1
|
Jayne ND, Liang Z, Lim DH, Chen PB, Diaz C, Arimoto KI, Xia L, Liu M, Ren B, Fu XD, Zhang DE. RUNX1 C-terminal mutations impair blood cell differentiation by perturbing specific enhancer-promoter networks. Blood Adv 2024; 8:2410-2423. [PMID: 38513139 PMCID: PMC11112616 DOI: 10.1182/bloodadvances.2023011484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/02/2024] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
ABSTRACT The transcription factor RUNX1 is a master regulator of hematopoiesis and is frequently mutated in myeloid malignancies. Mutations in its runt homology domain (RHD) frequently disrupt DNA binding and result in loss of RUNX1 function. However, it is not clearly understood how other RUNX1 mutations contribute to disease development. Here, we characterized RUNX1 mutations outside of the RHD. Our analysis of the patient data sets revealed that mutations within the C-terminus frequently occur in hematopoietic disorders. Remarkably, most of these mutations were nonsense or frameshift mutations and were predicted to be exempt from nonsense-mediated messenger RNA decay. Therefore, this class of mutation is projected to produce DNA-binding proteins that contribute to the pathogenesis in a distinct manner. To model this, we introduced the RUNX1R320∗ mutation into the endogenous gene locus and demonstrated the production of RUNX1R320∗ protein. Expression of RUNX1R320∗ resulted in the disruption of RUNX1 regulated processes such as megakaryocytic differentiation, through a transcriptional signature different from RUNX1 depletion. To understand the underlying mechanisms, we used Global RNA Interactions with DNA by deep sequencing (GRID-seq) to examine enhancer-promoter connections. We identified widespread alterations in the enhancer-promoter networks within RUNX1 mutant cells. Additionally, we uncovered enrichment of RUNX1R320∗ and FOXK2 binding at the MYC super enhancer locus, significantly upregulating MYC transcription and signaling pathways. Together, our study demonstrated that most RUNX1 mutations outside the DNA-binding domain are not subject to nonsense-mediated decay, producing protein products that act in concert with additional cofactors to dysregulate hematopoiesis through mechanisms distinct from those induced by RUNX1 depletion.
Collapse
Affiliation(s)
- Nathan D. Jayne
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA
- School of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Zhengyu Liang
- School of Medicine, University of California San Diego, La Jolla, CA
| | - Do-Hwan Lim
- School of Medicine, University of California San Diego, La Jolla, CA
| | - Poshen B. Chen
- School of Medicine, University of California San Diego, La Jolla, CA
| | - Cristina Diaz
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA
- School of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Kei-Ichiro Arimoto
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA
| | - Lingbo Xia
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA
- School of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Mengdan Liu
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA
- School of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Bing Ren
- School of Medicine, University of California San Diego, La Jolla, CA
| | - Xiang-Dong Fu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Dong-Er Zhang
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA
- School of Biological Sciences, University of California San Diego, La Jolla, CA
- School of Medicine, University of California San Diego, La Jolla, CA
| |
Collapse
|
2
|
Fritz AJ, Ghule PN, Toor R, Dillac L, Perelman J, Boyd J, Lian JB, Gordon JA, Frietze S, Van Wijnen A, Stein JL, Stein GS. Spatiotemporal Epigenetic Control of the Histone Gene Chromatin Landscape during the Cell Cycle. Crit Rev Eukaryot Gene Expr 2023; 33:85-97. [PMID: 37017672 PMCID: PMC10826887 DOI: 10.1615/critreveukaryotgeneexpr.2022046190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Higher-order genomic organization supports the activation of histone genes in response to cell cycle regulatory cues that epigenetically mediates stringent control of transcription at the G1/S-phase transition. Histone locus bodies (HLBs) are dynamic, non-membranous, phase-separated nuclear domains where the regulatory machinery for histone gene expression is organized and assembled to support spatiotemporal epigenetic control of histone genes. HLBs provide molecular hubs that support synthesis and processing of DNA replication-dependent histone mRNAs. These regulatory microenvironments support long-range genomic interactions among non-contiguous histone genes within a single topologically associating domain (TAD). HLBs respond to activation of the cyclin E/CDK2/NPAT/HINFP pathway at the G1/S transition. HINFP and its coactivator NPAT form a complex within HLBs that controls histone mRNA transcription to support histone protein synthesis and packaging of newly replicated DNA. Loss of HINFP compromises H4 gene expression and chromatin formation, which may result in DNA damage and impede cell cycle progression. HLBs provide a paradigm for higher-order genomic organization of a subnuclear domain that executes an obligatory cell cycle-controlled function in response to cyclin E/CDK2 signaling. Understanding the coordinately and spatiotemporally organized regulatory programs in focally defined nuclear domains provides insight into molecular infrastructure for responsiveness to cell signaling pathways that mediate biological control of growth, differentiation phenotype, and are compromised in cancer.
Collapse
Affiliation(s)
- Andrew J. Fritz
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Prachi N. Ghule
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Rabail Toor
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Louis Dillac
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Jonah Perelman
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
| | - Joseph Boyd
- College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont, USA
| | - Jane B. Lian
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Johnathan A.R. Gordon
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Seth Frietze
- University of Vermont Cancer Center, Burlington, Vermont, USA
- College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont, USA
| | - Andre Van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
| | - Janet L. Stein
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Gary S. Stein
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| |
Collapse
|
3
|
Kellaway SG, Coleman DJL, Cockerill PN, Raghavan M, Bonifer C. Molecular Basis of Hematological Disease Caused by Inherited or Acquired RUNX1 Mutations. Exp Hematol 2022; 111:1-12. [PMID: 35341804 DOI: 10.1016/j.exphem.2022.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/04/2022]
Abstract
The transcription factor RUNX1 is essential for correct hematopoietic development; in its absence in the germ line, blood stem cells are not formed. RUNX1 orchestrates dramatic changes in the chromatin landscape at the onset of stem cell formation, which set the stage for both stem self-renewal and further differentiation. However, once blood stem cells are formed, the mutation of the RUNX1 gene is not lethal but can lead to various hematopoietic defects and a predisposition to cancer. Here we summarize the current literature on inherited and acquired RUNX1 mutations, with a particular emphasis on mutations that alter the structure of the RUNX1 protein itself, and place these changes in the context of what is known about RUNX1 function. We also summarize which mutant RUNX1 proteins are actually expressed in cells and discuss the molecular mechanism underlying how such variants reprogram the epigenome setting stem cells on the path to malignancy.
Collapse
Affiliation(s)
- Sophie G Kellaway
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK.
| | - Daniel J L Coleman
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK
| | - Peter N Cockerill
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK
| | - Manoj Raghavan
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK; Centre of Clinical Haematology, Queen Elizabeth Hospital, Birmingham, UK
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK.
| |
Collapse
|
4
|
Multiple roles of Runt-related transcription factor-2 in tooth eruption: bone formation and resorption. Arch Oral Biol 2022; 141:105484. [PMID: 35749976 DOI: 10.1016/j.archoralbio.2022.105484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE The aim was to provide a comprehensive review of the current knowledge of the multiple roles of Runt-related transcription factor-2 (RUNX2) in regulating tooth eruption, focusing on the molecular mechanisms regarding tooth eruption mediated by RUNX2. DESIGN Relevant literatures in PubMed, Medline, and Scopus database were searched, and a narrative review was performed. The multiple roles of RUNX2 in regulating tooth eruption was reviewed and discussed. RESULTS Aberrant RUNX2 expression leads to disturbed or failed tooth eruption. Tooth eruption involves both the process of bone formation and bone resorption. RUNX2 promotes osteogenesis around the radicular portion of the dental follicle that provides the biological force for tooth eruption through inducing the expression of osteogenesis-related genes in dental follicle cells/osteoblasts. On the other hand, through indirect and direct pathways, RUNX2 regulates osteoclastogenesis and the formation of the eruption pathway. CONCLUSION RUNX2 exerts a pivotal and complex influence in regulating tooth eruption. This review provides a better understanding of the function of RUNX2 in tooth eruption, which is beneficial to illuminate the precise molecular mechanism of osteogenesis and bone resorption, aiding the development of effective therapy for the failure of tooth eruption.
Collapse
|
5
|
Fritz AJ, El Dika M, Toor RH, Rodriguez PD, Foley SJ, Ullah R, Nie D, Banerjee B, Lohese D, Glass KC, Frietze S, Ghule PN, Heath JL, Imbalzano AN, van Wijnen A, Gordon J, Lian JB, Stein JL, Stein GS, Stein GS. Epigenetic-Mediated Regulation of Gene Expression for Biological Control and Cancer: Cell and Tissue Structure, Function, and Phenotype. Results Probl Cell Differ 2022; 70:339-373. [PMID: 36348114 PMCID: PMC9753575 DOI: 10.1007/978-3-031-06573-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epigenetic gene regulatory mechanisms play a central role in the biological control of cell and tissue structure, function, and phenotype. Identification of epigenetic dysregulation in cancer provides mechanistic into tumor initiation and progression and may prove valuable for a variety of clinical applications. We present an overview of epigenetically driven mechanisms that are obligatory for physiological regulation and parameters of epigenetic control that are modified in tumor cells. The interrelationship between nuclear structure and function is not mutually exclusive but synergistic. We explore concepts influencing the maintenance of chromatin structures, including phase separation, recognition signals, factors that mediate enhancer-promoter looping, and insulation and how these are altered during the cell cycle and in cancer. Understanding how these processes are altered in cancer provides a potential for advancing capabilities for the diagnosis and identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Andrew J. Fritz
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Mohammed El Dika
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Rabail H. Toor
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | | | - Stephen J. Foley
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Rahim Ullah
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Daijing Nie
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Bodhisattwa Banerjee
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Dorcas Lohese
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Karen C. Glass
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Pharmacology, Burlington, VT 05405
| | - Seth Frietze
- University of Vermont, College of Nursing and Health Sciences, Burlington, VT 05405
| | - Prachi N. Ghule
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Jessica L. Heath
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405,University of Vermont, Larner College of Medicine, Department of Pediatrics, Burlington, VT 05405
| | - Anthony N. Imbalzano
- UMass Chan Medical School, Department of Biochemistry and Molecular Biotechnology, Worcester, MA 01605
| | - Andre van Wijnen
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Jonathan Gordon
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Jane B. Lian
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Janet L. Stein
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Gary S. Stein
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | | |
Collapse
|
6
|
Dalle Carbonare L, Antoniazzi F, Gandini A, Orsi S, Bertacco J, Li Vigni V, Minoia A, Griggio F, Perduca M, Mottes M, Valenti MT. Two Novel C-Terminus RUNX2 Mutations in Two Cleidocranial Dysplasia (CCD) Patients Impairing p53 Expression. Int J Mol Sci 2021; 22:ijms221910336. [PMID: 34638677 PMCID: PMC8508986 DOI: 10.3390/ijms221910336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022] Open
Abstract
Cleidocranial dysplasia (CCD), a dominantly inherited skeletal disease, is characterized by a variable phenotype ranging from dental alterations to severe skeletal defects. Either de novo or inherited mutations in the RUNX2 gene have been identified in most CCD patients. Transcription factor RUNX2, the osteogenic master gene, plays a central role in the commitment of mesenchymal stem cells to osteoblast lineage. With the aim to analyse the effects of RUNX2 mutations in CCD patients, we investigated RUNX2 gene expression and the osteogenic potential of two CCD patients' cells. In addition, with the aim to better understand how RUNX2 mutations interfere with osteogenic differentiation, we performed string analyses to identify proteins interacting with RUNX2 and analysed p53 expression levels. Our findings demonstrated for the first time that, in addition to the alteration of downstream gene expression, RUNX2 mutations impair p53 expression affecting osteogenic maturation. In conclusion, the present work provides new insights into the role of RUNX2 mutations in CCD patients and suggests that an in-depth analysis of the RUNX2-associated gene network may contribute to better understand the complex molecular and phenotypic alterations in mutant subjects.
