1
|
Guo Y, Li J, Zhang S, Song Y, Chen G, He L, Wang L, Liang C. Significant Enhancement Catalytic Activity of Nitrile Hydratase by Balancing the Subunits Expression. Chembiochem 2024; 25:e202400526. [PMID: 39617726 DOI: 10.1002/cbic.202400526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/11/2024]
Abstract
Escherichia coli (E. coli) is the most commonly used bacterial recombinant protein production system due to its easy genetic modification properties. In our previous study, a recombinant plasmid expressing the Fe-type nitrile hydratase derived from Rhodococcus erythropolis CCM2595 (ReNHase) was successfully constructed and the recombinant ReNHase exerted an excellent catalytic effect on dinitrile compounds. Nevertheless, the ReNHases were confronted with imbalanced subunit expression during heterologous expression, which restricted the enzymes assemble functionally. In this study, the secondary structure of mRNA in the ribosome binding sequence region of the β-subunit was optimized to elevate the translation efficiency of the β-subunit gene and balance the expression of α- and β-subunits in ReNHase. The optimized ReNHase showed a 12-fold increase in specific enzyme activity over wild-type ReNHase. To further enhance the soluble expression of ReNHase, the ReNHase was labeled using three different fusion tags, resulting in three new recombinant ReNHases. In these recombinant ReNHases, some of the fusion tags promoted the soluble expression of ReNHase, but also affected the balance of α-/β-subunit expression and the secondary structure of the ReNHase, and reduced the enzyme activity. In conclusion, our results provide an optimized strategy for the heterologous expression of multi-subunit proteins.
Collapse
Affiliation(s)
- Yi Guo
- School of Chemical Engineering, Laboratory of Advanced Materials and Catalytic Engineering, Dalian University of Technology, Dalian, 116024, China
- Laboratory of Synthetic Biology and Biotransformation, Chengdu Research Institute of Dalian University of Technology, Chengdu, 611939, China
| | - Jiaxin Li
- School of Chemical Engineering, Laboratory of Advanced Materials and Catalytic Engineering, Dalian University of Technology, Dalian, 116024, China
- Laboratory of Synthetic Biology and Biotransformation, Chengdu Research Institute of Dalian University of Technology, Chengdu, 611939, China
| | - Song Zhang
- School of Chemical Engineering Ocean and Life Science, Dalian University of Technology, Panjin, 124221, China
| | - Yingjie Song
- School of Chemical Engineering Ocean and Life Science, Dalian University of Technology, Panjin, 124221, China
| | - Guobing Chen
- School of Chemical Engineering Ocean and Life Science, Dalian University of Technology, Panjin, 124221, China
| | - Leiyu He
- School of Chemical Engineering Ocean and Life Science, Dalian University of Technology, Panjin, 124221, China
| | - Li Wang
- School of Chemical Engineering Ocean and Life Science, Dalian University of Technology, Panjin, 124221, China
- Laboratory of Synthetic Biology and Biotransformation, Chengdu Research Institute of Dalian University of Technology, Chengdu, 611939, China
| | - Changhai Liang
- School of Chemical Engineering, Laboratory of Advanced Materials and Catalytic Engineering, Dalian University of Technology, Dalian, 116024, China
- Laboratory of Synthetic Biology and Biotransformation, Chengdu Research Institute of Dalian University of Technology, Chengdu, 611939, China
| |
Collapse
|
2
|
Feng C, Chen J, Ye W, Wang Z. Nitrile hydratase as a promising biocatalyst: recent advances and future prospects. Biotechnol Lett 2024; 46:1171-1185. [PMID: 39269672 DOI: 10.1007/s10529-024-03530-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/05/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
Amides are an important type of synthetic intermediate used in the chemical, agrochemical, pharmaceutical, and nutraceutical industries. The traditional chemical process of converting nitriles into the corresponding amides is feasible but is restricted because of the harsh conditions required. In recent decades, nitrile hydratase (NHase, EC 4.2.1.84) has attracted considerable attention because of its application in nitrile transformation as a prominent biocatalyst. In this review, we provide a comprehensive survey of recent advances in NHase research in terms of natural distribution, enzyme screening, and molecular modification on the basis of its characteristics and catalytic mechanism. Additionally, industrial applications and recent significant biotechnology advances in NHase bioengineering and immobilization techniques are systematically summarized. Moreover, the current challenges and future perspectives for its further development in industrial applications for green chemistry were also discussed. This study contributes to the current state-of-the-art, providing important technical information for new NHase applications in manufacturing industries.
Collapse
Affiliation(s)
- Chao Feng
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Jing Chen
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Wenxin Ye
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Zhanshi Wang
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
3
|
Sun S, Guo J, Zhu Z, Zhou J. Microbial degradation mechanisms of the neonicotinoids acetamiprid and flonicamid and the associated toxicity assessments. Front Microbiol 2024; 15:1500401. [PMID: 39564486 PMCID: PMC11573777 DOI: 10.3389/fmicb.2024.1500401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
Extensive use of the neonicotinoid insecticides acetamiprid (ACE) and flonicamid (FLO) in agriculture poses severe environmental and ecological risks. Microbial remediation is considered a feasible approach to address these issues. Many ACE-and FLO-degrading microorganisms have been isolated and characterized, but few reviews have concentrated on the underlying degradation mechanisms. In this review, we describe the microbial degradation pathways of ACE and FLO and assess the toxicity of ACE, FLO and their metabolites. Especially, we focus on the enzymes involved in degradation of ACE and FLO, including cytochrome P450s, nitrile hydratases, amidases, and nitrilases. Those studies reviewed here further our understanding of the enzymatic mechanisms of microbial degradation of ACE and FLO, and aid in the application of microbes to remediate environmental ACE and FLO contamination.
Collapse
Affiliation(s)
- Shilei Sun
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Jingjing Guo
- School of Life Science and Environmental Engineering, Nanjing Normal University Zhongbei College, Zhenjiang, China
| | - Zhi Zhu
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Jiangsheng Zhou
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
4
|
Ma D, Cheng Z, Peplowski L, Han L, Xia Y, Hou X, Guo J, Yin D, Rao Y, Zhou Z. Insight into the broadened substrate scope of nitrile hydratase by static and dynamic structure analysis. Chem Sci 2022; 13:8417-8428. [PMID: 35919716 PMCID: PMC9297474 DOI: 10.1039/d2sc02319a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/28/2022] [Indexed: 11/21/2022] Open
Abstract
The narrow substrate scope limits the wide industrial application of enzymes. Here, we successfully broadened the substrate scope of a nitrile hydratase (NHase) through mutation of two tunnel entrance residues based on rational tunnel calculation. Two variants, with increased specific activity, especially toward bulky substrates, were obtained. Crystal structure analysis revealed that the mutations led to the expansion of the tunnel entrance, which might be conducive to substrate entry. More importantly, molecular dynamics simulations illustrated that the mutations introduced anti-correlated movements to the regions around the substrate tunnel and the active site, which would promote substrate access during the dynamic process of catalysis. Additionally, mutations on the corresponding tunnel entrance residues on other NHases also enhanced their activity toward bulky substrates. These results not only revealed that residues located at the enzyme surface were a key factor in enzyme catalytic performance, but also provided dynamic evidence for insight into enzyme substrate scope broadening.
Collapse
Affiliation(s)
- Dong Ma
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
| | - Zhongyi Cheng
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
| | - Lukasz Peplowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun Grudziadzka 5 87-100 Torun Poland
| | - Laichuang Han
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
| | - Yuanyuan Xia
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
| | - Xiaodong Hou
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
| | - Junling Guo
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
| | - Dejing Yin
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
| | - Yijian Rao
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
- Jiangnan University (Rugao) Food Biotechnology Research Institute Rugao Jiangsu China
| |
Collapse
|
5
|
Draft Genome Sequence of Rhodococcus rhodochrous Strain G38GP, Isolated from the Madagascar Hissing Cockroach. Microbiol Resour Announc 2021; 10:e0077721. [PMID: 34617793 PMCID: PMC8496360 DOI: 10.1128/mra.00777-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Rhodococcus rhodochrous is a bacterial species with applications in biocatalysis and bioremediation. Here, we report the draft genome sequence of strain G38GP, isolated from the gut of the cockroach Gromphadorhina portentosa. The genome consists of 76 contigs, with a total length of 6,256,198 bp and a GC content of 67.82%.
