbiosis-competent bacteria were incubated together in high-aspect ratio rotating wall vessel bioreactors and examined throughout the early stages of the bacteria-induced morphogenesis. The host innate immune response was suppressed under simulated microgravity; however, there was an acceleration of bacteria-induced apoptosis and regression in the host tissues. These results suggest that the space flight environment may alter the cellular interactions between animal hosts and their natural healthy microbiome.
Collapse
|
37
|
Cell to extracellular matrix interactions and their reciprocal nature in cancer. Exp Cell Res 2013; 319:1663-70. [DOI: 10.1016/j.yexcr.2013.02.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/07/2013] [Accepted: 02/11/2013] [Indexed: 01/07/2023]
|
38
|
Stöckl S, Bauer RJ, Bosserhoff AK, Göttl C, Grifka J, Grässel S. Sox9 modulates cell survival and adipogenic differentiation of multipotent adult rat mesenchymal stem cells. J Cell Sci 2013; 126:2890-902. [PMID: 23606745 DOI: 10.1242/jcs.124305] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sox9 is a key transcription factor in early chondrogenesis with distinct roles in differentiation processes and during embryonic development. Here, we report that Sox9 modulates cell survival and contributes to the commitment of mesenchymal stem cells (MSC) to adipogenic or osteogenic differentiation lineages. We found that the Sox9 activity level affects the expression of the key transcription factor in adipogenic differentiation, C/EBPβ, and that cyclin D1 mediates the expression of the osteogenic marker osteocalcin in undifferentiated adult bone-marrow-derived rat MSC. Introducing a stable Sox9 knockdown into undifferentiated rat MSC resulted in a marked decrease in proliferation rate and an increase in apoptotic activity. This was linked to a profound upregulation of p21 and cyclin D1 gene and protein expression accompanied by an induction of caspase 3/7 activity and an inhibition of Bcl-2. We observed that Sox9 silencing provoked a delayed S-phase progression and an increased nuclear localization of p21. The protein stability of cyclin D1 was induced in the absence of Sox9 presumably as a function of altered p38 signalling. In addition, the major transcription factor for adipogenic differentiation, C/EBPβ, was repressed after silencing Sox9. The nearly complete absence of C/EBPβ protein as a result of increased destabilization of the C/EBPβ mRNA and the impact on osteocalcin gene expression and protein synthesis, suggests that a delicate balance of Sox9 level is not only imperative for proper chondrogenic differentiation of progenitor cells, but also affects the adipogenic and probably osteogenic differentiation pathways of MSC. Our results identified Sox9 as an important link between differentiation, proliferation and apoptosis in undifferentiated adult rat mesenchymal stem cells, emphasizing the importance of the delicate balance of a precisely regulated Sox9 activity in MSC not only for proper skeletal development during embryogenesis but probably also for successful repair and regeneration of tissues and organs in adults.
Collapse
Affiliation(s)
- Sabine Stöckl
- Centre for Medical Biotechnology, BioPark I, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Primary cell culture from the nose of a marine organism, the banded houndshark, Triakis scyllium. BIOTECHNOL BIOPROC E 2013. [DOI: 10.1007/s12257-012-0494-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Abstract
The following study provides new insight into how surface topography dictates directed collective epithelial cell sheet growth through the guidance of individual cell movement. Collective cell behavior of migrating human corneal limbal-epithelial cell sheets were studied on highly biocompatible flat and micro-patterned silk film surfaces. The silk film edge topography guided the migratory direction of individual cells making up the collective epithelial sheet, which resulted in a 75% increase in total culture elongation. This was due to a 3-fold decrease in cell sheet migration rate efficiency for movement perpendicular to the topography edge. Individual cell migration direction is preferred in the parallel approach to the edge topography where localization of cytoskeletal proteins to the topography’s edge region is reduced, which results in the directed growth of the collective epithelial sheet. Findings indicate customized biomaterial surfaces may be created to direct both the migration rate and direction of tissue epithelialization.
Collapse
|
41
|
Issues to be considered when studying cancer in vitro. Crit Rev Oncol Hematol 2012; 85:95-111. [PMID: 22823950 DOI: 10.1016/j.critrevonc.2012.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 05/31/2012] [Accepted: 06/27/2012] [Indexed: 01/17/2023] Open
Abstract
Various cancer treatment approaches have shown promising results when tested preclinically. The results of clinical trials, however, are often disappointing. While searching for the reasons responsible for their failures, the relevance of experimental and preclinical models has to be taken into account. Possible factors that should be considered, including cell modifications during in vitro cultivation, lack of both the relevant interactions and the structural context in vitro have been summarized in the present review.