Collapse
Affiliation(s)
- Luca Dalle Carbonare
- Department of Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (S.O.); (J.B.); (V.L.V.); (A.M.)
| | - Franco Antoniazzi
- Department of Surgery, Dentistry, Pediatrics and Gynecology, University of Verona, 37100 Verona, Italy; (F.A.); (A.G.)
| | - Alberto Gandini
- Department of Surgery, Dentistry, Pediatrics and Gynecology, University of Verona, 37100 Verona, Italy; (F.A.); (A.G.)
| | - Silvia Orsi
- Department of Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (S.O.); (J.B.); (V.L.V.); (A.M.)
| | - Jessica Bertacco
- Department of Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (S.O.); (J.B.); (V.L.V.); (A.M.)
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy;
| | - Veronica Li Vigni
- Department of Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (S.O.); (J.B.); (V.L.V.); (A.M.)
| | - Arianna Minoia
- Department of Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (S.O.); (J.B.); (V.L.V.); (A.M.)
| | - Francesca Griggio
- Centro Piattaforme Tecnologiche, University of Verona, 37100 Verona, Italy;
| | - Massimiliano Perduca
- Biocrystallography Lab, Department of Biotechnology, University of Verona, 37134 Verona, Italy;
| | - Monica Mottes
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy;
| | - Maria Teresa Valenti
- Department of Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (S.O.); (J.B.); (V.L.V.); (A.M.)
- Correspondence: ; Tel.: +39-045-812-8450
| |
Collapse
|
7
|
Rose JT, Moskovitz E, Boyd JR, Gordon JA, Bouffard NA, Fritz AJ, Illendula A, Bushweller JH, Lian JB, Stein JL, Zaidi SK, Stein GS. Inhibition of the RUNX1-CBFβ transcription factor complex compromises mammary epithelial cell identity: a phenotype potentially stabilized by mitotic gene bookmarking. Oncotarget 2020; 11:2512-2530. [PMID: 32655837 PMCID: PMC7335667 DOI: 10.18632/oncotarget.27637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
RUNX1 has recently been shown to play an important role in determination of mammary epithelial cell identity. However, mechanisms by which loss of the RUNX1 transcription factor in mammary epithelial cells leads to epithelial-to-mesenchymal transition (EMT) are not known. Here, we report that interaction between RUNX1 and its heterodimeric partner CBFβ is essential for sustaining mammary epithelial cell identity. Disruption of RUNX1-CBFβ interaction, DNA binding, and association with mitotic chromosomes alters cell morphology, global protein synthesis, and phenotype-related gene expression. During interphase, RUNX1 is organized as punctate, predominantly nuclear, foci that are dynamically redistributed during mitosis, with a subset localized to mitotic chromosomes. Genome-wide RUNX1 occupancy profiles for asynchronous, mitotically enriched, and early G1 breast epithelial cells reveal RUNX1 associates with RNA Pol II-transcribed protein coding and long non-coding RNA genes and RNA Pol I-transcribed ribosomal genes critical for mammary epithelial proliferation, growth, and phenotype maintenance. A subset of these genes remains occupied by the protein during the mitosis to G1 transition. Together, these findings establish that the RUNX1-CBFβ complex is required for maintenance of the normal mammary epithelial phenotype and its disruption leads to EMT. Importantly, our results suggest, for the first time, that RUNX1 mitotic bookmarking of a subset of epithelial-related genes may be an important epigenetic mechanism that contributes to stabilization of the mammary epithelial cell identity.
Collapse
Affiliation(s)
- Joshua T. Rose
- Department of Biochemistry and University of Vermont Cancer Center, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
- These authors contributed equally to this work
| | - Eliana Moskovitz
- Department of Biochemistry and University of Vermont Cancer Center, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
- These authors contributed equally to this work
| | - Joseph R. Boyd
- Department of Biochemistry and University of Vermont Cancer Center, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Jonathan A. Gordon
- Department of Biochemistry and University of Vermont Cancer Center, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Nicole A. Bouffard
- Microscopy Imaging Center at the Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Andrew J. Fritz
- Department of Biochemistry and University of Vermont Cancer Center, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Anuradha Illendula
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - John H. Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Jane B. Lian
- Department of Biochemistry and University of Vermont Cancer Center, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Janet L. Stein
- Department of Biochemistry and University of Vermont Cancer Center, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Sayyed K. Zaidi
- Department of Biochemistry and University of Vermont Cancer Center, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Gary S. Stein
- Department of Biochemistry and University of Vermont Cancer Center, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
8
|
Tang L, Gao Y, Song Y, Li Y, Li Y, Zhang H, Li D, Li J, Liu C, Li F. PAK4 phosphorylating RUNX1 promotes ERα-positive breast cancer-induced osteolytic bone destruction. Int J Biol Sci 2020; 16:2235-2247. [PMID: 32549768 PMCID: PMC7294946 DOI: 10.7150/ijbs.47225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/15/2020] [Indexed: 12/27/2022] Open
Abstract
The biological function of nuclear PAK4 in ERα-positive breast cancer osteolytic bone destruction remains unclear. Here, we find that the nuclear PAK4 promotes osteoclastogenesis and tumor-induced osteolysis via phosphorylating RUNX1. We show that nuclear PAK4 interacts with and phosphorylates RUNX1 at Thr-207, which induces its localization from the nucleus to the cytoplasm and influences direct interaction with SIN3A/HDAC1 and PRMT1. Furthermore, we reveal that RUNX1 phosphorylation by PAK4 at Thr-207 promotes osteolytic bone destruction via targeting downstream genes related to osteoclast differentiation and maturation. Importantly, we verify changes in RUNX1 subcellular localization when nuclear PAK4 is positive in breast cancer bone metastasis tissues. Functionally, we demonstrate that RUNX1 phosphorylation promotes osteolytic bone maturation and ERα-positive breast cancer-induced osteolytic bone damage in the mouse model of orthotopic breast cancer bone metastasis. Our results suggest PAK4 can be a therapeutic target for ERα-positive breast cancer osteolytic bone destruction.
Collapse
Affiliation(s)
- Lina Tang
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning, China
| | - Yunling Gao
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning, China
| | - Yongqi Song
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning, China
| | - Yang Li
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning, China
| | - Yanshu Li
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning, China
| | - Hongyan Zhang
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning, China
| | - Danni Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Jiabin Li
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning, China
| | - Caigang Liu
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang, 110001, China
| | - Feng Li
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning, China
| |
Collapse
|
9
|
Hong D, Fritz AJ, Gordon JA, Tye CE, Boyd JR, Tracy KM, Frietze SE, Carr FE, Nickerson JA, Van Wijnen AJ, Imbalzano AN, Zaidi SK, Lian JB, Stein JL, Stein GS. RUNX1-dependent mechanisms in biological control and dysregulation in cancer. J Cell Physiol 2019; 234:8597-8609. [PMID: 30515788 PMCID: PMC6395522 DOI: 10.1002/jcp.27841] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/12/2018] [Indexed: 01/02/2023]
Abstract
The RUNX1 transcription factor has recently been shown to be obligatory for normal development. RUNX1 controls the expression of genes essential for proper development in many cell lineages and tissues including blood, bone, cartilage, hair follicles, and mammary glands. Compromised RUNX1 regulation is associated with many cancers. In this review, we highlight evidence for RUNX1 control in both invertebrate and mammalian development and recent novel findings of perturbed RUNX1 control in breast cancer that has implications for other solid tumors. As RUNX1 is essential for definitive hematopoiesis, RUNX1 mutations in hematopoietic lineage cells have been implicated in the etiology of several leukemias. Studies of solid tumors have revealed a context-dependent function for RUNX1 either as an oncogene or a tumor suppressor. These RUNX1 functions have been reported for breast, prostate, lung, and skin cancers that are related to cancer subtypes and different stages of tumor development. Growing evidence suggests that RUNX1 suppresses aggressiveness in most breast cancer subtypes particularly in the early stage of tumorigenesis. Several studies have identified RUNX1 suppression of the breast cancer epithelial-to-mesenchymal transition. Most recently, RUNX1 repression of cancer stem cells and tumorsphere formation was reported for breast cancer. It is anticipated that these new discoveries of the context-dependent diversity of RUNX1 functions will lead to innovative therapeutic strategies for the intervention of cancer and other abnormalities of normal tissues.
