1
|
Heling LWHJ, Sheikhhassani V, Ng J, van Vliet M, Jiménez‐Panizo A, Alegre‐Martí A, Woodard J, van Roon‐Mom W, McEwan IJ, Estébanez‐Perpiñá E, Mashaghi A. Polyglutamine expansion induced dynamic misfolding of androgen receptor. Protein Sci 2025; 34:e70154. [PMID: 40371721 PMCID: PMC12079482 DOI: 10.1002/pro.70154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/01/2025] [Accepted: 04/15/2025] [Indexed: 05/16/2025]
Abstract
Spinal bulbar muscular atrophy (SBMA) is caused by a polyglutamine expansion (pQe) in the N-terminal transactivation domain of the human androgen receptor (AR-NTD), resulting in a combination of toxic gain- and loss-of-function mechanisms. The structural basis of these processes has not been resolved due to the disordered nature of the NTD, which hinders experimental analyses of its detailed conformations. Here, using extensive computational modeling, we show that AR-NTD forms dynamic compact regions, which upon pQe re-organize dynamically, mediated partly by direct pQ interaction with the Androgen N-Terminal Signature (ANTS) motif. The altered dynamics of the NTD result in a perturbation of interdomain interactions, with potential implications for the binding of the receptor protein to its response element. Oligomeric aggregation of the dynamic misfolded NTD exposes pQe, but blocks tau-5 and the FQNLF motif, which could lead to aberrant receptor transcriptional activity. These observations suggest a structural mechanism for AR dysfunction in SBMA.
Collapse
Affiliation(s)
- Laurens W. H. J. Heling
- Medical Systems Biophysics and Bioengineering, Division of Systems Pharmacology and PharmacyLeiden Academic Centre for Drug Research, Leiden UniversityLeidenThe Netherlands
- Laboratory for Interdisciplinary Medical InnovationsCentre for Interdisciplinary Genome Research, Leiden UniversityLeidenThe Netherlands
| | - Vahid Sheikhhassani
- Medical Systems Biophysics and Bioengineering, Division of Systems Pharmacology and PharmacyLeiden Academic Centre for Drug Research, Leiden UniversityLeidenThe Netherlands
- Laboratory for Interdisciplinary Medical InnovationsCentre for Interdisciplinary Genome Research, Leiden UniversityLeidenThe Netherlands
| | - Julian Ng
- Medical Systems Biophysics and Bioengineering, Division of Systems Pharmacology and PharmacyLeiden Academic Centre for Drug Research, Leiden UniversityLeidenThe Netherlands
- Laboratory for Interdisciplinary Medical InnovationsCentre for Interdisciplinary Genome Research, Leiden UniversityLeidenThe Netherlands
| | - Morris van Vliet
- Medical Systems Biophysics and Bioengineering, Division of Systems Pharmacology and PharmacyLeiden Academic Centre for Drug Research, Leiden UniversityLeidenThe Netherlands
| | - Alba Jiménez‐Panizo
- Department of Biochemistry and Molecular BiomedicineInstitute of Biomedicine (IBUB) of the University of Barcelona (UB)BarcelonaSpain
| | - Andrea Alegre‐Martí
- Department of Biochemistry and Molecular BiomedicineInstitute of Biomedicine (IBUB) of the University of Barcelona (UB)BarcelonaSpain
| | - Jaie Woodard
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Willeke van Roon‐Mom
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Iain J. McEwan
- Institute of Medical Sciences, School of Medicine, Medical Sciences and NutritionUniversity of AberdeenAberdeenScotland
| | - Eva Estébanez‐Perpiñá
- Department of Biochemistry and Molecular BiomedicineInstitute of Biomedicine (IBUB) of the University of Barcelona (UB)BarcelonaSpain
| | - Alireza Mashaghi
- Medical Systems Biophysics and Bioengineering, Division of Systems Pharmacology and PharmacyLeiden Academic Centre for Drug Research, Leiden UniversityLeidenThe Netherlands
- Laboratory for Interdisciplinary Medical InnovationsCentre for Interdisciplinary Genome Research, Leiden UniversityLeidenThe Netherlands
| |
Collapse
|
2
|
Hunter I, Jamieson C, McEwan IJ. The androgen receptor amino-terminal domain: structure, function and therapeutic potential. ENDOCRINE ONCOLOGY (BRISTOL, ENGLAND) 2025; 5:e240061. [PMID: 40051657 PMCID: PMC11883864 DOI: 10.1530/eo-24-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/19/2024] [Accepted: 02/05/2025] [Indexed: 03/09/2025]
Abstract
Signalling by the steroid hormone testosterone involves the androgen receptor (AR), a structurally dynamic protein. The amino-terminal domain of the AR makes up more than half of the protein and has been found to be intrinsically disordered. This structural plasticity mediates receptor-dependent transcription, intradomain interactions and allosteric regulation. AR activity is a primary drug target in advanced and metastatic prostate cancer, a leading cause of cancer-related death in men. Recent research has focused on the amino-terminal domain as a novel drug target. In this review, we discuss the structural properties of the receptor and highlight some promising preclinical and clinical studies that aim to develop a drug discovery pipeline of small-molecule inhibitors targeting the amino-terminal domain.
