1
|
Bi J, Guo W, Ji P, Li S, Wang P, Li Q, Xie Y. The spectrum of diseases, genetic landscape and new mutation sites of hereditary cystic kidney disease. Clin Kidney J 2025; 18:sfaf064. [PMID: 40236513 PMCID: PMC11997664 DOI: 10.1093/ckj/sfaf064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Indexed: 04/17/2025] Open
Abstract
Background Cystic kidney disease is common. Beyond autosomal dominant polycystic kidney disease (ADPKD), knowledge of other hereditary forms of cystic kidney disease remains limited. This study aimed to retrospectively analyse 702 patients with multiple renal cysts from the Chinese PLA General Hospital (September 2015-December 2023). Methods Patients suspected of having hereditary cystic kidney disease underwent next-generation sequencing (NGS) and subsequent bioinformatics analysis. Variations were assessed for pathogenicity in accordance with the American College of Medical Genetics and Genomics (ACMG) guidelines. Moreover, the ClinVar and Mastermind databases were used to identify novel mutation sites. Statistical analysis was performed using SPSS 25.0 software. Results Of 702 patients, 96 (13.7%) lacked gene mutations associated with cystic kidney disease. In contrast, 606 patients (86.3%) were found to have gene mutations associated with renal cyst phenotypes, involving 23 unique mutated genes. Among these, mutations in 158 patients were categorized as variants of uncertain significance. The remaining 448 patients harboured mutations predicted by the ACMG guidelines to be pathogenic or likely pathogenic, enabling a diagnosis of hereditary cystic kidney disease. These mutations were linked to seven diseases and 10 genes. The most common was ADPKD [434 cases (96.9%)], followed by autosomal dominant tubulointerstitial kidney disease [ADTKD; six cases (1.3%)], autosomal recessive polycystic kidney disease [ARPKD; five cases (1.1%)] and tuberous sclerosis complex [two cases (0.4%)]. One case each was found for autosomal dominant polycystic liver disease, COL4A1-related disease and IFT140-related disease. The mutated genes included PKD1, PKD2, GANAB, HNF1B, REN, PKHD1, ALG8, IFT140, COL4A1 and TSC2. Moreover, 63 novel pathogenic or likely pathogenic variants were identified. Conclusion In this study we identified 23 mutated genes linked to renal cyst phenotypes, 10 of which had pathogenic or likely pathogenic variants. These findings facilitated the diagnosis of seven hereditary cystic kidney diseases, including ADPKD, ADTKD, ARPKD and others. Furthermore, 63 novel pathogenic or likely pathogenic variants were identified.
Collapse
Affiliation(s)
- Jingru Bi
- School of Medicine, Nankai University, Tianjin, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Medical Devices and Integrated Traditional Chinese and Western Drug Development for Severe Kidney Diseases, Beijing Key Laboratory of Digital Intelligent TCM for the Preventionand Treatment of Pan-vascular Diseases, Key Disciplines of National Administration of Traditional Chinese Medicine (zyyzdxk-2023310), Beijing, China
| | - Wenkai Guo
- School of Medicine, Nankai University, Tianjin, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Medical Devices and Integrated Traditional Chinese and Western Drug Development for Severe Kidney Diseases, Beijing Key Laboratory of Digital Intelligent TCM for the Preventionand Treatment of Pan-vascular Diseases, Key Disciplines of National Administration of Traditional Chinese Medicine (zyyzdxk-2023310), Beijing, China
| | - Pengcheng Ji
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Medical Devices and Integrated Traditional Chinese and Western Drug Development for Severe Kidney Diseases, Beijing Key Laboratory of Digital Intelligent TCM for the Preventionand Treatment of Pan-vascular Diseases, Key Disciplines of National Administration of Traditional Chinese Medicine (zyyzdxk-2023310), Beijing, China
| | - Shuang Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Medical Devices and Integrated Traditional Chinese and Western Drug Development for Severe Kidney Diseases, Beijing Key Laboratory of Digital Intelligent TCM for the Preventionand Treatment of Pan-vascular Diseases, Key Disciplines of National Administration of Traditional Chinese Medicine (zyyzdxk-2023310), Beijing, China
| | - Peng Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Medical Devices and Integrated Traditional Chinese and Western Drug Development for Severe Kidney Diseases, Beijing Key Laboratory of Digital Intelligent TCM for the Preventionand Treatment of Pan-vascular Diseases, Key Disciplines of National Administration of Traditional Chinese Medicine (zyyzdxk-2023310), Beijing, China
| | - Qinggang Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Medical Devices and Integrated Traditional Chinese and Western Drug Development for Severe Kidney Diseases, Beijing Key Laboratory of Digital Intelligent TCM for the Preventionand Treatment of Pan-vascular Diseases, Key Disciplines of National Administration of Traditional Chinese Medicine (zyyzdxk-2023310), Beijing, China
| | - Yuansheng Xie
- School of Medicine, Nankai University, Tianjin, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Medical Devices and Integrated Traditional Chinese and Western Drug Development for Severe Kidney Diseases, Beijing Key Laboratory of Digital Intelligent TCM for the Preventionand Treatment of Pan-vascular Diseases, Key Disciplines of National Administration of Traditional Chinese Medicine (zyyzdxk-2023310), Beijing, China
| |
Collapse
|
2
|
Itabashi T, Hosoba K, Morita T, Kimura S, Yamaoka K, Hirosawa M, Kobayashi D, Kishi H, Kume K, Itoh H, Kawakami H, Hashimoto K, Yamamoto T, Miyamoto T. Cholesterol ensures ciliary polycystin-2 localization to prevent polycystic kidney disease. Life Sci Alliance 2025; 8:e202403063. [PMID: 39900437 PMCID: PMC11791027 DOI: 10.26508/lsa.202403063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/05/2025] Open
Abstract
The plasma membrane covering the primary cilium has a diverse accumulation of receptors and channels. To ensure the sensor function of the cilia, the ciliary membrane has higher cholesterol content than other cell membrane regions. A peroxisomal biogenesis disorder, Zellweger syndrome, characterized by polycystic kidney, is associated with a reduced level of ciliary cholesterol in cells. However, the etiological mechanism by which ciliary cholesterol lowering causes polycystic kidney disease remains unclear. Here, we demonstrated that lowering ciliary cholesterol by either pharmacological treatment or genetic depletion of peroxisomes impairs the localization of a ciliary ion channel polycystin-2. We also generated cultured renal medullary cells and mice carrying a missense variant in the cholesterol-binding site of polycystin-2 detected in the patient database of autosomal dominant polycystic kidney disease. This missense protein showed normal channel activity but decreased localization to the ciliary membrane. The homozygous mice exhibited embryonic lethality and the ciliopathy spectrum conditions of situs inversus and polycystic kidney. Our results suggest that cholesterol controls the ciliary localization of polycystin-2 to prevent polycystic kidney disease.
Collapse
Affiliation(s)
- Takeshi Itabashi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
- Division of Advanced Genome Editing Therapy, Research Institute for Cell Design Medical Science, Yamaguchi University, Yamaguchi, Japan
| | - Kosuke Hosoba
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Program of Mathematical and Life Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Tomoka Morita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
- Division of Advanced Genome Editing Therapy, Research Institute for Cell Design Medical Science, Yamaguchi University, Yamaguchi, Japan
| | - Sotai Kimura
- Department of Molecular Pathology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
- Department of Anatomic Pathology, Hirosaki University Hospital, Aomori, Japan
| | - Kenji Yamaoka
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Moe Hirosawa
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
- Division of Advanced Genome Editing Therapy, Research Institute for Cell Design Medical Science, Yamaguchi University, Yamaguchi, Japan
| | - Daigo Kobayashi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Hiroko Kishi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Shimane, Japan
| | - Kodai Kume
- Department of Molecular Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Itoh
- Department of Molecular Pathology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Hideshi Kawakami
- Department of Molecular Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Kouichi Hashimoto
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Yamamoto
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Program of Mathematical and Life Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Tatsuo Miyamoto
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
- Division of Advanced Genome Editing Therapy, Research Institute for Cell Design Medical Science, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
3
|
Kleene SJ. Hyperosmolality activates polycystin-2 and TRPM4 in renal primary cilium. Pflugers Arch 2025; 477:479-494. [PMID: 39688695 DOI: 10.1007/s00424-024-03050-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/09/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a debilitating disease characterized by renal cysts. It arises from mutations in proteins expressed in part in the primary cilia of renal epithelial cells. One of these, polycystin-2 (PC2), is an ion-conducting channel. To date, ion channels in the cilium have only been characterized in standard normosmolar external solutions, but the osmolality of the renal filtrate bathing the cilia varies widely. Here I report that urine, which better represents the filtrate, activates a large cation-conducting current in the cilia. With defined external solutions, hyperosmolality through addition of urea, NaCl, or D-mannitol activates a similar current. Most but not all of this current is conducted through TRPM4 channels. It is greatly reduced by internal MgATP or 9-phenanthrol, which inhibit TRPM4, or by shRNA knockdown of TRPM4. However, part of the current activated by urea conducts Ca2+ through channels that remain to be identified. External hyperosmolality also greatly increases the activity of ciliary PC2 channels; this is the first physiological stimulus identified for these channels. Possibilities are discussed for the mechanisms of channel activation and the roles for these activities in regulatory volume increase and cystogenesis.
Collapse
Affiliation(s)
- Steven J Kleene
- Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
4
|
Mbiakop UC, Jaggar JH. Vascular polycystin proteins in health and disease. Microcirculation 2024; 31:e12834. [PMID: 37823335 PMCID: PMC11009377 DOI: 10.1111/micc.12834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023]
Abstract
PKD1 (polycystin 1) and PKD2 (polycystin 2) are expressed in a variety of different cell types, including arterial smooth muscle and endothelial cells. PKD1 is a transmembrane domain protein with a large extracellular N-terminus that is proposed to act as a mechanosensor and receptor. PKD2 is a member of the transient receptor potential (TRP) channel superfamily which is also termed TRPP1. Mutations in the genes which encode PKD1 and PKD2 lead to autosomal dominant polycystic kidney disease (ADPKD). ADPKD is one of the most prevalent monogenic disorders in humans and is associated with extrarenal and vascular complications, including hypertension. Recent studies have uncovered mechanisms of activation and physiological functions of PKD1 and PKD2 in arterial smooth muscle and endothelial cells. It has also been found that PKD function is altered in the vasculature during ADPKD and hypertension. We will summarize this work and discuss future possibilities for this area of research.
Collapse
Affiliation(s)
- Ulrich C. Mbiakop
- Department of Physiology, University of Tennessee Health Science Center, Memphis TN 38163
| | - Jonathan H. Jaggar
- Department of Physiology, University of Tennessee Health Science Center, Memphis TN 38163
| |
Collapse
|
5
|
Wang Z, Chen M, Su Q, Morais TDC, Wang Y, Nazginov E, Pillai AR, Qian F, Shi Y, Yu Y. Molecular and structural basis of the dual regulation of the polycystin-2 ion channel by small-molecule ligands. Proc Natl Acad Sci U S A 2024; 121:e2316230121. [PMID: 38483987 PMCID: PMC10962963 DOI: 10.1073/pnas.2316230121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
Mutations in the PKD2 gene, which encodes the polycystin-2 (PC2, also called TRPP2) protein, lead to autosomal dominant polycystic kidney disease (ADPKD). As a member of the transient receptor potential (TRP) channel superfamily, PC2 functions as a non-selective cation channel. The activation and regulation of the PC2 channel are largely unknown, and direct binding of small-molecule ligands to this channel has not been reported. In this work, we found that most known small-molecule agonists of the mucolipin TRP (TRPML) channels inhibit the activity of the PC2_F604P, a gain-of-function mutant of the PC2 channel. However, two of them, ML-SA1 and SF-51, have dual regulatory effects, with low concentration further activating PC2_F604P, and high concentration leading to inactivation of the channel. With two cryo-electron microscopy (cryo-EM) structures, a molecular docking model, and mutagenesis results, we identified two distinct binding sites of ML-SA1 in PC2_F604P that are responsible for activation and inactivation, respectively. These results provide structural and functional insights into how ligands regulate PC2 channel function through unusual mechanisms and may help design compounds that are more efficient and specific in regulating the PC2 channel and potentially also for ADPKD treatment.
