1
|
Lorberbaum DS, Sarbaugh D, Sussel L. Leveraging the strengths of mice, human stem cells, and organoids to model pancreas development and diabetes. Front Endocrinol (Lausanne) 2022; 13:1042611. [PMID: 36339450 PMCID: PMC9634409 DOI: 10.3389/fendo.2022.1042611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/06/2022] [Indexed: 11/29/2022] Open
Abstract
Diabetes is an epidemic with increasing incidence across the world. Most individuals who are afflicted by this disease have type 2 diabetes, but there are many who suffer from type 1, an autoimmune disorder. Both types of diabetes have complex genetic underpinnings that are further complicated by epigenetic and environmental factors. A less prevalent and often under diagnosed subset of diabetes cases are characterized by single genetic mutations and include Maturity Onset Diabetes of the Young (MODY) and Neonatal Diabetes Mellitus (NDM). While the mode of action and courses of treatment for all forms of diabetes are distinct, the diseases all eventually result in the dysfunction and/or death of the pancreatic β cell - the body's source of insulin. With loss of β cell function, blood glucose homeostasis is disrupted, and life-threatening complications arise. In this review, we focus on how model systems provide substantial insights into understanding β cell biology to inform our understanding of all forms of diabetes. The strengths and weaknesses of animal, hPSC derived β-like cell, and organoid models are considered along with discussion of GATA6, a critical transcription factor frequently implicated in pancreatic dysfunction with developmental origins; experimental studies of GATA6 have highlighted the advantages and disadvantages of how each of these model systems can be used to inform our understanding of β cell specification and function in health and disease.
Collapse
Affiliation(s)
| | | | - Lori Sussel
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
2
|
Lorberbaum DS, Docherty FM, Sussel L. Animal Models of Pancreas Development, Developmental Disorders, and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:65-85. [PMID: 32304069 DOI: 10.1007/978-981-15-2389-2_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pancreas is a glandular organ responsible for diverse homeostatic functions, including hormone production from the endocrine islet cells to regulate blood sugar levels and enzyme secretion from the exocrine acinar cells to facilitate food digestion. These pancreatic functions are essential for life; therefore, preserving pancreatic function is of utmost importance. Pancreas dysfunction can arise either from developmental disorders or adult onset disease, both of which are caused by defects in shared molecular pathways. In this chapter, we discuss what is known about the molecular mechanisms controlling pancreas development, how disruption of these mechanisms can lead to developmental defects and disease, and how essential pancreas functions can be modeled using human pluripotent stem cells. At the core of understanding of these molecular processes are animal model studies that continue to be essential for elucidating the mechanisms underlying human pancreatic functions and diseases.
Collapse
Affiliation(s)
- David S Lorberbaum
- Barbara Davis Center, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Fiona M Docherty
- Barbara Davis Center, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Lori Sussel
- Barbara Davis Center, University of Colorado Anschutz Medical Center, Aurora, CO, USA.
| |
Collapse
|
3
|
Colclough K, Bellanne-Chantelot C, Saint-Martin C, Flanagan SE, Ellard S. Mutations in the genes encoding the transcription factors hepatocyte nuclear factor 1 alpha and 4 alpha in maturity-onset diabetes of the young and hyperinsulinemic hypoglycemia. Hum Mutat 2013; 34:669-85. [PMID: 23348805 DOI: 10.1002/humu.22279] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 01/08/2013] [Indexed: 12/16/2022]
Abstract
Maturity-onset diabetes of the young (MODY) is a monogenic disorder characterized by autosomal dominant inheritance of young-onset (typically <25 years), noninsulin-dependent diabetes due to defective insulin secretion. MODY is both clinically and genetically heterogeneous with mutations in at least 10 genes. Mutations in the HNF1A gene encoding hepatocyte nuclear factor-1 alpha are the most common cause of MODY in most adult populations studied. The number of different pathogenic HNF1A mutations totals 414 in 1,247 families. Mutations in the HNF4A gene encoding hepatocyte nuclear factor-4 alpha are a rarer cause of MODY with 103 different mutations reported in 173 families to date. Sensitivity to treatment with sulfonylurea tablets is a feature of both HNF1A and HNF4A mutations. The HNF4A MODY phenotype has been expanded by the reports of macrosomia in ∼50% of babies, and more rarely, neonatal hyperinsulinemic hypoglycemia. The identification of an HNF1A or HNF4A gene mutation has important implications for clinical management in diabetes and pregnancy, but MODY is significantly underdiagnosed. Current research is focused on identifying biomarkers and developing probability models to identify those patients most likely to have MODY, until next generation sequencing technology enables cost-effective gene analysis for all patients with young onset diabetes.