Collapse
Affiliation(s)
- Deli Hong
- Dana Farber Cancer Institute, Boston, Massachusetts
| | - Andrew J Fritz
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Jonathan A Gordon
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Coralee E Tye
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Joseph R Boyd
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Kirsten M Tracy
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Seth E Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont
| | - Frances E. Carr
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| | | | - Andre J. Van Wijnen
- Departments of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Anthony N. Imbalzano
- Graduate Program in Cell Biology and Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts
| | - Sayyed K. Zaidi
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Jane B. Lian
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Janet L. Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Gary S. Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| |
Collapse
|
10
|
Fritz AJ, Gillis NE, Gerrard DL, Rodriguez PD, Hong D, Rose JT, Ghule PN, Bolf EL, Gordon JA, Tye CE, Boyd JR, Tracy KM, Nickerson JA, van Wijnen AJ, Imbalzano AN, Heath JL, Frietze SE, Zaidi SK, Carr FE, Lian JB, Stein JL, Stein GS. Higher order genomic organization and epigenetic control maintain cellular identity and prevent breast cancer. Genes Chromosomes Cancer 2019; 58:484-499. [PMID: 30873710 DOI: 10.1002/gcc.22731] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 12/24/2022] Open
Abstract
Cells establish and sustain structural and functional integrity of the genome to support cellular identity and prevent malignant transformation. In this review, we present a strategic overview of epigenetic regulatory mechanisms including histone modifications and higher order chromatin organization (HCO) that are perturbed in breast cancer onset and progression. Implications for dysfunctions that occur in hormone regulation, cell cycle control, and mitotic bookmarking in breast cancer are considered, with an emphasis on epithelial-to-mesenchymal transition and cancer stem cell activities. The architectural organization of regulatory machinery is addressed within the contexts of translating cancer-compromised genomic organization to advances in breast cancer risk assessment, diagnosis, prognosis, and identification of novel therapeutic targets with high specificity and minimal off target effects.
Collapse
Affiliation(s)
- A J Fritz
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - N E Gillis
- University of Vermont Cancer Center, Burlington, Vermont.,Department of Pharmacology, Larner college of Medicine, University of Vermont, Burlington, Vermont
| | - D L Gerrard
- Cellular Molecular Biomedical Sciences Program, University of Vermont, Burlington, Vermont.,Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont
| | - P D Rodriguez
- Cellular Molecular Biomedical Sciences Program, University of Vermont, Burlington, Vermont.,Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont
| | - D Hong
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - J T Rose
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - P N Ghule
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - E L Bolf
- University of Vermont Cancer Center, Burlington, Vermont.,Department of Pharmacology, Larner college of Medicine, University of Vermont, Burlington, Vermont
| | - J A Gordon
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - C E Tye
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - J R Boyd
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - K M Tracy
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - J A Nickerson
- Division of Genes and Development of the Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts
| | - A J van Wijnen
- Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic Minnesota, Rochester, Minnesota
| | - A N Imbalzano
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - J L Heath
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont.,Department of Pediatrics, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - S E Frietze
- Cellular Molecular Biomedical Sciences Program, University of Vermont, Burlington, Vermont.,Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont
| | - S K Zaidi
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - F E Carr
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont.,Department of Pharmacology, Larner college of Medicine, University of Vermont, Burlington, Vermont
| | - J B Lian
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - J L Stein
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - G S Stein
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| |
Collapse
|
11
|
Abstract
The molecular basis for T cell memory differentiation remains elusive. Wang et al. (2018) identify Runx3 as an initiating transcription factor that specifies regulatory regions required for cytotoxic T cell (CTL) memory differentiation early after TCR signaling and constrains the ability of T-bet to drive terminal effector generation.
Collapse
Affiliation(s)
- Yohei Mikami
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yuka Kanno
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Zaidi SK, Fritz AJ, Tracy KM, Gordon JA, Tye CE, Boyd J, Van Wijnen AJ, Nickerson JA, Imbalzano AN, Lian JB, Stein JL, Stein GS. Nuclear organization mediates cancer-compromised genetic and epigenetic control. Adv Biol Regul 2018; 69:1-10. [PMID: 29759441 PMCID: PMC6102062 DOI: 10.1016/j.jbior.2018.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/13/2018] [Accepted: 05/02/2018] [Indexed: 12/19/2022]
Abstract
Nuclear organization is functionally linked to genetic and epigenetic regulation of gene expression for biological control and is modified in cancer. Nuclear organization supports cell growth and phenotypic properties of normal and cancer cells by facilitating physiologically responsive interactions of chromosomes, genes and regulatory complexes at dynamic three-dimensional microenvironments. We will review nuclear structure/function relationships that include: 1. Epigenetic bookmarking of genes by phenotypic transcription factors to control fidelity and plasticity of gene expression as cells enter and exit mitosis; 2. Contributions of chromatin remodeling to breast cancer nuclear morphology, metabolism and effectiveness of chemotherapy; 3. Relationships between fidelity of nuclear organization and metastasis of breast cancer to bone; 4. Dynamic modifications of higher-order inter- and intra-chromosomal interactions in breast cancer cells; 5. Coordinate control of cell growth and phenotype by tissue-specific transcription factors; 6. Oncofetal epigenetic control by bivalent histone modifications that are functionally related to sustaining the stem cell phenotype; and 7. Noncoding RNA-mediated regulation in the onset and progression of breast cancer. The discovery of components to nuclear organization that are functionally related to cancer and compromise gene expression have the potential for translation to innovative cancer diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Sayyed K Zaidi
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Andrew J Fritz
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Kirsten M Tracy
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Jonathan A Gordon
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Coralee E Tye
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Joseph Boyd
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Andre J Van Wijnen
- Departments of Orthopedic Surgery, Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Jeffrey A Nickerson
- Department of Pediatrics, UMass Medical School, Worcester, MA, United States
| | - Antony N Imbalzano
- Graduate Program in Cell Biology and Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA, United States
| | - Jane B Lian
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Janet L Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States.
| | - Gary S Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States.
| |
Collapse
|
13
|
An AML1-ETO/miR-29b-1 regulatory circuit modulates phenotypic properties of acute myeloid leukemia cells. Oncotarget 2018; 8:39994-40005. [PMID: 28611288 PMCID: PMC5522207 DOI: 10.18632/oncotarget.18127] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 04/24/2017] [Indexed: 12/21/2022] Open
Abstract
Acute myeloid leukemia (AML) is characterized by an aggressive clinical course and frequent cytogenetic abnormalities that include specific chromosomal translocations. The 8;21 chromosomal rearrangement disrupts the key hematopoietic RUNX1 transcription factor, and contributes to leukemia through recruitment of co-repressor complexes to RUNX1 target genes, altered subnuclear localization, and deregulation of the myeloid gene regulatory program. However, a role of non-coding microRNAs (miRs) in t(8;21)-mediated leukemogenesis is minimally understood. We present evidence of an interplay between the tumor suppressor miR-29b-1 and the AML1-ETO (also designated RUNX1-RUNX1T1) oncogene that is encoded by the t(8;21). We find that AML1-ETO and corepressor NCoR co-occupy the miR-29a/b-1 locus and downregulate its expression in leukemia cells. Conversely, re-introduction of miR-29b-1 in leukemia cells expressing AML1-ETO causes significant downregulation at the protein level through direct targeting of the 3’ untranslated region of the chimeric transcript. Restoration of miR-29b-1 expression in leukemia cells results in decreased cell growth and increased apoptosis. The AML1-ETO-dependent differentiation block and transcriptional program are partially reversed by miR-29b-1. Our findings establish a novel regulatory circuit between the tumor-suppressive miR-29b-1 and the oncogenic AML1-ETO that controls the leukemic phenotype in t(8;21)-carrying acute myeloid leukemia.
Collapse
|
14
|
VanOudenhove JJ, Medina R, Ghule PN, Lian JB, Stein JL, Zaidi SK, Stein GS. Precocious Phenotypic Transcription-Factor Expression During Early Development. J Cell Biochem 2017; 118:953-958. [PMID: 27591551 DOI: 10.1002/jcb.25723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/01/2016] [Indexed: 01/20/2023]
Abstract
A novel role for phenotypic transcription factors in very early differentiation was recently observed and merits further study to elucidate what role this precocious expression may have in development. The RUNX1 transcription factor exhibits selective and transient upregulation during early mesenchymal differentiation. In contrast to phenotype-associated transcriptional control of gene expression to establish and sustain hematopoietic/myeloid lineage identity, precocious expression of RUNX1 is functionally linked to control of an epithelial to mesenchymal transition that is obligatory for development. This early RUNX1 expression spike provides a paradigm for precocious expression of a phenotypic transcription factor that invites detailed mechanistic study to fully understand its biological importance. J. Cell. Biochem. 118: 953-958, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jennifer J VanOudenhove
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, Vermont 05405.,Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655
| | - Ricardo Medina
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655
| | - Prachi N Ghule
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, Vermont 05405
| | - Jane B Lian
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, Vermont 05405
| | - Janet L Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, Vermont 05405
| | - Sayyed K Zaidi
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, Vermont 05405
| | - Gary S Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, Vermont 05405
| |
Collapse
|
15
|
Rahmanian N, Tarighi P, Gharghabi M, Torshabi M, Tarfiei GA, Mohammadi Farsani T, Ostad SN, Ghahremani MH. Truncated forms of RUNX3 Unlike Full Length Protein Alter Cell Proliferation in a TGF-β Context Dependent Manner. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2017; 16:1194-1203. [PMID: 29201108 PMCID: PMC5610775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Runt related transcription factors (RUNX) are recognized as key players in suppressing or promoting tumor growth. RUNX3, a member of this family, is known as a tumor suppressor in many types of cancers, although such a paradigm was challenged by some researchers. The TGF-β pathway governs major upstream signals to activate RUNX3. RUNX3 protein consists of several regions and domains. The Runt domain is a conserved DNA binding domain and is considered as the main part of RUNX proteins. Herein, we compared the effects of Runt domains and full-Runx3 in cell viability by designing two constructs of Runx3, including N-terminal region and Runt domain. We investigated the effect of full-Runx3, N-t, and RD on growth inhibition in AGS, MCF-7, A549, and HEK293 cell lines which are different in TGF-β sensitivity, in the absence and presence of TGF-β. The full length RUNX3 did not notably inhibit growth of these cell lines while, the N-t and RD truncates showed different trends in these cell lines. Cell proliferation in the TGF-β impaired context cell lines (AGS and MCF-7) significantly decrease while in the A549 significantly increase. On the other hand, transfection of N-t and RD did not considerably affect the cell proliferation in the HEK293.Our results show that full-lenght RUNX3 did not affect the cell viability. Conversely, the N-t and RD constructs significantly changed cell proliferation. Therefore, therapeutic potentials for these truncated proteins are suggested in tumors with RUNX proteins dysfunction, even in the TGF-β impair context.