Collapse
Affiliation(s)
- Zhifei Wang
- Department of Biological Sciences, St. John’s University, Queens, NY11375
| | - Mengying Chen
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang province310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang province310024, China
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Qiang Su
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang province310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang province310024, China
| | - Tiago D. C. Morais
- Department of Biological Sciences, St. John’s University, Queens, NY11375
| | - Yan Wang
- Department of Biological Sciences, St. John’s University, Queens, NY11375
| | - Elianna Nazginov
- Department of Biological Sciences, St. John’s University, Queens, NY11375
| | - Akhilraj R. Pillai
- Department of Biological Sciences, St. John’s University, Queens, NY11375
| | - Feng Qian
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD21201
| | - Yigong Shi
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang province310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang province310024, China
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Yong Yu
- Department of Biological Sciences, St. John’s University, Queens, NY11375
| |
Collapse
|
6
|
Righini M, Mancini R, Busutti M, Buscaroli A. Autosomal Dominant Polycystic Kidney Disease: Extrarenal Involvement. Int J Mol Sci 2024; 25:2554. [PMID: 38473800 DOI: 10.3390/ijms25052554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disorder, but kidneys are not the only organs involved in this systemic disorder. Individuals with the condition may display additional manifestations beyond the renal system, involving the liver, pancreas, and brain in the context of cystic manifestations, while involving the vascular system, gastrointestinal tract, bones, and cardiac valves in the context of non-cystic manifestations. Despite kidney involvement remaining the main feature of the disease, thanks to longer survival, early diagnosis, and better management of kidney-related problems, a new wave of complications must be faced by clinicians who treated patients with ADPKD. Involvement of the liver represents the most prevalent extrarenal manifestation and has growing importance in the symptom burden and quality of life. Vascular abnormalities are a key factor for patients' life expectancy and there is still debate whether to screen or not to screen all patients. Arterial hypertension is often the earliest onset symptom among ADPKD patients, leading to frequent cardiovascular complications. Although cardiac valvular abnormalities are a frequent complication, they rarely lead to relevant problems in the clinical history of polycystic patients. One of the newest relevant aspects concerns bone disorders that can exert a considerable influence on the clinical course of these patients. This review aims to provide the "state of the art" among the extrarenal manifestation of ADPKD.
Collapse
Affiliation(s)
- Matteo Righini
- Nephrology and Dialysis Unit, Santa Maria delle Croci Hospital, AUSL Romagna, 48121 Ravenna, Italy
- Nephrology, Dialysis and Transplantation Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Raul Mancini
- Nephrology, Dialysis and Transplantation Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Marco Busutti
- Nephrology, Dialysis and Transplantation Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Andrea Buscaroli
- Nephrology and Dialysis Unit, Santa Maria delle Croci Hospital, AUSL Romagna, 48121 Ravenna, Italy
| |
Collapse
|
7
|
Prosseda PP, Dannewitz Prosseda S, Tran M, Liton PB, Sun Y. Crosstalk between the mTOR pathway and primary cilia in human diseases. Curr Top Dev Biol 2023; 155:1-37. [PMID: 38043949 PMCID: PMC11227733 DOI: 10.1016/bs.ctdb.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Autophagy is a fundamental catabolic process whereby excessive or damaged cytoplasmic components are degraded through lysosomes to maintain cellular homeostasis. Studies of mTOR signaling have revealed that mTOR controls biomass generation and metabolism by modulating key cellular processes, including protein synthesis and autophagy. Primary cilia, the assembly of which depends on kinesin molecular motors, serve as sensory organelles and signaling platforms. Given these pathways' central role in maintaining cellular and physiological homeostasis, a connection between mTOR and primary cilia signaling is starting to emerge in a variety of diseases. In this review, we highlight recent advances in our understanding of the complex crosstalk between the mTOR pathway and cilia and discuss its function in the context of related diseases.
Collapse
Affiliation(s)
- Philipp P Prosseda
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, United States
| | | | - Matthew Tran
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Paloma B Liton
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, United States; Palo Alto Veterans Administration Medical Center, Palo Alto, CA, United States.
| |
Collapse
|
8
|
Wang Y, Wang Z, Pavel MA, Ng C, Kashyap P, Li B, Morais TDC, Ulloa GA, Yu Y. The diverse effects of pathogenic point mutations on ion channel activity of a gain-of-function polycystin-2. J Biol Chem 2023; 299:104674. [PMID: 37028763 PMCID: PMC10192930 DOI: 10.1016/j.jbc.2023.104674] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Autosomal dominant polycystic kidney disease is caused by mutations in PKD1 or PKD2 genes. The latter encodes polycystin-2 (PC2, also known as TRPP2), a member of the transient receptor potential ion channel family. Despite most pathogenic mutations in PKD2 being truncation variants, there are also many point mutations, which cause small changes in protein sequences but dramatic changes in the in vivo function of PC2. How these mutations affect PC2 ion channel function is largely unknown. In this study, we systematically tested the effects of 31 point mutations on the ion channel activity of a gain-of-function PC2 mutant, PC2_F604P, expressed in Xenopus oocytes. The results show that all mutations in the transmembrane domains and channel pore region, and most mutations in the extracellular tetragonal opening for polycystins domain, are critical for PC2_F604P channel function. In contrast, the other mutations in the tetragonal opening for polycystins domain and most mutations in the C-terminal tail cause mild or no effects on channel function as assessed in Xenopus oocytes. To understand the mechanism of these effects, we have discussed possible conformational consequences of these mutations based on the cryo-EM structures of PC2. The results help gain insight into the structure and function of the PC2 ion channel and the molecular mechanism of pathogenesis caused by these mutations.
Collapse
Affiliation(s)
- Yan Wang
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Zhifei Wang
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Mahmud Arif Pavel
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Courtney Ng
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Parul Kashyap
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Bin Li
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Tiago D C Morais
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Gabriella A Ulloa
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Yong Yu
- Department of Biological Sciences, St. John's University, Queens, New York, USA.
| |
Collapse
|
9
|
Zubidat D, Hanna C, Randhawa AK, Smith BH, Chedid M, Kaidbay DHN, Nardelli L, Mkhaimer YG, Neal RM, Madsen CD, Senum SR, Gregory AV, Kline TL, Zoghby ZM, Broski SM, Issa NS, Harris PC, Torres VE, Sfeir JG, Chebib FT. Bone health in autosomal dominant polycystic kidney disease (ADPKD) patients after kidney transplantation. Bone Rep 2023; 18:101655. [PMID: 36659900 PMCID: PMC9842864 DOI: 10.1016/j.bonr.2023.101655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
ADPKD is caused by pathogenic variants in PKD1 or PKD2, encoding polycystin-1 and -2 proteins. Polycystins are expressed in osteoblasts and chondrocytes in animal models, and loss of function is associated with low bone mineral density (BMD) and volume. However, it is unclear whether these variants impact bone strength in ADPKD patients. Here, we examined BMD in ADPKD after kidney transplantation (KTx). This retrospective observational study retrieved data from adult patients who received a KTx over the past 15 years. Patients with available dual-energy X-ray absorptiometry (DXA) of the hip and/or lumbar spine (LS) post-transplant were included. ADPKD patients (n = 340) were matched 1:1 by age (±2 years) at KTx and sex with non-diabetic non-ADPKD patients (n = 340). Patients with ADPKD had slightly higher BMD and T-scores at the right total hip (TH) as compared to non-ADPKD patients [BMD: 0.951 vs. 0.897, p < 0.001; T-score: -0.62 vs. -0.99, p < 0.001] and at left TH [BMD: 0.960 vs. 0.893, p < 0.001; T-score: -0.60 vs. -1.08, p < 0.001], respectively. Similar results were found at the right femoral neck (FN) between ADPKD and non-ADPKD [BMD: 0.887 vs. 0.848, p = 0.001; T-score: -1.20 vs. -1.41, p = 0.01] and at left FN [BMD: 0.885 vs. 0.840, p < 0.001; T-score: -1.16 vs. -1.46, p = 0.001]. At the LS level, ADPKD had a similar BMD and lower T-score compared to non-ADPKD [BMD: 1.120 vs. 1.126, p = 0.93; T-score: -0.66 vs. -0.23, p = 0.008]. After adjusting for preemptive KTx, ADPKD patients continued to have higher BMD T-scores in TH and FN. Our findings indicate that BMD by DXA is higher in patients with ADPKD compared to non-ADPKD patients after transplantation in sites where cortical but not trabecular bone is predominant. The clinical benefit of the preserved cortical bone BMD in patients with ADPKD needs to be explored in future studies.
Collapse
Affiliation(s)
- Dalia Zubidat
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Christian Hanna
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Pediatric Nephrology and Hypertension, Department of Pediatric Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Amarjyot K. Randhawa
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Byron H. Smith
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Maroun Chedid
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Daniel-Hasan N. Kaidbay
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Luca Nardelli
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yaman G. Mkhaimer
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Reem M. Neal
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Charles D. Madsen
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sarah R. Senum
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | - Ziad M. Zoghby
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Naim S. Issa
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Peter C. Harris
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Vicente E. Torres
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jad G. Sfeir
- Division of Endocrinology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Fouad T. Chebib
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Jacksonville, FL, USA
- Corresponding author at: 4500 San Pablo Rd S, Jacksonville, FL 32224, USA.
| |
Collapse
|
10
|
Liu X, Zhang R, Fatehi M, Wang Y, Long W, Tian R, Deng X, Weng Z, Xu Q, Light PE, Tang J, Chen XZ. Regulation of PKD2 channel function by TACAN. J Physiol 2023; 601:83-98. [PMID: 36420836 DOI: 10.1113/jp283895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022] Open
Abstract
Autosomal dominant polycystic kidney disease is caused by mutations in the membrane receptor PKD1 or the cation channel PKD2. TACAN (also termed TMEM120A), recently reported as an ion channel in neurons for mechanosensing and pain sensing, is also distributed in diverse non-neuronal tissues, such as kidney, heart and intestine, suggesting its involvement in other functions. In this study, we found that TACAN is in a complex with PKD2 in native renal cell lines. Using the two-electrode voltage clamp in Xenopus oocytes, we found that TACAN inhibits the channel activity of PKD2 gain-of-function mutant F604P. TACAN fragments containing the first and last transmembrane domains interacted with the PKD2 C- and N-terminal fragments, respectively. The TACAN N-terminus acted as a blocking peptide, and TACAN inhibited the function of PKD2 by the binding of PKD2 with TACAN. By patch clamping in mammalian cells, we found that TACAN inhibits both the single-channel conductance and the open probability of PKD2 and mutant F604P. PKD2 co-expressed with TACAN, but not PKD2 alone, exhibited pressure sensitivity. Furthermore, we found that TACAN aggravates PKD2-dependent tail curvature and pronephric cysts in larval zebrafish. In summary, this study revealed that TACAN acts as a PKD2 inhibitor and mediates mechanosensitivity of the PKD2-TACAN channel complex. KEY POINTS: TACAN inhibits the function of PKD2 in vitro and in vivo. TACAN N-terminal S1-containing fragment T160X interacts with the PKD2 C-terminal fragment N580-L700, and its C-terminal S6-containing fragment L296-D343 interacts with the PKD2 N-terminal A594X. TACAN inhibits the function of the PKD2 channel by physical interaction. The complex of PKD2 with TACAN, but not PKD2 alone, confers mechanosensitivity.