Collapse
Affiliation(s)
- Kevin Colclough
- Department of Molecular Genetics, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
| | | | | | | | | |
Collapse
|
4
|
Mastracci TL, Sussel L. The endocrine pancreas: insights into development, differentiation, and diabetes. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2012; 1:609-28. [PMID: 23799564 PMCID: PMC3420142 DOI: 10.1002/wdev.44] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In the developing embryo, appropriate patterning of the endoderm fated to become pancreas requires the spatial and temporal coordination of soluble factors secreted by the surrounding tissues. Once pancreatic progenitor cells are specified in the developing gut tube epithelium, epithelial-mesenchymal interactions, as well as a cascade of transcription factors, subsequently delineate three distinct lineages, including endocrine, exocrine, and ductal cells. Simultaneous morphological changes, including branching, vascularization, and proximal organ development, also influence the process of specification and differentiation. Decades of research using mouse genetics have uncovered many of the key factors involved in pancreatic cell fate decisions. When pancreas development or islet cell functions go awry, due to mutations in genes important for proper organogenesis and development, the result can lead to a common pancreatic affliction, diabetes mellitus. Current treatments for diabetes are adequate but not curative. Therefore, researchers are utilizing the current understanding of normal embryonic pancreas development in vivo, to direct embryonic stem cells toward a pancreatic fate with the goal of transplanting these in vitro generated 'islets' into patients. Mimicking development in vitro has proven difficult; however, significant progress has been made and the current differentiation protocols are becoming more efficient. The continued partnership between developmental biologists and stem cell researchers will guarantee that the in vitro generation of insulin-producing β cells is a possible therapeutic option for the treatment of diabetes.
Collapse
Affiliation(s)
| | - Lori Sussel
- Department of Genetics and Development, Columbia University
| |
Collapse
|
5
|
Lakka TA, Rankinen T, Rice T, Leon AS, Rao DC, Skinner JS, Bouchard C. Quantitative trait locus on chromosome 20q13 for plasma levels of C-reactive protein in healthy whites: the HERITAGE Family Study. Physiol Genomics 2006; 27:103-7. [PMID: 16822830 DOI: 10.1152/physiolgenomics.00054.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
C-reactive protein (CRP) is a sensitive marker of systemic low-grade inflammation. Increased plasma levels of CRP predict the risk of cardiovascular and metabolic diseases. Although genetic factors account for 30-40% of individual differences in plasma CRP levels, genomic regions contributing to CRP levels remain unknown. We performed a genome-wide linkage scan for plasma CRP levels in healthy whites from the HERITAGE Family Study. CRP was measured with a high-sensitivity assay. Multipoint linkage analyses were performed in 280 sibling pairs with 654 markers using regression and variance components-based methods. Data were adjusted for independent correlates of plasma CRP. We showed the strongest evidence of linkage for plasma CRP levels on chromosome 20q13. Markers which gave suggestive linkages in this region were D20S52 [logarithm of odds (LOD) score 3.18, P = 0.00006], D20S857 (LOD score 2.87, P = 0.00014), D20S869 (LOD score 2.75, P = 0.0002), D20S480 (LOD score 2.59, P = 0.0003), D20S501 (LOD score 2.55, P = 0.0003), D20S840 (LOD score 2.18, P = 0.0008), and D20S876 (LOD score 2.07, P = 0.001). We also detected suggestive linkage on chromosome 5p13 for marker D5S1470 (LOD score 2.23, P = 0.0007). Chromosome 20q13 may contribute to plasma CRP levels in healthy whites. This region contains genes that are important in the inflammatory process and may play a role in the development of chronic inflammatory diseases. The present findings may be useful in the ongoing effort to search for genes contributing to inflammation and to identify individuals at an increased risk of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Timo A Lakka
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Ellard S, Colclough K. Mutations in the genes encoding the transcription factors hepatocyte nuclear factor 1 alpha (HNF1A) and 4 alpha (HNF4A) in maturity-onset diabetes of the young. Hum Mutat 2006; 27:854-69. [PMID: 16917892 DOI: 10.1002/humu.20357] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Maturity-onset diabetes of the young (MODY) is a monogenic form of diabetes mellitus characterized by autosomal dominant inheritance, early age of onset (often <25 years of age), and pancreatic beta-cell dysfunction. MODY is both clinically and genetically heterogeneous, with six different genes identified to date; glucokinase (GCK), hepatocyte nuclear factor-1 alpha (HNF1A, or TCF1), hepatocyte nuclear factor-4 alpha (HNF4A), insulin promoter factor-1 (IPF1 or PDX1), hepatocyte nuclear factor-1 beta (HNF1B or TCF2), and neurogenic differentiation 1 (NEUROD1). Mutations in the HNF1A gene are a common cause of MODY in the majority of populations studied. A total of 193 different mutations have been described in 373 families. The most common mutation is Pro291fs (P291fsinsC) in the polycytosine (poly C) tract of exon 4, which has been reported in 65 families. HNF4A mutations are rarer; 31 mutations reported in 40 families. Sensitivity to treatment with sulfonylurea tablets is a feature of both HNF1A and HNF4A mutations. The identification of an HNF1A or 4A gene mutation confirms a diagnosis of MODY and has important implications for clinical management.