Collapse
Affiliation(s)
- Irene Hunter
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill Health Campus, Aberdeen, UK
| | - Craig Jamieson
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Iain J McEwan
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill Health Campus, Aberdeen, UK
| |
Collapse
|
3
|
Jeong MS, Mun JY, Yang GE, Kim MH, Lee SY, Choi YH, Kim HS, Nam JK, Kim TN, Leem SH. Exploring the Relationship between CLPTM1L-MS2 Variants and Susceptibility to Bladder Cancer. Genes (Basel) 2023; 15:50. [PMID: 38254939 PMCID: PMC10815179 DOI: 10.3390/genes15010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
CLPTM1L (Cleft Lip and Palate Transmembrane Protein 1-Like) has previously been implicated in tumorigenesis and drug resistance in cancer. However, the genetic link between CLPTM1L and bladder cancer remains uncertain. In this study, we investigated the genetic association of variable number of tandem repeats (VNTR; minisatellites, MS) regions within CLPTM1L with bladder cancer. We identified four CLPTM1L-MS regions (MS1~MS4) located in intron regions. To evaluate the VNTR polymorphic alleles, we analyzed 441 cancer-free controls and 181 bladder cancer patients. Our analysis revealed a higher frequency of specific repeat sizes within the MS2 region in bladder cancer cases compared to controls. Notably, 25 and 27 repeats were exclusively present in the bladder cancer group. Moreover, rare alleles within the medium-length repeat range (25-29 repeats) were associated with an elevated bladder cancer risk (odds ratio [OR] = 5.78, 95% confidence interval [CI]: 1.49-22.47, p = 0.004). We confirmed that all MS regions followed Mendelian inheritance, and demonstrated that MS2 alleles increased CLPTM1L promoter activity in the UM-UC3 bladder cancer cells through a luciferase assay. Our findings propose the utility of CLPTM1L-MS regions as DNA typing markers, particularly highlighting the potential of middle-length rare alleles within CLPTM1L-MS2 as predictive markers for bladder cancer risk.
Collapse
Affiliation(s)
- Mi-So Jeong
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea; (M.-S.J.); (J.-Y.M.); (G.-E.Y.); (M.-H.K.)
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan 46033, Republic of Korea
| | - Jeong-Yeon Mun
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea; (M.-S.J.); (J.-Y.M.); (G.-E.Y.); (M.-H.K.)
| | - Gi-Eun Yang
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea; (M.-S.J.); (J.-Y.M.); (G.-E.Y.); (M.-H.K.)
- Department of Health Sciences, The Graduated of Dong-A University, Busan 49315, Republic of Korea
| | - Min-Hye Kim
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea; (M.-S.J.); (J.-Y.M.); (G.-E.Y.); (M.-H.K.)
| | - Sang-Yeop Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang 28119, Republic of Korea;
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Anti-Aging Research Center, Dong-eui University, Busan 47227, Republic of Korea;
| | - Heui Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea;
| | - Jong-Kil Nam
- Department of Urology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Yangsan 50612, Republic of Korea;
| | - Tae Nam Kim
- Department of Urology, Pusan National University Hospital, Pusan National University School of Medicine, Biomedical Research Institute and Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Sun-Hee Leem
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea; (M.-S.J.); (J.-Y.M.); (G.-E.Y.); (M.-H.K.)
- Department of Health Sciences, The Graduated of Dong-A University, Busan 49315, Republic of Korea
| |
Collapse
|
4
|
Wilton-Clark H, Al-aghbari A, Yang J, Yokota T. Advancing Epidemiology and Genetic Approaches for the Treatment of Spinal and Bulbar Muscular Atrophy: Focus on Prevalence in the Indigenous Population of Western Canada. Genes (Basel) 2023; 14:1634. [PMID: 37628685 PMCID: PMC10454234 DOI: 10.3390/genes14081634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA), also known as Kennedy's disease, is a debilitating neuromuscular disease characterized by progressive muscular weakness and neuronal degeneration, affecting 1-2 individuals per 100,000 globally. While SBMA is relatively rare, recent studies have shown a significantly higher prevalence of the disease among the indigenous population of Western Canada compared to the general population. The disease is caused by a pathogenic expansion of polyglutamine residues in the androgen receptor protein, which acts as a key transcriptional regulator for numerous genes. SBMA has no cure, and current treatments are primarily supportive and focused on symptom management. Recently, a form of precision medicine known as antisense therapy has gained traction as a promising therapeutic option for numerous neuromuscular diseases. Antisense therapy uses small synthetic oligonucleotides to confer therapeutic benefit by acting on pathogenic mRNA molecules, serving to either degrade pathogenic mRNA transcripts or helping to modulate splicing. Recent studies have explored the suitability of antisense therapy for the treatment of SBMA, primarily focused on gene therapy and antisense-mediated mRNA knockdown approaches. Advancements in understanding the pathogenesis of SBMA and the development of targeted therapies offer hope for improved quality of life for individuals affected by this debilitating condition. Continued research is essential to optimize these genetic approaches, ensuring their safety and efficacy.
Collapse
Affiliation(s)
- Harry Wilton-Clark
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Ammar Al-aghbari
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Jessica Yang
- Department of Immunology, Department of Pharmacology and Toxicology, Faculty of Arts and Science, University of Toronto, Toronto, ON M5S 1A1, Canada;
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| |
Collapse
|
5
|
Constitutively Active Androgen Receptor in Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms232213768. [PMID: 36430245 PMCID: PMC9699340 DOI: 10.3390/ijms232213768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant type of liver cancer and a leading cause of cancer-related death globally. It is also a sexually dimorphic disease with a male predominance both in HCC and in its precursors, non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH). The role of the androgen receptor (AR) in HCC has been well documented; however, AR-targeted therapies have failed to demonstrate efficacy in HCC. Building upon understandings of AR in prostate cancer (PCa), this review examines the role of AR in HCC, non-androgen-mediated mechanisms of induced AR expression, the existence of AR splice variants (AR-SV) in HCC and concludes by surveying current AR-targeted therapeutic approaches in PCa that show potential for efficacy in HCC in light of AR-SV expression.