Collapse
Affiliation(s)
- Xiong Liu
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Rui Zhang
- National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, China
| | - Mohammad Fatehi
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Yifang Wang
- National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, China
| | - Wentong Long
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Rui Tian
- National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, China
| | - Xiaoling Deng
- National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, China
| | - Ziyi Weng
- National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, China
| | - Qinyi Xu
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Peter E Light
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jingfeng Tang
- National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, China
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
11
|
Maser RL, Calvet JP, Parnell SC. The GPCR properties of polycystin-1- A new paradigm. Front Mol Biosci 2022; 9:1035507. [PMID: 36406261 PMCID: PMC9672506 DOI: 10.3389/fmolb.2022.1035507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Polycystin-1 (PC1) is an 11-transmembrane (TM) domain-containing protein encoded by the PKD1 gene, the most frequently mutated gene leading to autosomal dominant polycystic kidney disease (ADPKD). This large (> 462 kDal) protein has a complex posttranslational maturation process, with over five proteolytic cleavages having been described, and is found at multiple cellular locations. The initial description of the binding and activation of heterotrimeric Gαi/o by the juxtamembrane region of the PC1 cytosolic C-terminal tail (C-tail) more than 20 years ago opened the door to investigations, and controversies, into PC1's potential function as a novel G protein-coupled receptor (GPCR). Subsequent biochemical and cellular-based assays supported an ability of the PC1 C-tail to bind numerous members of the Gα protein family and to either inhibit or activate G protein-dependent pathways involved in the regulation of ion channel activity, transcription factor activation, and apoptosis. More recent work has demonstrated an essential role for PC1-mediated G protein regulation in preventing kidney cyst development; however, the mechanisms by which PC1 regulates G protein activity continue to be discovered. Similarities between PC1 and the adhesion class of 7-TM GPCRs, most notably a conserved GPCR proteolysis site (GPS) before the first TM domain, which undergoes autocatalyzed proteolytic cleavage, suggest potential mechanisms for PC1-mediated regulation of G protein signaling. This article reviews the evidence supporting GPCR-like functions of PC1 and their relevance to cystic disease, discusses the involvement of GPS cleavage and potential ligands in regulating PC1 GPCR function, and explores potential connections between PC1 GPCR-like activity and regulation of the channel properties of the polycystin receptor-channel complex.
Collapse
Affiliation(s)
- Robin L. Maser
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Clinical Laboratory Sciences, University of Kansas Medical Center, Kansas City, KS, United States
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - James P. Calvet
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Stephen C. Parnell
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
12
|
Lakhia R, Ramalingam H, Chang CM, Cobo-Stark P, Biggers L, Flaten A, Alvarez J, Valencia T, Wallace DP, Lee EC, Patel V. PKD1 and PKD2 mRNA cis-inhibition drives polycystic kidney disease progression. Nat Commun 2022; 13:4765. [PMID: 35965273 PMCID: PMC9376183 DOI: 10.1038/s41467-022-32543-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/04/2022] [Indexed: 12/22/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), among the most common human genetic conditions and a frequent etiology of kidney failure, is primarily caused by heterozygous PKD1 mutations. Kidney cyst formation occurs when PKD1 dosage falls below a critical threshold. However, no framework exists to harness the remaining allele or reverse PKD1 decline. Here, we show that mRNAs produced by the noninactivated PKD1 allele are repressed via their 3'-UTR miR-17 binding element. Eliminating this motif (Pkd1∆17) improves mRNA stability, raises Polycystin-1 levels, and alleviates cyst growth in cellular, ex vivo, and mouse PKD models. Remarkably, Pkd2 is also inhibited via its 3'-UTR miR-17 motif, and Pkd2∆17-induced Polycystin-2 derepression retards cyst growth in Pkd1-mutant models. Moreover, acutely blocking Pkd1/2 cis-inhibition, including after cyst onset, attenuates murine PKD. Finally, modeling PKD1∆17 or PKD2∆17 alleles in patient-derived primary ADPKD cultures leads to smaller cysts, reduced proliferation, lower pCreb1 expression, and improved mitochondrial membrane potential. Thus, evading 3'-UTR cis-interference and enhancing PKD1/2 mRNA translation is a potentially mutation-agnostic ADPKD-arresting approach.
Collapse
Affiliation(s)
- Ronak Lakhia
- Department of Internal Medicine, Nephrology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Harini Ramalingam
- Department of Internal Medicine, Nephrology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Chun-Mien Chang
- Department of Internal Medicine, Nephrology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Patricia Cobo-Stark
- Department of Internal Medicine, Nephrology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Laurence Biggers
- Department of Internal Medicine, Nephrology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Andrea Flaten
- Department of Internal Medicine, Nephrology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jesus Alvarez
- Department of Internal Medicine, Nephrology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | - Darren P Wallace
- Department of Internal Medicine and the Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Edmund C Lee
- Regulus Therapeutics Inc., San Diego, CA, 92121, USA
| | - Vishal Patel
- Department of Internal Medicine, Nephrology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
13
|
Restoration of atypical protein kinase C ζ function in autosomal dominant polycystic kidney disease ameliorates disease progression. Proc Natl Acad Sci U S A 2022; 119:e2121267119. [PMID: 35867829 PMCID: PMC9335328 DOI: 10.1073/pnas.2121267119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) affects more than 500,000 individuals in the United States alone. In most cases, ADPKD is caused by a loss-of-function mutation in the PKD1 gene, which encodes polycystin-1 (PC1). Previous studies reported that PC1 interacts with atypical protein kinase C (aPKC). Here we show that PC1 binds to the ζ isoform of aPKC (PKCζ) and identify two PKCζ phosphorylation sites on PC1's C-terminal tail. PKCζ expression is down-regulated in patients with ADPKD and orthologous and nonorthologous PKD mouse models. We find that the US Food and Drug Administration-approved drug FTY720 restores PKCζ expression in in vitro and in vivo models of polycystic kidney disease (PKD) and this correlates with ameliorated disease progression in multiple PKD mouse models. Importantly, we show that FTY720 treatment is less effective in PKCζ null versions of these PKD mouse models, elucidating a PKCζ-specific mechanism of action that includes inhibiting STAT3 activity and cyst-lining cell proliferation. Taken together, our results reveal that PKCζ down-regulation is a hallmark of PKD and that its stabilization by FTY720 may represent a therapeutic approach to the treat the disease.
Collapse
|
14
|
TRPP2 ion channels: The roles in various subcellular locations. Biochimie 2022; 201:116-127. [PMID: 35760123 DOI: 10.1016/j.biochi.2022.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022]
Abstract
TRPP2 (PC2, PKD2 or Polycytin-2), encoded by PKD2 gene, belongs to the nonselective cation channel TRP family. Recently, the three-dimensional structure of TRPP2 was constructed. TRPP2 mainly functions in three subcellular compartments: endoplasmic reticulum, plasma membrane and primary cilia. TRPP2 can act as a calcium-activated intracellular calcium release channel on the endoplasmic reticulum. TRPP2 also interacts with other Ca2+ release channels to regulate calcium release, like IP3R and RyR2. TRPP2 acts as an ion channel regulated by epidermal growth factor through activation of downstream factors in the plasma membrane. TRPP2 binding to TRPC1 in the plasma membrane or endoplasmic reticulum is associated with mechanosensitivity. In cilium, TRPP2 was found to combine with PKD1 and TRPV4 to form a complex related to mechanosensitivity. Because TRPP2 is involved in regulating intracellular ion concentration, TRPP2 mutations often lead to autosomal dominant polycystic kidney disease, which may also be associated with cardiovascular disease. In this paper, we review the molecular structure of TRPP2, the subcellular localization of TRPP2, the related functions and mechanisms of TRPP2 at different sites, and the diseases related to TRPP2.
Collapse
|
15
|
Cantero MDR, Cantiello HF. Polycystin-2 (TRPP2): Ion channel properties and regulation. Gene 2022; 827:146313. [PMID: 35314260 DOI: 10.1016/j.gene.2022.146313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/19/2022] [Accepted: 02/08/2022] [Indexed: 12/01/2022]
Abstract
Polycystin-2 (TRPP2, PKD2, PC2) is the product of the PKD2 gene, whose mutations cause Autosomal Dominant Polycystic Kidney Disease (ADPKD). PC2 belongs to the superfamily of TRP (Transient Receptor Potential) proteins that generally function as Ca2+-permeable nonselective cation channels implicated in Ca2+ signaling. PC2 localizes to various cell domains with distinct functions that likely depend on interactions with specific channel partners. Functions include receptor-operated, nonselective cation channel activity in the plasma membrane, intracellular Ca2+ release channel activity in the endoplasmic reticulum (ER), and mechanosensitive channel activity in the primary cilium of renal epithelial cells. Here we summarize our current understanding of the properties of PC2 and how other transmembrane and cytosolic proteins modulate this activity, providing functional diversity and selective regulatory mechanisms to its role in the control of cellular Ca2+ homeostasis.
Collapse
Affiliation(s)
- María Del Rocío Cantero
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), El Zanjón, Santiago del Estero 4206, Argentina.
| | - Horacio F Cantiello
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), El Zanjón, Santiago del Estero 4206, Argentina
| |
Collapse
|
16
|
MacKay CE, Floen M, Leo MD, Hasan R, Garrud TAC, Fernández-Peña C, Singh P, Malik KU, Jaggar JH. A plasma membrane-localized polycystin-1/polycystin-2 complex in endothelial cells elicits vasodilation. eLife 2022; 11:e74765. [PMID: 35229718 PMCID: PMC8933003 DOI: 10.7554/elife.74765] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/25/2022] [Indexed: 11/25/2022] Open
Abstract
Polycystin-1 (PC-1, PKD1), a receptor-like protein expressed by the Pkd1 gene, is present in a wide variety of cell types, but its cellular location, signaling mechanisms, and physiological functions are poorly understood. Here, by studying tamoxifen-inducible, endothelial cell (EC)-specific Pkd1 knockout (Pkd1 ecKO) mice, we show that flow activates PC-1-mediated, Ca2+-dependent cation currents in ECs. EC-specific PC-1 knockout attenuates flow-mediated arterial hyperpolarization and vasodilation. PC-1-dependent vasodilation occurs over the entire functional shear stress range and via the activation of endothelial nitric oxide synthase (eNOS) and intermediate (IK)- and small (SK)-conductance Ca2+-activated K+ channels. EC-specific PC-1 knockout increases systemic blood pressure without altering kidney anatomy. PC-1 coimmunoprecipitates with polycystin-2 (PC-2, PKD2), a TRP polycystin channel, and clusters of both proteins locate in nanoscale proximity in the EC plasma membrane. Knockout of either PC-1 or PC-2 (Pkd2 ecKO mice) abolishes surface clusters of both PC-1 and PC-2 in ECs. Single knockout of PC-1 or PC-2 or double knockout of PC-1 and PC-2 (Pkd1/Pkd2 ecKO mice) similarly attenuates flow-mediated vasodilation. Flow stimulates nonselective cation currents in ECs that are similarly inhibited by either PC-1 or PC-2 knockout or by interference peptides corresponding to the C-terminus coiled-coil domains present in PC-1 or PC-2. In summary, we show that PC-1 regulates arterial contractility through the formation of an interdependent signaling complex with PC-2 in ECs. Flow stimulates PC-1/PC-2 clusters in the EC plasma membrane, leading to eNOS, IK channel, and SK channel activation, vasodilation, and a reduction in blood pressure.