Collapse
Affiliation(s)
- Sian Ellard
- Department of Molecular Genetics, Royal Devon & Exeter NHS Foundation Trust, Exeter, United Kingdom.
| | | |
Collapse
|
7
|
Raynaud SD. [Biologic and clinical relevance of cytogenetic analysis in primary myelodysplastic syndromes]. PATHOLOGIE-BIOLOGIE 2003; 51:346-55. [PMID: 12927892 DOI: 10.1016/s0369-8114(03)00111-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cytogenetic abnormalities in myelodysplastic syndromes (MDS) are complex and heterogeneous. The most frequent rearrangements (gains or losses of genetic material) vary from patient to patient, and within the same patient. The prognostic value of these rearrangements has been extensively studied. They allowed the definition of a risk based classification system for MDS (the International Scoring System for evaluating Prognosis, IPSS), proven to be a highly useful method for evaluating prognosis in MDS patients. Despite recent progress in mapping and definition of minimally deleted chromosomal regions, the primary critical genetic events remain to be determined. The recurrent cytogenetic abnormalities associated with MDS are likely to be secondary events contributing to but not initiating the neoplastic phenotype of the disease.
Collapse
Affiliation(s)
- S D Raynaud
- Unité de cytogénétique des hémopathies malignes, hôpital de l'Archet, BP 79, 06202 Nice, France.
| |
Collapse
|
8
|
Mhawech P, Saleem A. Myelodysplastic syndrome: review of the cytogenetic and molecular data. Crit Rev Oncol Hematol 2001; 40:229-38. [PMID: 11738946 DOI: 10.1016/s1040-8428(01)00101-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a monoclonal disorder of the pluripotent stem cell that frequently evolves into acute leukemia. MDS is characterized by trilineage dysplasia and by ineffective hematopoiesis. The etiology of MDS is poorly understood. However, the frequent association of chromosomal abnormalities (deletions, inversions, translocations, trisomies and monosomies) with MDS suggests that an oncogene, or a tumor suppressor gene might be involved in the pathogenesis and evolution of this disorder. This review summarizes the clinical, laboratory, chromosomal and prognostic findings of some of the cytogenetic abnormalities such as; 20q deletion, chromosome 5, 7 and 3 abnormalities, 17p-syndrome, trisomy 8, and loss of Y chromosome. In addition, this review goes into the discussion of the most recent development in the field of molecular biology to understand some of the mechanisms resulting in the development and progression of MDS.
Collapse
Affiliation(s)
- P Mhawech
- Department of Pathology, University Hospital of Geneva, Geneva, Switzerland
| | | |
Collapse
|
9
|
Bench AJ, Cross NC, Huntly BJ, Nacheva EP, Green AR. Myeloproliferative disorders. Best Pract Res Clin Haematol 2001; 14:531-51. [PMID: 11640868 DOI: 10.1053/beha.2001.0153] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The myeloproliferative disorders (MPDs) are a group of pre-leukaemic disorders characterized by proliferation of one or more lineages of the myelo-erythroid series. Unlike the Philadelphia chromosome in chronic myeloid leukaemia, there is no pathognomonic chromosomal abnormality associated with the MPDs. Chromosomal abnormalities are seen in 30-40% of patients with polycythaemia vera (PV) and idiopathic myelofibrosis (IMF) and seem to indicate a poor prognosis. On the other hand, chromosomal abnormalities are rare in essential thrombocythaemia. Consistent acquired changes seen at diagnosis include deletion of the long arm of chromosome 20, del(13q), trisomy 8 and 9 and duplication of parts of 1q. Furthermore del(20q), trisomy 8 and dupl(lq) all arise in multipotent progenitor cells. Molecular mapping of 20q deletions and, to some extent, 13q deletions has identified a number of candidate target genes, although no mutations have yet been found. Finally, translocations associated with the rare 8p11 myeloproliferative syndrome and other atypical myeloproliferative disorders have permitted the identification of a number of novel fusion proteins involving fibroblast growth factor receptor-1.
Collapse
Affiliation(s)
- A J Bench
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2XY, UK
| | | | | | | | | |
Collapse
|
10
|
Fossey SC, Mychaleckyj JC, Pendleton JK, Snyder JR, Bensen JT, Hirakawa S, Rich SS, Freedman BI, Bowden DW. A high-resolution 6.0-megabase transcript map of the type 2 diabetes susceptibility region on human chromosome 20. Genomics 2001; 76:45-57. [PMID: 11549316 DOI: 10.1006/geno.2001.6584] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent linkage studies and association analyses indicate the presence of at least one type 2 diabetes susceptibility gene in human chromosome region 20q12-q13.1. We have constructed a high-resolution 6.0-megabase (Mb) transcript map of this interval using two parallel, complementary strategies to construct the map. We assembled a series of bacterial artificial chromosome (BAC) contigs from 56 overlapping BAC clones, using STS/marker screening of 42 genes, 43 ESTs, 38 STSs, 22 polymorphic, and 3 BAC end sequence markers. We performed map assembly with GraphMap, a software program that uses a greedy path searching algorithm, supplemented with local heuristics. We anchored the resulting BAC contigs and oriented them within a yeast artificial chromosome (YAC) scaffold by observing the retention patterns of shared markers in a panel of 21 YAC clones. Concurrently, we assembled a sequence-based map from genomic sequence data released by the Human Genome Project, using a seed-and-walk approach. The map currently provides near-continuous coverage between SGC32867 and WI-17676 ( approximately 6.0 Mb). EST database searches and genomic sequence alignments of ESTs, mRNAs, and UniGene clusters enabled the annotation of the sequence interval with experimentally confirmed and putative transcripts. We have begun to systematically evaluate candidate genes and novel ESTs within the transcript map framework. So far, however, we have found no statistically significant evidence of functional allelic variants associated with type 2 diabetes. The combination of the BAC transcript map, YAC-to-BAC scaffold, and reference Human Genome Project sequence provides a powerful integrated resource for future genomic analysis of this region.