Collapse
|
6
|
Abrahams-October Z, Lloyd S, Pearce B, Johnson R, Benjeddou M. Promoter haplotype structure of solute carrier 22 member 2 (SLC22A2) in the Xhosa population of South Africa and their differential effect on gene expression. Gene 2022; 820:146292. [PMID: 35143948 DOI: 10.1016/j.gene.2022.146292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/06/2022] [Accepted: 02/03/2022] [Indexed: 11/20/2022]
Abstract
SLC22A2 is abundantly expressed in the kidney and facilitates the transport of endogenous and exogenous cationic compounds. It plays a pivotal role in the transport of pharmacologically important compounds such as metformin, cisplatin, lamivudine and cimetidine. Polymorphisms within SLC22A2 could potentially contribute to the inter-individual variable response to drugs. The SLC22A2 gene is known to show polymorphism variability amongst populations of different ethnicities. The present study was undertaken to characterize the promoter haplotype structure of the SLC22A2 gene in the Xhosa population of South Africa. In addition to this, we also investigate the effects of the observed promoter haplotypes on gene expression levels in vitro. We identified six known single nucleotide polymorphisms in the promoter region, namely rs60249401 (G424A), rs113150889 (G289A), rs55920607 (C246T), rs59695691 (A195G), rs572296424 (G156A), rs150063153 (A95C/G) and one novel SNP at location 6:160258967 (A209T). While these polymorphisms appeared in other African and non-African populations, their minor allele frequencies differed considerably from the non-African populations and could be considered to be African specific. A total of nine promoter haplotypes were characterized and the functional significance of each haplotype on promoter activity was determined using a luciferase reporter assay system. Amongst the nine observed haplotypes, three haplotypes (i.e. haplotypes 7, 8 and 9) displayed a significant decrease in expression level when compared to the wild-type with p -values of: 0.0317, <0.0001 and 0.0013 respectively. The data presented here shows African specific promoter haplotypes to cause a decrease in SLC22A2 gene expression levels, which in turn may have an impact on the pharmacokinetic profiles of cationic drugs.
Collapse
Affiliation(s)
- Zainonesa Abrahams-October
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa.
| | - Sheridon Lloyd
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| | - Brendon Pearce
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, 7505 Cape Town, South Africa; Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Mongi Benjeddou
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| |
Collapse
|
7
|
Monaghan AE, Porter A, Hunter I, Morrison A, McElroy SP, McEwan IJ. Development of a High-Throughput Screening Assay for Small-Molecule Inhibitors of Androgen Receptor Splice Variants. Assay Drug Dev Technol 2022; 20:111-124. [PMID: 35333596 PMCID: PMC9057896 DOI: 10.1089/adt.2021.128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The role of the androgen receptor (AR) in the progression of prostate cancer (PCa) is well established and competitive inhibition of AR ligand binding domain (LBD) has been the mainstay of antiandrogen therapies for advanced and metastatic disease. However, the efficacy of such drugs is often limited by the emergence of resistance, mediated through point mutations and receptor splice variants lacking the AR-LBD. As a result, the prognosis for patients with malignant, castrate-resistant disease remains poor. The amino terminal domain (NTD) of the AR has been shown to be critical for AR function. Its modular activation function (AF-1) is important for both gene regulation and participation in protein–protein interactions. However, due to the intrinsically disordered structure of the domain, its potential as a candidate for therapeutic intervention has been generally overlooked. In this article, we describe the design and development of a functional cell-based assay aimed at identifying small-molecule inhibitors of the AR-NTD. We demonstrate the suitability of the assay for high-throughput screening platforms and validate two initial hits emerging from a small, targeted, library screen in PCa cells.
Collapse
Affiliation(s)
- Amy E. Monaghan
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Alison Porter
- European Screening Centre (ESC), University of Dundee, Lanarkshire, United Kingdom
| | - Irene. Hunter
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Angus Morrison
- European Screening Centre (ESC), University of Dundee, Lanarkshire, United Kingdom
| | - Stuart P. McElroy
- European Screening Centre (ESC), University of Dundee, Lanarkshire, United Kingdom
| | - Iain J. McEwan
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
8
|
Sheng JA, Tan SML, Hale TM, Handa RJ. Androgens and Their Role in Regulating Sex Differences in the Hypothalamic/Pituitary/Adrenal Axis Stress Response and Stress-Related Behaviors. ANDROGENS: CLINICAL RESEARCH AND THERAPEUTICS 2022; 2:261-274. [PMID: 35024695 PMCID: PMC8744007 DOI: 10.1089/andro.2021.0021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 02/06/2023]
Abstract
Androgens play a pivotal role during development. These gonadal hormones and their receptors exert organizational actions that shape brain morphology in regions controlling the stress regulatory systems in a male-specific manner. Specifically, androgens drive sex differences in the hypothalamic/pituitary/adrenal (HPA) axis and corresponding hypothalamic neuropeptides. While studies have examined the role of estradiol and its receptors in sex differences in the HPA axis and associated behaviors, the role of androgens remains far less studied. Androgens are generally thought to modulate the HPA axis through the activation of androgen receptors (ARs). They can also impact the HPA axis through reduction to estrogenic metabolites that can bind estrogen receptors in the brain and periphery. Such regulation of the HPA axis stress response by androgens can often result in sex-biased risk factors for stress-related disorders, such as anxiety and depression. This review focuses on the biosynthesis pathways and molecular actions of androgens and their nuclear receptors. The impact of androgens on hypothalamic neuropeptide systems (corticotropin-releasing hormone, arginine vasopressin, oxytocin, dopamine, and serotonin) that control the stress response and stress-related disorders is discussed. Finally, this review discusses potential therapeutics involving androgens (androgen replacement therapies, selective AR modulator therapies) and ongoing clinical trials.