Collapse
|
6
|
Sun S, Zhou J, Jiang J, Dai Y, Sheng M. Nitrile Hydratases: From Industrial Application to Acetamiprid and Thiacloprid Degradation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10440-10449. [PMID: 34469128 DOI: 10.1021/acs.jafc.1c03496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The widespread application of neonicotinoid insecticides (NEOs) in agriculture causes a series of environmental and ecological problems. Microbial remediation is a popular approach to relieve these negative impacts, but the associated molecular mechanisms are rarely explored. Nitrile hydratase (NHase), an enzyme commonly used in industry for amide production, was discovered to be responsible for the degradation of acetamiprid (ACE) and thiacloprid (THI) by microbes. Since then, research into NHases in NEO degradation has attracted increasing attention. In this review, microbial degradation of ACE and THI is briefly described. We then focus on NHase evolution, gene composition, maturation mechanisms, expression, and biochemical properties with regard to application of NHases in NEO degradation for bioremediation.
Collapse
Affiliation(s)
- Shilei Sun
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Jiangsheng Zhou
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Jihong Jiang
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Yijun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Miaomiao Sheng
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| |
Collapse
|
7
|
Sun S, Fan Z, Zhao J, Dai Z, Zhao Y, Dai Y. Copper stimulates neonicotinoid insecticide thiacloprid degradation by Ensifer adhaerens TMX-23. J Appl Microbiol 2021; 131:2838-2848. [PMID: 34075672 DOI: 10.1111/jam.15172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/05/2021] [Accepted: 05/27/2021] [Indexed: 11/28/2022]
Abstract
AIMS Aims of this study are to elucidate the molecular mechanism of copper-improved thiacloprid (THI) degradation by Ensifer adhaerens TMX-23 and characterize copper resistance of this strain. METHODS AND RESULTS Resting cells of E. adhaerens TMX-23 were used to degrade THI, with formation of THI amide and 98·31% of 0·59 mmol l-1 THI was degraded in 100 min. The addition of copper improved the degradation of THI and showed little inhibitory effects on the growth of E. adhaerens TMX-23. E. adhaerens TMX-23 degraded THI to THI amide by nitrile hydratases (NhcA and NhpA). QPCR analysis indicated that the expression of nhpA was up-regulated in the presence of copper. E. adhaerens TMX-23 nitrile hydratases were purified, and enzyme assay of NhpA exhibited the highest NHase activity toward THI. The addition of copper activated the activity of NhcA. Soil degradation experiment indicated that E. adhaerens TMX-23 could quickly eliminate THI residual in copper-added soil. CONCLUSIONS Copper improved THI degradation by E. adhaerens TMX-23 was attributed to the induced expression of nhpA and activated NhcA. SIGNIFICANCE AND IMPACT OF THE STUDY This study broadens the investigation of regulatory mechanism of NHase expression and provided theoretical basis for using metal-resistant microbes to degrade pesticide in heavy metal co-contaminated environments.
Collapse
Affiliation(s)
- S Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China.,The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, People's Republic of China
| | - Z Fan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - J Zhao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Z Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Y Zhao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Y Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| |
Collapse
|
8
|
Liang Y, Yu H. Genetic toolkits for engineering Rhodococcus species with versatile applications. Biotechnol Adv 2021; 49:107748. [PMID: 33823269 DOI: 10.1016/j.biotechadv.2021.107748] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 02/09/2023]
Abstract
Rhodococcus spp. are a group of non-model gram-positive bacteria with diverse catabolic activities and strong adaptive capabilities, which enable their wide application in whole-cell biocatalysis, environmental bioremediation, and lignocellulosic biomass conversion. Compared with model microorganisms, the engineering of Rhodococcus is challenging because of the lack of universal molecular tools, high genome GC content (61% ~ 71%), and low transformation and recombination efficiencies. Nevertheless, because of the high interest in Rhodococcus species for bioproduction, various genetic elements and engineering tools have been recently developed for Rhodococcus spp., including R. opacus, R. jostii, R. ruber, and R. erythropolis, leading to the expansion of the genetic toolkits for Rhodococcus engineering. In this article, we provide a comprehensive review of the important developed genetic elements for Rhodococcus, including shuttle vectors, promoters, antibiotic markers, ribosome binding sites, and reporter genes. In addition, we also summarize gene transfer techniques and strategies to improve transformation efficiency, as well as random and precise genome editing tools available for Rhodococcus, including transposition, homologous recombination, recombineering, and CRISPR/Cas9. We conclude by discussing future trends in Rhodococcus engineering. We expect that more synthetic and systems biology tools (such as multiplex genome editing, dynamic regulation, and genome-scale metabolic models) will be adapted and optimized for Rhodococcus.
Collapse
Affiliation(s)
- Youxiang Liang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China
| | - Huimin Yu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
9
|
Effect and mechanism analysis of different linkers on efficient catalysis of subunit-fused nitrile hydratase. Int J Biol Macromol 2021; 181:444-451. [PMID: 33753198 DOI: 10.1016/j.ijbiomac.2021.03.103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 11/21/2022]
Abstract
Protein fusion using a linker plays an important role for protein evolution. However, designing suitable linkers for protein evolution is yet challenging and under-explored. To further clarify the regular pattern of suitable type of linker for fusion proteins, one nitrile hydratase (NHase) was used as a target protein and subunit fusion strategy was carried out to improve its efficient catalysis. Subunit-fused variants with three different types of linkers were constructed and characterized. All variants exhibited higher stability than that of the wild type. The longer the linker was, the higher stability NHase showed, however, too long linker affected NHase activity and expression. Among the three types of linkers, the α-helical linker seemed more suitable for NHase than flexible or rigid linkers. Though it is not clear how the linkers affecting the activity, structure analysis indicated that the stability improvement is dependent on the additional salt bridge, H-bond, and the subunit interface area increasing due to the linker insertion, among which the additional salt bridge and interface area were more important factors. The results described here may be useful for redesigning other enzymes through subunit fusion.
Collapse
|
10
|
Han L, Cui W, Lin Q, Chen Q, Suo F, Ma K, Wang Y, Hao W, Cheng Z, Zhou Z. Efficient Overproduction of Active Nitrile Hydratase by Coupling Expression Induction and Enzyme Maturation via Programming a Controllable Cobalt-Responsive Gene Circuit. Front Bioeng Biotechnol 2020; 8:193. [PMID: 32266230 PMCID: PMC7105576 DOI: 10.3389/fbioe.2020.00193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/27/2020] [Indexed: 11/13/2022] Open
Abstract
A robust and portable expression system is of great importance in enzyme production, metabolic engineering, and synthetic biology, which maximizes the performance of the engineered system. In this study, a tailor-made cobalt-induced expression system (CIES) was developed for low-cost and eco-friendly nitrile hydratase (NHase) production. First, the strong promoter Pveg from Bacillus subtilis, the Ni(II)/Co(II) responsive repressor RcnR, and its operator were reorganized to construct a CIES. In this system, the expression of reporter green fluorescent protein (GFP) was specifically triggered by Co(II) over a broad range of concentration. The performance of the cobalt-induced system was evolved to version 2.0 (CIES 2.0) for adaptation to different concentrations of Co(II) through programming a homeostasis system that rebalances cobalt efflux and influx with RcnA and NiCoT, respectively. Harnessing these synthetic platforms, the induced expression of NHase was coupled with enzyme maturation by Co(II) in a synchronizable manner without requiring additional inducers, which is a unique feature relative to other induced systems for production of NHase. The yield of NHase was 111.2 ± 17.9 U/ml using CIES and 114.9 ± 1.4 U/ml using CIES 2.0, which has a producing capability equivalent to that of commonly used isopropyl thiogalactoside (IPTG)-induced systems. In a scale-up system using a 5-L fermenter, the yielded enzymatic activity reached 542.2 ± 42.8 U/ml, suggesting that the designer platform for NHase is readily applied to the industry. The design of CIES in this study not only provided a low-cost and eco-friendly platform to overproduce NHase but also proposed a promising pipeline for development of synthetic platforms for expression of metalloenzymes.