Collapse
Affiliation(s)
- S C Fossey
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27157, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
MacGrogan D, Alvarez S, DeBlasio T, Jhanwar SC, Nimer SD. Identification of candidate genes on chromosome band 20q12 by physical mapping of translocation breakpoints found in myeloid leukemia cell lines. Oncogene 2001; 20:4150-60. [PMID: 11464281 DOI: 10.1038/sj.onc.1204540] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2000] [Revised: 04/09/2001] [Accepted: 04/12/2001] [Indexed: 11/09/2022]
Abstract
Deletions of the long arm of chromosome 20 have been reported in a wide range of myeloid disorders and may reflect loss of critical tumor suppressor gene(s). To identify such candidate genes, 65 human myeloid cell line DNAs were screened by polymerase chain reaction (PCR) for evidence of allelic loss at 39 highly polymorphic loci on the long arm of chromosome 20. A mono-allelic pattern was present in eight cell lines at multiple adjacent loci spanning the common deleted regions (CDRs) previously defined in primary hematological samples, suggesting loss of heterozygosity (LOH) at 20q. Fluorescence in situ hybridization (FISH) was then performed using a series of yeast artificial chromosomes (YACs) ordered in the CDR, and in five of eight cell lines, the deletions resulted from cytogenetically detectable whole chromosomal loss or large interstitial deletion, whereas in another cell line deletion was associated with an unbalanced translocation. LOH in the CMK megakaryocytic cell line, which has a hypotetraploid karyotype, was associated with a der(20)t(1;20)(q32;q12)x2 leading to complete deletion of the CDR. Three additional unbalanced translocations were found within the CDR and all three breakpoints mapped to a single YAC. We then used a series of P1 artificial chromosomes (PACs) spanning this YAC clone, and two PACs produced 'split' signals suggesting that they each span one of these breakpoints. Exon trapping using PACs that overlap the breakpoint regions yielded portions of six genes and evaluation of these genes as candidate tumor suppressor genes is underway. The limited information available about these genes suggests that the h-l(3)mbt gene is the most attractive candidate.
Collapse
MESH Headings
- Base Sequence
- Blotting, Southern
- Chromosome Fragility
- Chromosomes, Artificial, Yeast
- Chromosomes, Human, Pair 20
- DNA Primers
- Gene Expression
- Humans
- In Situ Hybridization, Fluorescence
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/pathology
- Loss of Heterozygosity
- Microsatellite Repeats/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Translocation, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- D MacGrogan
- Laboratory of Molecular Aspects of Hematopoiesis, Sloan Kettering Institute for Cancer Research, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
12
|
Bench AJ, Nacheva EP, Hood TL, Holden JL, French L, Swanton S, Champion KM, Li J, Whittaker P, Stavrides G, Hunt AR, Huntly BJ, Campbell LJ, Bentley DR, Deloukas P, Green AR. Chromosome 20 deletions in myeloid malignancies: reduction of the common deleted region, generation of a PAC/BAC contig and identification of candidate genes. UK Cancer Cytogenetics Group (UKCCG). Oncogene 2000; 19:3902-13. [PMID: 10952764 DOI: 10.1038/sj.onc.1203728] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Deletion of the long arm of chromosome 20 represents the most common chromosomal abnormality associated with the myeloproliferative disorders (MPDs) and is also found in other myeloid malignancies including myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML). Previous studies have identified a common deleted region (CDR) spanning approximately 8 Mb. We have now used G-banding, FISH or microsatellite PCR to analyse 113 patients with a 20q deletion associated with a myeloid malignancy. Our results define a new MPD CDR of 2.7 Mb, an MDS/AML CDR of 2.6 Mb and a combined 'myeloid' CDR of 1.7 Mb. We have also constructed the most detailed physical map of this region to date--a bacterial clone map spanning 5 Mb of the chromosome which contains 456 bacterial clones and 202 DNA markers. Fifty-one expressed sequences were localized within this contig of which 37 lie within the MPD CDR and 20 within the MDS/AML CDR. Of the 16 expressed sequences (six genes and 10 unique ESTs) within the 'myeloid' CDR, five were expressed in both normal bone marrow and purified CD34 positive cells. These data identify a set of genes which are both positional and expression candidates for the target gene(s) on 20q.