Collapse
Affiliation(s)
- Julietta A Sheng
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Sarah M L Tan
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Taben M Hale
- Department of Basic Medical Science, University of Arizona College of Medicine - Phoenix, Arizona, USA
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
9
|
Jamroze A, Chatta G, Tang DG. Androgen receptor (AR) heterogeneity in prostate cancer and therapy resistance. Cancer Lett 2021; 518:1-9. [PMID: 34118355 DOI: 10.1016/j.canlet.2021.06.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/16/2021] [Accepted: 06/06/2021] [Indexed: 12/30/2022]
Abstract
Androgen receptor (AR), a ligand-dependent nuclear transcription factor and a member of steroid hormone receptor family, plays an important role in prostate organogenesis by regulating epithelial differentiation and restricting cell proliferation. Although rarely mutated or amplified in treatment-naïve prostate cancer (PCa), AR signaling drives tumor growth and as a result, therapies that aim to inhibit AR signaling, called ARSIs (AR signaling inhibitors), have been in clinical use for >70 years. Unfortunately, the clinical efficacy of ARSIs is short-lived and the majority of treated patients develop castration-resistant PCa (CRPC). Numerous molecular mechanisms have been proposed for castration resistance; however, the cellular basis for CRPC emergence has remained obscure. One under-appreciated cellular mechanism for CRPC development is the AR heterogeneity that pre-exists in treatment-naive primary tumors, i.e., although most PCa cells express AR (i.e., AR+), there is always a population of PCa cells that express no/low AR (i.e., AR-/lo). Importantly, this AR heterogeneity becomes accentuated during ARSI treatment and highly prominent in established CRPC. Here, we provide a succinct summary of AR heterogeneity across the PCa continuum and discuss its impact on PCa response to treatments. While AR+ PCa cells/clones exhibit exquisite sensitivities to ARSIs, AR-/lo PCa cells/clones, which are greatly enriched in stem cell signaling pathways, display de novo resistance to ARSIs. Finally, we offer several potential combinatorial strategies, e.g., ARSIs with stem cell targeting therapeutics, to co-target both AR+ and AR-/lo PCa cells and metastatic clones.
Collapse
Affiliation(s)
- Anmbreen Jamroze
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| | - Gurkamal Chatta
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA; Experimental Therapeutics (ET) Graduate Program, University at Buffalo & Roswell Park Comprehensive Cancer Center, NY, 14263, USA.
| |
Collapse
|
10
|
He S, You JJ, Liang XF, Zhang ZL, Zhang YP. Transcriptome sequencing and metabolome analysis of food habits domestication from live prey fish to artificial diets in mandarin fish (Siniperca chuatsi). BMC Genomics 2021; 22:129. [PMID: 33618656 PMCID: PMC7898776 DOI: 10.1186/s12864-021-07403-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 01/22/2021] [Indexed: 12/20/2022] Open
Abstract
Background As economical traits, food habits domestication can reduce production cost in aquaculture. However, the molecular mechanism underlying food habits domestication has remained elusive. Mandarin fish (Siniperca chuatsi) only feed on live prey fish and refuse artificial diets. In the present study, we domesticated mandarin fish to feed on artificial diets. The two groups were obtained, the fish did not eat artificial diets or ate artificial diets during all of the three domestication processes, named Group W or X, respectively. Results Using transcriptome and metabolome analysis, we investigated the differentially expressed genes and metabolites between the two groups, and found three common pathways related to food habit domestication, including retinol metabolism, glycerolipid metabolism, and biosynthesis of unsaturated fatty acids pathways. Furthermore, the western blotting and bisulfite sequencing PCR analysis were performed. The gene expression of TFIIF and histone methyltransferase ezh1 were significantly increased and decreased in the fish of Group X, respectively. The total DNA methylation levels of TFIIF gene and tri-methylation of histone H3 at lysine 27 (H3K27me3) were significantly higher and lower in the fish of Group X, respectively. Conclusion It was speculated that mandarin fish which could feed on artificial diets, might be attributed to the lower expression of ezh1, resulting in the decreased level of H3K27me3 and increased level of DNA methylation of TFIIF gene. The high expression of TFIIF gene might up-regulate the expression of genes in retinol metabolism, glycerolipid metabolism and glycerophosphoric metabolism pathways. Our study indicated the relationship between the methylation of DNA and histone and food habits domestication, which might be a novel molecular mechanism of food habits domestication in animals.
Collapse
Affiliation(s)
- Shan He
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, Hubei, China.,Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China.,Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, Fishery Institute of Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Jun-Jie You
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, Hubei, China.,Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China.,Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, Fishery Institute of Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, Hubei, China. .,Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China.