Collapse
Affiliation(s)
- Laichuang Han
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Jiangsu, China
| | - Wenjing Cui
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Jiangsu, China
| | - Qiao Lin
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Jiangsu, China
| | - Qiaoqing Chen
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Jiangsu, China
| | - Feiya Suo
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Jiangsu, China
| | - Ke Ma
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Jiangsu, China
| | - Yang Wang
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Jiangsu, China
| | - Wenliang Hao
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Jiangsu, China
| | - Zhongyi Cheng
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Jiangsu, China
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Jiangsu, China
| |
Collapse
|
11
|
Jiao S, Li F, Yu H, Shen Z. Advances in acrylamide bioproduction catalyzed with Rhodococcus cells harboring nitrile hydratase. Appl Microbiol Biotechnol 2019; 104:1001-1012. [DOI: 10.1007/s00253-019-10284-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 01/10/2023]
|
12
|
Sun S, Fan Z, Zhao Y, Guo L, Dai Y. A Novel Nutrient Deprivation-Induced Neonicotinoid Insecticide Acetamiprid Degradation by Ensifer adhaerens CGMCC 6315. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:63-71. [PMID: 30576131 DOI: 10.1021/acs.jafc.8b06154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biodegradation of pesticide pollution is often restricted by environmental pressures, such as nutrient deprivation. Ensifer adhaerens CGMCC 6315 could overcome this issue and degrade neonicotinoid acetamiprid (ACE) efficiently under low nutrient stimuli. The ACE degradation rate improved by 33.1-fold when the lysogeny broth content for cell culture was decreased to 1/15-fold. Resting cells of CGMCC 6315 degraded 94.4% of 200 mg/L ACE in 12 h and quickly eliminated 87.8% of 5 mg/kg of residual soil ACE within 2 d. ACE degradation by CGMCC 6315 was via a nitrile hydratase (NHase) pathway. Genome sequencing showed that CGMCC 6315 had two NHase genes ( cnhA and pnhA). PnhA had the highest reported activity of 28.8 U/mg for ACE. QPCR and proteomic analysis showed that the improved ACE degradation ability was attributed to the up-regulated expression of PnhA. This biodegradation system of CGMCC 6315 has great potential for use in pesticide pollution remediation.
Collapse
Affiliation(s)
- Shilei Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , People's Republic of China
| | - Zhixia Fan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , People's Republic of China
| | - Yunxiu Zhao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , People's Republic of China
| | - Leilei Guo
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , People's Republic of China
| | - Yijun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , People's Republic of China
| |
Collapse
|
13
|
Yu H, Jiao S, Wang M, Liang Y, Tang L. Biodegradation of Nitriles by Rhodococcus. BIOLOGY OF RHODOCOCCUS 2019. [DOI: 10.1007/978-3-030-11461-9_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Lavrov KV, Shemyakina AO, Grechishnikova EG, Novikov AD, Kalinina TI, Yanenko AS. In vivo metal selectivity of metal-dependent biosynthesis of cobalt-type nitrile hydratase in Rhodococcus bacteria: a new look at the nitrile hydratase maturation mechanism? Metallomics 2019; 11:1162-1171. [DOI: 10.1039/c8mt00129d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Metal-dependent cblA-mediated mechanism of transcription regulation of NHase could not discriminate Ni and Co, but mechanism of NHase enzyme maturation could do this.
Collapse
Affiliation(s)
- Konstantin V. Lavrov
- Laboratory of Molecular Biotechnology
- State Research Institute of Genetics and Selection of Industrial Microorganisms of the National Research Center “Kurchatov Institute”
- Moscow
- Russia
| | - Anna O. Shemyakina
- Laboratory of Molecular Biotechnology
- State Research Institute of Genetics and Selection of Industrial Microorganisms of the National Research Center “Kurchatov Institute”
- Moscow
- Russia
| | - Elena G. Grechishnikova
- Laboratory of Molecular Biotechnology
- State Research Institute of Genetics and Selection of Industrial Microorganisms of the National Research Center “Kurchatov Institute”
- Moscow
- Russia
| | - Andrey D. Novikov
- Laboratory of Molecular Biotechnology
- State Research Institute of Genetics and Selection of Industrial Microorganisms of the National Research Center “Kurchatov Institute”
- Moscow
- Russia
| | - Tatyana I. Kalinina
- Laboratory of Molecular Biotechnology
- State Research Institute of Genetics and Selection of Industrial Microorganisms of the National Research Center “Kurchatov Institute”
- Moscow
- Russia
| | - Alexander S. Yanenko
- Laboratory of Molecular Biotechnology
- State Research Institute of Genetics and Selection of Industrial Microorganisms of the National Research Center “Kurchatov Institute”
- Moscow
- Russia
| |
Collapse
|
15
|
Chen Y, Jiao S, Wang M, Chen J, Yu H. A novel molecular chaperone GroEL2 from Rhodococcus ruber and its fusion chimera with nitrile hydratase for co-enhanced activity and stability. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.07.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Core element characterization of Rhodococcus promoters and development of a promoter-RBS mini-pool with different activity levels for efficient gene expression. N Biotechnol 2018; 44:41-49. [DOI: 10.1016/j.nbt.2018.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 11/15/2022]
|
17
|
Venkatesan A, Palaniyandi K, Narayanan S. Molecular characterization of AmiC, a positive regulator in acetamidase operon of Mycobacterium smegmatis. Cell Stress Chaperones 2018; 23:539-550. [PMID: 29273966 PMCID: PMC6045532 DOI: 10.1007/s12192-017-0861-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/22/2017] [Accepted: 10/26/2017] [Indexed: 10/18/2022] Open
Abstract
Mycobacterium smegmatis, a rapidly growing non-pathogenic mycobacterium, is currently used as a model organism to study mycobacterial genetics. Acetamidase of M. smegmatis is the highly inducible enzyme of Mycobacteria, which utilizes several amide compounds as sole carbon and nitrogen sources. The acetamidase operon has a complex regulatory mechanism, which involves three regulatory proteins, four promoters, and three operator elements. In our previous study, we showed that over-expression of AmiA leads to a negative regulation of acetamidase by blocking the P2 promoter. In this study, we have identified a new positive regulatory protein, AmiC that interacts with AmiA through protein-protein interaction. Gel mobility shift assay showed that AmiC protein inhibits AmiA from binding to the P2 promoter. Interaction of AmiC with cis-acting elements identified its binding ability to multiple regulatory regions of the operon such as P3, OP3, and P1 promoter/operator. Consequently, the addition of inducer acetamide to AmiC complexe trips the complexes, causing AmiC to appear to be the sensory protein for the amides. Homology modeling and molecular docking studies suggest AmiC as a member of Periplasmic binding proteins, which preferentially bind to the inducers and not to the suppressor. Over-expression of AmiC leads to down-regulation of the negative regulator, amiA, and constitutive up-regulation of acetamidase. Based on these findings, we conclude that AmiC positively regulates the acetamidase operon.
Collapse
Affiliation(s)
- Arunkumar Venkatesan
- Department of Immunology, National Institute for Research in Tuberculosis, Chetpet, Chennai, 600 031, India
| | - Kannan Palaniyandi
- Department of Immunology, National Institute for Research in Tuberculosis, Chetpet, Chennai, 600 031, India
| | - Sujatha Narayanan
- Department of Immunology, National Institute for Research in Tuberculosis, Chetpet, Chennai, 600 031, India.
| |
Collapse
|
18
|
Lavrov KV, Shemyakina AO, Grechishnikova EG, Novikov AD, Derbikov DD, Kalinina TI, Yanenko AS. New cblA gene participates in regulation of cobalt-dependent transcription of nitrile hydratase genes in Rhodococcus rhodochrous. Res Microbiol 2018; 169:227-236. [DOI: 10.1016/j.resmic.2018.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/10/2018] [Accepted: 03/13/2018] [Indexed: 11/29/2022]
|
19
|
Abstract
Nitrile hydratase (NHase) from Rhodococcus rhodochrous J1 is widely used for industrial production of acrylamide and nicotinamide. However, the two types of NHases (L-NHase and H-NHase) from R. rhodochrous J1 were only slightly expressed in E. coli by routine methods, which limits the comprehensive and systematic characterization of the enzyme properties. We successfully expressed the two types of recombinant NHases in E. coli by codon-optimization, engineering of Ribosome Binding Site (RBS) and spacer sequences. The specific activity of the purified L-NHase and H-NHase were 400 U/mg and 234 U/mg, respectively. The molecular mass of L-NHase and H-NHase was identified to be 94 kDa and 504 kDa, respectively, indicating that the quaternary structure of the two types of NHases was the same as those in R. rhodochrous J1. H-NHase exhibited higher substrate and product tolerance than L-NHase. Moreover, higher activity and shorter culture time were achieved in recombinant E. coli, and the whole cell catalyst of recombinant E. coli harboring H-NHase has equivalent efficiency in tolerance to the high-concentration product relative to that in R. rhodochrous J1. These results indicate that biotransformation of nitrile by R. rhodochrous J1 represents a potential alternative to NHase-producing E. coli.