Collapse
Affiliation(s)
- A J Bench
- University of Cambridge, Department of Haematology, Cambridge Institute for Medical Research, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Wang PW, Eisenbart JD, Espinosa R, Davis EM, Larson RA, Le Beau MM. Refinement of the smallest commonly deleted segment of chromosome 20 in malignant myeloid diseases and development of a PAC-based physical and transcription map. Genomics 2000; 67:28-39. [PMID: 10945467 DOI: 10.1006/geno.2000.6215] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A deletion of the long arm of chromosome 20, del(20q), is a recurring abnormality in malignant myeloid diseases. In previous studies, we delineated a commonly deleted segment (CDS) of 5 Mb within band 20q12 flanked by D20S206 (proximal) and D20S481 (distal). We have generated a detailed physical map of P1 artificial chromosome (PAC) clones of this interval as well as a transcriptional map. The contig consists of 81 clones to which 152 markers (27 genes, 45 unique expressed sequence tags (ESTs) or UniGenes, 24 polymorphisms, and 56 sequence-tagged sites) have been mapped. Using PAC clones for fluorescence in situ hybridization analysis of myeloid leukemia cells with reciprocal translocations of 20q, or unbalanced rearrangements leading to loss of 20q, we have narrowed the CDS to an approximately 250-kb interval encompassing two overlapping PACs, P201E16 and P29M7 (between EST AA368224 and D20S481). This interval is gene-rich and contains 5 characterized genes, 4 UniGenes, and 9 single ESTs. The development of a transcriptional map and the identification of the smallest CDS will facilitate the molecular cloning of a myeloid leukemia suppressor gene on 20q.
Collapse
MESH Headings
- Alleles
- Chromosome Banding/methods
- Chromosome Deletion
- Chromosome Mapping
- Chromosomes, Artificial, Yeast
- Chromosomes, Bacterial
- Chromosomes, Human, Pair 20
- Cloning, Molecular
- Cytogenetic Analysis
- Expressed Sequence Tags
- Gene Rearrangement
- Genetic Markers
- Humans
- In Situ Hybridization, Fluorescence
- Leukemia, Myeloid/genetics
- Microsatellite Repeats
- Translocation, Genetic
- Tumor Cells, Cultured/physiology
Collapse
Affiliation(s)
- P W Wang
- Department of Medicine, and the University of Chicago Cancer Research Center, The University of Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
14
|
Frayling TM, McCarthy MI, Walker M, Levy JC, O'Rahilly S, Hitman GA, Rao PV, Bennett AJ, Jones EC, Menzel S, Ellard S, Hattersley AT. No evidence for linkage at candidate type 2 diabetes susceptibility loci on chromosomes 12 and 20 in United Kingdom Caucasians. J Clin Endocrinol Metab 2000; 85:853-7. [PMID: 10690901 DOI: 10.1210/jcem.85.2.6395] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Several studies have identified evidence for linkage between type 2 diabetes and the regions on chromosomes 12 and 20 containing the maturity-onset diabetes of the young (MODY) genes, hepatocyte nuclear factor-1alpha (HNF-1alpha) and HNF-4alpha. Two studies examining the HNF-1alpha region have demonstrated evidence for linkage at genome-wide levels of significance, whereas four studies examining the HNF-4alpha locus have resulted in evidence for linkage at more suggestive levels of significance. The demonstration of linkage to these regions in additional patient series will strengthen the evidence that susceptibility alleles exist at these loci. We therefore assessed the evidence for linkage to these regions using a large cohort of United Kingdom Caucasian type 2 diabetes-affected sibling pairs. A maximum total of 315 affected full sibling pairs were typed for microsatellite markers across the MODY regions and, in a subset of families, for markers spanning the whole of chromosome 20. Evidence for linkage was assessed using a multipoint, mode of inheritance-free method. Linkage analysis did not reveal any significant evidence for excess allele sharing at any of the regions studied. Loci contributing sibling recurrence risks, relative to the general population risk, of 1.75 and 1.25 could be excluded for the HNF-1alpha and HNF-4alpha regions, respectively. We have not confirmed in United Kingdom Caucasians the evidence for linkage previously reported on 12q and 20q. Our results highlight further the problems of replicating previous positive linkage results across different ethnic groups.
Collapse
Affiliation(s)
- T M Frayling
- Department of Diabetes and Vascular Medicine, School of Postgraduate Medicine and Health Sciences, University of Exeter, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Price JA, Brewer CS, Howard TD, Fossey SC, Sale MM, Ji L, Krolewski AS, Bowden DW. A physical map of the 20q12-q13.1 region associated with type 2 diabetes. Genomics 1999; 62:208-15. [PMID: 10610714 DOI: 10.1006/geno.1999.6007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several recent genetic studies have suggested linkage of Type 2 diabetes (non-insulin-dependent diabetes mellitus) susceptibility to a region of chromosome 20q12-q13.1. To facilitate the identification and cloning of a diabetes susceptibility gene(s) in this region, we have constructed correlated radiation hybrid and YAC/BAC contig physical maps of the region. A high-resolution radiation hybrid map encompassing 9.5 Mb between the PLC and the CEBPB genes was constructed using 68 markers: 25 polymorphic markers, 15 known genes, 21 ESTs, and 7 random genomic sequences. The physical order of the polymorphic markers within this radiation hybrid map is consistent with published genetic maps. A YAC/BAC contig that gives continuous coverage between PLC and CEBPB was also constructed. This contig was constructed from 24 YACs, 34 BACs, and 1 P1 phage clone onto which 71 markers were mapped: 23 polymorphic markers, 12 genes, 24 ESTs, and 12 random genomic sequences. The radiation hybrid map and YAC/BAC physical map enable precise mapping of newly identified transcribed sequences and polymorphic markers that will aid in linkage and linkage disequilibrium studies and facilitate identification and cloning of candidate Type 2 diabetes susceptibility genes residing in 20q12-q13.1.