Collapse
Affiliation(s)
- Charles E MacKay
- Department of Physiology, University of Tennessee Health Science CenterMemphisUnited States
| | - Miranda Floen
- Department of Physiology, University of Tennessee Health Science CenterMemphisUnited States
| | - M Dennis Leo
- Department of Physiology, University of Tennessee Health Science CenterMemphisUnited States
| | - Raquibul Hasan
- Department of Physiology, University of Tennessee Health Science CenterMemphisUnited States
| | - Tessa AC Garrud
- Department of Physiology, University of Tennessee Health Science CenterMemphisUnited States
| | - Carlos Fernández-Peña
- Department of Physiology, University of Tennessee Health Science CenterMemphisUnited States
| | - Purnima Singh
- Department of Physiology, University of Tennessee Health Science CenterMemphisUnited States
| | - Kafait U Malik
- Department of Physiology, University of Tennessee Health Science CenterMemphisUnited States
| | - Jonathan H Jaggar
- Department of Physiology, University of Tennessee Health Science CenterMemphisUnited States
| |
Collapse
|
17
|
Valentine M, Van Houten J. Using Paramecium as a Model for Ciliopathies. Genes (Basel) 2021; 12:genes12101493. [PMID: 34680887 PMCID: PMC8535419 DOI: 10.3390/genes12101493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 01/26/2023] Open
Abstract
Paramecium has served as a model organism for the studies of many aspects of genetics and cell biology: non-Mendelian inheritance, genome duplication, genome rearrangements, and exocytosis, to name a few. However, the large number and patterning of cilia that cover its surface have inspired extraordinary ultrastructural work. Its swimming patterns inspired exquisite electrophysiological studies that led to a description of the bioelectric control of ciliary motion. A genetic dissection of swimming behavior moved the field toward the genes and gene products underlying ciliary function. With the advent of molecular technologies, it became clear that there was not only great conservation of ciliary structure but also of the genes coding for ciliary structure and function. It is this conservation and the legacy of past research that allow us to use Paramecium as a model for cilia and ciliary diseases called ciliopathies. However, there would be no compelling reason to study Paramecium as this model if there were no new insights into cilia and ciliopathies to be gained. In this review, we present studies that we believe will do this. For example, while the literature continues to state that immotile cilia are sensory and motile cilia are not, we will provide evidence that Paramecium cilia are clearly sensory. Other examples show that while a Paramecium protein is highly conserved it takes a different interacting partner or conducts a different ion than expected. Perhaps these exceptions will provoke new ideas about mammalian systems.
Collapse
Affiliation(s)
- Megan Valentine
- State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, NY 12901, USA;
| | - Judith Van Houten
- Department of Biology, University of Vermont, 120 Marsh Life Science, 109 Carrigan Drive, Burlington, VT 05405, USA
- Correspondence:
| |
Collapse
|
18
|
Zhao Y, McVeigh BM, Moiseenkova-Bell VY. Structural Pharmacology of TRP Channels. J Mol Biol 2021; 433:166914. [PMID: 33676926 PMCID: PMC8338738 DOI: 10.1016/j.jmb.2021.166914] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/15/2022]
Abstract
Transient receptor potential (TRP) ion channels are a super-family of ion channels that mediate transmembrane cation flux with polymodal activation, ranging from chemical to physical stimuli. Furthermore, due to their ubiquitous expression and role in human diseases, they serve as potential pharmacological targets. Advances in cryo-EM TRP channel structural biology has revealed general, as well as diverse, architectural elements and regulatory sites among TRP channel subfamilies. Here, we review the endogenous and pharmacological ligand-binding sites of TRP channels and their regulatory mechanisms.
Collapse
Affiliation(s)
- Yaxian Zhao
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bridget M McVeigh
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vera Y Moiseenkova-Bell
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
Daigneault BW, Miller DJ. Transient receptor potential polycystin-2 (TRPP2) regulates motility and intracellular calcium of porcine sperm. Andrologia 2021; 53:e14124. [PMID: 34042198 DOI: 10.1111/and.14124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/01/2021] [Accepted: 05/01/2021] [Indexed: 12/17/2022] Open
Abstract
Polycystin-2, also known as transient receptor potential polycystin-2 (TRPP2), is a membrane protein that regulates calcium homeostasis in renal epithelial cells. Mutations in PKD2, the gene encoding human TRPP2, cause enlarged cystic kidneys and contribute to polycystic kidney disease (PKD). Male Drosophila melanogaster with mutations in amo, the homolog of PKD2, display a mild decrease in sperm motility but have a drastic reduction in fertility due to failed sperm migration and storage within the female tract. Although TRPP2 has critical roles for Drosophila sperm function, the protein has not been described in mammalian sperm. Herein, we report the localization of TRPP2 in porcine sperm and identify functions of TRPP2 in regulating intracellular Ca2+ and motility. Porcine sperm treated with an antibody to TRPP2 in capacitating medium had reduced average path velocity and curvilinear velocity (p < .05). Blocking TRPP2 also increased sperm tail beat-cross frequency (p < .05). After 90 min of capacitation, sperm incubated with TRPP2 antibody had decreased intracellular Ca2+ concentration compared to controls (p < .05), consistent with TRPP2 function as a plasma membrane cation channel. This is the first report that mammalian sperm contain TRPP2, which appears to regulate intracellular Ca2+ and motility patterns in porcine sperm.
Collapse
Affiliation(s)
- Bradford W Daigneault
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA.,Department of Animal Sciences, University of Illinois, Urbana-Champaign, IL, USA
| | - David J Miller
- Department of Animal Sciences, University of Illinois, Urbana-Champaign, IL, USA
| |
Collapse
|
20
|
Cardiac Involvement in Autosomal Dominant Polycystic Kidney Disease. CARDIOGENETICS 2021. [DOI: 10.3390/cardiogenetics11020006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular disorders are the main complication in autosomal dominant polycystic kidney disease (ADPKD). contributing to both morbidity and mortality. This review considers clinical studies unveiling cardiovascular features in patients with ADPKD. Additionally, it focuses on basic science studies addressing the dysfunction of the polycystin proteins located in the cardiovascular system as a contributing factor to cardiovascular abnormalities. In particular, the effects of polycystin proteins’ deficiency on the cardiomyocyte function have been considered.
Collapse
|
21
|
Himmel NJ, Cox DN. Transient receptor potential channels: current perspectives on evolution, structure, function and nomenclature. Proc Biol Sci 2020; 287:20201309. [PMID: 32842926 DOI: 10.1098/rspb.2020.1309] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The transient receptor potential superfamily of ion channels (TRP channels) is widely recognized for the roles its members play in sensory nervous systems. However, the incredible diversity within the TRP superfamily, and the wide range of sensory capacities found therein, has also allowed TRP channels to function beyond sensing an organism's external environment, and TRP channels have thus become broadly critical to (at least) animal life. TRP channels were originally discovered in Drosophila and have since been broadly studied in animals; however, thanks to a boom in genomic and transcriptomic data, we now know that TRP channels are present in the genomes of a variety of creatures, including green algae, fungi, choanoflagellates and a number of other eukaryotes. As a result, the organization of the TRP superfamily has changed radically from its original description. Moreover, modern comprehensive phylogenetic analyses have brought to light the vertebrate-centricity of much of the TRP literature; much of the nomenclature has been grounded in vertebrate TRP subfamilies, resulting in a glossing over of TRP channels in other taxa. Here, we provide a comprehensive review of the function, structure and evolutionary history of TRP channels, and put forth a more complete set of non-vertebrate-centric TRP family, subfamily and other subgroup nomenclature.
Collapse
Affiliation(s)
| | - Daniel N Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
22
|
Hu J, Harris PC. Regulation of polycystin expression, maturation and trafficking. Cell Signal 2020; 72:109630. [PMID: 32275942 PMCID: PMC7269868 DOI: 10.1016/j.cellsig.2020.109630] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 12/26/2022]
Abstract
The major autosomal dominant polycystic kidney disease (ADPKD) genes, PKD1 and PKD2, are wildly expressed at the organ and tissue level. PKD1 encodes polycystin 1 (PC1), a large membrane associated receptor-like protein that can complex with the PKD2 product, PC2. Various cellular locations have been described for both PC1, including the plasma membrane and extracellular vesicles, and PC2, especially the endoplasmic reticulum (ER), but compelling evidence indicates that the primary cilium, a sensory organelle, is the key site for the polycystin complex to prevent PKD. As with other membrane proteins, the ER biogenesis pathway is key to appropriately folding, performing quality control, and exporting fully folded PC1 to the Golgi apparatus. There is a requirement for binding with PC2 and cleavage of PC1 at the GPS for this folding and export to occur. Six different monogenic defects in this pathway lead to cystic disease development, with PC1 apparently particularly sensitive to defects in this general protein processing pathway. Trafficking of membrane proteins, and the polycystins in particular, through the Golgi to the primary cilium have been analyzed in detail, but at this time, there is no clear consensus on a ciliary targeting sequence required to export proteins to the cilium. After transitioning though the trans-Golgi network, polycystin-bearing vesicles are likely sorted to early or recycling endosomes and then transported to the ciliary base, possibly via docking to transition fibers (TF). The membrane-bound polycystin complex then undergoes facilitated trafficking through the transition zone, the diffusion barrier at the base of the cilium, before entering the cilium. Intraflagellar transport (IFT) may be involved in moving the polycystins along the cilia, but data also indicates other mechanisms. The ciliary polycystin complex can be ubiquitinated and removed from cilia by internalization at the ciliary base and may be sent back to the plasma membrane for recycling or to lysosomes for degradation. Monogenic defects in processes regulating the protein composition of cilia are associated with syndromic disorders involving many organ systems, reflecting the pleotropic role of cilia during development and for tissue maintenance. Many of these ciliopathies have renal involvement, likely because of faulty polycystin signaling from cilia. Understanding the expression, maturation and trafficking of the polycystins helps understand PKD pathogenesis and suggests opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| | - Peter C Harris
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
23
|
Padovano V, Mistry K, Merrick D, Gresko N, Caplan MJ. A cut above (and below): Protein cleavage in the regulation of polycystin trafficking and signaling. Cell Signal 2020; 72:109634. [PMID: 32283256 PMCID: PMC7269866 DOI: 10.1016/j.cellsig.2020.109634] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 10/24/2022]
Abstract
The polycystin-1 and 2 proteins, encoded by the genes mutated in Autosomal Dominant Polycystic Kidney Disease, are connected to a large number of biological pathways. While the nature of these connections and their relevance to the primary functions of the polycystin proteins have yet to be fully elucidated, it is clear that many of them are mediated by or depend upon cleavage of the polycystin-1 protein. Cleavage of polycystin-1 at its G protein coupled receptor proteolytic site is an obligate step in the protein's maturation and in aspects of its trafficking. This cleavage may also serve to prime polycystin-1 to play a role as a non-canonical G protein coupled receptor. Cleavage of the cytoplasmic polycystin-1C terminal tail releases fragments that are able to enter the nucleus and the mitochondria and to influence their activities. Understanding the nature of these cleavages, their regulation and their consequences is likely to provide valuable insights into both the physiological functions served by the polycystin proteins and the pathological consequences of their absence.
Collapse
Affiliation(s)
- Valeria Padovano
- Broad Institute of MIT and Harvard, Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA 02142, USA
| | - Kavita Mistry
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8026, USA
| | - David Merrick
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8026, USA
| | - Nikolay Gresko
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8026, USA
| | - Michael J Caplan
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8026, USA.
| |
Collapse
|
24
|
Reciprocal Regulation between Primary Cilia and mTORC1. Genes (Basel) 2020; 11:genes11060711. [PMID: 32604881 PMCID: PMC7349257 DOI: 10.3390/genes11060711] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
In quiescent cells, primary cilia function as a mechanosensor that converts mechanic signals into chemical activities. This unique organelle plays a critical role in restricting mechanistic target of rapamycin complex 1 (mTORC1) signaling, which is essential for quiescent cells to maintain their quiescence. Multiple mechanisms have been identified that mediate the inhibitory effect of primary cilia on mTORC1 signaling. These mechanisms depend on several tumor suppressor proteins localized within the ciliary compartment, including liver kinase B1 (LKB1), AMP-activated protein kinase (AMPK), polycystin-1, and polycystin-2. Conversely, changes in mTORC1 activity are able to affect ciliogenesis and stability indirectly through autophagy. In this review, we summarize recent advances in our understanding of the reciprocal regulation of mTORC1 and primary cilia.