Collapse
|
20
|
Yamada M, Hashimoto Y, Kumano T, Tsujimura S, Kobayashi M. New function of aldoxime dehydratase: Redox catalysis and the formation of an unexpected product. PLoS One 2017; 12:e0175846. [PMID: 28410434 PMCID: PMC5391958 DOI: 10.1371/journal.pone.0175846] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/31/2017] [Indexed: 11/21/2022] Open
Abstract
In general, hemoproteins are capable of catalyzing redox reactions. Aldoxime dehydratase (OxdA), which is a unique heme-containing enzyme, catalyzes the dehydration of aldoximes to the corresponding nitriles. Its reaction is a rare example of heme directly activating an organic substrate, unlike the utilization of H2O2 or O2 as a mediator of catalysis by other heme-containing enzymes. While it is unknown whether OxdA catalyzes redox reactions or not, we here for the first time detected catalase activity (which is one of the redox activities) of wild-type OxdA, OxdA(WT). Furthermore, we constructed a His320 → Asp mutant of OxdA [OxdA(H320D)], and found it exhibits catalase activity. Determination of the kinetic parameters of OxdA(WT) and OxdA(H320D) revealed that their Km values for H2O2 were similar to each other, but the kcat value of OxdA(H320D) was 30 times higher than that of OxdA(WT). Next, we examined another redox activity and found it was the peroxidase activity of OxdAs. While both OxdA(WT) and OxdA(H320D) showed the activity, the activity of OxdA(H320D) was dozens of times higher than that of OxdA(WT). These findings demonstrated that the H320D mutation enhances the peroxidase activity of OxdA. OxdAs (WT and H320D) were found to catalyze another redox reaction, a peroxygenase reaction. During this reaction of OxdA(H320D) with 1-methoxynaphthalene as a substrate, surprisingly, the reaction mixture changed to a color different from that with OxdA(WT), which was due to the known product, Russig’s blue. We purified and identified the new product as 1-methoxy-2-naphthalenol, which has never been reported as a product of the peroxygenase reaction, to the best of our knowledge. These findings indicated that the H320D mutation not only enhanced redox activities, but also significantly altered the hydroxylation site of the substrate.
Collapse
Affiliation(s)
- Masatoshi Yamada
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshiteru Hashimoto
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takuto Kumano
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Seiya Tsujimura
- Division of Materials Science, Faculty of Pure and Applied Sciences, The University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Michihiko Kobayashi
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
21
|
Wang Z, Liu Z, Cui W, Zhou Z. Establishment of Bioprocess for Synthesis of Nicotinamide by Recombinant Escherichia coli Expressing High-Molecular-Mass Nitrile Hydratase. Appl Biochem Biotechnol 2017; 182:1458-1466. [PMID: 28150192 DOI: 10.1007/s12010-017-2410-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/13/2017] [Indexed: 10/20/2022]
Abstract
Application of engineered bacteria expressing nitrile hydratase for the production of amide is getting tremendous attention due to the rapid development of recombinant DNA technique. This study evaluated the effect of 3-cyanopyridine concentrations on nicotinamide production using recombinant Escherichia coli strain (BAG) expressing high-molecular-mass nitrile hydratase from Rhodococcus rhodochrous J1, and established proper process of whole-cell catalysis of 3-cyanopyridine and high cell-density cultivation. The process of substrate fed-batch was applied in the production of nicotinamide, and the concentration of product reached 390 g/L under the condition of low cell-density. After the high cell-density cultivation of BAG in 5 L bioreactor, the OD600 of cell attained 200 and the total activity reached 2813 U/mL. Different high density of BAG after fermentation in the tank was used to catalyze 3-cyanopyridine, and the concentration of nicotinamide reached to 508 g/L in just 60 min. The productivity of BAG was 212% higher than that of R. rhodochrous J1, and it is possible that BAG is able to achieve industrial production of nicotinamide.
Collapse
Affiliation(s)
- Zhe Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zhongmei Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Wenjing Cui
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
22
|
Ammonium acrylate biomanufacturing by an engineered Rhodococcus ruber with nitrilase overexpression and double-knockout of nitrile hydratase and amidase. ACTA ACUST UNITED AC 2016; 43:1631-1639. [DOI: 10.1007/s10295-016-1840-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/23/2016] [Indexed: 01/04/2023]
Abstract
Abstract
Rhodococcus ruber TH was selected as a parent strain to engineer for biomanufacturing of ammonium acrylate; the characteristics of this strain included accelerated growth rate, high cell tolerance and natively overexpressed nitrile hydratase (NHase). Transcriptome analysis revealed that the transcription levels of the native NHase, amidase and nitrilase were extremely high, moderate and extremely low, respectively. Through NHase-amidase double-knockout and amidase single-knockout, the engineered strains R. ruber THdAdN and R. ruber THdA were obtained for overexpression of a heterologous nitrilase from R. rhodochrous tg1-A6 using a urea-induced Pa2 promoter. The nitrilase activity toward substrate acrylonitrile in the engineered THdAdN(Nit) reached 187.0 U/mL at 42 h, threefold of that R. rhodochrous tg1-A6 and 2.3-fold of that of THdA(Nit). The optimal catalysis temperature and pH of the nitrilases in different cells exhibited no significant difference. Using the cells as catalysts, biomanufacturing of ammonium acrylate was performed under room temperature. When catalyzed by the engineered THdAdN(Nit), the titer and productivity of ammonium acrylate dramatically increased to 741.0 g/L and 344.9 g/L/h, which are the highest results reported to date.
Collapse
|
23
|
Kumano T, Takizawa Y, Shimizu S, Kobayashi M. Nitrile-synthesizing enzyme: Gene cloning, overexpression and application for the production of useful compounds. J GEN APPL MICROBIOL 2016; 62:174-80. [DOI: 10.2323/jgam.2016.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Takuto Kumano
- Institute of Applied Biochemistry, and Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Yuko Takizawa
- Division of Applied Life Science, Graduate School of Agriculture, Kyoto University
| | - Sakayu Shimizu
- Division of Applied Life Science, Graduate School of Agriculture, Kyoto University
| | - Michihiko Kobayashi
- Institute of Applied Biochemistry, and Graduate School of Life and Environmental Sciences, University of Tsukuba
| |
Collapse
|
24
|
Kumano T, Suzuki T, Shimizu S, Kobayashi M. Nitrile-synthesizing enzyme: Screening, purification and characterization. J GEN APPL MICROBIOL 2016; 62:167-73. [DOI: 10.2323/jgam.2016.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Takuto Kumano
- Institute of Applied Biochemistry, and Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Takahisa Suzuki
- Division of Applied Life Science, Graduate School of Agriculture, Kyoto University
| | - Sakayu Shimizu
- Division of Applied Life Science, Graduate School of Agriculture, Kyoto University
| | - Michihiko Kobayashi
- Institute of Applied Biochemistry, and Graduate School of Life and Environmental Sciences, University of Tsukuba
| |
Collapse
|
25
|
Natural low-molecular mass organic compounds with oxidase activity as organocatalysts. Proc Natl Acad Sci U S A 2014; 111:17152-7. [PMID: 25411318 DOI: 10.1073/pnas.1417941111] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Organocatalysts, low-molecular mass organic compounds composed of nonmetallic elements, are often used in organic synthesis, but there have been no reports of organocatalysts of biological origin that function in vivo. Here, we report that actinorhodin (ACT), a natural product derived from Streptomyces coelicolor A3(2), acts as a biocatalyst. We purified ACT and assayed its catalytic activity in the oxidation of L-ascorbic acid and L-cysteine as substrates by analytical methods for enzymes. Our findings were as follows: (i) oxidation reactions producing H2O2 proceeded upon addition of ACT to the reaction mixture; (ii) ACT was not consumed during the reactions; and (iii) a small amount (catalytic amount) of ACT consumed an excess amount of the substrates. Even at room temperature, atmospheric pressure, and neutral pH, ACT showed catalytic activity in aqueous solution, and ACT exhibited substrate specificity in the oxidation reactions. These findings reveal ACT to be an organocatalyst. ACT is known to show antibiotic activity, but its mechanism of action remains unknown. On the basis of our results, we propose that ACT kills bacteria by catalyzing the production of toxic levels of H2O2. We also screened various other natural products of bacterial, plant, and animal origins and found that several of the compounds exhibited catalytic activity, suggesting that living organisms produce and use these compounds as biocatalysts in nature.