Collapse
Affiliation(s)
- J A Price
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Wang PW, Eisenbart JD, Cordes SP, Barsh GS, Stoffel M, Le Beau MM. Human KRML (MAFB): cDNA cloning, genomic structure, and evaluation as a candidate tumor suppressor gene in myeloid leukemias. Genomics 1999; 59:275-81. [PMID: 10444328 DOI: 10.1006/geno.1999.5884] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Members of the MAF family of basic region/leucine zipper transcription factors can affect transcription in either a positive or a negative fashion, depending on their partner protein(s) and the context of the target promoter. The KRML (MAFB) transcriptional regulator plays a pivotal role in regulating lineage-specific hematopoiesis by repressing ETS1-mediated transcription of erythroid-specific genes in myeloid cells. In previous studies, we mapped the human KRML gene within a genomic contig on human chromosome 20, bands q11.2-q13.1. We have isolated the human cDNA containing the full-length predicted open reading frame (ORF). Multiple KRML transcripts of approximately 1.8 and approximately 3 kb, which differ in the length of the 3' untranslated region, are ubiquitously expressed in hematopoietic tissues and encode a protein with 323 amino acids (MW 35,832). The protein has 84% identity and 92% similarity to the murine protein. The ORF of the human KRML gene contains no introns, and the gene spans approximately 3 kb. KRML maps within the smallest commonly deleted segment in malignant myeloid disorders characterized by a deletion of 20q; however, we detected no mutations of KRML in leukemia cells with loss of 20q. Thus, KRML is unlikely to be involved in the pathogenesis of malignant myeloid disorders characterized by abnormalities of chromosome 20.
Collapse
Affiliation(s)
- P W Wang
- Department of Medicine, The Cancer Research Center, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
17
|
Bench AJ, Aldred MA, Humphray SJ, Champion KM, Gilbert JG, Asimakopoulos FA, Deloukas P, Gwilliam R, Bentley DR, Green AR. A detailed physical and transcriptional map of the region of chromosome 20 that is deleted in myeloproliferative disorders and refinement of the common deleted region. Genomics 1998; 49:351-62. [PMID: 9615219 DOI: 10.1006/geno.1998.5231] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acquired deletions of the long arm of chromosome 20 are the most common chromosomal abnormality seen in polycythemia vera and are also associated with other myeloid malignancies. Such deletions are believed to mark the site of one or more tumor suppressor genes, loss of which perturbs normal hematopoiesis. A common deleted region (CDR) has previously been identified on 20q. We have now constructed the most detailed physical map of this region to date--a YAC contig that encompasses the entire CDR and spans 23 cM (11 Mb). This contig contains 140 DNA markers and 65 unique expressed sequences. Our data represent a first step toward a complete transcriptional map of the CDR. The high marker density within the physical map permitted two complementary approaches to reducing the size of the CDR. Microsatellite PCR refined the centromeric boundary of the CDR to D20S465 and was used to search for homozygous deletions in 28 patients using 32 markers. No such deletions were detected. Genetic changes on the remaining chromosome 20 may therefore be too small to be detected or may occur in a subpopulation of cells.
Collapse
Affiliation(s)
- A J Bench
- Department of Haematology, University of Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wang PW, Iannantuoni K, Davis EM, Espinosa R, Stoffel M, Le Beau MM. Refinement of the commonly deleted segment in myeloid leukemias with a del(20q). Genes Chromosomes Cancer 1998. [DOI: 10.1002/(sici)1098-2264(199802)21:2<75::aid-gcc1>3.0.co;2-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
19
|
Stoffel M, Duncan SA. The maturity-onset diabetes of the young (MODY1) transcription factor HNF4alpha regulates expression of genes required for glucose transport and metabolism. Proc Natl Acad Sci U S A 1997; 94:13209-14. [PMID: 9371825 PMCID: PMC24288 DOI: 10.1073/pnas.94.24.13209] [Citation(s) in RCA: 294] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hepatocyte nuclear factor 4alpha (HNF4alpha) plays a critical role in regulating the expression of many genes essential for normal functioning of liver, gut, kidney, and pancreatic islets. A nonsense mutation (Q268X) in exon 7 of the HNF4alpha gene is responsible for an autosomal dominant, early-onset form of non-insulin-dependent diabetes mellitus (maturity-onset diabetes of the young; gene named MODY1). Although this mutation is predicted to delete 187 C-terminal amino acids of the HNF4alpha protein the molecular mechanism by which it causes diabetes is unknown. To address this, we first studied the functional properties of the MODY1 mutant protein. We show that it has lost its transcriptional transactivation activity, fails to dimerize and bind DNA, implying that the MODY1 phenotype is because of a loss of HNF4alpha function. The effect of loss of function on HNF4alpha target gene expression was investigated further in embryonic stem cells, which are amenable to genetic manipulation and can be induced to form visceral endoderm. Because the visceral endoderm shares many properties with the liver and pancreatic beta-cells, including expression of genes for glucose transport and metabolism, it offers an ideal system to investigate HNF4-dependent gene regulation in glucose homeostasis. By exploiting this system we have identified several genes encoding components of the glucose-dependent insulin secretion pathway whose expression is dependent upon HNF4alpha. These include glucose transporter 2, and the glycolytic enzymes aldolase B and glyceraldehyde-3-phosphate dehydrogenase, and liver pyruvate kinase. In addition we have found that expression of the fatty acid binding proteins and cellular retinol binding protein also are down-regulated in the absence of HNF4alpha. These data provide direct evidence that HNF4alpha is critical for regulating glucose transport and glycolysis and in doing so is crucial for maintaining glucose homeostasis.