Collapse
|
25
|
MacKay CE, Leo MD, Fernández-Peña C, Hasan R, Yin W, Mata-Daboin A, Bulley S, Gammons J, Mancarella S, Jaggar JH. Intravascular flow stimulates PKD2 (polycystin-2) channels in endothelial cells to reduce blood pressure. eLife 2020; 9:56655. [PMID: 32364494 PMCID: PMC7228764 DOI: 10.7554/elife.56655] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
PKD2 (polycystin-2, TRPP1), a TRP polycystin channel, is expressed in endothelial cells (ECs), but its physiological functions in this cell type are unclear. Here, we generated inducible, EC-specific Pkd2 knockout mice to examine vascular functions of PKD2. Data show that a broad range of intravascular flow rates stimulate EC PKD2 channels, producing vasodilation. Flow-mediated PKD2 channel activation leads to calcium influx that activates SK/IK channels and eNOS serine 1176 phosphorylation in ECs. These signaling mechanisms produce arterial hyperpolarization and vasodilation. In contrast, EC PKD2 channels do not contribute to acetylcholine-induced vasodilation, suggesting stimulus-specific function. EC-specific PKD2 knockout elevated blood pressure in mice without altering cardiac function or kidney anatomy. These data demonstrate that flow stimulates PKD2 channels in ECs, leading to SK/IK channel and eNOS activation, hyperpolarization, vasodilation and a reduction in systemic blood pressure. Thus, PKD2 channels are a major component of functional flow sensing in the vasculature.
Collapse
Affiliation(s)
- Charles E MacKay
- Department of Physiology University of Tennessee Health Science Center Memphis, Memphis, United States
| | - M Dennis Leo
- Department of Physiology University of Tennessee Health Science Center Memphis, Memphis, United States
| | - Carlos Fernández-Peña
- Department of Physiology University of Tennessee Health Science Center Memphis, Memphis, United States
| | - Raquibul Hasan
- Department of Physiology University of Tennessee Health Science Center Memphis, Memphis, United States
| | - Wen Yin
- Department of Physiology University of Tennessee Health Science Center Memphis, Memphis, United States
| | - Alejandro Mata-Daboin
- Department of Physiology University of Tennessee Health Science Center Memphis, Memphis, United States
| | - Simon Bulley
- Department of Physiology University of Tennessee Health Science Center Memphis, Memphis, United States
| | - Jesse Gammons
- Department of Physiology University of Tennessee Health Science Center Memphis, Memphis, United States
| | - Salvatore Mancarella
- Department of Physiology University of Tennessee Health Science Center Memphis, Memphis, United States
| | - Jonathan H Jaggar
- Department of Physiology University of Tennessee Health Science Center Memphis, Memphis, United States
| |
Collapse
|
26
|
Sussman CR, Wang X, Chebib FT, Torres VE. Modulation of polycystic kidney disease by G-protein coupled receptors and cyclic AMP signaling. Cell Signal 2020; 72:109649. [PMID: 32335259 DOI: 10.1016/j.cellsig.2020.109649] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a systemic disorder associated with polycystic liver disease (PLD) and other extrarenal manifestations, the most common monogenic cause of end-stage kidney disease, and a major burden for public health. Many studies have shown that alterations in G-protein and cAMP signaling play a central role in its pathogenesis. As for many other diseases (35% of all approved drugs target G-protein coupled receptors (GPCRs) or proteins functioning upstream or downstream from GPCRs), treatments targeting GPCR have shown effectiveness in slowing the rate of progression of ADPKD. Tolvaptan, a vasopressin V2 receptor antagonist is the first drug approved by regulatory agencies to treat rapidly progressive ADPKD. Long-acting somatostatin analogs have also been effective in slowing the rates of growth of polycystic kidneys and liver. Although no treatment has so far been able to prevent the development or stop the progression of the disease, these encouraging advances point to G-protein and cAMP signaling as a promising avenue of investigation that may lead to more effective and safe treatments. This will require a better understanding of the relevant GPCRs, G-proteins, cAMP effectors, and of the enzymes and A-kinase anchoring proteins controlling the compartmentalization of cAMP signaling. The purpose of this review is to provide an overview of general GPCR signaling; the function of polycystin-1 (PC1) as a putative atypical adhesion GPCR (aGPCR); the roles of PC1, polycystin-2 (PC2) and the PC1-PC2 complex in the regulation of calcium and cAMP signaling; the cross-talk of calcium and cAMP signaling in PKD; and GPCRs, adenylyl cyclases, cyclic nucleotide phosphodiesterases, and protein kinase A as therapeutic targets in ADPKD.
Collapse
Affiliation(s)
- Caroline R Sussman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America
| | - Xiaofang Wang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America
| | - Fouad T Chebib
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
27
|
Streets A, Ong A. Post-translational modifications of the polycystin proteins. Cell Signal 2020; 72:109644. [PMID: 32320857 DOI: 10.1016/j.cellsig.2020.109644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited cause of kidney failure and affects up to 12 million people worldwide. Germline mutations in two genes, PKD1 or PKD2, account for almost all patients with ADPKD. The ADPKD proteins, polycystin-1 (PC1) and polycystin-2 (PC2), are regulated by post-translational modifications (PTM), with phosphorylation, glycosylation and proteolytic cleavage being the best described changes. A few PTMs have been shown to regulate polycystin trafficking, signalling, localisation or stability and thus their physiological function. A key challenge for the future will be to elucidate the functional significance of all the individual PTMs reported to date. Finally, it is possible that site-specific mutations that disrupt PTM could contribute to cystogenesis although in the majority of cases, confirmatory evidence is awaited.
Collapse
Affiliation(s)
- Andrew Streets
- Kidney Genetics Group, Academic Nephrology Unit, University of Sheffield Medical School, Sheffield, UK.
| | - Albert Ong
- Kidney Genetics Group, Academic Nephrology Unit, University of Sheffield Medical School, Sheffield, UK
| |
Collapse
|
28
|
Polycystins as components of large multiprotein complexes of polycystin interactors. Cell Signal 2020; 72:109640. [PMID: 32305669 DOI: 10.1016/j.cellsig.2020.109640] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/27/2022]
Abstract
Naturally occurring mutations in two separate genes, PKD1 and PKD2, are responsible for the vast majority of all cases of autosomal dominant polycystic kidney disease (ADPKD), one of the most common genetic diseases affecting 1 in 1000 Americans. The hallmark of ADPKD is the development of epithelial cysts in the kidney, liver, and pancreas. PKD1 encodes a large plasma membrane protein (PKD1, PC1, or Polycystin-1) with a long extracellular domain and has been speculated to function as an atypical G protein coupled receptor. PKD2 encodes an ion channel of the Transient Receptor Potential superfamily (TRPP2, PKD2, PC2, or Polycystin-2). Despite the identification of these genes more than 20 years ago, the molecular function of their encoded proteins and the mechanism(s) by which mutations in PKD1 and PKD2 cause ADPKD remain elusive. Genetic, biochemical, and functional evidence suggests they form a multiprotein complex present in multiple locations in the cell, including the plasma membrane, endoplasmic reticulum, and the primary cilium. Over the years, numerous interacting proteins have been identified using directed and unbiased approaches, and shown to modulate function, cellular localization, and protein stability and turnover of Polycystins. Delineation of the molecular composition of the Polycystin complex can have a significant impact on understanding their cellular function in health and disease states and on the identification of more specific and effective therapeutic targets.
Collapse
|
29
|
Kurbegovic A, Trudel M. The master regulators Myc and p53 cellular signaling and functions in polycystic kidney disease. Cell Signal 2020; 71:109594. [PMID: 32145315 DOI: 10.1016/j.cellsig.2020.109594] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 01/08/2023]
Abstract
The transcription factors Myc and p53 associated with oncogenesis play determinant roles in a human genetic disorder, autosomal dominant polycystic kidney disease (ADPKD), that was coined early in ADPKD etiology a «neoplasia in disguise ». These factors are interdependent master cell regulators of major biological processes including proliferation, apoptosis, cell growth, metabolism, inflammation, fibrosis and differentiation that are all modulated in ADPKD. Myc and p53 proteins evolved to respond and carry out overlapping functions via opposing mechanisms of action. Studies in human ADPKD kidneys, caused by mutations in the PKD1 or PKD2 genes, reveal reduced p53 expression and high expression of Myc in the cystic tubular epithelium. Myc and p53 via direct interaction act respectively, as transcriptional activator and repressor of PKD1 gene expression, consistent with increased renal PKD1 levels in ADPKD. Mouse models generated by Pkd1 and Pkd2 gene dosage dysregulation reproduce renal cystogenesis with activation of Myc expression and numerous signaling pathways, strikingly similar to those determined in human ADPKD. In fact, upregulation of renal Myc expression is also detected in virtually all non-orthologous animal models of PKD. A definitive causal connection of Myc with cystogenesis was established by renal overexpression of Myc in transgenic mice that phenocopies human ADPKD. The network of activated signaling pathways in human and mouse cystogenesis individually or in combination can target Myc as a central node of PKD pathogenesis. One or many of the multiple functions of Myc upon activation can play a role in every phases of ADPKD development and lend credence to the notion of "Myc addiction" for cystogenesis. We propose that the residual p53 levels are conducive to an ADPKD biological program without cancerogenesis while a "p53 dependent annihilation" mechanism would be permissive to oncogenesis. Of major importance, Myc ablation in orthologous mouse models or direct inhibition in non-orthologous mouse model significantly delays cystogenesis consistent with pharmacologic or genetic inhibition of Myc upstream regulator or downstream targets in the mouse. Together, these studies on PKD proteins upon dysregulation not only converged on Myc as a focal point but also attribute to Myc upregulation a causal and « driver » role in pathogenesis. This review will present and discuss our current knowledge on Myc and p53, focused on PKD mouse models and ADPKD.
Collapse
Affiliation(s)
- Almira Kurbegovic
- Institut de Recherches Cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Marie Trudel
- Institut de Recherches Cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
30
|
A case of cerebral infarction caused by painless acute aortic dissection in autosomal dominant polycystic kidney disease. CEN Case Rep 2020; 9:177-181. [PMID: 31989455 DOI: 10.1007/s13730-020-00450-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 01/14/2020] [Indexed: 10/25/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a genetic disorder, characterized by the progressive formation of renal cysts. Although ADPKD is strongly associated with cerebral and cardiovascular complications, cerebral ischemia caused by dissection of thoracic and carotid arteries has rarely been reported. We report the case of a 71-year-old Japanese woman who complained of hemiparesis. She required maintenance hemodialysis therapy with a background of ADPKD. Cerebral infarction was initially diagnosed by excluding intracranial hemorrhage and aneurysm rupture that are recognized as common complications of ADPKD and thereby anticoagulation therapy was initiated. However, the patient was suspected as having painless aortic dissection because a chest X-ray examination showed expanded upper mediastinum. Sequential vascular imagings revealed dissection of the aorta, originating from brachiocephalic trunk to the right common carotid artery with mediastinal hematoma. The patient died from progression of dissection. Herein, we described a case of the ADPKD patient that an acute aortic dissection without any pain induced the occlusion of supplying vessels to the brain, resulting in cerebral ischemic symptoms. A high level of clinical vigilance for an acute aortic dissection should be maintained in the ADPKD population with sudden onset of neurological symptoms even in the absence of pain. Furthermore, the initiation of anticoagulation treatment for cerebral ischemia which may aggravate the risk of further dissection requires careful consideration.