| | - Zhi-Lu Zhang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, Hubei, China.,Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Yan-Peng Zhang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, Hubei, China.,Innovation Base for Chinese Perch Breeding, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| |
Collapse
|
11
|
The Postnatal Offspring of Finasteride-Treated Male Rats Shows Hyperglycaemia, Elevated Hepatic Glycogen Storage and Altered GLUT2, IR, and AR Expression in the Liver. Int J Mol Sci 2021; 22:ijms22031242. [PMID: 33513940 PMCID: PMC7865973 DOI: 10.3390/ijms22031242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Background: A growing body of data indicates that the physiology of the liver is sex-hormone dependent, with some types of liver failure occurring more frequently in males, and some in females. In males, in physiological conditions, testosterone acts via androgen receptors (AR) to increase insulin receptor (IR) expression and glycogen synthesis, and to decrease glucose uptake controlled by liver-specific glucose transporter 2 (GLUT-2). Our previous study indicated that this mechanism may be impaired by finasteride, a popular drug used in urology and dermatology, inhibiting 5α-reductase 2, which converts testosterone (T) into dihydrotestosterone (DHT). Our research has also shown that the offspring of rats exposed to finasteride have an altered T–DHT ratio and show changes in their testes and epididymides. Therefore, the goal of this study was to assess whether the administration of finasteride had an trans-generational effect on (i) GLUT-2 dependent accumulation of glycogen in the liver, (ii) IR and AR expression in the hepatocytes of male rat offspring, (iii) a relation between serum T and DHT levels and the expression of GLUT2, IR, and AR mRNAs, (iv) a serum glucose level and it correlation with GLUT-2 mRNA. Methods: The study was conducted on the liver (an androgen-dependent organ) from 7, 14, 21, 28, and 90-day old Wistar male rats (F1:Fin) born by females fertilized by finasteride-treated rats. The control group was the offspring (F1:Control) of untreated Wistar parents. In the histological sections of liver the Periodic Acid Schiff (PAS) staining (to visualize glycogen) and IHC (to detect GLUT-2, IR, and AR) were performed. The liver homogenates were used in qRT-PCR to assess GLUT2, IR, and AR mRNA expression. The percentage of PAS-positive glycogen areas were correlated with the immunoexpression of GLUT-2, serum levels of T and DHT were correlated with GLUT-2, IR, and AR transcript levels, and serum glucose concentration was correlated with the age of animals and with the GLUT-2 mRNA by Spearman’s rank correlation coefficients. Results: In each age group of F1:Fin rats, the accumulation of glycogen was elevated but did not correlate with changes in GLUT-2 expression. The levels of GLUT-2, IR, and AR transcripts and their immunoreactivity statistically significantly decreased in F1:Fin animals. In F1:Fin rats the serum levels of T and DHT negatively correlated with androgen receptor mRNA. The animals from F1:Fin group have statistically elevated level of glucose. Additionally, in adult F1:Fin rats, steatosis was observed in the liver (see Appendix A). Conclusions: It seems that treating male adult rats with finasteride causes changes in the carbohydrate metabolism in the liver of their offspring. This can lead to improper hepatic energy homeostasis or even hyperglycaemia, insulin resistance, as well as some symptoms of metabolic syndrome and liver steatosis.
Collapse
|
12
|
Computational analysis of androgen receptor (AR) variants to decipher the relationship between protein stability and related-diseases. Sci Rep 2020; 10:12101. [PMID: 32694570 PMCID: PMC7374729 DOI: 10.1038/s41598-020-68731-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 06/19/2020] [Indexed: 11/08/2022] Open
Abstract
Although more than 1,000 androgen receptor (AR) mutations have been identified and these mutants are pathologically important, few theoretical studies have investigated the role of AR protein folding stability in disease and its relationship with the phenotype of the patients. Here, we extracted AR variant data from four databases: ARDB, HGMD, Cosmic, and 1,000 genome. 905 androgen insensitivity syndrome (AIS)-associated loss-of-function mutants and 168 prostate cancer-associated gain-of-function mutants in AR were found. We analyzed the effect of single-residue variation on the folding stability of AR by FoldX and guanidine hydrochloride denaturation experiment, and found that genetic disease-associated mutations tend to have a significantly greater effect on protein stability than gene polymorphisms. Moreover, AR mutants in complete androgen insensitivity syndrome (CAIS) tend to have a greater effect on protein stability than in partial androgen insensitive syndrome (PAIS). This study, by linking disease phenotypes to changes in AR stability, demonstrates the importance of protein stability in the pathogenesis of hereditary disease.
Collapse
|
13
|
Centenera MM, Selth LA, Ebrahimie E, Butler LM, Tilley WD. New Opportunities for Targeting the Androgen Receptor in Prostate Cancer. Cold Spring Harb Perspect Med 2018; 8:a030478. [PMID: 29530945 PMCID: PMC6280715 DOI: 10.1101/cshperspect.a030478] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recent genomic analyses of metastatic prostate cancer have provided important insight into adaptive changes in androgen receptor (AR) signaling that underpin resistance to androgen deprivation therapies. Novel strategies are required to circumvent these AR-mediated resistance mechanisms and thereby improve prostate cancer survival. In this review, we present a summary of AR structure and function and discuss mechanisms of AR-mediated therapy resistance that represent important areas of focus for the development of new therapies.
Collapse
Affiliation(s)
- Margaret M Centenera
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide SA 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide SA 5001, Australia
| | - Luke A Selth
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide SA 5005, Australia
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| | - Esmaeil Ebrahimie
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| | - Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide SA 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide SA 5001, Australia
| | - Wayne D Tilley
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide SA 5005, Australia
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| |
Collapse
|
14
|
Abstract
The nuclear receptor family of transcription factor proteins mediates endocrine function and plays critical roles in the development, physiology and pharmacology. Malfunctioning nuclear receptors are associated with several disease states. The functional activity of nuclear receptors is regulated by small molecular hormonal and synthetic molecules. Multiple sources of evidence have identified and distinguished between the different allosteric pathways initiated by ligands, DNA and cofactors such as co-activators and co-repressors. Also, these biophysical studies are attempting to determine how these pathways that regulate co-activator and DNA recognition can control gene transcription. Thus, there is a growing interest in determining the genome-scale impact of allostery in nuclear receptors. Today, it is accepted that a detailed understanding of the allosteric regulatory pathways within the nuclear receptor molecular complex will enable the development of efficient drug therapies in the long term.
Collapse
Affiliation(s)
- Elias J Fernandez
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, USA.
| |
Collapse
|
15
|
Regulation of Androgen Receptor Activity by Transient Interactions of Its Transactivation Domain with General Transcription Regulators. Structure 2017; 26:145-152.e3. [PMID: 29225078 DOI: 10.1016/j.str.2017.11.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/12/2017] [Accepted: 11/10/2017] [Indexed: 11/23/2022]
Abstract
The androgen receptor is a transcription factor that plays a key role in the development of prostate cancer, and its interactions with general transcription regulators are therefore of potential therapeutic interest. The mechanistic basis of these interactions is poorly understood due to the intrinsically disordered nature of the transactivation domain of the androgen receptor and the generally transient nature of the protein-protein interactions that trigger transcription. Here, we identify a motif of the transactivation domain that contributes to transcriptional activity by recruiting the C-terminal domain of subunit 1 of the general transcription regulator TFIIF. These findings provide molecular insights into the regulation of androgen receptor function and suggest strategies for treating castration-resistant prostate cancer.