Collapse
Affiliation(s)
- M Stoffel
- Laboratory of Metabolic Diseases, The Rockefeller University, New York, NY 10021, USA.
| | | |
Collapse
|
20
|
Lindner T, Gragnoli C, Furuta H, Cockburn BN, Petzold C, Rietzsch H, Weiss U, Schulze J, Bell GI. Hepatic function in a family with a nonsense mutation (R154X) in the hepatocyte nuclear factor-4alpha/MODY1 gene. J Clin Invest 1997; 100:1400-5. [PMID: 9294105 PMCID: PMC508318 DOI: 10.1172/jci119660] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Maturity-onset diabetes of the young (MODY) is a genetically heterogeneous monogenic disorder characterized by autosomal dominant inheritance, onset usually before 25 yr of age, and abnormal pancreatic beta-cell function. Mutations in the hepatocyte nuclear factor(HNF)-4alpha/MODY1, glucokinase/MODY2, and HNF-1alpha/MODY3 genes can cause this form of diabetes. In contrast to the glucokinase and HNF-1alpha genes, mutations in the HNF-4alpha gene are a relatively uncommon cause of MODY, and our understanding of the MODY1 form of diabetes is based on studies of only a single family, the R-W pedigree. Here we report the identification of a second family with MODY1 and the first in which there has been a detailed characterization of hepatic function. The affected members of this family, Dresden-11, have inherited a nonsense mutation, R154X, in the HNF-4alpha gene, and are predicted to have reduced levels of this transcription factor in the tissues in which it is expressed, including pancreatic islets, liver, kidney, and intestine. Subjects with the R154X mutation exhibited a diminished insulin secretory response to oral glucose. HNF-4alpha plays a central role in tissue-specific regulation of gene expression in the liver, including the control of synthesis of proteins involved in cholesterol and lipoprotein metabolism and the coagulation cascade. Subjects with the R154X mutation, however, showed no abnormalities in lipid metabolism or coagulation except for a paradoxical 3.3-fold increase in serum lipoprotein(a) levels, nor was there any evidence of renal dysfunction in these subjects. The results suggest that MODY1 is primarily a disorder of beta-cell function.
Collapse
Affiliation(s)
- T Lindner
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Cederberg A, Betz R, Lagercrantz S, Larsson C, Hulander M, Carlsson P, Enerbäck S. Chromosome localization, sequence analysis, and expression pattern identify FKHL 18 as a novel human forkhead gene. Genomics 1997; 44:344-6. [PMID: 9325056 DOI: 10.1006/geno.1997.4864] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The forkhead gene family of transcription factors belongs to the "winged helix" class of DNA-binding proteins. Today over 40 members of this gene family have been identified. Forkhead genes have been shown to be involved in embryonic development, tumorigenesis, and direction of tissue specificity of gene expression. Here we describe a new human forkhead gene called freac-10 (HGMW-approved symbol FKHL 18). A combination of fluorescence in situ hybridization and somatic cell hybrids localizes freac-10 to the chromosomal region of 20q11.1-q11.2. Hybridization to a panel consisting of RNA derived from 50 different tissues shows that freac-10 is transcribed predominantly in the aorta, thus having a unique expression pattern compared with other forkhead genes. Sequence comparison reveals a striking similarity, over the conserved DNA binding region, to a murine forkhead gene-fkh-3. We propose, based on sequence differences in the N- and C-terminal regions of the forkhead domain and a clear difference in expression pattern between freac-10 and fkh-3, that freac-10 represents a novel member of this gene family.
Collapse
Affiliation(s)
- A Cederberg
- Department of Molecular Medicine, Karolinska Hospital, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
22
|
Duncan MK, Kos L, Jenkins NA, Gilbert DJ, Copeland NG, Tomarev SI. Eyes absent: a gene family found in several metazoan phyla. Mamm Genome 1997; 8:479-85. [PMID: 9195991 DOI: 10.1007/s003359900480] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Genes related to the Drosophila eyes absent gene were identified in vertebrates (mouse and human), mollusks (squid), and nematodes (C. elegans). Proteins encoded by these genes consist of conserved C-terminal and variable N-terminal domains. In the conserved 271-amino acid C-terminal region, Drosophila and vertebrate proteins are 65-67% identical. A vertebrate homolog of eyes absent, designated Eya2, was mapped to Chromosome (Chr) 2 in the mouse and to Chr 20q13.1 in human. Eya2 shows a dynamic pattern of expression during development. In the mouse, expression of Eya2 was first detected in 8.5-day embryos in the region of head ectoderm fated to become the forebrain. At later stages of development, Eya2 is expressed in the olfactory placode and in a variety of neural crest derivatives. In the eye, expression of Eya2 was first detected after formation of the lens vesicle. At day 17.5, the highest level of Eya2 mRNA was observed in primary lens fibers. Low levels of Eya2 expression was detected in retina, sclera, and cornea. By postnatal day 10, Eya2 was expressed in secondary lens fibers, cornea, and retina. Although Eya2 is expressed relatively late in eye development, it belongs to the growing list of factors that may be essential for eye development across metazoan phyla. Like members of the Pax-6 gene family, eyes absent gene family members were probably first involved in functions not related to vision, with recruitment for visual system formation and function occurring later.