Collapse
Affiliation(s)
- Narges Rahmanian
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Parastoo Tarighi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mehdi Gharghabi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maryam Torshabi
- Department of Dental Biomaterial, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ghorban Ali Tarfiei
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Taiebeh Mohammadi Farsani
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyed Naser Ostad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hossein Ghahremani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran. ,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Corresponding author: E-mail: *
| |
Collapse
|
16
|
Bonifer C, Levantini E, Kouskoff V, Lacaud G. Runx1 Structure and Function in Blood Cell Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:65-81. [PMID: 28299651 DOI: 10.1007/978-981-10-3233-2_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RUNX transcription factors belong to a highly conserved class of transcriptional regulators which play various roles in the development of the majority of metazoans. In this review we focus on the founding member of the family, RUNX1, and its role in the transcriptional control of blood cell development in mammals. We summarize data showing that RUNX1 functions both as activator and repressor within a chromatin environment, a feature that requires its interaction with multiple other transcription factors and co-factors. Furthermore, we outline how RUNX1 works together with other factors to reshape the epigenetic landscape and the three-dimensional structure of gene loci within the nucleus. Finally, we review how aberrant forms of RUNX1 deregulate blood cell development and cause hematopoietic malignancies.
Collapse
Affiliation(s)
- Constanze Bonifer
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| | - Elena Levantini
- Beth Israel Diaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Richerche, Pisa, Italy
| | - Valerie Kouskoff
- Division of Developmental Biology & Medicine, The University of Manchester, Manchester, UK
| | - Georges Lacaud
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| |
Collapse
|
17
|
VanOudenhove JJ, Medina R, Ghule PN, Lian JB, Stein JL, Zaidi SK, Stein GS. Transient RUNX1 Expression during Early Mesendodermal Differentiation of hESCs Promotes Epithelial to Mesenchymal Transition through TGFB2 Signaling. Stem Cell Reports 2016; 7:884-896. [PMID: 27720906 PMCID: PMC5106514 DOI: 10.1016/j.stemcr.2016.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 12/24/2022] Open
Abstract
The transition of human embryonic stem cells (hESCs) from pluripotency to lineage commitment is not fully understood, and a role for phenotypic transcription factors in the initial stages of hESC differentiation remains to be explored. From a screen of candidate factors, we found that RUNX1 is selectively and transiently upregulated early in hESC differentiation to mesendodermal lineages. Transcriptome profiling and functional analyses upon RUNX1 depletion established a role for RUNX1 in promoting cell motility. In parallel, we discovered a loss of repression for several epithelial genes, indicating that loss of RUNX1 impaired an epithelial to mesenchymal transition during differentiation. Cell biological and biochemical approaches revealed that RUNX1 depletion specifically compromised TGFB2 signaling. Both the decrease in motility and deregulated epithelial marker expression upon RUNX1 depletion were rescued by reintroduction of TGFB2, but not TGFB1. These findings identify roles for RUNX1-TGFB2 signaling in early events of mesendodermal lineage commitment. RUNX1 is transiently upregulated during early mesendoderm differentiation of hESCs RUNX1 promotes motility and the EMT process during mesendodermal differentiation RUNX1 knockdown specifically inhibits TGFB2 signaling Reintroduction of TGFB2, but not TGFB1, rescues the phenotype of RUNX1 depletion
Collapse
Affiliation(s)
- Jennifer J VanOudenhove
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT 05405, USA; Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Ricardo Medina
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Prachi N Ghule
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Jane B Lian
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Janet L Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Sayyed K Zaidi
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Gary S Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT 05405, USA.
| |
Collapse
|
18
|
Coelho MB, Attig J, Ule J, Smith CWJ. Matrin3: connecting gene expression with the nuclear matrix. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:303-15. [PMID: 26813864 DOI: 10.1002/wrna.1336] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/18/2015] [Accepted: 12/18/2015] [Indexed: 01/06/2023]
Abstract
As indicated by its name, Matrin3 was discovered as a component of the nuclear matrix, an insoluble fibrogranular network that structurally organizes the nucleus. Matrin3 possesses both DNA- and RNA-binding domains and, consistent with this, has been shown to function at a number of stages in the life cycle of messenger RNAs. These numerous activities indicate that Matrin3, and indeed the nuclear matrix, do not just provide a structural framework for nuclear activities but also play direct functional roles in these activities. Here, we review the structure, functions, and molecular interactions of Matrin3 and of Matrin3-related proteins, and the pathologies that can arise upon mutation of Matrin3. WIREs RNA 2016, 7:303-315. doi: 10.1002/wrna.1336 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Miguel B Coelho
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Jan Attig
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Jernej Ule
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | | |
Collapse
|
19
|
Montecino M, Stein G, Stein J, Zaidi K, Aguilar R. Multiple levels of epigenetic control for bone biology and pathology. Bone 2015; 81:733-738. [PMID: 25865577 PMCID: PMC4600412 DOI: 10.1016/j.bone.2015.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 03/13/2015] [Indexed: 12/12/2022]
Abstract
Multiple dimensions of epigenetic control contribute to regulation of gene expression that governs bone biology and pathology. Once confined to DNA methylation and a limited number of post-translational modifications of histone proteins, the definition of epigenetic mechanisms is expanding to include contributions of non-coding RNAs and mitotic bookmarking, a mechanism for retaining phenotype identity during cell proliferation. Together these different levels of epigenetic control of physiological processes and their perturbations that are associated with compromised gene expression during the onset and progression of disease, have contributed to an unprecedented understanding of the activities (operation) of the genomic landscape. Here, we address general concepts that explain the contribution of epigenetic control to the dynamic regulation of gene expression during eukaryotic transcription. This article is part of a Special Issue entitled Epigenetics and Bone.
Collapse
Affiliation(s)
- Martin Montecino
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 239, Santiago, Chile.
| | - Gary Stein
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, USA.
| | - Janet Stein
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, USA
| | - Kaleem Zaidi
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, USA
| | - Rodrigo Aguilar
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 239, Santiago, Chile
| |
Collapse
|
20
|
Abstract
Eukaryotic cells have evolved a variety of actin-binding proteins to regulate the architecture and the dynamics of the actin cytoskeleton in time and space. The Diaphanous-related formins (DRF) represent a diverse group of Rho-GTPase-regulated actin regulators that control a range of actin structures composed of tightly-bundled, unbranched actin filaments as found in stress fibers and in filopodia. Under resting conditions, DRFs are auto-inhibited by an intra-molecular interaction between the C-terminal and the N-terminal domains. The auto-inhibition is thought to be released by binding of an activated RhoGTPase to the N-terminal GTPase-binding domain (GBD). However, there is growing evidence for more sophisticated variations from this simplified linear activation model. In this review we focus on the formin homology domain-containing proteins (FHOD), an unconventional group of DRFs. Recent findings on the molecular control and cellular functions of FHOD proteins in vivo are discussed in the light of the phylogeny of FHOD proteins.
Collapse
Key Words
- AML-1B, acute myeloid leukemia transcription factor
- DAD, diaphanous auto-regulatory domain
- DID, diaphanous inhibitory domain
- DRF, Diaphanous-related formins
- Dia, Diaphanous related formin
- FH1, formin homology 1
- FH2, formin homology 2
- FH3, formin homology 3
- FHOD
- FHOD, FH1/FH2 domain-containing protein
- GBD, GTPase-binding domain
- RhoGTPases
- SRE, serum response element
- actin
- cell migration
- formins
Collapse
Affiliation(s)
- Meike Bechtold
- a Institut für Neurobiologie ; Universität Münster ; Münster , Germany
| | | | | |
Collapse
|
21
|
Yang S, Quaresma AJC, Nickerson JA, Green KM, Shaffer SA, Imbalzano AN, Martin-Buley LA, Lian JB, Stein JL, van Wijnen AJ, Stein GS. Subnuclear domain proteins in cancer cells support the functions of RUNX2 in the DNA damage response. J Cell Sci 2015; 128:728-40. [PMID: 25609707 DOI: 10.1242/jcs.160051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cancer cells exhibit modifications in nuclear architecture and transcriptional control. Tumor growth and metastasis are supported by RUNX family transcriptional scaffolding proteins, which mediate the assembly of nuclear-matrix-associated gene-regulatory hubs. We used proteomic analysis to identify RUNX2-dependent protein-protein interactions associated with the nuclear matrix in bone, breast and prostate tumor cell types and found that RUNX2 interacts with three distinct proteins that respond to DNA damage - RUVBL2, INTS3 and BAZ1B. Subnuclear foci containing these proteins change in intensity or number following UV irradiation. Furthermore, RUNX2, INTS3 and BAZ1B form UV-responsive complexes with the serine-139-phosphorylated isoform of H2AX (γH2AX). UV irradiation increases the interaction of BAZ1B with γH2AX and decreases histone H3 lysine 9 acetylation levels, which mark accessible chromatin. RUNX2 depletion prevents the BAZ1B-γH2AX interaction and attenuates loss of H3K9 and H3K56 acetylation. Our data are consistent with a model in which RUNX2 forms functional complexes with BAZ1B, RUVBL2 and INTS3 to mount an integrated response to DNA damage. This proposed cytoprotective function for RUNX2 in cancer cells might clarify its expression in chemotherapy-resistant and/or metastatic tumors.