Collapse
|
26
|
Fukatsu H, Goda M, Hashimoto Y, Higashibata H, Kobayashi M. Optimum Culture Conditions for the Production ofN-Substituted Formamide Deformylase byArthrobacter pascensF164. Biosci Biotechnol Biochem 2014; 69:228-30. [PMID: 15665493 DOI: 10.1271/bbb.69.228] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We investigated the optimum culture conditions for the production of a novel enzyme, N-substituted formamide deformylase, which acts mainly on N-benzylformamide, in Arthrobacter pascens F164. The highest enzyme activity was obtained when this strain F164 was cultivated in a synthetic medium with N-benzylformamide as sole nitrogen source. This deformylase was found to be an inducible enzyme depending on N-benzylformamide.
Collapse
Affiliation(s)
- Hiroshi Fukatsu
- Institute of Applied Biochemistry, and Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
27
|
Kang MS, Han SS, Kim MY, Kim BY, Huh JP, Kim HS, Lee JH. High-level expression in Corynebacterium glutamicum of nitrile hydratase from Rhodococcus rhodochrous for acrylamide production. Appl Microbiol Biotechnol 2014; 98:4379-87. [PMID: 24493572 DOI: 10.1007/s00253-014-5544-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/12/2014] [Accepted: 01/13/2014] [Indexed: 10/25/2022]
Abstract
The nhhBAG gene of Rhodococcus rhodochrous M33 that encodes nitrile hydratase (NHase), converting acrylonitrile into acrylamide, was cloned and expressed in Corynebacterium glutamicum under the control of an ilvC promoter. The specific enzyme activity in recombinant C. glutamicum cells was about 13.6 μmol/min/mg dry cell weight (DCW). To overexpress the NHase, five types of plasmid variants were constructed by introducing mutations into 80 nucleotides near the translational initiation region (TIR) of nhhB. Of them, pNBM4 with seven mutations showed the highest NHase activity, exhibiting higher expression levels of NhhB and NhhA than wild-type pNBW33, mainly owing to decreased secondary-structure stability and an introduction of a conserved Shine-Dalgarno sequence in the translational initiation region. In a fed-batch culture of recombinant Corynebacterium cells harboring pNBM4, the cell density reached 53.4 g DCW/L within 18 h, and the specific and total enzyme activities were estimated to be 37.3 μmol/min/mg DCW and 1,992 μmol/min/mL, respectively. The use of recombinant Corynebacterium cells for the production of acrylamide from acrylonitrile resulted in a conversion yield of 93 % and a final acrylamide concentration of 42.5 % within 6 h when the total amount of fed acrylonitrile was 456 g.
Collapse
Affiliation(s)
- Mi-Suk Kang
- Department of Food Science & Biotechnology, Kyungsung University, 309, Suyeong-ro, Nam-gu, Busan, 608-736, South Korea
| | | | | | | | | | | | | |
Collapse
|
28
|
Duca D, Lorv J, Patten CL, Rose D, Glick BR. Indole-3-acetic acid in plant-microbe interactions. Antonie van Leeuwenhoek 2014; 106:85-125. [PMID: 24445491 DOI: 10.1007/s10482-013-0095-y] [Citation(s) in RCA: 354] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/07/2013] [Indexed: 01/04/2023]
Abstract
Indole-3-acetic acid (IAA) is an important phytohormone with the capacity to control plant development in both beneficial and deleterious ways. The ability to synthesize IAA is an attribute that many bacteria including both plant growth-promoters and phytopathogens possess. There are three main pathways through which IAA is synthesized; the indole-3-pyruvic acid, indole-3-acetamide and indole-3-acetonitrile pathways. This chapter reviews the factors that effect the production of this phytohormone, the role of IAA in bacterial physiology and in plant-microbe interactions including phytostimulation and phytopathogenesis.
Collapse
Affiliation(s)
- Daiana Duca
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada,
| | | | | | | | | |
Collapse
|
29
|
A new synthetic route to N-benzyl carboxamides through the reverse reaction of N-substituted formamide deformylase. Appl Environ Microbiol 2013; 80:61-9. [PMID: 24123742 DOI: 10.1128/aem.02429-13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, we isolated a new enzyme, N-substituted formamide deformylase, that catalyzes the hydrolysis of N-substituted formamide to the corresponding amine and formate (H. Fukatsu, Y. Hashimoto, M. Goda, H. Higashibata, and M. Kobayashi, Proc. Natl. Acad. Sci. U. S. A. 101:13726-13731, 2004, doi:10.1073/pnas.0405082101). Here, we discovered that this enzyme catalyzed the reverse reaction, synthesizing N-benzylformamide (NBFA) from benzylamine and formate. The reverse reaction proceeded only in the presence of high substrate concentrations. The effects of pH and inhibitors on the reverse reaction were almost the same as those on the forward reaction, suggesting that the forward and reverse reactions are both catalyzed at the same catalytic site. Bisubstrate kinetic analysis using formate and benzylamine and dead-end inhibition studies using a benzylamine analogue, aniline, revealed that the reverse reaction of this enzyme proceeds via an ordered two-substrate, two-product (bi-bi) mechanism in which formate binds first to the enzyme active site, followed by benzylamine binding and the subsequent release of NBFA. To our knowledge, this is the first report of the reverse reaction of an amine-forming deformylase. Surprisingly, analysis of the substrate specificity for acids demonstrated that not only formate, but also acetate and propionate (namely, acids with numbers of carbon atoms ranging from C1 to C3), were active as acid substrates for the reverse reaction. Through this reaction, N-substituted carboxamides, such as NBFA, N-benzylacetamide, and N-benzylpropionamide, were synthesized from benzylamine and the corresponding acid substrates.
Collapse
|
30
|
Lipowicz B, Hanekop N, Schmitt L, Proksch P. An aeroplysinin-1 specific nitrile hydratase isolated from the marine sponge Aplysina cavernicola. Mar Drugs 2013; 11:3046-67. [PMID: 23966036 PMCID: PMC3766881 DOI: 10.3390/md11083046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 07/31/2013] [Accepted: 08/01/2013] [Indexed: 11/24/2022] Open
Abstract
A nitrile hydratase (NHase) that specifically accepts the nitrile aeroplysinin-1 (1) as a substrate and converts it into the dienone amide verongiaquinol (7) was isolated, partially purified and characterized from the Mediterranean sponge Aplysina cavernicola; although it is currently not known whether the enzyme is of sponge origin or produced by its symbiotic microorganisms. The formation of aeroplysinin-1 and of the corresponding dienone amide is part of the chemical defence system of A. cavernicola. The latter two compounds that show strong antibiotic activity originate from brominated isoxazoline alkaloids that are thought to protect the sponges from invasion of bacterial pathogens. The sponge was shown to contain at least two NHases as two excised protein bands from a non denaturating Blue Native gel showed nitrile hydratase activity, which was not observed for control samples. The enzymes were shown to be manganese dependent, although cobalt and nickel ions were also able to recover the activity of the nitrile hydratases. The temperature and pH optimum of the studied enzymes were found at 41 °C and pH 7.8. The enzymes showed high substrate specificity towards the physiological substrate aeroplysinin-1 (1) since none of the substrate analogues that were prepared either by partial or by total synthesis were converted in an in vitro assay. Moreover de-novo sequencing by mass spectrometry was employed to obtain information about the primary structure of the studied NHases, which did not reveal any homology to known NHases.