Collapse
|
42
|
Beeman SC, Georges JF, Bennett KM. Toxicity, biodistribution, and ex vivo MRI detection of intravenously injected cationized ferritin. Magn Reson Med 2012; 69:853-61. [DOI: 10.1002/mrm.24301] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 03/27/2012] [Accepted: 03/28/2012] [Indexed: 01/12/2023]
|
43
|
Kim HJ, Lee SB. Comparison of Permanent Amniotic Membrane Transplantation and Temporary Amniotic Membrane Patch after Primary Pterygium Excision. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2012. [DOI: 10.3341/jkos.2012.53.9.1236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Hee Jun Kim
- Department of Ophthalmology, Yeungnam University College of Medicine, Daegu, Korea
| | - Sang-Bumm Lee
- Department of Ophthalmology, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
44
|
Gu BY, Lee SB. Effects of Temporary Amniotic Membrane Patch after Surgical Excision of Primary Pterygium. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2012. [DOI: 10.3341/jkos.2012.53.6.749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Byoung Young Gu
- Department of Ophthalmology, Yeungnam University College of Medicine, Daegu, Korea
| | - Sang-Bumm Lee
- Department of Ophthalmology, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
45
|
Iriyama S, Hiruma T, Tsunenaga M, Amano S. Influence of heparan sulfate chains in proteoglycan at the dermal-epidermal junction on epidermal homeostasis. Exp Dermatol 2011; 20:810-4. [DOI: 10.1111/j.1600-0625.2011.01330.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Choi HJ, Kim KB, Kwon YM. Effect of amniotic membrane to reduce postlaminectomy epidural adhesion on a rat model. J Korean Neurosurg Soc 2011; 49:323-8. [PMID: 21887388 DOI: 10.3340/jkns.2011.49.6.323] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 03/30/2011] [Accepted: 05/30/2011] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Epidural fibrosis and adhesion are the main reasons for post-laminectomy sustained pain and functional disability. In this study, the authors investigate the effect of irradiated freeze-dried human amniotic membrane on reducing epidural adhesion after laminectomy on a rat model. METHODS A total of 20 rats were divided into two groups. The group A did not receive human amniotic membrane implantation after laminectomy and group B underwent human amniotic membrane implantation after laminectomy. Gross and microscopic findings were evaluated and compared at postoperative 1, 3 and 8 weeks. RESULTS The amount of scar tissue and tenacity were reduced grossly in group of rats with human amniotic membrane implantation (group B). On a microscopic evaluation, there were less inflammatory cell infiltration and fibroblast proliferation in group B. CONCLUSION This experimental study shows that implantation of irradiated freeze-dried human amniotic membrane reduce epidural fibrosis and adhesion after spinal laminectomy in a rat model.
Collapse
Affiliation(s)
- Hyu Jin Choi
- Department of Neurosurgery, College of Medicine, Dong-A University, Busan, Korea
| | | | | |
Collapse
|
47
|
Abstract
Studies of cell-cell cohesion and cell-substratum adhesion have historically been performed on monolayer cultures adherent to rigid substrates. Cells within a tissue, however, are typically encased within a closely packed tissue mass in which cells establish intimate connections with many near-neighbors and with extracellular matrix components. Accordingly, the chemical milieu and physical forces experienced by cells within a 3D tissue are fundamentally different than those experienced by cells grown in monolayer culture. This has been shown to markedly impact cellular morphology and signaling. Several methods have been devised to generate 3D cell cultures including encapsulation of cells in collagen gels or in biomaterial scaffolds. Such methods, while useful, do not recapitulate the intimate direct cell-cell adhesion architecture found in normal tissues. Rather, they more closely approximate culture systems in which single cells are loosely dispersed within a 3D meshwork of ECM products. Here, we describe a simple method in which cells are placed in hanging drop culture and incubated under physiological conditions until they form true 3D spheroids in which cells are in direct contact with each other and with extracellular matrix components. The method requires no specialized equipment and can be adapted to include addition of any biological agent in very small quantities that may be of interest in elucidating effects on cell-cell or cell-ECM interaction. The method can also be used to co-culture two (or more) different cell populations so as to elucidate the role of cell-cell or cell-ECM interactions in specifying spatial relationships between cells. Cell-cell cohesion and cell-ECM adhesion are the cornerstones of studies of embryonic development, tumor-stromal cell interaction in malignant invasion, wound healing, and for applications to tissue engineering. This simple method will provide a means of generating tissue-like cellular aggregates for measurement of biomechanical properties or for molecular and biochemical analysis in a physiologically relevant model.
Collapse
Affiliation(s)
- Ramsey Foty
- Department of Surgery, UMDNJ-Robert Wood Johnson Medical School, USA.