Collapse
|
16
|
Song W, Tang L, Xu Y, Sun Q, Yang F, Guan X. ERβ1 inhibits metastasis of androgen receptor-positive triple-negative breast cancer by suppressing ZEB1. J Exp Clin Cancer Res 2017; 36:75. [PMID: 28583190 PMCID: PMC5460479 DOI: 10.1186/s13046-017-0545-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/29/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Increasing evidence has indicated an important role for estrogen receptor beta 1 (ERβ1) in breast cancer. However, the role of ERβ1 in the metastasis of androgen receptor (AR)-positive triple-negative breast cancer (TNBC) and the underlying mechanisms are still unknown. METHODS Stable ERβ1-expressing TNBC cell lines were generated for this study. We detected the abilities of cell migration and invasion by wound-healing and transwell assays and the expression of E-cadherin and N-cadherin by quantitative RT-PCR (qRT-PCR) and western blotting assays in TNBC cell lines. Chromatin immunoprecipitation (ChIP) analysis was performed to assess the effect of AR on ERβ1 promoter. Tumor metastasis was evaluated in vivo using a lung metastasis mouse model. Lastly, immunohistochemical expression of ERβ1 in TNBC tissues was analyzed and correlated with clinicopathological features. RESULTS ERβ1 suppressed the invasion and migration abilities of AR-positive TNBC cells and induced the downregulation of ZEB1. ZEB1 overexpression abrogated the increase in E-cadherin expression and the decrease in N-cadherin expression modulated by ERβ1. A lung metastasis mouse model showed that the incidence of metastasis was lower in ERβ1-expressing TNBC cells. Further, AR activation increased the anti-metastatic effect of ERβ1 in AR-positive TNBC cells, which accelerated ERβ1 transcription by functioning as a transcription factor that bound to the promoter of ERβ1. No significant change was observed in AR expression induced by ERβ1. Immunohistochemistry (IHC) analysis of TNBC clinical samples showed that ERβ1 and AR were positive in 31.7% and 23.2% of samples, respectively. ERβ1 expression was negatively correlated with ZEB1 expression and lymph node metastasis, and positively correlated with the expression of AR and E-cadherin. CONCLUSION Our findings suggested a potential role of ERβ1 in metastasis of AR-positive TNBC and provided novel insights into the mechanism of action of ERβ1 and the possible relationship between ERβ1 and AR.
Collapse
Affiliation(s)
- Wei Song
- Department of Medical Oncology, Jinling Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Lin Tang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 China
| | - Yumei Xu
- Department of Medical Oncology, Jinling Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Qian Sun
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 China
| | - Fang Yang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 China
| | - Xiaoxiang Guan
- Department of Medical Oncology, Jinling Hospital, Southern Medical University, Guangzhou, 510515 China
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 China
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, 210029 China
| |
Collapse
|
17
|
Guo M, Luo G, Jin K, Long J, Cheng H, Lu Y, Wang Z, Yang C, Xu J, Ni Q, Yu X, Liu C. Somatic Genetic Variation in Solid Pseudopapillary Tumor of the Pancreas by Whole Exome Sequencing. Int J Mol Sci 2017; 18:81. [PMID: 28054945 PMCID: PMC5297715 DOI: 10.3390/ijms18010081] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/21/2016] [Accepted: 12/28/2016] [Indexed: 12/31/2022] Open
Abstract
Solid pseudopapillary tumor of the pancreas (SPT) is a rare pancreatic disease with a unique clinical manifestation. Although CTNNB1 gene mutations had been universally reported, genetic variation profiles of SPT are largely unidentified. We conducted whole exome sequencing in nine SPT patients to probe the SPT-specific insertions and deletions (indels) and single nucleotide polymorphisms (SNPs). In total, 54 SNPs and 41 indels of prominent variations were demonstrated through parallel exome sequencing. We detected that CTNNB1 mutations presented throughout all patients studied (100%), and a higher count of SNPs was particularly detected in patients with older age, larger tumor, and metastatic disease. By aggregating 95 detected variation events and viewing the interconnections among each of the genes with variations, CTNNB1 was identified as the core portion in the network, which might collaborate with other events such as variations of USP9X, EP400, HTT, MED12, and PKD1 to regulate tumorigenesis. Pathway analysis showed that the events involved in other cancers had the potential to influence the progression of the SNPs count. Our study revealed an insight into the variation of the gene encoding region underlying solid-pseudopapillary neoplasm tumorigenesis. The detection of these variations might partly reflect the potential molecular mechanism.