Collapse
Affiliation(s)
- Bartosz Lipowicz
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine University, Universitaetsstrasse 1, Bldg. 26.23, 40225 Duesseldorf, Germany; E-Mail:
| | - Nils Hanekop
- Institute of Biochemistry, Heinrich-Heine University, Universitaetsstrasse 1, Bldg. 26.42, 40225 Duesseldorf, Germany; E-Mail:
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich-Heine University, Universitaetsstrasse 1, Bldg. 26.42, 40225 Duesseldorf, Germany; E-Mail:
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine University, Universitaetsstrasse 1, Bldg. 26.23, 40225 Duesseldorf, Germany; E-Mail:
| |
Collapse
|
31
|
Chen J, Yu H, Liu C, Liu J, Shen Z. Improving stability of nitrile hydratase by bridging the salt-bridges in specific thermal-sensitive regions. J Biotechnol 2013; 164:354-62. [DOI: 10.1016/j.jbiotec.2013.01.021] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 01/26/2013] [Accepted: 01/28/2013] [Indexed: 01/29/2023]
|
32
|
Crystal structure of aldoxime dehydratase and its catalytic mechanism involved in carbon-nitrogen triple-bond synthesis. Proc Natl Acad Sci U S A 2013; 110:2810-5. [PMID: 23382199 DOI: 10.1073/pnas.1200338110] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aldoxime dehydratase (OxdA), which is a unique heme protein, catalyzes the dehydration of an aldoxime to a nitrile even in the presence of water in the reaction mixture. Unlike the utilization of H(2)O(2) or O(2) as a mediator of catalysis by other heme-containing enzymes (e.g., P450), OxdA is notable for the direct binding of a substrate to the heme iron. Here, we determined the crystal structure of OxdA. We then constructed OxdA mutants in which each of the polar amino acids lying within ∼6 Å of the iron atom of the heme was converted to alanine. Among the purified mutant OxdAs, S219A had completely lost and R178A exhibited a reduction in the activity. Together with this finding, the crystal structural analysis of OxdA and spectroscopic and electrostatic potential analyses of the wild-type and mutant OxdAs suggest that S219 plays a key role in the catalysis, forming a hydrogen bond with the substrate. Based on the spatial arrangement of the OxdA active site and the results of a series of mutagenesis experiments, we propose the detailed catalytic mechanism of general aldoxime dehydratases: (i) S219 stabilizes the hydroxy group of the substrate to increase its basicity; (ii) H320 acts as an acid-base catalyst; and (iii) R178 stabilizes the heme, and would donate a proton to and accept one from H320.
Collapse
|
33
|
Veselá AB, Pelantová H, Sulc M, Macková M, Lovecká P, Thimová M, Pasquarelli F, Pičmanová M, Pátek M, Bhalla TC, Martínková L. Biotransformation of benzonitrile herbicides via the nitrile hydratase-amidase pathway in rhodococci. J Ind Microbiol Biotechnol 2012; 39:1811-9. [PMID: 22922990 DOI: 10.1007/s10295-012-1184-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 07/31/2012] [Indexed: 10/28/2022]
Abstract
The aim of this work was to determine the ability of rhodococci to transform 3,5-dichloro-4-hydroxybenzonitrile (chloroxynil), 3,5-dibromo-4-hydroxybenzonitrile (bromoxynil), 3,5-diiodo-4-hydroxybenzonitrile (ioxynil) and 2,6-dichlorobenzonitrile (dichlobenil); to identify the products and determine their acute toxicities. Rhodococcus erythropolis A4 and Rhodococcus rhodochrous PA-34 converted benzonitrile herbicides into amides, but only the former strain was able to hydrolyze 2,6-dichlorobenzamide into 2,6-dichlorobenzoic acid, and produced also more of the carboxylic acids from the other herbicides compared to strain PA-34. Transformation of nitriles into amides decreased acute toxicities for chloroxynil and dichlobenil, but increased them for bromoxynil and ioxynil. The amides inhibited root growth in Lactuca sativa less than the nitriles but more than the acids. The conversion of the nitrile group may be the first step in the mineralization of benzonitrile herbicides but cannot be itself considered to be a detoxification.
Collapse
Affiliation(s)
- Alicja B Veselá
- Institute of Microbiology of the Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220 Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Cloning, sequencing, and expression of nitrile hydratase gene of mutant 4D strain of Rhodococcus rhodochrous PA 34 in E. coli. Appl Biochem Biotechnol 2012; 168:465-86. [PMID: 22833401 DOI: 10.1007/s12010-012-9790-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 07/03/2012] [Indexed: 10/28/2022]
Abstract
The NHase encoding gene of mutant 4D was isolated by PCR amplification. The NHase gene of mutant 4D was successfully cloned and expressed in Escherichia coli by using Ek/LIC Duet cloning kits (Novagen). For the active expression of the NHase gene, the co-expression of small cobalt transporter gene (P-protein gene) has also been co-expressed with NHase gene E. coli. The nucleotide sequence of this NHase gene revealed high homology with the H-NHase of Rhodococcus rhodochrous J1. The recombinant E. coli cells showed higher NHase activity (5.9 U/mg dcw) as compared to the wild (4.1 U/mg dcw) whereas it is less than the mutant strain (8.4 U/mg dcw). Addition of cobalt ion in Luria-Bertani medium is needed up to a very small concentration (0.4 mM) for NHase activity. The recombinant E. coli exhibited maximum NHase activity at 6 h of incubation and was purified with a yield of 56 % with specific activity of 37.1 U/mg protein.
Collapse
|
35
|
|
36
|
Abstract
Cobalt is an essential trace element in both prokaryotes and eukaryotes. Nevertheless, it occurs less frequently in metalloproteins than other transition metals. This low occurrence appears to be due to the metal's low abundance in nature as well as its competition with iron, whose biologically critical functions include respiration and photosynthesis. In this review, we discuss the biological role of cobalt, the major effects of cobalt on iron utilization, as well as several mechanisms that cells have developed to circumvent the toxicity of cobalt while still exploiting its chemistry.
Collapse
Affiliation(s)
- Sachi Okamoto
- University of British Columbia - Microbiology and Immunology, Vancouver, British Columbia, Canada
| | | |
Collapse
|
37
|
Sato H, Hashimoto Y, Fukatsu H, Kobayashi M. Novel isonitrile hydratase involved in isonitrile metabolism. J Biol Chem 2010; 285:34793-802. [PMID: 20826798 DOI: 10.1074/jbc.m110.150227] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously discovered N-substituted formamide deformylase (NfdA) in Arthrobacter pascens F164, which degrades N-substituted formamide (Fukatsu, H., Hashimoto, Y., Goda, M., Higashibata, H., and Kobayashi, M. (2004) Proc. Natl. Acad. Sci. U.S.A. 101, 13726-13731). In this study, we found an enzyme involved in the first step of isonitrile metabolism, isonitrile hydratase, that hydrates isonitrile to the corresponding N-substituted formamide. First, we investigated the optimum culture conditions for the production of isonitrile hydratase. The highest enzyme activity was obtained when A. pascens F164 was cultured in a nutrient medium containing N-benzylformamide. This Arthrobacter isonitrile hydratase was purified, characterized, and compared with Pseudomonas putida N19-2 isonitrile hydratase (InhA), which is the sole one reported at present. Arthrobacter isonitrile hydratase was found to have a molecular mass of about 530 kDa and to consist of 12 identical subunits. The apparent K(m) value for cyclohexyl isocyanide was 0.95 ± 0.05 mm. A. pascens F164 grew and exhibited the isonitrile hydratase and N-substituted formamide deformylase activities when cultured in a medium containing an isonitrile as the sole carbon and nitrogen sources. However, both enzyme activities were not observed on culture in a medium containing glycerol and (NH(4))(2)SO(4) as the sole carbon and nitrogen sources, respectively. These findings suggested that the Arthrobacter enzyme is an inducible enzyme, possibly involved in assimilation and/or detoxification of isonitrile. Moreover, gene cloning of the Arthrobacter enzyme revealed no sequence similarity between this enzyme and InhA. Comparison of their properties and features demonstrated that the two enzymes are biochemically, immunologically, and structurally different from each other. Thus, we discovered a new isonitrile hydratase named InhB.