Collapse
Affiliation(s)
- Seungchan Yang
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Alexandre J C Quaresma
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA Institute of Biomedicine, Department of Biochemistry and Developmental Biology, FI-00014 University of Helsinki, Finland
| | - Jeffrey A Nickerson
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Karin M Green
- Department of Biochemistry and Molecular Pharmacology and Proteomics and Mass Spectrometry Facility, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Scott A Shaffer
- Department of Biochemistry and Molecular Pharmacology and Proteomics and Mass Spectrometry Facility, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Anthony N Imbalzano
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Lori A Martin-Buley
- Department of Biochemistry & Vermont Cancer Center, University of Vermont Medical School, Burlington, VT 05405, USA
| | - Jane B Lian
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA Department of Biochemistry & Vermont Cancer Center, University of Vermont Medical School, Burlington, VT 05405, USA
| | - Janet L Stein
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA Department of Biochemistry & Vermont Cancer Center, University of Vermont Medical School, Burlington, VT 05405, USA
| | - Andre J van Wijnen
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA Departments of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street S.W., MSB 3-69, Rochester, MN 55905, USA
| | - Gary S Stein
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA Department of Biochemistry & Vermont Cancer Center, University of Vermont Medical School, Burlington, VT 05405, USA
| |
Collapse
|
22
|
Zaidi SK, Van Wijnen AJ, Lian JB, Stein JL, Stein GS. Targeting deregulated epigenetic control in cancer. J Cell Physiol 2013; 228:2103-8. [PMID: 23589100 DOI: 10.1002/jcp.24387] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 04/02/2013] [Indexed: 12/12/2022]
Abstract
Cancer is a multifaceted disease that involves acquisition of genetic mutations, deletions, and amplifications as well as deregulation of epigenetic mechanisms that fine-tune gene regulation. Key epigenetic mechanisms that include histone modifications, DNA methylation, and non-coding RNA-mediated gene silencing are often deregulated in a variety of cancers. Subnuclear localization of key proteins in the interphase nucleus and bookmarking of genes by lineage commitment factors in mitosis-a new dimension to epigenetic control of fundamental biological processes-is also modified in cancer. In this review, we discuss the various aspects of epigenetic control that are operative in a variety of cancers and their potential for risk assessment, early detection, targeted therapy, and personalized medicine.
Collapse
Affiliation(s)
- Sayyed K Zaidi
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
| | | | | | | | | |
Collapse
|
23
|
Jacobs PT, Cao L, Samon JB, Kane CA, Hedblom EE, Bowcock A, Telfer JC. Runx transcription factors repress human and murine c-Myc expression in a DNA-binding and C-terminally dependent manner. PLoS One 2013; 8:e69083. [PMID: 23874874 PMCID: PMC3715461 DOI: 10.1371/journal.pone.0069083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 06/12/2013] [Indexed: 01/01/2023] Open
Abstract
The transcription factors Runx1 and c-Myc have individually been shown to regulate important gene targets as well as to collaborate in oncogenesis. However, it is unknown whether there is a regulatory relationship between the two genes. In this study, we investigated the transcriptional regulation of endogenous c-Myc by Runx1 in the human T cell line Jurkat and murine primary hematopoietic cells. Endogenous Runx1 binds to multiple sites in the c-Myc locus upstream of the c-Myc transcriptional start site. Cells transduced with a C-terminally truncated Runx1 (Runx1.d190), which lacks important cofactor interaction sites and can block C-terminal-dependent functions of all Runx transcription factors, showed increased transcription of c-Myc. In order to monitor c-Myc expression in response to early and transiently-acting Runx1.d190, we generated a cell membrane-permeable TAT-Runx1.d190 fusion protein. Murine splenocytes treated with TAT-Runx1.d190 showed an increase in the transcription of c-Myc within 2 hours, peaking at 4 hours post-treatment and declining thereafter. This effect is dependent on the ability of Runx1.d190 to bind to DNA. The increase in c-Myc transcripts is correlated with increased c-Myc protein levels. Collectively, these data show that Runx1 directly regulates c-Myc transcription in a C-terminal- and DNA-binding-dependent manner.
Collapse
Affiliation(s)
- Paejonette T. Jacobs
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Li Cao
- Department of Genetics, Pediatrics and Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jeremy B. Samon
- Quntiles, Medical Education Department, Hawthorne, New York, United States of America
| | - Christyne A. Kane
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Emmett E. Hedblom
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Anne Bowcock
- Department of Genetics, Pediatrics and Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Janice C. Telfer
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
24
|
Koh CP, Wang CQ, Ng CEL, Ito Y, Araki M, Tergaonkar V, Huang G, Osato M. RUNX1 meets MLL: epigenetic regulation of hematopoiesis by two leukemia genes. Leukemia 2013; 27:1793-802. [PMID: 23817177 DOI: 10.1038/leu.2013.200] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/26/2013] [Accepted: 06/26/2013] [Indexed: 01/05/2023]
Abstract
A broad range of human leukemias carries RUNX1 and MLL genetic alterations. Despite such widespread involvements, the relationship between RUNX1 and MLL has never been appreciated. Recently, we showed that RUNX1 physically and functionally interacts with MLL, thereby regulating the epigenetic status of critical cis-regulatory elements for hematopoietic genes. This newly unveiled interaction between the two most prevalent leukemia genes has solved a long-standing conundrum: leukemia-associated RUNX1 N-terminal point mutants that exhibit no obvious functional abnormalities in classical assays for the assessment of transcriptional activities. These mutants turned out to be defective in MLL interaction and subsequent epigenetic modifications that can be examined by the histone-modification status of cis-regulatory elements in the target genes. RUNX1/MLL binding confirms the importance of RUNX1 function as an epigenetic regulator. Recent studies employing next-generation sequencing on human hematological malignancies identified a plethora of mutations in epigenetic regulator genes. These new findings would enhance our understanding on the mechanistic basis for leukemia development and may provide a novel direction for therapeutic applications. This review summarizes the current knowledge about the epigenetic regulation of normal and malignant hematopoiesis by RUNX1 and MLL.
Collapse
Affiliation(s)
- C P Koh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
25
|
A germline point mutation in Runx1 uncouples its role in definitive hematopoiesis from differentiation. Exp Hematol 2013; 41:980-991.e1. [PMID: 23823022 DOI: 10.1016/j.exphem.2013.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 06/04/2013] [Accepted: 06/06/2013] [Indexed: 12/14/2022]
Abstract
Definitive hematopoiesis requires the master hematopoietic transcription factor Runx1, which is a frequent target of leukemia-related chromosomal translocations. Several of the translocation-generated fusion proteins retain the DNA binding activity of Runx1, but lose subnuclear targeting and associated transactivation potential. Complete loss of these functions in vivo resembles Runx1 ablation, which causes embryonic lethality. We developed a knock-in mouse that expresses full-length Runx1 with a mutation in the subnuclear targeting cofactor interaction domain, Runx1(HTY350-352AAA). Mutant mice survive to adulthood, and hematopoietic stem cell emergence appears to be unaltered. However, defects are observed in multiple differentiated hematopoietic lineages at stages where Runx1 is known to play key roles. Thus, a germline mutation in Runx1 reveals uncoupling of its functions during developmental hematopoiesis from subsequent differentiation across multiple hematopoietic lineages in the adult. These findings indicate that subnuclear targeting and cofactor interactions with Runx1 are important in many compartments throughout hematopoietic differentiation.
Collapse
|
26
|
Weng JJ, Su Y. Nuclear matrix-targeting of the osteogenic factor Runx2 is essential for its recognition and activation of the alkaline phosphatase gene. Biochim Biophys Acta Gen Subj 2013; 1830:2839-52. [PMID: 23287548 DOI: 10.1016/j.bbagen.2012.12.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 12/02/2012] [Accepted: 12/18/2012] [Indexed: 11/16/2022]
Abstract
BACKGROUND A good understanding of the mechanism of gene regulation that is involved in bone mineralization is critical for the design of anabolic treatments for bone deficiency diseases. Alkaline phosphatase (ALP) expressed by osteoblasts plays an important role in promoting bone mineralization by hydrolyzing pyrophosphate. However, the mechanism by which the expression of ALP is regulated during osteoblast differentiation has not been thoroughly investigated. METHODS Chromatin immunoprecipitation. EMSA and mutagenesis were used to identify the Runx2 binding sites on ALP gene and to analyze the role of nuclear matrix-localization of Runx2 on the recognition and activation of ALP gene. RESULTS Using chromatin immunoprecipitation, we determined that both ectopic and endogenous Runx2 bound to ALP intron 1 in a region containing a cluster of five putative core-sites. The third one (11C3) among those fives was bound most strongly in vitro by Runx2 and acted as a Runx2-dependent transcriptional enhancer. Furthermore, a Runx2 mutant lacking the nuclear matrix-targeting sequence (Runx2deltaNMTS) bound to the ALP gene less efficiently than the wild-type protein and a Runx2 mutant that is deficient in its ability to bind to DNA (Runx2K120A) accumulated largely in the nuclear matrix. CONCLUSIONS Nuclear matrix-localization of Runx2 influences its ALP gene recognition. GENERAL SIGNIFICANCE Our results showed for the first time that ALP is a direct target gene of Runx2 and illustrated that the recognition/binding and activation of the ALP by this transcription factor are dependent on its nuclear matrix-targeting.
Collapse
Affiliation(s)
- Jing-Jie Weng
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei 11221, Taiwan, ROC.
| | | |
Collapse
|
27
|
Brady G, Elgueta Karstegl C, Farrell PJ. Novel function of the unique N-terminal region of RUNX1c in B cell growth regulation. Nucleic Acids Res 2012; 41:1555-68. [PMID: 23254331 PMCID: PMC3561965 DOI: 10.1093/nar/gks1273] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RUNX family proteins are expressed from alternate promoters, giving rise to different N-terminal forms, but the functional difference of these isoforms is not understood. Here, we show that growth of a human B lymphoblastoid cell line infected with Epstein-Barr virus is inhibited by RUNX1c but not by RUNX1b. This gives a novel functional assay for the unique N-terminus of RUNX1c, and amino acids of RUNX1c required for the effect have been identified. Primary resting B cells contain RUNX1c, consistent with the growth inhibitory effect in B cells. The oncogene TEL-RUNX1 lacks the N-terminus of RUNX1c because of the TEL fusion and does not inhibit B cell growth. Mouse Runx1c lacks some of the sequences required for human RUNX1c to inhibit B cell growth, indicating that this aspect of human B cell growth control may differ in mice. Remarkably, a cell-penetrating peptide containing the N-terminal sequence of RUNX1c specifically antagonizes the growth inhibitory effect in B lymphoblastoid cells and might be used to modulate the function of human RUNX1c.