Collapse
Affiliation(s)
- Meng Guo
- Department of Pancreas Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Guopei Luo
- Department of Pancreas Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Kaizhou Jin
- Department of Pancreas Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Jiang Long
- Department of Pancreas Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - He Cheng
- Department of Pancreas Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Yu Lu
- Department of Pancreas Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Zhengshi Wang
- Department of Pancreas Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Chao Yang
- Department of Pancreas Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Jin Xu
- Department of Pancreas Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Quanxing Ni
- Department of Pancreas Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Xianjun Yu
- Department of Pancreas Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Chen Liu
- Department of Pancreas Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| |
Collapse
|
18
|
Biron E, Bédard F. Recent progress in the development of protein-protein interaction inhibitors targeting androgen receptor-coactivator binding in prostate cancer. J Steroid Biochem Mol Biol 2016. [PMID: 26196120 DOI: 10.1016/j.jsbmb.2015.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The androgen receptor (AR) is a key regulator for the growth, differentiation and survival of prostate cancer cells. Identified as a primary target for the treatment of prostate cancer, many therapeutic strategies have been developed to attenuate AR signaling in prostate cancer cells. While frontline androgen-deprivation therapies targeting either the production or action of androgens usually yield favorable responses in prostate cancer patients, a significant number acquire treatment resistance. Known as the castration-resistant prostate cancer (CRPC), the treatment options are limited for this advanced stage. It has been shown that AR signaling is restored in CRPC due to many aberrant mechanisms such as AR mutations, amplification or expression of constitutively active splice-variants. Coregulator recruitment is a crucial regulatory step in AR signaling and the direct blockade of coactivator binding to AR offers the opportunity to develop therapeutic agents that would remain effective in prostate cancer cells resistant to conventional endocrine therapies. Structural analyses of the AR have identified key surfaces involved in protein-protein interaction with coregulators that have been recently used to design and develop promising AR-coactivator binding inhibitors. In this review we will discuss the design and development of small-molecule inhibitors targeting the AR-coactivator interactions for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Eric Biron
- Faculty of Pharmacy and Centre de recherche en endocrinologie moléculaire et oncologique et génomique humaine, Université Laval, Canada; Laboratory of Medicinal Chemistry, CHU de Québec Research Centre, G1 V 4G2, Québec, QC, Canada.
| | - François Bédard
- Faculty of Pharmacy and Centre de recherche en endocrinologie moléculaire et oncologique et génomique humaine, Université Laval, Canada; Laboratory of Medicinal Chemistry, CHU de Québec Research Centre, G1 V 4G2, Québec, QC, Canada
| |
Collapse
|
19
|
Sakkiah S, Ng HW, Tong W, Hong H. Structures of androgen receptor bound with ligands: advancing understanding of biological functions and drug discovery. Expert Opin Ther Targets 2016; 20:1267-82. [PMID: 27195510 DOI: 10.1080/14728222.2016.1192131] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Androgen receptor (AR) is a ligand-dependent transcription factor and a member of the nuclear receptor superfamily. It plays a vital role in male sexual development and regulates gene expression in various tissues, including prostate. Androgens are compounds that exert their biological effects via interaction with AR. Binding of androgens to AR initiates conformational changes in AR that affect binding of co-regulator proteins and DNA. AR agonists and antagonists are widely used in a variety of clinical applications (i.e. hypogonadism and prostate cancer therapy). AREAS COVERED This review provides a close look at structures of AR-ligand complexes and mutations in the receptor that have been revealed, discusses current challenges in the field, and sheds light on future directions. EXPERT OPINION AR is one of the primary targets for the treatment of prostate cancer, as AR antagonists inhibit prostate cancer growth. However, these drugs are not effective for long-term treatment and lead to castration-resistant prostate cancer. The structures of AR-ligand complexes are an invaluable scientific asset that enhances our understanding of biological functions and mechanisms of androgenic and anti-androgenic chemicals as well as promotes the discovery of superior drug candidates.
Collapse
Affiliation(s)
- Sugunadevi Sakkiah
- a Division of Bioinformatics and Biostatistics , National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson , AR , USA
| | - Hui Wen Ng
- a Division of Bioinformatics and Biostatistics , National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson , AR , USA
| | - Weida Tong
- a Division of Bioinformatics and Biostatistics , National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson , AR , USA
| | - Huixiao Hong
- a Division of Bioinformatics and Biostatistics , National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson , AR , USA
| |
Collapse
|
20
|
Androgen receptor: structure, role in prostate cancer and drug discovery. Acta Pharmacol Sin 2015; 36:3-23. [PMID: 24909511 PMCID: PMC4571323 DOI: 10.1038/aps.2014.18] [Citation(s) in RCA: 594] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/05/2014] [Indexed: 12/15/2022]
Abstract
Androgens and androgen receptors (AR) play a pivotal role in expression of the male phenotype. Several diseases, such as androgen insensitivity syndrome (AIS) and prostate cancer, are associated with alterations in AR functions. Indeed, androgen blockade by drugs that prevent the production of androgens and/or block the action of the AR inhibits prostate cancer growth. However, resistance to these drugs often occurs after 2–3 years as the patients develop castration-resistant prostate cancer (CRPC). In CRPC, a functional AR remains a key regulator. Early studies focused on the functional domains of the AR and its crucial role in the pathology. The elucidation of the structures of the AR DNA binding domain (DBD) and ligand binding domain (LBD) provides a new framework for understanding the functions of this receptor and leads to the development of rational drug design for the treatment of prostate cancer. An overview of androgen receptor structure and activity, its actions in prostate cancer, and how structural information and high-throughput screening have been or can be used for drug discovery are provided herein.
Collapse
|
21
|
Shen M, Shi H. Sex Hormones and Their Receptors Regulate Liver Energy Homeostasis. Int J Endocrinol 2015; 2015:294278. [PMID: 26491440 PMCID: PMC4600502 DOI: 10.1155/2015/294278] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/05/2015] [Accepted: 08/09/2015] [Indexed: 02/06/2023] Open
Abstract
The liver is one of the most essential organs involved in the regulation of energy homeostasis. Hepatic steatosis, a major manifestation of metabolic syndrome, is associated with imbalance between lipid formation and breakdown, glucose production and catabolism, and cholesterol synthesis and secretion. Epidemiological studies show sex difference in the prevalence in fatty liver disease and suggest that sex hormones may play vital roles in regulating hepatic steatosis. In this review, we summarize current literature and discuss the role of estrogens and androgens and the mechanisms through which estrogen receptors and androgen receptors regulate lipid and glucose metabolism in the liver. In females, estradiol regulates liver metabolism via estrogen receptors by decreasing lipogenesis, gluconeogenesis, and fatty acid uptake, while enhancing lipolysis, cholesterol secretion, and glucose catabolism. In males, testosterone works via androgen receptors to increase insulin receptor expression and glycogen synthesis, decrease glucose uptake and lipogenesis, and promote cholesterol storage in the liver. These recent integrated concepts suggest that sex hormone receptors could be potential promising targets for the prevention of hepatic steatosis.