| |
Collapse
|
48
|
Foty R. A simple hanging drop cell culture protocol for generation of 3D spheroids. J Vis Exp 2011:2720. [PMID: 21587162 DOI: 10.3791/2720] [Citation(s) in RCA: 276] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Studies of cell-cell cohesion and cell-substratum adhesion have historically been performed on monolayer cultures adherent to rigid substrates. Cells within a tissue, however, are typically encased within a closely packed tissue mass in which cells establish intimate connections with many near-neighbors and with extracellular matrix components. Accordingly, the chemical milieu and physical forces experienced by cells within a 3D tissue are fundamentally different than those experienced by cells grown in monolayer culture. This has been shown to markedly impact cellular morphology and signaling. Several methods have been devised to generate 3D cell cultures including encapsulation of cells in collagen gels or in biomaterial scaffolds. Such methods, while useful, do not recapitulate the intimate direct cell-cell adhesion architecture found in normal tissues. Rather, they more closely approximate culture systems in which single cells are loosely dispersed within a 3D meshwork of ECM products. Here, we describe a simple method in which cells are placed in hanging drop culture and incubated under physiological conditions until they form true 3D spheroids in which cells are in direct contact with each other and with extracellular matrix components. The method requires no specialized equipment and can be adapted to include addition of any biological agent in very small quantities that may be of interest in elucidating effects on cell-cell or cell-ECM interaction. The method can also be used to co-culture two (or more) different cell populations so as to elucidate the role of cell-cell or cell-ECM interactions in specifying spatial relationships between cells. Cell-cell cohesion and cell-ECM adhesion are the cornerstones of studies of embryonic development, tumor-stromal cell interaction in malignant invasion, wound healing, and for applications to tissue engineering. This simple method will provide a means of generating tissue-like cellular aggregates for measurement of biomechanical properties or for molecular and biochemical analysis in a physiologically relevant model.
Collapse
Affiliation(s)
- Ramsey Foty
- Department of Surgery, UMDNJ-Robert Wood Johnson Medical School, USA.
| |
Collapse
|
49
|
Ghezzi CE, Muja N, Marelli B, Nazhat SN. Real time responses of fibroblasts to plastically compressed fibrillar collagen hydrogels. Biomaterials 2011; 32:4761-72. [PMID: 21514662 DOI: 10.1016/j.biomaterials.2011.03.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 03/04/2011] [Indexed: 01/04/2023]
Abstract
In vitro reconstituted type I collagen hydrogels are widely utilized for tissue engineering studies. However, highly hydrated collagen (HHC) gels exhibit insufficient mechanical strength and unstable geometrical properties, thereby limiting their therapeutic application. Plastic compression (PC) is a simple and reproducible approach for the immediate production of dense fibrillar collagen (DC) scaffolds which demonstrate multiple improvements for tissue engineered constructs including extracellular matrix (ECM)-like meso scale characteristics, increased mechanical properties (modulus and strength), enhanced cell growth and differentiation, and reduced long-term scaffold deformation. In order to determine at which stage these benefits become apparent, and the underlying mechanisms involved, the immediate response of NIH/3T3 fibroblasts to PC as well as longer-term cell growth within DC scaffolds were examined herein. The real time three-dimensional (3D) distribution of fluorescently labelled cells during PC was sequentially monitored using confocal laser scanning microscopy (CLSM), observing excellent cell retention and negligible numbers of expelled cells. Relative to cells grown in HHC gels, a significant improvement in cell survival within DC scaffolds was evident as early as day 1. Cell growth and metabolic activity within DC gels were significantly increased over the course of one week. While cells within DC scaffolds reached confluency, an inhomogeneous distribution of cells was present in HHC gels, as detected using x-ray computed micro-tomography analysis of phosphotungstic acid labelled cells and CLSM, which both showed a significant cell loss within the HHC core. Therefore, PC generates a DC gel scaffold without detrimental effects towards seeded cells, surpassing HHC gels as a 3D scaffold for tissue engineering.
Collapse
Affiliation(s)
- Chiara E Ghezzi
- Department of Mining and Materials Engineering, McGill University, 3610, University Street, Montreal, Quebec, Canada H3A 2B2
| | | | | | | |
Collapse
|
50
|
Miroshnikova YA, Jorgens DM, Spirio L, Auer M, Sarang-Sieminski AL, Weaver VM. Engineering strategies to recapitulate epithelial morphogenesis within synthetic three-dimensional extracellular matrix with tunable mechanical properties. Phys Biol 2011; 8:026013. [PMID: 21441648 PMCID: PMC3401181 DOI: 10.1088/1478-3975/8/2/026013] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The mechanical properties (e.g. stiffness) of the extracellular matrix (ECM) influence cell fate and tissue morphogenesis and contribute to disease progression. Nevertheless, our understanding of the mechanisms by which ECM rigidity modulates cell behavior and fate remains rudimentary. To address this issue, a number of two and three-dimensional (3D) hydrogel systems have been used to explore the effects of the mechanical properties of the ECM on cell behavior. Unfortunately, many of these systems have limited application because fiber architecture, adhesiveness and/or pore size often change in parallel when gel elasticity is varied. Here we describe the use of ECM-adsorbed, synthetic, self-assembling peptide (SAP) gels that are able to recapitulate normal epithelial acini morphogenesis and gene expression in a 3D context. By exploiting the range of viscoelasticity attainable with these SAP gels, and their ability to recreate native-like ECM fibril topology with minimal variability in ligand density and pore size, we were able to reconstitute normal and tumor-like phenotypes and gene expression patterns in nonmalignant mammary epithelial cells. Accordingly, this SAP hydrogel system presents the first tunable system capable of independently assessing the interplay between ECM stiffness and multi-cellular epithelial phenotype in a 3D context.
Collapse
|