Collapse
Affiliation(s)
- Gareth Brady
- Section of Virology, Imperial College Faculty of Medicine, Norfolk Place, London W2 1PG, UK
| | | | | |
Collapse
|
28
|
Zaidi SK, Trombly DJ, Dowdy CR, Lian JB, Stein JL, van Wijnen AJ, Stein GS. Epigenetic mechanisms in leukemia. Adv Biol Regul 2012; 52:369-376. [PMID: 22884030 DOI: 10.1016/j.jbior.2012.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 05/16/2012] [Indexed: 06/01/2023]
Abstract
Focal organization of regulatory machinery within the interphase nucleus is linked to biological responsiveness and perturbed in cancer. Lineage determinant Runx proteins organize and assemble multi-protein complexes at sites of transcription within the nucleus and regulate both RNA polymerase II- and I-mediated gene expression. In addition, Runx proteins epigenetically control lineage determining transcriptional programs including: 1) architectural organization of macromolecular complexes in interphase, 2) regulation of gene expression through bookmarking during mitosis, and 3) microRNA-mediated translational control in the interphase nucleus. These mechanisms are compromised with the onset and progression of cancer. For example, the oncogenic AML1-ETO protein, which results from a chromosomal translocation between chromosomes 8 and 21, is expressed in nearly 25% of all acute myelogenous leukemias, disrupts Runx1 subnuclear localization during interphase and compromises transcriptional regulation. Epigenetically, the leukemic protein redirects the Runx1 DNA binding domain to leukemia-specific nuclear microenvironments, modifies regulatory protein accessibility to Runx1 target genes by imprinting repressive chromatin marks, and deregulates the microRNA (miR) profile of diseased myeloid cells. Consequently, the entire Runx1-dependent transcriptional program of myeloid cells is deregulated leading to onset and progression of acute myeloid leukemia and maintenance of leukemic phenotype. We discuss the potential of modified epigenetic landscape of leukemic cells as a viable therapeutic target.
Collapse
Affiliation(s)
- Sayyed K Zaidi
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Ave. N., Worcester, MA 01655, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
De Braekeleer E, Douet-Guilbert N, Morel F, Le Bris MJ, Basinko A, De Braekeleer M. ETV6 fusion genes in hematological malignancies: a review. Leuk Res 2012; 36:945-61. [PMID: 22578774 DOI: 10.1016/j.leukres.2012.04.010] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/13/2012] [Accepted: 04/16/2012] [Indexed: 01/01/2023]
Abstract
Translocations involving band 12p13 are one of the most commonly observed chromosomal abnormalities in human leukemia and myelodysplastic syndrome. Their frequently result in rearrangements of the ETV6 gene. At present, 48 chromosomal bands have been identified to be involved in ETV6 translocations, insertions or inversions and 30 ETV6 partner genes have been molecularly characterized. The ETV6 protein contains two major domains, the HLH (helix-loop-helix) domain, encoded by exons 3 and 4, and the ETS domain, encoded by exons 6 through 8, with in between the internal domain encoded by exon 5. ETV6 is a strong transcriptional repressor, acting through its HLH and internal domains. Five potential mechanisms of ETV6-mediated leukemogenesis have been identified: constitutive activation of the kinase activity of the partner protein, modification of the original functions of a transcription factor, loss of function of the fusion gene, affecting ETV6 and the partner gene, activation of a proto-oncogene in the vicinity of a chromosomal translocation and dominant negative effect of the fusion protein over transcriptional repression mediated by wild-type ETV6. It is likely that ETV6 is frequently involved in leukemogenesis because of the large number of partners with which it can rearrange and the several pathogenic mechanisms by which it can lead to cell transformation.
Collapse
Affiliation(s)
- Etienne De Braekeleer
- Laboratoire d'Histologie, Embryologie et Cytogénétique, Université de Brest, Brest, France
| | | | | | | | | | | |
Collapse
|
30
|
Aggarwal R, Lu J, Kanji S, Joseph M, Das M, Noble GJ, McMichael BK, Agarwal S, Hart RT, Sun Z, Lee BS, Rosol TJ, Jackson R, Mao HQ, Pompili VJ, Das H. Human umbilical cord blood-derived CD34+ cells reverse osteoporosis in NOD/SCID mice by altering osteoblastic and osteoclastic activities. PLoS One 2012; 7:e39365. [PMID: 22724005 PMCID: PMC3377665 DOI: 10.1371/journal.pone.0039365] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/23/2012] [Indexed: 12/18/2022] Open
Abstract
Background Osteoporosis is a bone disorder associated with loss of bone mineral density and micro architecture. A balance of osteoblasts and osteoclasts activities maintains bone homeostasis. Increased bone loss due to increased osteoclast and decreased osteoblast activities is considered as an underlying cause of osteoporosis. Methods and Findings The cures for osteoporosis are limited, consequently the potential of CD34+ cell therapies is currently being considered. We developed a nanofiber-based expansion technology to obtain adequate numbers of CD34+ cells isolated from human umbilical cord blood, for therapeutic applications. Herein, we show that CD34+ cells could be differentiated into osteoblastic lineage, in vitro. Systemically delivered CD34+ cells home to the bone marrow and significantly improve bone deposition, bone mineral density and bone micro-architecture in osteoporotic mice. The elevated levels of osteocalcin, IL-10, GM-CSF, and decreased levels of MCP-1 in serum parallel the improvements in bone micro-architecture. Furthermore, CD34+ cells improved osteoblast activity and concurrently impaired osteoclast differentiation, maturation and functionality. Conclusions These findings demonstrate a novel approach utilizing nanofiber-expanded CD34+ cells as a therapeutic application for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Reeva Aggarwal
- Cardiovascular Stem Cell Research Laboratory, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio, United States of America
| | - Jingwei Lu
- Cardiovascular Stem Cell Research Laboratory, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio, United States of America
| | - Suman Kanji
- Cardiovascular Stem Cell Research Laboratory, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio, United States of America
| | - Matthew Joseph
- Cardiovascular Stem Cell Research Laboratory, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio, United States of America
| | - Manjusri Das
- Cardiovascular Stem Cell Research Laboratory, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio, United States of America
| | - Garrett J. Noble
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Brooke K. McMichael
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Sudha Agarwal
- Division of Oral Biology, Department of Orthopedics, College of Dentistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Richard T. Hart
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Zongyang Sun
- Division of Oral Biology, Department of Orthopedics, College of Dentistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Beth S. Lee
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Thomas J. Rosol
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Rebecca Jackson
- Division of Endocrinology, Diabetes and Metabolism, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Hai-Quan Mao
- Department of Materials Science and Engineering, John's Hopkins University, Baltimore, Maryland, United States of America
| | - Vincent J. Pompili
- Cardiovascular Stem Cell Research Laboratory, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio, United States of America
| | - Hiranmoy Das
- Cardiovascular Stem Cell Research Laboratory, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
31
|
Bernhardsson S, Mitarai N, Sneppen K. Protein localization with flexible DNA or RNA. PLoS One 2012; 7:e29218. [PMID: 22347995 PMCID: PMC3277508 DOI: 10.1371/journal.pone.0029218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 11/22/2011] [Indexed: 11/24/2022] Open
Abstract
Localization of activity is ubiquitous in life, and also within sub-cellular compartments. Localization provides potential advantages as different proteins involved in the same cellular process may supplement each other on a fast timescale. It might also prevent proteins from being active in other regions of the cell. However localization is at odds with the spreading of unbound molecules by diffusion. We model the cost and gain for specific enzyme activity using localization strategies based on binding to sites of intermediate specificity. While such bindings in themselves decrease the activity of the protein on its target site, they may increase protein activity if stochastic motion allows the acting protein to touch both the intermediate binding site and the specific site simultaneously. We discuss this strategy in view of recent suggestions on long non-coding RNA as a facilitator of localized activity of chromatin modifiers.
Collapse
|
32
|
Puglisi R, Maccari I, Pipolo S, Conrad M, Mangia F, Boitani C. The nuclear form of glutathione peroxidase 4 is associated with sperm nuclear matrix and is required for proper paternal chromatin decondensation at fertilization. J Cell Physiol 2012; 227:1420-7. [DOI: 10.1002/jcp.22857] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
De Braekeleer E, Douet-Guilbert N, Morel F, Le Bris MJ, Férec C, De Braekeleer M. RUNX1 translocations and fusion genes in malignant hemopathies. Future Oncol 2011; 7:77-91. [PMID: 21174539 DOI: 10.2217/fon.10.158] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The RUNX1 gene, located in chromosome 21q22, is crucial for the establishment of definitive hematopoiesis and the generation of hematopoietic stem cells in the embryo. It contains a 'Runt homology domain' as well as transcription activation and inhibition domains. RUNX1 can act as activator or repressor of target gene expression depending upon the large number of transcription factors, coactivators and corepressors that interact with it. Translocations involving chromosomal band 21q22 are regularly identified in leukemia patients. Most of them are associated with a rearrangement of RUNX1. Indeed, at present, 55 partner chromosomal bands have been described but the partner gene has solely been identified in 21 translocations at the molecular level. All the translocations that retain Runt homology domains but remove the transcription activation domain have a leukemogenic effect by acting as dominant negative inhibitors of wild-type RUNX1 in transcription activation.