Collapse
|
31
|
Hasan R, Leo MD, Muralidharan P, Mata-Daboin A, Yin W, Bulley S, Fernandez-Peña C, MacKay CE, Jaggar JH. SUMO1 modification of PKD2 channels regulates arterial contractility. Proc Natl Acad Sci U S A 2019; 116:27095-27104. [PMID: 31822608 PMCID: PMC6936352 DOI: 10.1073/pnas.1917264116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PKD2 (polycystin-2, TRPP1) channels are expressed in a wide variety of cell types and can regulate functions, including cell division and contraction. Whether posttranslational modification of PKD2 modifies channel properties is unclear. Similarly uncertain are signaling mechanisms that regulate PKD2 channels in arterial smooth muscle cells (myocytes). Here, by studying inducible, cell-specific Pkd2 knockout mice, we discovered that PKD2 channels are modified by SUMO1 (small ubiquitin-like modifier 1) protein in myocytes of resistance-size arteries. At physiological intravascular pressures, PKD2 exists in approximately equal proportions as either nonsumoylated (PKD2) or triple SUMO1-modifed (SUMO-PKD2) proteins. SUMO-PKD2 recycles, whereas unmodified PKD2 is surface-resident. Intravascular pressure activates voltage-dependent Ca2+ influx that stimulates the return of internalized SUMO-PKD2 channels to the plasma membrane. In contrast, a reduction in intravascular pressure, membrane hyperpolarization, or inhibition of Ca2+ influx leads to lysosomal degradation of internalized SUMO-PKD2 protein, which reduces surface channel abundance. Through this sumoylation-dependent mechanism, intravascular pressure regulates the surface density of SUMO-PKD2-mediated Na+ currents (INa) in myocytes to control arterial contractility. We also demonstrate that intravascular pressure activates SUMO-PKD2, not PKD2, channels, as desumoylation leads to loss of INa activation in myocytes and vasodilation. In summary, this study reveals that PKD2 channels undergo posttranslational modification by SUMO1, which enables physiological regulation of their surface abundance and pressure-mediated activation in myocytes and thus control of arterial contractility.
Collapse
Affiliation(s)
- Raquibul Hasan
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - M. Dennis Leo
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | | | - Alejandro Mata-Daboin
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Wen Yin
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Simon Bulley
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Carlos Fernandez-Peña
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Charles E. MacKay
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Jonathan H. Jaggar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| |
Collapse
|
32
|
Brill AL, Ehrlich BE. Polycystin 2: A calcium channel, channel partner, and regulator of calcium homeostasis in ADPKD. Cell Signal 2019; 66:109490. [PMID: 31805375 DOI: 10.1016/j.cellsig.2019.109490] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/30/2019] [Accepted: 12/01/2019] [Indexed: 01/26/2023]
Abstract
Polycystin 2 (PC2) is one of two main protein types responsible for the underlying etiology of autosomal dominant polycystic kidney disease (ADPKD), the most prevalent monogenic renal disease in the world. This debilitating and currently incurable condition is caused by loss-of-function mutations in PKD2 and PKD1, the genes encoding for PC2 and Polycystin 1 (PC1), respectively. Two-hit mutation events in these genes lead to renal cyst formation and eventual kidney failure, the main hallmarks of ADPKD. Though much is known concerning the physiological consequences and dysfunctional signaling mechanisms resulting from ADPKD development, to best understand the requirement of PC2 in maintaining organ homeostasis, it is important to recognize how PC2 acts under normal conditions. As such, an array of work has been performed characterizing the endogenous function of PC2, revealing it to be a member of the transient receptor potential (TRP) channel family of proteins. As a TRP protein, PC2 is a nonselective, cation-permeant, calcium-sensitive channel expressed in all tissue types, where it localizes primarily on the endoplasmic reticulum (ER), primary cilia, and plasma membrane. In addition to its channel function, PC2 interacts with and acts as a regulator of a number of other channels, ultimately further affecting intracellular signaling and leading to dysfunction in its absence. In this review, we describe the biophysical and physiological properties of PC2 as a cation channel and modulator of intracellular calcium channels, along with how these properties are altered in ADPKD.
Collapse
Affiliation(s)
- Allison L Brill
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Barbara E Ehrlich
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA; Department of Pharmacology, Yale University, New Haven, CT, USA.
| |
Collapse
|
33
|
Structural insights into group II TRP channels. Cell Calcium 2019; 86:102107. [PMID: 31841954 DOI: 10.1016/j.ceca.2019.102107] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 01/01/2023]
Abstract
The seven members of the TRP channel superfamily are divided into two main groups with five members comprising group I (TRPC/V/M/N/A) and TRPML (TRP MucoLipin) and TRPP (TRP Polycystin) making up group II. Group II channels share a high sequence homology on their transmembrane domains and are distinct from group I members as they contain a large luminal/extracellular domain between transmembrane helix 1 (S1) and S2. Since 2016, there are more than ten research papers reporting various structures of group II channels by either cryo-EM or X-ray crystallography. These studies along with recent functional analysis by the other groups have considerably strengthened our knowledge on TRPML and TRPP channels. In this review, we summarize and discuss these reports providing molecular insights into the group II TRP channel family.
Collapse
|
34
|
Ciliary exclusion of Polycystin-2 promotes kidney cystogenesis in an autosomal dominant polycystic kidney disease model. Nat Commun 2019; 10:4072. [PMID: 31492868 PMCID: PMC6731238 DOI: 10.1038/s41467-019-12067-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 08/08/2019] [Indexed: 01/08/2023] Open
Abstract
The human PKD2 locus encodes Polycystin-2 (PC2), a TRPP channel that localises to several distinct cellular compartments, including the cilium. PKD2 mutations cause Autosomal Dominant Polycystic Kidney Disease (ADPKD) and affect many cellular pathways. Data underlining the importance of ciliary PC2 localisation in preventing PKD are limited because PC2 function is ablated throughout the cell in existing model systems. Here, we dissect the ciliary role of PC2 by analysing mice carrying a non-ciliary localising, yet channel-functional, PC2 mutation. Mutants develop embryonic renal cysts that appear indistinguishable from mice completely lacking PC2. Despite not entering the cilium in mutant cells, mutant PC2 accumulates at the ciliary base, forming a ring pattern consistent with distal appendage localisation. This suggests a two-step model of ciliary entry; PC2 first traffics to the cilium base before TOP domain dependent entry. Our results suggest that PC2 localisation to the cilium is necessary to prevent PKD. The molecular role of ciliary Polycystin-2 (PC2) in cyst formation and polycystic kidney disease (ADKPD) is unclear. Here, the authors identify a PC2 mutant lacking ciliary localisation but with active Ca2+ channel function in mice, that is sufficient to generate an ADPKD phenotype.
Collapse
|
35
|
Metabolism and mitochondria in polycystic kidney disease research and therapy. Nat Rev Nephrol 2019; 14:678-687. [PMID: 30120380 DOI: 10.1038/s41581-018-0051-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common, potentially lethal, monogenic diseases and is caused predominantly by mutations in polycystic kidney disease 1 (PKD1) and PKD2, which encode polycystin 1 (PC1) and PC2, respectively. Over the decades-long course of the disease, patients develop large fluid-filled renal cysts that impair kidney function, leading to end-stage renal disease in ~50% of patients. Despite the identification of numerous dysregulated pathways in ADPKD, the molecular mechanisms underlying the renal dysfunction from mutations in PKD genes and the physiological functions of the polycystin proteins are still unclear. Alterations in cell metabolism have emerged in the past decade as a hallmark of ADPKD. ADPKD cells shift their mode of energy production from oxidative phosphorylation to alternative pathways, such as glycolysis. In addition, the polycystins seem to play regulatory roles in modulating mechanisms and machinery related to energy production and utilization, including AMPK, PPARα, PGC1α, calcium signalling at mitochondria-associated membranes, mTORC1, cAMP and CFTR-mediated ion transport as well as the expression of crucial components of the mitochondrial energy production apparatus. In this Review, we explore these metabolic changes and discuss in detail the relationship between energy metabolism and ADPKD pathogenesis and identify potential therapeutic targets.
Collapse
|
36
|
Saigusa T, Yue Q, Bunni MA, Bell PD, Eaton DC. Loss of primary cilia increases polycystin-2 and TRPV4 and the appearance of a nonselective cation channel in the mouse cortical collecting duct. Am J Physiol Renal Physiol 2019; 317:F632-F637. [PMID: 31313950 DOI: 10.1152/ajprenal.00210.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Flow-related bending of cilia results in Ca2+ influx through a polycystin-1 (Pkd1) and polycystin-2 (Pkd2) complex, both of which are members of the transient receptor potential (TRP) family (TRPP1 and TRPP2, respectively). Deletion of this complex as well as cilia result in polycystic kidney disease. The Ca2+ influx pathway has been previously characterized in immortalized collecting duct cells without cilia and found to be a 23-pS channel that was a multimere of TRPP2 and TRPV4. The purpose of the present study was to determine if this TRPP2 and TRPV4 multimere exists in vivo. Apical channel activity was measured using the patch-clamp technique from isolated split-open cortical collecting ducts from adult conditional knockout mice with (Ift88flox/flox) or without (Ift88-/-) cilia. Single tubules were isolated for measurements of mRNA for Pkd1, Pkd2, Trpv4, and epithelial Na+ channel subunits. The predominant channel activity from Ift88flox/flox mice was from epithelial Na+ channel [5-pS Na+-selective channels with long mean open times (475.7 ± 83.26 ms) and open probability > 0.2]. With the loss of cilia, the predominant conductance was a 23-pS nonselective cation channel (reversal potential near 0) with a short mean open time (72 ± 17 ms), open probability < 0.08, and a characteristic flickery opening. Loss of cilia increased mRNA levels for Pkd2 and Trpv4 from single isolated cortical collecting ducts. In conclusion, 23-pS channels exist in vivo, and activity of this channel is elevated with loss of cilia, consistent with previous finding of an elevated-unregulated Ca2+-permeable pathway at the apical membrane of collecting duct cells that lack cilia.
Collapse
Affiliation(s)
- Takamitsu Saigusa
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Qiang Yue
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, Georgia
| | - Marlene A Bunni
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - P Darwin Bell
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Douglas C Eaton
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
37
|
Winokurow N, Schumacher S. A role for polycystin-1 and polycystin-2 in neural progenitor cell differentiation. Cell Mol Life Sci 2019; 76:2851-2869. [PMID: 30895336 PMCID: PMC11105687 DOI: 10.1007/s00018-019-03072-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 02/17/2019] [Accepted: 03/14/2019] [Indexed: 10/27/2022]
Abstract
Polycystin-1 (PC1) and polycystin-2 (PC2) are transmembrane proteins encoded by the Pkd1 and Pkd2 genes, respectively. Mutations in these genes are causative for the development of autosomal-dominant polycystic kidney disease. A prominent feature of this disease is an unbalanced cell proliferation. PC1 and PC2 physically interact to form a complex, which localizes to the primary cilia of renal epithelial cells. Recently, PC1 and PC2 have also been described to be present in primary cilia of radial glial cells (RGCs) and to contribute to the planar cell polarity of late RGCs and E1 ependymal cells. As neural progenitor cells (NPCs), early RGCs have to balance proliferation for expansion, or for self-renewal and differentiation to generate neurons. It is not known whether the polycystins play a role in this process. Here, we show that PC1 and PC2 are expressed in RGCs of the developing mouse cerebral cortex during neurogenesis. Loss-of-function analysis and cell-based assays reveal that a reduction of PC1 or PC2 expression leads to increased NPC proliferation, while the differentiation to neurons becomes impaired. The increased NPC proliferation is preceded by enhanced Notch signaling and accompanied by a rise in the number of symmetric cell divisions. The transcription factor STAT3 seems to be mechanistically important for polycystin signaling in NPCs as either STAT3 knockdown or inhibition of STAT3 function abrogates the increased proliferation driven by reduced polycystin expression. Our findings indicate that PC1 and PC2 are critical for maintaining a balance between proliferation and differentiation of NPCs.