Collapse
Affiliation(s)
- Hiroyoshi Sato
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | |
Collapse
|
38
|
Nitrile hydratases (NHases): At the interface of academia and industry. Biotechnol Adv 2010; 28:725-41. [DOI: 10.1016/j.biotechadv.2010.05.020] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 05/16/2010] [Accepted: 05/17/2010] [Indexed: 11/19/2022]
|
39
|
Zhou Z, Hashimoto Y, Cui T, Washizawa Y, Mino H, Kobayashi M. Unique Biogenesis of High-Molecular Mass Multimeric Metalloenzyme Nitrile Hydratase: Intermediates and a Proposed Mechanism for Self-Subunit Swapping Maturation. Biochemistry 2010; 49:9638-48. [DOI: 10.1021/bi100651v] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhemin Zhou
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Yoshiteru Hashimoto
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Tianwei Cui
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yumi Washizawa
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroyuki Mino
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Michihiko Kobayashi
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
40
|
Coffey L, Owens E, Tambling K, O'Neill D, O'Connor L, O'Reilly C. Real-time PCR detection of Fe-type nitrile hydratase genes from environmental isolates suggests horizontal gene transfer between multiple genera. Antonie van Leeuwenhoek 2010; 98:455-63. [PMID: 20502965 DOI: 10.1007/s10482-010-9459-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 05/14/2010] [Indexed: 11/25/2022]
Abstract
Nitriles are widespread in the environment as a result of biological and industrial activity. Nitrile hydratases catalyse the hydration of nitriles to the corresponding amide and are often associated with amidases, which catalyze the conversion of amides to the corresponding acids. Nitrile hydratases have potential as biocatalysts in bioremediation and biotransformation applications, and several successful examples demonstrate the advantages. In this work a real-time PCR assay was designed for the detection of Fe-type nitrile hydratase genes from environmental isolates purified from nitrile-enriched soils and seaweeds. Specific PCR primers were also designed for amplification and sequencing of the genes. Identical or highly homologous nitrile hydratase genes were detected from isolates of numerous genera from geographically diverse sites, as were numerous novel genes. The genes were also detected from isolates of genera not previously reported to harbour nitrile hydratases. The results provide further evidence that many bacteria have acquired the genes via horizontal gene transfer. The real-time PCR assay should prove useful in searching for nitrile hydratases that could have novel substrate specificities and therefore potential in industrial applications.
Collapse
Affiliation(s)
- Lee Coffey
- Pharmaceutical & Molecular Biotechnology Research Centre, Chemical & Life Sciences Department, Waterford Institute of Technology, Ireland.
| | | | | | | | | | | |
Collapse
|
41
|
Larkin MJ, Kulakov LA, Allen CCR. Genomes and Plasmids in Rhodococcus. BIOLOGY OF RHODOCOCCUS 2010. [DOI: 10.1007/978-3-642-12937-7_3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
42
|
Coffey L, Clarke A, Duggan P, Tambling K, Horgan S, Dowling D, O'Reilly C. Isolation of identical nitrilase genes from multiple bacterial strains and real-time PCR detection of the genes from soils provides evidence of horizontal gene transfer. Arch Microbiol 2009; 191:761-71. [PMID: 19730817 DOI: 10.1007/s00203-009-0507-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 08/19/2009] [Accepted: 08/20/2009] [Indexed: 10/20/2022]
Abstract
Bacterial enzymes capable of nitrile hydrolysis have significant industrial potential. Microbacterium sp. AJ115, Rhodococcus erythropolis AJ270 and AJ300 were isolated from the same location in England and harbour identical nitrile hydratase/amidase gene clusters. Strain AJ270 has been well studied due to its nitrile hydratase and amidase activity. R. erythropolis ITCBP was isolated from Denmark and carries a very similar nitrile hydratase/amidase gene cluster. In this study, an identical nitrilase gene (nit1) was isolated from the four strains, and the nitrilase from strain AJ270 cloned and expressed in Escherichia coli. Analysis of the recombinant nitrilase has shown it to be functional with activity demonstrated towards phenylacetonitrile. A real-time PCR TaqMan assay was developed that allowed nit1 detection directly from soil enrichment cultures without DNA extraction, with nit1 detected in all samples tested. Real-time PCR screening of isolates from these soils resulted in the isolation of nit1 and also very similar nitrilase gene nit2 from a number of Burkholderia sp. The genes nit1 and nit2 have also been detected in many bacteria of different genera but are unstable in these isolates. It is likely that the genes were acquired by horizontal gene transfer and may be wide-spread in the environment.
Collapse
Affiliation(s)
- Lee Coffey
- Department of Chemical and Life Sciences, Waterford Institute of Technology, Waterford, Ireland.
| | | | | | | | | | | | | |
Collapse
|
43
|
Zhou Z, Hashimoto Y, Kobayashi M. Self-subunit swapping chaperone needed for the maturation of multimeric metalloenzyme nitrile hydratase by a subunit exchange mechanism also carries out the oxidation of the metal ligand cysteine residues and insertion of cobalt. J Biol Chem 2009; 284:14930-8. [PMID: 19346246 DOI: 10.1074/jbc.m808464200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The incorporation of cobalt into low molecular mass nitrile hydratase (L-NHase) of Rhodococcus rhodochrous J1 has been found to depend on the alpha-subunit exchange between cobalt-free L-NHase (apo-L-NHase lacking oxidized cysteine residues) and its cobalt-containing mediator (holo-NhlAE containing Cys-SO(2)(-) and Cys-SO(-) metal ligands), this novel mode of post-translational maturation having been named self-subunit swapping, and NhlE having been recognized as a self-subunit swapping chaperone (Zhou, Z., Hashimoto, Y., Shiraki, K., and Kobayashi, M. (2008) Proc. Natl. Acad. Sci. U. S. A. 105, 14849-14854). We discovered here that cobalt was inserted into both the cobalt-free NhlAE (apo-NhlAE) and the cobalt-free alpha-subunit (apo-alpha-subunit) in an NhlE-dependent manner in the presence of cobalt and dithiothreitol in vitro. Matrix-assisted laser desorption ionization time-of-flight mass spectroscopy analysis revealed that the non-oxidized cysteine residues in apo-NhlAE were post-translationally oxidized after cobalt insertion. These findings suggested that NhlE has two activities, i.e. cobalt insertion and cysteine oxidation. NhlE not only functions as a self-subunit swapping chaperone but also a metallochaperone that includes a redox function. Cobalt insertion and cysteine oxidation occurred under both aerobic and anaerobic conditions when Co(3+) was used as a cobalt donor, suggesting that the oxygen atoms in the oxidized cysteines were derived from water molecules but not from dissolved oxygen. Additionally, we isolated apo-NhlAE after the self-subunit swapping event and found that it was recycled for cobalt transfer into L-NHase.
Collapse
Affiliation(s)
- Zhemin Zhou
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | | | | |
Collapse
|
44
|
Modeling catalytic mechanism of nitrile hydratase by semi-empirical quantum mechanical calculation. J Mol Graph Model 2008; 27:522-8. [DOI: 10.1016/j.jmgm.2008.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 08/26/2008] [Accepted: 09/02/2008] [Indexed: 11/20/2022]
|
45
|
Discovery of posttranslational maturation by self-subunit swapping. Proc Natl Acad Sci U S A 2008; 105:14849-54. [PMID: 18809911 DOI: 10.1073/pnas.0803428105] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several general mechanisms of metallocenter biosynthesis have been reported and reviewed, and in all cases, the components or subunits of an apoprotein remain in the final holoprotein. Here, we first discovered that one subunit of an apoenzyme did not remain in the functional holoenzyme. The cobalt-containing low-molecular-mass nitrile hydratase (L-NHase) of Rhodococcus rhodochrous J1 consists of beta- and alpha-subunits encoded by the nhlBA genes, respectively. An ORF, nhlE, just downstream of nhlBA, was found to be necessary for L-NHase activation. In contrast to the cobalt-containing L-NHase (holo-L-NHase containing Cys-SO(2)(-) and Cys-SO(-) metal ligands) derived from nhlBAE, the gene products derived from nhlBA were cobalt-free L-NHase (apo-L-NHase lacking oxidized cysteine residues). We discovered an L-NHase maturation mediator, NhlAE, consisting of NhlE and the cobalt- and oxidized cysteine-containing alpha-subunit of L-NHase. The incorporation of cobalt into L-NHase was shown to depend on the exchange of the nonmodified cobalt-free alpha-subunit of apo-L-NHase with the cobalt-containing cysteine-modified alpha-subunit of NhlAE. This is a posttranslational maturation process different from general mechanisms of metallocenter biosynthesis known so far: the unexpected behavior of a protein in a protein complex, which we named "self-subunit swapping."