Collapse
MESH Headings
- Age Factors
- Amino Acid Sequence
- Animals
- Animals, Newborn
- Base Sequence
- Blotting, Northern
- Caenorhabditis elegans/genetics
- Chromosome Mapping
- Chromosomes, Human, Pair 20
- Cloning, Molecular
- Decapodiformes/genetics
- Drosophila/genetics
- Drosophila Proteins
- Embryo, Mammalian/physiology
- Embryo, Nonmammalian
- Eye/pathology
- Eye Proteins/genetics
- Female
- Gene Expression Regulation, Developmental
- Head/embryology
- Head/growth & development
- Humans
- Intracellular Signaling Peptides and Proteins
- Invertebrates/genetics
- Male
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Nuclear Proteins
- Protein Tyrosine Phosphatases
- Proteins/genetics
- Sequence Homology, Amino Acid
- Tissue Distribution
- Trans-Activators
- Vertebrates/genetics
Collapse
Affiliation(s)
- M K Duncan
- National Eye Institute, Laboratory of Molecular and Developmental Biology, Building 6, Room 203, 6 Center Drive, MSC 2730, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
23
|
Zhao N, Stoffel A, Wang PW, Eisenbart JD, Espinosa R, Larson RA, Le Beau MM. Molecular delineation of the smallest commonly deleted region of chromosome 5 in malignant myeloid diseases to 1-1.5 Mb and preparation of a PAC-based physical map. Proc Natl Acad Sci U S A 1997; 94:6948-53. [PMID: 9192672 PMCID: PMC21265 DOI: 10.1073/pnas.94.13.6948] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Loss of a whole chromosome 5 or a deletion of the long arm, del(5q), is a recurring abnormality in malignant myeloid diseases. In previous studies, we delineated a commonly deleted segment of approximately 4 Mb within band 5q31 that was flanked by IL9 on the proximal side and D5S166 on the distal side. We have generated a physical map of P1 (PAC), bacterial (BAC), and yeast artificial chromosome (YAC) clones of this interval. The contig consists of 108 clones (78 PACs, 2 BACs, and 28 YACs) to which 125 markers (5 genes, 11 expressed sequence tags, 12 polymorphisms, and 97 sequence-tagged sites) have been mapped. Using PAC clones for fluorescence in situ hybridization analysis of leukemia cells with a del(5q), we have narrowed the commonly deleted segment to 1-1.5 Mb between D5S479 and D5S500. To search for allele loss, we used 7 microsatellite markers within and flanking the commonly deleted segment to examine leukemia cells from 28 patients with loss of 5q, and 14 patients without cytogenetically detectable loss of 5q. In the first group of patients, we detected hemizygous deletions, consistent with the cytogenetically visible loss; no homozygous deletions were detected. No allele loss was detected in patients without abnormalities of chromosome 5, suggesting that allele loss on 5q is the result of visible chromosomal abnormalities. The development of a stable PAC contig and the identification of the smallest commonly deleted segment will facilitate the molecular cloning of a myeloid leukemia suppressor gene on 5q.
Collapse
Affiliation(s)
- N Zhao
- Section of Hematology/Oncology, and the Cancer Research Center, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Yamagata K, Furuta H, Oda N, Kaisaki PJ, Menzel S, Cox NJ, Fajans SS, Signorini S, Stoffel M, Bell GI. Mutations in the hepatocyte nuclear factor-4alpha gene in maturity-onset diabetes of the young (MODY1). Nature 1996; 384:458-60. [PMID: 8945471 DOI: 10.1038/384458a0] [Citation(s) in RCA: 795] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The disease maturity-onset diabetes of the young (MODY) is a genetically heterogeneous monogenic form of non-insulin-dependent (type 2) diabetes mellitus (NIDDM), characterized by early onset, usually before 25 years of age and often in adolescence or childhood, and by autosomal dominant inheritance. It has been estimated that 2-5% of patients with NIDDM may have this form of diabetes mellitus. Clinical studies have shown that prediabetic MODY subjects have normal insulin sensitivity but suffer from a defect in glucose-stimulated insulin secretion, suggesting that pancreatic beta-cell dysfunction rather than insulin resistance is the primary defect in this disorder. Linkage studies have localized the genes that are mutated in MODY on human chromosomes 20 (MODY1), 7 (MODY2) and 12 (MODY3), with MODY2 and MODY3 being allelic with the genes encoding glucokinase, a key regulator of insulin secretion, and hepatocyte nuclear factor-1alpha (HNF-1alpha), a transcription factor involved in tissue-specific regulation of liver genes but also expressed in pancreatic islets, insulinoma cells and other tissues. Here we show that MODY1 is the gene encoding HNF-4alpha (gene symbol, TCF14), a member of the steroid/thyroid hormone receptor superfamily and an upstream regulator of HNF-1alpha expression.
Collapse
Affiliation(s)
- K Yamagata
- Howard Hughes Medical Institute, The University of Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|