Collapse
Affiliation(s)
- Natalie Winokurow
- Institute of Molecular and Cellular Anatomy, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Stefan Schumacher
- Institute of Molecular and Cellular Anatomy, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
38
|
Valentine MS, Yano J, Van Houten J. A Novel Role for Polycystin-2 (Pkd2) in P. tetraurelia as a Probable Mg 2+ Channel Necessary for Mg 2+-Induced Behavior. Genes (Basel) 2019; 10:genes10060455. [PMID: 31207979 PMCID: PMC6627415 DOI: 10.3390/genes10060455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 01/26/2023] Open
Abstract
A human ciliopathy gene codes for Polycystin-2 (Pkd2), a non-selective cation channel. Here, the Pkd2 channel was explored in the ciliate Paramecium tetraurelia using combinations of RNA interference, over-expression, and epitope-tagging, in a search for function and novel interacting partners. Upon depletion of Pkd2, cells exhibited a phenotype similar to eccentric (XntA1), a Paramecium mutant lacking the inward Ca2+-dependent Mg2+ conductance. Further investigation showed both Pkd2 and XntA localize to the cilia and cell membrane, but do not require one another for trafficking. The XntA-myc protein co-immunoprecipitates Pkd2-FLAG, but not vice versa, suggesting two populations of Pkd2-FLAG, one of which interacts with XntA. Electrophysiology data showed that depletion and over-expression of Pkd2 led to smaller and larger depolarizations in Mg2+ solutions, respectively. Over-expression of Pkd2-FLAG in the XntA1 mutant caused slower swimming, supporting an increase in Mg2+ permeability, in agreement with the electrophysiology data. We propose that Pkd2 in P. tetraurelia collaborates with XntA for Mg2+-induced behavior. Our data suggest Pkd2 is sufficient and necessary for Mg2+ conductance and membrane permeability to Mg2+, and that Pkd2 is potentially a Mg2+-permeable channel.
Collapse
Affiliation(s)
- Megan S Valentine
- State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, NY 12901, USA.
| | - Junji Yano
- University of Vermont, Department of Biology, 120 Marsh Life Science, 109 Carrigan Drive, Burlington, VT 05405, USA.
| | - Judith Van Houten
- University of Vermont, Department of Biology, 120 Marsh Life Science, 109 Carrigan Drive, Burlington, VT 05405, USA.
| |
Collapse
|
39
|
Andries A, Daenen K, Jouret F, Bammens B, Mekahli D, Van Schepdael A. Oxidative stress in autosomal dominant polycystic kidney disease: player and/or early predictor for disease progression? Pediatr Nephrol 2019; 34:993-1008. [PMID: 30105413 DOI: 10.1007/s00467-018-4004-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 12/19/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), caused by mutations in PKD1 or PKD2 genes, is the most common hereditary renal disease. Renal manifestations of ADPKD are gradual cyst development and kidney enlargement ultimately leading to end-stage renal disease. ADPKD also causes extrarenal manifestations, including endothelial dysfunction and hypertension. Both of these complications are linked with reduced nitric oxide levels related to excessive oxidative stress (OS). OS, defined as disturbances in the prooxidant/antioxidant balance, is harmful to cells due to the excessive generation of highly reactive oxygen and nitrogen free radicals. Next to endothelial dysfunction and hypertension, there is cumulative evidence that OS occurs in the early stages of ADPKD. In the current review, we aim to summarize the cardiovascular complications and the relevance of OS in ADPKD and, more specifically, in the early stages of the disease. First, we will briefly introduce the link between ADPKD and the early cardiovascular complications including hypertension. Secondly, we will describe the potential role of OS in the early stages of ADPKD and its possible importance beyond the chronic kidney disease (CKD) effect. Finally, we will discuss some pharmacological agents capable of reducing reactive oxygen species and OS, which might represent potential treatment targets for ADPKD.
Collapse
Affiliation(s)
- Asmin Andries
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven - University of Leuven, 3000, Leuven, Belgium.
| | - Kristien Daenen
- Department of Microbiology and Immunology, Laboratory of Nephrology, KU Leuven - University of Leuven, 3000, Leuven, Belgium.,Department of Nephrology, Dialysis and Renal Transplantation, University Hospitals Leuven, 3000, Leuven, Belgium
| | - François Jouret
- Department of Internal Medicine, Division of Nephrology, University of Liège Hospital (ULg CHU), Liège, Belgium.,Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Science, University of Liège, Liège, Belgium
| | - Bert Bammens
- Department of Microbiology and Immunology, Laboratory of Nephrology, KU Leuven - University of Leuven, 3000, Leuven, Belgium.,Department of Nephrology, Dialysis and Renal Transplantation, University Hospitals Leuven, 3000, Leuven, Belgium
| | - Djalila Mekahli
- Department of Development and Regeneration, Laboratory of Pediatrics, PKD Group, KU Leuven - University of Leuven, 3000, Leuven, Belgium.,Department of Pediatric Nephrology, University Hospitals Leuven, 3000, Leuven, Belgium
| | - Ann Van Schepdael
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven - University of Leuven, 3000, Leuven, Belgium
| |
Collapse
|
40
|
Pounraja VK, Girirajan S. Molecular basis for phenotypic similarity of genetic disorders. Genome Med 2019; 11:24. [PMID: 31014384 PMCID: PMC6477710 DOI: 10.1186/s13073-019-0641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The contribution of distinct genes to overlapping phenotypes suggests that such genes share ancestral origins, membership of disease pathways, or molecular functions. A recent study by Liu and colleagues identified mutations in TCF20, a paralog of RAI1, among individuals manifesting a novel syndrome that has phenotypes similar to those of Smith-Magenis syndrome (a disorder caused by disruption of RAI1). This study highlights how structural similarity among genes contributes to shared phenotypes, and shows how this relationship can contribute to our understanding of the genetic basis of complex disorders.
Collapse
Affiliation(s)
- Vijay Kumar Pounraja
- Bioinformatics and Genomics Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Santhosh Girirajan
- Bioinformatics and Genomics Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA. .,Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA. .,Department of Anthropology, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
41
|
Merrick D, Mistry K, Wu J, Gresko N, Baggs JE, Hogenesch JB, Sun Z, Caplan MJ. Polycystin-1 regulates bone development through an interaction with the transcriptional coactivator TAZ. Hum Mol Genet 2019; 28:16-30. [PMID: 30215740 PMCID: PMC6298236 DOI: 10.1093/hmg/ddy322] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/03/2018] [Accepted: 09/07/2018] [Indexed: 02/06/2023] Open
Abstract
Polycystin-1 (PC1), encoded by the PKD1 gene that is mutated in the autosomal dominant polycystic kidney disease, regulates a number of processes including bone development. Activity of the transcription factor RunX2, which controls osteoblast differentiation, is reduced in Pkd1 mutant mice but the mechanism governing PC1 activation of RunX2 is unclear. PC1 undergoes regulated cleavage that releases its C-terminal tail (CTT), which translocates to the nucleus to modulate transcriptional pathways involved in proliferation and apoptosis. We find that the cleaved CTT of PC1 (PC1-CTT) stimulates the transcriptional coactivator TAZ (Wwtr1), an essential coactivator of RunX2. PC1-CTT physically interacts with TAZ, stimulating RunX2 transcriptional activity in pre-osteoblast cells in a TAZ-dependent manner. The PC1-CTT increases the interaction between TAZ and RunX2 and enhances the recruitment of the p300 transcriptional co-regulatory protein to the TAZ/RunX2/PC1-CTT complex. Zebrafish injected with morpholinos directed against pkd1 manifest severe bone calcification defects and a curly tail phenotype. Injection of messenger RNA (mRNA) encoding the PC1-CTT into pkd1-morphant fish restores bone mineralization and reduces the severity of the curly tail phenotype. These effects are abolished by co-injection of morpholinos directed against TAZ. Injection of mRNA encoding a dominant-active TAZ construct is sufficient to rescue both the curly tail phenotype and the skeletal defects observed in pkd1-morpholino treated fish. Thus, TAZ constitutes a key mechanistic link through which PC1 mediates its physiological functions.
Collapse
Affiliation(s)
- David Merrick
- Department of Cellular and Molecular Physiology, New Haven, CT USA
- Department of Cell Biology, Norcross, GA USA
| | - Kavita Mistry
- Department of Cellular and Molecular Physiology, New Haven, CT USA
| | - Jingshing Wu
- Department of Cellular and Molecular Physiology, New Haven, CT USA
| | - Nikolay Gresko
- Department of Cellular and Molecular Physiology, New Haven, CT USA
| | | | - John B Hogenesch
- Divisions of Perinatal Biology and Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH USA
| | - Zhaoxia Sun
- Department of Genetics, Yale University School of Medicine, New Haven, CT USA
| | - Michael J Caplan
- Department of Cellular and Molecular Physiology, New Haven, CT USA
- Department of Cell Biology, Norcross, GA USA
| |
Collapse
|
42
|
Abstract
Cystic kidneys are common causes of end-stage renal disease, both in children and in adults. Autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD) are cilia-related disorders and the two main forms of monogenic cystic kidney diseases. ADPKD is a common disease that mostly presents in adults, whereas ARPKD is a rarer and often more severe form of polycystic kidney disease (PKD) that usually presents perinatally or in early childhood. Cell biological and clinical research approaches have expanded our knowledge of the pathogenesis of ADPKD and ARPKD and revealed some mechanistic overlap between them. A reduced 'dosage' of PKD proteins is thought to disturb cell homeostasis and converging signalling pathways, such as Ca2+, cAMP, mechanistic target of rapamycin, WNT, vascular endothelial growth factor and Hippo signalling, and could explain the more severe clinical course in some patients with PKD. Genetic diagnosis might benefit families and improve the clinical management of patients, which might be enhanced even further with emerging therapeutic options. However, many important questions about the pathogenesis of PKD remain. In this Primer, we provide an overview of the current knowledge of PKD and its treatment.
Collapse
Affiliation(s)
- Carsten Bergmann
- Department of Medicine, University Hospital Freiburg, Freiburg, Germany.
| | - Lisa M. Guay-Woodford
- Center for Translational Science, Children’s National Health System, Washington, DC, USA
| | - Peter C. Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Shigeo Horie
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Dorien J. M. Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Vicente E. Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
43
|
Bulley S, Fernández-Peña C, Hasan R, Leo MD, Muralidharan P, Mackay CE, Evanson KW, Moreira-Junior L, Mata-Daboin A, Burris SK, Wang Q, Kuruvilla KP, Jaggar JH. Arterial smooth muscle cell PKD2 (TRPP1) channels regulate systemic blood pressure. eLife 2018; 7:42628. [PMID: 30511640 PMCID: PMC6281320 DOI: 10.7554/elife.42628] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/22/2018] [Indexed: 01/12/2023] Open
Abstract
Systemic blood pressure is determined, in part, by arterial smooth muscle cells (myocytes). Several Transient Receptor Potential (TRP) channels are proposed to be expressed in arterial myocytes, but it is unclear if these proteins control physiological blood pressure and contribute to hypertension in vivo. We generated the first inducible, smooth muscle-specific knockout mice for a TRP channel, namely for PKD2 (TRPP1), to investigate arterial myocyte and blood pressure regulation by this protein. Using this model, we show that intravascular pressure and α1-adrenoceptors activate PKD2 channels in arterial myocytes of different systemic organs. PKD2 channel activation in arterial myocytes leads to an inward Na+ current, membrane depolarization and vasoconstriction. Inducible, smooth muscle cell-specific PKD2 knockout lowers both physiological blood pressure and hypertension and prevents pathological arterial remodeling during hypertension. Thus, arterial myocyte PKD2 controls systemic blood pressure and targeting this TRP channel reduces high blood pressure.