Collapse
|
34
|
Levantini E, Lee S, Radomska HS, Hetherington CJ, Alberich-Jorda M, Amabile G, Zhang P, Gonzalez DA, Zhang J, Basseres DS, Wilson NK, Koschmieder S, Huang G, Zhang DE, Ebralidze AK, Bonifer C, Okuno Y, Gottgens B, Tenen DG. RUNX1 regulates the CD34 gene in haematopoietic stem cells by mediating interactions with a distal regulatory element. EMBO J 2011; 30:4059-70. [PMID: 21873977 DOI: 10.1038/emboj.2011.285] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 07/19/2011] [Indexed: 12/22/2022] Open
Abstract
The transcription factor RUNX1 is essential to establish the haematopoietic gene expression programme; however, the mechanism of how it activates transcription of haematopoietic stem cell (HSC) genes is still elusive. Here, we obtained novel insights into RUNX1 function by studying regulation of the human CD34 gene, which is expressed in HSCs. Using transgenic mice carrying human CD34 PAC constructs, we identified a novel downstream regulatory element (DRE), which is bound by RUNX1 and is necessary for human CD34 expression in long-term (LT)-HSCs. Conditional deletion of Runx1 in mice harbouring human CD34 promoter-DRE constructs abrogates human CD34 expression. We demonstrate by chromosome conformation capture assays in LT-HSCs that the DRE physically interacts with the human CD34 promoter. Targeted mutagenesis of RUNX binding sites leads to perturbation of this interaction and decreased human CD34 expression in LT-HSCs. Overall, our in vivo data provide novel evidence about the role of RUNX1 in mediating interactions between distal and proximal elements of the HSC gene CD34.
Collapse
Affiliation(s)
- Elena Levantini
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Center for Life Science, Boston, MA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Pockwinse SM, Kota KP, Quaresma AJC, Imbalzano AN, Lian JB, van Wijnen AJ, Stein JL, Stein GS, Nickerson JA. Live cell imaging of the cancer-related transcription factor RUNX2 during mitotic progression. J Cell Physiol 2011; 226:1383-9. [PMID: 20945391 DOI: 10.1002/jcp.22465] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The nuclear matrix bound transcription factor RUNX2 is a lineage-specific developmental regulator that is linked to cancer. We have previously shown that RUNX2 controls transcription of both RNA polymerase II genes and RNA polymerase I-dependent ribosomal RNA genes. RUNX2 is epigenetically retained through mitosis on both classes of target genes in condensed chromosomes. We have used fluorescence recovery after photobleaching to measure the relative binding kinetics of enhanced green fluorescent protein (EGFP)-RUNX2 at transcription sites in the nucleus and nucleoli during interphase, as well as on mitotic chromosomes. RUNX2 becomes more strongly bound as cells go from interphase through prophase, with a doubling of the most tightly bound "immobile fraction." RUNX2 exchange then becomes much more facile during metaphase to telophase. During interphase the less tightly bound pool of RUNX2 exchanges more slowly at nucleoli than at subnuclear foci, and the non-exchanging immobile fraction is greater in nucleoli. These results are consistent with a model in which the molecular mechanism of RUNX2 binding is different at protein-coding and ribosomal RNA genes. The binding interactions of RUNX2 change as cells go through mitosis, with binding affinity increasing as chromosomes condense and then decreasing through subsequent mitotic phases. The increased binding affinity of RUNX2 at mitotic chromosomes may reflect its epigenetic function in "bookmarking" of target genes in cancer cells.
Collapse
Affiliation(s)
- Shirwin M Pockwinse
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Stein GS, Stein JL, van Wijnen AJ, Lian JB, Zaidi SK, Nickerson JA, Montecino MA, Young DW. An architectural genetic and epigenetic perspective. Integr Biol (Camb) 2011; 3:297-303. [PMID: 21184003 PMCID: PMC3251170 DOI: 10.1039/c0ib00103a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The organization and intranuclear localization of nucleic acids and regulatory proteins contribute to both genetic and epigenetic parameters of biological control. Regulatory machinery in the cell nucleus is functionally compartmentalized in microenvironments (focally organized sites where regulatory factors reside) that provide threshold levels of factors required for transcription, replication, repair and cell survival. The common denominator for nuclear organization of regulatory machinery is that each component of control is architecturally configured and every component of control is embedded in architecturally organized networks that provide an infrastructure for integration and transduction of regulatory signals. It is realistic to anticipate emerging mechanisms that account for the organization and assembly of regulatory complexes within the cell nucleus can provide novel options for cancer diagnosis and therapy with maximal specificity, reduced toxicity and minimal off-target complications.
Collapse
Affiliation(s)
- Gary S Stein
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Zaidi SK, Young DW, Montecino M, van Wijnen AJ, Stein JL, Lian JB, Stein GS. Bookmarking the genome: maintenance of epigenetic information. J Biol Chem 2011; 286:18355-61. [PMID: 21454629 DOI: 10.1074/jbc.r110.197061] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitotic inheritance of gene function is obligatory to sustain biological control. Emerging evidence suggests that epigenetic mechanisms are linked to transmission of cell fate, lineage commitment, and maintenance of cellular phenotype in progeny cells. Mechanisms of epigenetic memory include gene silencing by DNA methylation, transcriptional regulation by histone modifications, regulation of gene expression by noncoding small RNA molecules, and retention of regulatory machinery on target gene loci for activation and repression. We will focus on the regulatory implications of epigenetic memory for physiological control and for the onset and progression of disease.
Collapse
Affiliation(s)
- Sayyed K Zaidi
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Bakshi R, Hassan MQ, Pratap J, Lian JB, Montecino MA, van Wijnen AJ, Stein JL, Imbalzano AN, Stein GS. The human SWI/SNF complex associates with RUNX1 to control transcription of hematopoietic target genes. J Cell Physiol 2010; 225:569-76. [PMID: 20506188 DOI: 10.1002/jcp.22240] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The acute myeloid leukemia 1 (AML1, RUNX1) transcription factor is a key regulator of hematopoietic differentiation that forms multi-protein complexes with co-regulatory proteins. These complexes are assembled at target gene promoters in nuclear microenvironments to mediate phenotypic gene expression and chromatin-related epigenetic modifications. Here, immunofluorescence microscopy and biochemical assays are used to show that RUNX1 associates with the human ATP-dependent SWI/SNF chromatin remodeling complex. The SWI/SNF subunits BRG1 and INI1 bind in vivo to RUNX1 target gene promoters (e.g., GMCSF, IL3, MCSF-R, MIP, and p21). These interactions correlate with histone modifications characteristic of active chromatin, including acetylated H4 and dimethylated H3 lysine 4. Downregulation of RUNX1 by RNA interference diminishes the binding of BRG1 and INI1 at selected target genes. Taken together, our findings indicate that RUNX1 interacts with the human SWI/SNF complex to control hematopoietic-specific gene expression.
Collapse
Affiliation(s)
- Rachit Bakshi
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jeannette T, Olga L, Irene P. Cbfa1/Runx2 expression in an ossifying basal cell carcinoma of the eyelid. Arch Dermatol Res 2010; 302:695-700. [DOI: 10.1007/s00403-010-1067-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 06/17/2010] [Accepted: 06/22/2010] [Indexed: 10/19/2022]
|
40
|
Mitotic bookmarking of genes: a novel dimension to epigenetic control. Nat Rev Genet 2010; 11:583-9. [PMID: 20628351 DOI: 10.1038/nrg2827] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulatory machinery is focally organized in the interphase nucleus. The information contained in these focal nuclear microenvironments must be inherited during cell division to sustain physiologically responsive gene expression in progeny cells. Recent results suggest that focal mitotic retention of phenotypic transcription factors at promoters together with histone modifications and DNA methylation--a mechanism collectively known as gene bookmarking--is a novel parameter of inherited epigenetic control that sustains cellular identity after mitosis. The epigenetic signatures imposed by bookmarking poise genes for activation or suppression following mitosis. We discuss the implications of phenotypic transcription factor retention on mitotic chromosomes in biological control and disease.
Collapse
|
41
|
Abstract
There are many significant morphological alterations of a nucleus of cancer cell that are detectable by light microscopy on routine staining. These changes are often associated with deranged cellular functions of cancer cell. It is difficult to understand the exact relationship between nuclear morphology and alteration of nuclear structural organization in cancer. Herein, the salient visual and subvisual morphological changes of cancer nuclei and their possible etiology and significance have been reviewed.
Collapse
Affiliation(s)
- Pranab Dey
- Department of Cytology, PGIMER, Chandigarh 160012, India.
| |
Collapse
|
42
|
Walrad PB, Hang S, Joseph GS, Salas J, Gergen JP. Distinct contributions of conserved modules to Runt transcription factor activity. Mol Biol Cell 2010; 21:2315-26. [PMID: 20462957 PMCID: PMC2893994 DOI: 10.1091/mbc.e09-11-0953] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
An investigation of the in vivo roles of conserved regions of the Drosophila Runt protein outside of the DNA-binding Runt domain reveals distinct requirements in different regulatory activities. The conserved VWRPY-containing C-terminus required for repression of only a subset of targets is also found to participate in activation of other targets. Runx proteins play vital roles in regulating transcription in numerous developmental pathways throughout the animal kingdom. Two Runx protein hallmarks are the DNA-binding Runt domain and a C-terminal VWRPY motif that mediates interaction with TLE/Gro corepressor proteins. A phylogenetic analysis of Runt, the founding Runx family member, identifies four distinct regions C-terminal to the Runt domain that are conserved in Drosophila and other insects. We used a series of previously described ectopic expression assays to investigate the functions of these different conserved regions in regulating gene expression during embryogenesis and in controlling axonal projections in the developing eye. The results indicate each conserved region is required for a different subset of activities and identify distinct regions that participate in the transcriptional activation and repression of the segmentation gene sloppy-paired-1 (slp1). Interestingly, the C-terminal VWRPY-containing region is not required for repression but instead plays a role in slp1 activation. Genetic experiments indicating that Groucho (Gro) does not participate in slp1 regulation further suggest that Runt's conserved C-terminus interacts with other factors to promote transcriptional activation. These results provide a foundation for further studies on the molecular interactions that contribute to the context-dependent properties of Runx proteins as developmental regulators.