Collapse
|
46
|
Transcriptional regulation of the nitrile hydratase gene cluster in Pseudomonas chlororaphis B23. J Bacteriol 2008; 190:4210-7. [PMID: 18408036 DOI: 10.1128/jb.00061-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An enormous amount of nitrile hydratase (NHase) is inducibly produced by Pseudomonas chlororaphis B23 after addition of methacrylamide as the sole nitrogen source to a medium. The expression pattern of the P. chlororaphis B23 NHase gene cluster in response to addition of methacrylamide to the medium was investigated. Recently, we reported that the NHase gene cluster comprises seven genes (oxdA, amiA, nhpA, nhpB, nhpC, nhpS, and acsA). Sequence analysis of the 1.5-kb region upstream of the oxdA gene revealed the presence of a 936-bp open reading frame (designated nhpR), which should encode a protein with a molecular mass of 35,098. The deduced amino acid sequence of the nhpR product showed similarity to the sequences of transcriptional regulators belonging to the XylS/AraC family. Although the transcription of the eight genes (nhpR, oxdA, amiA, nhpABC, nhpS, and acsA) in the NHase gene cluster was induced significantly in the P. chlororaphis B23 wild-type strain after addition of methacrylamide to the medium, transcription of these genes in the nhpR disruptant was not induced, demonstrating that nhpR codes for a positive transcriptional regulator in the NHase gene cluster. A reverse transcription-PCR experiment revealed that five genes (oxdA, amiA, nhpA, nhpB, and nhpC) are cotranscribed, as are two other genes (nhpS and acsA). The transcription start sites for nhpR, oxdA, nhpA, and nhpS were mapped by primer extension analysis, and putative -12 and -24 sigma(54)-type promoter binding sites were identified. NhpR was found to be the first transcriptional regulator of NHase belonging to the XylS/AraC family.
Collapse
|
47
|
Abe T, Hashimoto Y, Hosaka H, Tomita-Yokotani K, Kobayashi M. Discovery of amide (peptide) bond synthetic activity in Acyl-CoA synthetase. J Biol Chem 2008; 283:11312-21. [PMID: 18305111 DOI: 10.1074/jbc.m709654200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acyl-CoA synthetase, which is one of the acid-thiol ligases (EC 6.2.1), plays key roles in metabolic and regulatory processes. This enzyme forms a carbon-sulfur bond in the presence of ATP and Mg(2+), yielding acyl-CoA thioesters from the corresponding free acids and CoA. This enzyme belongs to the superfamily of adenylate-forming enzymes, whose three-dimensional structures are analogous to one another. We here discovered a new reaction while studying the short-chain acyl-CoA synthetase that we recently reported (Hashimoto, Y., Hosaka, H., Oinuma, K., Goda, M., Higashibata, H., and Kobayashi, M. (2005) J. Biol. Chem. 280, 8660-8667). When l-cysteine was used as a substrate instead of CoA, N-acyl-l-cysteine was surprisingly detected as a reaction product. This finding demonstrated that the enzyme formed a carbon-nitrogen bond (EC 6.3.1 acid-ammonia (or amide) ligase (amide synthase); EC 6.3.2 acid-amino acid ligase (peptide synthase)) comprising the amino group of the cysteine and the carboxyl group of the acid. N-Acyl-d-cysteine, N-acyl-dl-homocysteine, and N-acyl-l-cysteine methyl ester were also synthesized from the corresponding cysteine analog substrates by the enzyme. Furthermore, this unexpected enzyme activity was also observed for acetyl-CoA synthetase and firefly luciferase, indicating the generality of the new reaction in the superfamily of adenylate-forming enzymes.
Collapse
Affiliation(s)
- Tomoko Abe
- Institute of Applied Biochemistry, and Graduate School of Life and Environmental Sciences, The University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | |
Collapse
|
48
|
Efficient expression in E. coli of an enantioselective nitrile hydratase from Rhodococcus erythropolis. Biotechnol Lett 2007; 30:755-62. [PMID: 18043868 DOI: 10.1007/s10529-007-9611-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 11/07/2007] [Accepted: 11/09/2007] [Indexed: 10/22/2022]
Abstract
The genes encoding an enantioselective nitrile hydratase (NHase) from Rhodococcus erythropolis AJ270 have been cloned and an active NHase has been produced in Escherichia coli. Maximal activity was found when the genes encoding the alpha- and beta-subunits were transcribed as one unit and the gene encoding the P44k activator protein as a separate ORF on a single replicon. Addition of n-butyric acid and FeSO(4 )could improve NHase activity. Coexpression of the GroEL-GroES chaperone proteins increased activity in the absence of P44k protein but had no effect in the presence of P44k. The recombinant enzyme was highly enantioselective in the synthesis of S-(+)-3-benzoyloxy- 4-cyanobutyramide from the prochiral substrate 3-benzoyloxyglutaronitrile.
Collapse
|
49
|
Okamoto S, Eltis LD. Purification and characterization of a novel nitrile hydratase from Rhodococcus sp. RHA1. Mol Microbiol 2007; 65:828-38. [PMID: 17635193 DOI: 10.1111/j.1365-2958.2007.05834.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The microbial degradation of nitriles is of interest for bioremediation and green chemistry. We demonstrated that the soil bacterium Rhodococcus sp. RHA1 utilizes a range of nitriles, including acetonitrile, as growth substrates. Proteomic analysis identified 13 proteins that were more abundant in acetonitrile-grown cells, including an aliphatic amidase and a protein with no known homologue. Purification of a nitrile hydratase (NHase) from acetonitrile-grown cells identified the unknown protein as the beta subunit of a two-subunit NHase. Sequence analysis revealed that the genes encoding the amidase (anhC) and the NHase (anhAB) occur in a 12.8 kbp cluster located on plasmid pRHL2. The anh gene cluster also encodes an acetyl-CoA hydrolase, transcriptional regulators, a putative cobalt transporter and a protein of unknown function. Striking features of the NHase include the amino acid sequence identity (32%) and large size (63 and 56 kDa) of the alpha and beta subunits, as well as the enzyme's metal ion content (one cobalt, two copper and one zinc). The enzyme possessed similar specificities for acetonitrile and propionitrile (k(cat)/K(m) approximately 7 mM(-1) s(-1)) followed by acrylonitrile and butyronitrile. We propose that this acetonitrile hydratase (ANHase) represents the first member of a previously unknown class of NHases.
Collapse
Affiliation(s)
- Sachi Okamoto
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | | |
Collapse
|
50
|
Subbian S, Narayanan S. Identification and characterization of the regulatory elements of the inducible acetamidase operon from Mycobacterium smegmatis. Can J Microbiol 2007; 53:599-606. [PMID: 17668018 DOI: 10.1139/w06-147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The highly inducible acetamidase promoter from Mycobacterium smegmatis has been used as a tool in the study of mycobacterial genetics. The 4.2 kb acetamidase operon contains four putative open reading frames (ORFs) (amiC, amiA, amiD, and amiS) upstream of the 1.2 kb acetamidase ORF (amiE). In this article, using electrophoretic mobility shift assay and promoter probe analyses with a lacZ reporter system, we show the position of three putative operators within the acetamidase operon in M. smegmatis. Results from these studies reinforce previous findings about the involvement of multiple promoters in the regulation of acetamidase gene expression. Each of the identified operators are positioned upstream of the respective promoter reported in previous studies. We also found that the crude cell lysate of M. smegmatis containing potential regulators, obtained from bacteria grown under inducing or noninducing conditions, binds to specific operators. The binding affinity of each operator with its cognate regulator is significantly different from the other. This supports not only the previous model of acetamidase gene regulation in M. smegmatis but also explains the role of these operators in controlling the expression of respective promoters under different growth conditions.
Collapse
Affiliation(s)
- Selvakumar Subbian
- Department of Immunology, Tuberculosis Research Centre (ICMR), Mayor.V. Ramanathan Road, Chetput, Chennai 600 031, India.
| | | |
Collapse
|