Collapse
Affiliation(s)
- Simon Bulley
- Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
| | - Carlos Fernández-Peña
- Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
| | - Raquibul Hasan
- Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
| | - M Dennis Leo
- Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
| | - Padmapriya Muralidharan
- Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
| | - Charles E Mackay
- Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
| | - Kirk W Evanson
- Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
| | - Luiz Moreira-Junior
- Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
| | - Alejandro Mata-Daboin
- Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
| | - Sarah K Burris
- Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
| | - Qian Wang
- Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
| | - Korah P Kuruvilla
- Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
| | - Jonathan H Jaggar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
| |
Collapse
|
44
|
Su Q, Hu F, Ge X, Lei J, Yu S, Wang T, Zhou Q, Mei C, Shi Y. Structure of the human PKD1-PKD2 complex. Science 2018; 361:science.aat9819. [DOI: 10.1126/science.aat9819] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022]
Abstract
Mutations in two genes, PKD1 and PKD2, account for most cases of autosomal dominant polycystic kidney disease, one of the most common monogenetic disorders. Here we report the 3.6-angstrom cryo–electron microscopy structure of truncated human PKD1-PKD2 complex assembled in a 1:3 ratio. PKD1 contains a voltage-gated ion channel (VGIC) fold that interacts with PKD2 to form the domain-swapped, yet noncanonical, transient receptor potential (TRP) channel architecture. The S6 helix in PKD1 is broken in the middle, with the extracellular half, S6a, resembling pore helix 1 in a typical TRP channel. Three positively charged, cavity-facing residues on S6b may block cation permeation. In addition to the VGIC, a five–transmembrane helix domain and a cytosolic PLAT domain were resolved in PKD1. The PKD1-PKD2 complex structure establishes a framework for dissecting the function and disease mechanisms of the PKD proteins.
Collapse
|
45
|
Moisan S, Levon S, Cornec-Le Gall E, Le Meur Y, Audrézet MP, Dostie J, Férec C. Novel long-range regulatory mechanisms controlling PKD2 gene expression. BMC Genomics 2018; 19:515. [PMID: 29986647 PMCID: PMC6038307 DOI: 10.1186/s12864-018-4892-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 06/20/2018] [Indexed: 02/01/2023] Open
Abstract
Background Cis-regulatory elements control gene expression over large distances through the formation of chromatin loops, which allow contact between enhancers and gene promoters. Alterations in cis-acting regulatory systems could be linked to human genetic diseases. Here, we analyse the spatial organization of a large region spanning the polycystic kidney disease 2 (PKD2) gene, one of the genes responsible of autosomal dominant polycystic kidney disease (ADPKD). Results By using chromosome conformation capture carbon copy (5C) technology in primary human renal cyst epithelial cells, we identify novel contacts of the PKD2 promoter with chromatin regions, which display characteristics of regulatory elements. In parallel, by using functional analysis with a reporter assay, we demonstrate that three DNAse I hypersensitive sites regions are involved in the regulation of PKD2 gene expression. Conclusions Finally, through alignment of CCCTC-binding factor (CTCF) sites, we suggest that these novel enhancer elements are brought to the PKD2 promoter by chromatin looping via the recruitment of CTCF. Electronic supplementary material The online version of this article (10.1186/s12864-018-4892-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stéphanie Moisan
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, Bretagne, France. .,Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale (UBO), Brest, Bretagne, France. .,Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Régional Universitaire (CHRU), Hôpital Morvan, Brest, Bretagne, France.
| | - Stéphanie Levon
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, Bretagne, France.,Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale (UBO), Brest, Bretagne, France
| | - Emilie Cornec-Le Gall
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, Bretagne, France.,Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Régional Universitaire (CHRU), Hôpital Morvan, Brest, Bretagne, France
| | - Yannick Le Meur
- Service de néphrologie, Centre Hospitalier Régional Universitaire (CHRU), Brest, Bretagne, France
| | - Marie-Pierre Audrézet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, Bretagne, France.,Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Régional Universitaire (CHRU), Hôpital Morvan, Brest, Bretagne, France
| | - Josée Dostie
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
| | - Claude Férec
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, Bretagne, France. .,Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale (UBO), Brest, Bretagne, France. .,Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Régional Universitaire (CHRU), Hôpital Morvan, Brest, Bretagne, France. .,Etablissement Français du sang (EFS), Brest, Bretagne, France.
| |
Collapse
|
46
|
Zheng W, Yang X, Hu R, Cai R, Hofmann L, Wang Z, Hu Q, Liu X, Bulkley D, Yu Y, Tang J, Flockerzi V, Cao Y, Cao E, Chen XZ. Hydrophobic pore gates regulate ion permeation in polycystic kidney disease 2 and 2L1 channels. Nat Commun 2018; 9:2302. [PMID: 29899465 PMCID: PMC5998024 DOI: 10.1038/s41467-018-04586-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/01/2018] [Indexed: 01/20/2023] Open
Abstract
PKD2 and PKD1 genes are mutated in human autosomal dominant polycystic kidney disease. PKD2 can form either a homomeric cation channel or a heteromeric complex with the PKD1 receptor, presumed to respond to ligand(s) and/or mechanical stimuli. Here, we identify a two-residue hydrophobic gate in PKD2L1, and a single-residue hydrophobic gate in PKD2. We find that a PKD2 gain-of-function gate mutant effectively rescues PKD2 knockdown-induced phenotypes in embryonic zebrafish. The structure of a PKD2 activating mutant F604P by cryo-electron microscopy reveals a π- to α-helix transition within the pore-lining helix S6 that leads to repositioning of the gate residue and channel activation. Overall the results identify hydrophobic gates and a gating mechanism of PKD2 and PKD2L1. Mutations in the cation channel PKD2 cause human autosomal dominant polycystic kidney disease but its channel function and gating mechanism are poorly understood. Here authors study PKD2 using electrophysiology and cryo-EM, which identifies hydrophobic gates and proposes a gating mechanism for PKD2.
Collapse
Affiliation(s)
- Wang Zheng
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.,Department of Physiology, Membrane Protein Disease Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Xiaoyong Yang
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Ruikun Hu
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Ruiqi Cai
- Department of Physiology, Membrane Protein Disease Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Laura Hofmann
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, Homburg, 66421, Germany
| | - Zhifei Wang
- Department of Biological Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qiaolin Hu
- Department of Physiology, Membrane Protein Disease Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Xiong Liu
- Department of Physiology, Membrane Protein Disease Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - David Bulkley
- Keck Advanced Microscopy Laboratory and Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Yong Yu
- Department of Biological Sciences, St. John's University, Queens, NY, 11439, USA
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Veit Flockerzi
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, Homburg, 66421, Germany
| | - Ying Cao
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Erhu Cao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA.
| | - Xing-Zhen Chen
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China. .,Department of Physiology, Membrane Protein Disease Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| |
Collapse
|
47
|
Katsianou MA, Skondra FG, Gargalionis AN, Piperi C, Basdra EK. The role of transient receptor potential polycystin channels in bone diseases. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:246. [PMID: 30069448 DOI: 10.21037/atm.2018.04.10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Transient receptor potential (TRP) channels are cation channels which act as molecular sensors that enable cells to detect and respond to a plethora of mechanical and environmental cues. TRPs are involved in various physiological processes, such as mechanosensation, non-inception and thermosensation, while mutations in genes encoding them can lead to pathological conditions, called "channelopathies". The subfamily of transient receptor potential polycystins (TRPPs), Polycystin 1 (PC1, TRPP1) and Polycystin 2 (PC2, TRPP2), act as mechanoreceptors, sensing external mechanical forces, including strain, stretch and fluid shear stress, triggering a cascade of signaling pathways involved in osteoblastogenesis and ultimately bone formation. Both in vitro studies and research on animal models have already identified their implications in bone homeostasis. However, uncertainty veiling the role of polycystins (PCs) in bone disease urges studies to elucidate further their role in this field. Mutations in TRPPs have been related to autosomal polycystic kidney disease (ADKPD) and research groups try to identify their role beyond their well-established contribution in kidney disease. Such an elucidation would be beneficial for identifying signaling pathways where polycystins are involved in bone diseases related to exertion of mechanical forces such as osteoporosis, osteopenia and craniosynostosis. A better understanding of the implications of TRPPs in bone diseases would possibly lay the cornerstone for effective therapeutic schemes.
Collapse
Affiliation(s)
- Maria A Katsianou
- Cellular and Molecular Biomechanics Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Foteini G Skondra
- Cellular and Molecular Biomechanics Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios N Gargalionis
- Cellular and Molecular Biomechanics Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Piperi
- Cellular and Molecular Biomechanics Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthimia K Basdra
- Cellular and Molecular Biomechanics Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
48
|
Modeling Renal Disease "On the Fly". BIOMED RESEARCH INTERNATIONAL 2018; 2018:5697436. [PMID: 29955604 PMCID: PMC6000847 DOI: 10.1155/2018/5697436] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/17/2018] [Indexed: 12/22/2022]
Abstract
Detoxification is a fundamental function for all living organisms that need to excrete catabolites and toxins to maintain homeostasis. Kidneys are major organs of detoxification that maintain water and electrolyte balance to preserve physiological functions of vertebrates. In insects, the renal function is carried out by Malpighian tubules and nephrocytes. Due to differences in their circulation, the renal systems of mammalians and insects differ in their functional modalities, yet carry out similar biochemical and physiological functions and share extensive genetic and molecular similarities. Evolutionary conservation can be leveraged to model specific aspects of the complex mammalian kidney function in the genetic powerhouse Drosophila melanogaster to study how genes interact in diseased states. Here, we compare the human and Drosophila renal systems and present selected fly disease models.
Collapse
|
49
|
Kocyigit I, Eroglu E, Gungor O. Clinical problems in hemodialysis patients with autosomal dominant polycystic kidney disease. Semin Dial 2018; 31:268-277. [DOI: 10.1111/sdi.12696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ismail Kocyigit
- Department of Nephrology; Erciyes University Medical Faculty; Kayseri Turkey
| | - Eray Eroglu
- Department of Nephrology; Erciyes University Medical Faculty; Kayseri Turkey
| | - Ozkan Gungor
- Department of Nephrology; Sutcu Imam University Medical Faculty; Kahramanmaras Turkey
| |
Collapse
|
50
|
Liu X, Vien T, Duan J, Sheu SH, DeCaen PG, Clapham DE. Polycystin-2 is an essential ion channel subunit in the primary cilium of the renal collecting duct epithelium. eLife 2018; 7:33183. [PMID: 29443690 PMCID: PMC5812715 DOI: 10.7554/elife.33183] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 02/01/2018] [Indexed: 01/08/2023] Open
Abstract
Mutations in the polycystin genes, PKD1 or PKD2, results in Autosomal Dominant Polycystic Kidney Disease (ADPKD). Although a genetic basis of ADPKD is established, we lack a clear understanding of polycystin proteins’ functions as ion channels. This question remains unsolved largely because polycystins localize to the primary cilium – a tiny, antenna-like organelle. Using a new ADPKD mouse model, we observe primary cilia that are abnormally long in cells associated with cysts after conditional ablation of Pkd1 or Pkd2. Using primary cultures of collecting duct cells, we show that polycystin-2, but not polycystin-1, is a required subunit for the ion channel in the primary cilium. The polycystin-2 channel preferentially conducts K+ and Na+; intraciliary Ca2+, enhances its open probability. We introduce a novel method for measuring heterologous polycystin-2 channels in cilia, which will have utility in characterizing PKD2 variants that cause ADPKD.
Collapse
Affiliation(s)
- Xiaowen Liu
- Department of Cardiology, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Thuy Vien
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, United States
| | - Jingjing Duan
- Department of Cardiology, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Shu-Hsien Sheu
- Department of Cardiology, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States.,Department of Pathology, Boston Children's Hospital, Boston, United States
| | - Paul G DeCaen
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, United States
| | - David E Clapham
- Department of Cardiology, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| |
Collapse
|