Collapse
Affiliation(s)
- Pegine B Walrad
- Department of Biochemistry and Cell Biology and the Center for Developmental Genetics, Graduate Programs in Molecular and Cellular Biology and Biochemistry and Structural Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | | | | | | | |
Collapse
|
43
|
Dowdy CR, Xie R, Frederick D, Hussain S, Zaidi SK, Vradii D, Javed A, Li X, Jones SN, Lian JB, van Wijnen AJ, Stein JL, Stein GS. Definitive hematopoiesis requires Runx1 C-terminal-mediated subnuclear targeting and transactivation. Hum Mol Genet 2009; 19:1048-57. [PMID: 20035012 DOI: 10.1093/hmg/ddp568] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Runx1 is a key hematopoietic transcription factor required for definitive hematopoiesis and is a frequent target of leukemia-related chromosomal translocations. The resulting fusion proteins, while retaining DNA binding activity, display loss of subnuclear targeting and associated transactivation functions encoded by the C-terminus of the protein. To define the precise contribution of the Runx1 C-terminus in development and leukemia, we created a knock-in mouse with a C-terminal truncation by introducing a single nucleic acid substitution in the native Runx1 locus. This mutation (Runx1(Q307X)) models genetic lesions observed in patients with leukemia and myeloproliferative disorders. The Runx1(Q307X) homozygous mouse exhibits embryonic lethality at E12.5 due to central nervous system hemorrhages and a complete lack of hematopoietic stem cell function. While able to bind DNA, Runx1(Q307X) is unable to activate target genes, resulting in deregulation of various hematopoietic markers. Thus, we demonstrate that the subnuclear targeting and transcriptional regulatory activities of the Runx1 C-terminus are critical for hematopoietic development. We propose that compromising the C-terminal functions of Runx1 is a common mechanism for the pathological consequences of a variety of somatic mutations and Runx1-related leukemic fusion proteins observed in human patients.
Collapse
Affiliation(s)
- Christopher R Dowdy
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Vidaković M, Dinić S, Grdović N, Mihailović M, Uskoković A, Quesada P, Poznanović G. Regulation of rat haptoglobin gene expression is coordinated by the nuclear matrix. J Cell Biochem 2009; 107:1205-21. [PMID: 19521970 DOI: 10.1002/jcb.22225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Using computer stress-induced duplex destabilization (SIDD) analysis and binding experiments, we identified a S/MAR element (-599/-200 bp) (Hp-S/MAR) adjacent to the cis-element (-165/-56 bp) in the rat haptoglobin gene. We examined its functional interactions with the lamins and lamin-associated proteins in the basal state and during acute-phase (AP) response-induced increased transcription. Colocalization, electrophoretic mobility shift assay (EMSA), and re-electrophoresis of nucleoprotein complexes, South-Western and Western blot analysis and coimmunoprecipitation experiments revealed that the lamins, PARP-1, C/EBP beta, and Hp-S/MAR assembled higher order complexes through direct lamin-Hp-S/MAR and probably PARP-1-Hp-S/MAR interactions although C/EBP beta did not bind to the Hp-S/MAR but established direct interaction with PARP-1. The transition from constitutive to increased haptoglobin gene transcription during the AP response was associated with quantitative and qualitative changes in Hp-S/MAR-protein interactions, respectively, observed as increased association of the lamin(s) with the Hp-S/MAR and as the appearance of a 90 kDa Hp-S/MAR-binding protein. Also, during the AP response the contact between C/EBP beta and PARP-1 established in the basal state was lost. DNA chromatography with the haptoglobin cis-element and Western blot analysis suggests that PARP-1 was a coactivator during constitutive and elevated transcription. The results show that the lamin components of the nuclear matrix form a network of functional, dynamic protein-protein and protein-Hp-S/MAR associations with multiple partners, and underline the involvement of PARP-1 in the regulation of haptoglobin gene transcription. We concluded that the interplay of these interactions fine tunes haptoglobin gene expression to meet the changing requirements of liver cells.
Collapse
Affiliation(s)
- Melita Vidaković
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia.
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Inflammation is a multicomponent response to tissue stress, injury and infection, and a crucial point of its control is at the level of gene transcription. The inducible inflammatory gene expression programme--such as that triggered by Toll-like receptor signalling in macrophages--is comprised of several coordinately regulated sets of genes that encode key functional programmes; these are controlled by three classes of transcription factors, as well as various transcriptional co-regulators and chromatin modifications. Here, we discuss the mechanisms of and the emerging principles in the transcriptional regulation of inflammatory responses in diverse physiological settings.
Collapse
|
46
|
Stein GS, Stein JL, Van Wijnen AJ, Lian JB, Montecino M, Croce CM, Choi JY, Ali SA, Pande S, Hassan MQ, Zaidi SK, Young DW. Transcription factor-mediated epigenetic regulation of cell growth and phenotype for biological control and cancer. ACTA ACUST UNITED AC 2009; 50:160-7. [PMID: 19896493 DOI: 10.1016/j.advenzreg.2009.10.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gary S Stein
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School and Cancer Center, Worcester, MA 01655, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Uchino R. Domain analyses of the Runx1 transcription factor responsible for modulating T-cell receptor-beta/CD4 and interleukin-4/interferon-gamma expression in CD4(+) peripheral T lymphocytes. Immunology 2009; 128:16-24. [PMID: 19689732 DOI: 10.1111/j.1365-2567.2009.03042.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Runx1 transcription factor is one of the master regulators of T-lymphocyte differentiation. There have been several reports trying to assign a domain within the Runx1 protein that is responsible for gene expression in thymocytes. The Runx1 domains involved in regulating the expression of several genes in peripheral CD4(+) T cells were analysed. It was observed that Runx1 over-expression enhanced the surface expression of CD4 and CD69 molecules via its activation domain and VWRPY domain, and decreased that of T-cell receptor-beta via its activation domain. Runx1 over-expression enhanced interferon-gamma expression via its activation and VWRPY domains, and abolished interleukin-4 expression through its activation domain. Transduction of Runx1 did not down-regulate CD4 expression until 72 hr of culture, but the repression of CD4 expression became evident after 96 hr. The main region responsible for repressing CD4 expression was the inhibitory domain of Runx1. Taken together, these results lead to a proposal that the regions in Runx1 responsible for modulating gene expression are distinct in thymocytes and in peripheral CD4(+) T cells.
Collapse
Affiliation(s)
- Ryuji Uchino
- Department of Molecular Immunology, Institute of Development, Aging and Cancer, Graduate School of Life Science, Tohoku University, Sendai, Japan.
| |
Collapse
|
48
|
Zaidi SK, Dowdy CR, van Wijnen AJ, Lian JB, Raza A, Stein JL, Croce CM, Stein GS. Altered Runx1 subnuclear targeting enhances myeloid cell proliferation and blocks differentiation by activating a miR-24/MKP-7/MAPK network. Cancer Res 2009; 69:8249-55. [PMID: 19826043 DOI: 10.1158/0008-5472.can-09-1567] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Disruption of Runx1/AML1 subnuclear localization, either by a single amino acid substitution or by a chromosomal translocation [e.g., t(8;21)], is linked to the etiology of acute myeloid leukemia (AML). Here, we show that this defect induces a select set of micro-RNAs (miR) in myeloid progenitor cells and AML patients with t(8;21). Both Runx1 and the t(8;21)-encoded AML1-ETO occupy the miR-24-23-27 locus and reciprocally control miR-24 transcription. miR-24 directly downregulates mitogen-activated protein kinase (MAPK) phosphatase-7 and enhances phosphorylation of both c-jun-NH(2)-kinase and p38 kinases. Expression of miR-24 stimulates myeloid cell growth, renders proliferation independent of interleukin-3, and blocks granulocytic differentiation. Thus, compromised Runx1 function induces a miR-dependent mechanism that, through MAPK signaling, enhances myeloid proliferation but blocks differentiation--key steps that contribute to leukemia.
Collapse
Affiliation(s)
- Sayyed K Zaidi
- Department of Cell Biology, University of Massachusetts Medical School and Cancer Center, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Jonason JH, Xiao G, Zhang M, Xing L, Chen D. Post-translational Regulation of Runx2 in Bone and Cartilage. J Dent Res 2009; 88:693-703. [PMID: 19734454 DOI: 10.1177/0022034509341629] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The Runx2 gene product is essential for mammalian bone development. In humans, Runx2 haploinsufficiency results in cleidocranial dysplasia, a skeletal disorder characterized by bone and dental abnormalities. At the molecular level, Runx2 acts as a transcription factor for genes expressed in hypertrophic chondrocytes and osteoblasts. Runx2 gene expression and protein function are regulated on multiple levels, including transcription, translation, and post-translational modification. Furthermore, Runx2 is involved in numerous protein-protein interactions, most of which either activate or repress transcription of target genes. In this review, we discuss expression of Runx2 during development as well as the post-translational regulation of Runx2 through modification by phosphorylation, ubiquitination, and acetylation.
Collapse
Affiliation(s)
- J H Jonason
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester School of Medicine, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
50
|
Tuomela S, Rautajoki KJ, Moulder R, Nyman TA, Lahesmaa R. Identification of novel Stat6 regulated proteins in IL-4-treated mouse lymphocytes. Proteomics 2009; 9:1087-98. [PMID: 19180534 DOI: 10.1002/pmic.200800161] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Interleukin 4 (IL-4) has an indispensable role in the differentiation of naive T helper (Th) cells toward the Th2 phenotype and induction of B cells to produce the IgE class of Igs. By regulating these two cell types, IL-4 has a pre-eminent role in regulation of allergic inflammation. IL-4-mediated regulation of T and B cell functions is largely transmitted through signal transducer and activator of transcription 6 (Stat6). In this study, we have used metabolic labeling and 2-D electrophoresis to detect differences in the proteomes of IL-4 stimulated spleen mononuclear cells of Stat6-/- and wild type mice and MS/MS for protein identification. With this methodology, we identified 49 unique proteins from 21 protein spots to be differentially expressed. Interestingly, in Stat6-/- CD4(+) cells the expression of isoform 2 of core binding factor b (CBFb2) was enhanced. CBFb is a non-DNA binding cofactor for the Runx family of transcription factors, which have been implicated in regulation of Th cell differentiation. We also found cellular nucleic acid protein (CNBP) to be downregulated in Stat6-/- cells. None of the proteins identified in this study have previously been reported to be regulated via Stat6. The results highlight the importance of exploiting proteomics tools to complement the studies on Stat6 target genes identified through transcriptional profiling.
Collapse
Affiliation(s)
- Soile Tuomela
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, Turku, Finland
| | | | | | | | | |
Collapse
|