Collapse
Affiliation(s)
- Minqian Shen
- Cell, Molecular, and Structural Biology, Department of Biology, Miami University, 700 E. High Street, Oxford, OH 45056, USA
| | - Haifei Shi
- Cell, Molecular, and Structural Biology, Department of Biology, Miami University, 700 E. High Street, Oxford, OH 45056, USA
- *Haifei Shi:
| |
Collapse
|
22
|
Sathishkumar K, Balakrishnan MP, Yallampalli C. Enhanced mesenteric arterial responsiveness to angiotensin II is androgen receptor-dependent in prenatally protein-restricted adult female rat offspring. Biol Reprod 2014; 92:55. [PMID: 25550341 DOI: 10.1095/biolreprod.114.126482] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Gestational protein restriction results in intrauterine growth restriction and hypertension in adult female growth-restricted rats. Enhanced vascular responsiveness to angiotensin II is observed, and blockade of the renin-angiotensin system abolishes hypertension in adult growth-restricted rats, suggesting that the renin-angiotensin system contributes to intrauterine growth restriction-induced hypertension. Moreover, growth-restricted adult rats have higher plasma testosterone levels, and antiandrogen treatment abolishes hypertension, indicating an important role for testosterone. We hypothesized that androgens may play a pivotal role in the enhanced responsiveness to Ang II and hypertension. Female offspring of pregnant rats fed 20% protein (control) or 6% protein diet (protein restricted), at 6 mo of age, were studied. Plasma testosterone and mean arterial pressure in protein-restricted offspring were significantly higher compared to controls. Flutamide treatment (10 mg/kg/day subcutaneously for 10 days) reduced mean arterial pressure in protein-restricted offspring but was without significant effect in controls. Vascular Agtr1/Agtr2 ratio was significantly higher in protein-restricted offspring, an effect that was reversed by flutamide. Flutamide treatment did not have any effect on Agtr1/Agtr2 ratio in controls. Enhanced contractile response to angiotensin II in mesenteric arteries was observed in protein-restricted offspring compared with control. Flutamide treatment reversed the enhanced contractile response to angiotensin II in protein-restricted offspring without significant effect in controls. Vascular reactivity to phenylephrine was similar between the control and protein-restricted offspring with and without flutamide treatment, suggesting that enhanced contractile response and flutamide's reversal effect is specific to angiotensin II. These results suggest that prenatally protein-restricted rats exhibit an enhanced responsiveness to angiotensin II that is testosterone-dependent.
Collapse
Affiliation(s)
- Kunju Sathishkumar
- Department of Obstetrics & Gynecology, The University of Texas Medical Branch, Galveston, Texas
| | - Meena P Balakrishnan
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| | | |
Collapse
|
23
|
Didonna A, Opal P. The promise and perils of HDAC inhibitors in neurodegeneration. Ann Clin Transl Neurol 2014; 2:79-101. [PMID: 25642438 PMCID: PMC4301678 DOI: 10.1002/acn3.147] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/22/2014] [Accepted: 10/24/2014] [Indexed: 12/13/2022] Open
Abstract
Histone deacetylases (HDACs) represent emerging therapeutic targets in the context of neurodegeneration. Indeed, pharmacologic inhibition of HDACs activity in the nervous system has shown beneficial effects in several preclinical models of neurological disorders. However, the translation of such therapeutic approach to clinics has been only marginally successful, mainly due to our still limited knowledge about HDACs physiological role particularly in neurons. Here, we review the potential benefits along with the risks of targeting HDACs in light of what we currently know about HDAC activity in the brain.
Collapse
Affiliation(s)
- Alessandro Didonna
- Department of Neurology, University of California San Francisco San Francisco, California, 94158
| | - Puneet Opal
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine Chicago, Illinois, 60611 ; Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine Chicago, Illinois, 60611
| |
Collapse
|
24
|
Chinnathambi V, More AS, Hankins GD, Yallampalli C, Sathishkumar K. Gestational exposure to elevated testosterone levels induces hypertension via heightened vascular angiotensin II type 1 receptor signaling in rats. Biol Reprod 2014; 91:6. [PMID: 24855104 DOI: 10.1095/biolreprod.114.118968] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pre-eclampsia is a life-threatening pregnancy disorder whose pathogenesis remains unclear. Plasma testosterone levels are elevated in pregnant women with pre-eclampsia and polycystic ovary syndrome, who often develop gestational hypertension. We tested the hypothesis that increased gestational testosterone levels induce hypertension via heightened angiotensin II signaling. Pregnant Sprague-Dawley rats were injected with vehicle or testosterone propionate from Gestational Day 15 to 19 to induce a 2-fold increase in plasma testosterone levels, similar to levels observed in clinical conditions like pre-eclampsia. A subset of rats in these two groups was given losartan, an angiotensin II type 1 receptor antagonist by gavage during the course of testosterone exposure. Blood pressure levels were assessed through a carotid arterial catheter and endothelium-independent vascular reactivity through wire myography. Angiotensin II levels in plasma and angiotensin II type 1 receptor expression in mesenteric arteries were also examined. Blood pressure levels were significantly higher on Gestational Day 20 in testosterone-treated dams than in controls. Treatment with losartan during the course of testosterone exposure significantly attenuated testosterone-induced hypertension. Plasma angiotensin II levels were not significantly different between control and testosterone-treated rats; however, elevated testosterone levels significantly increased angiotensin II type 1 receptor protein levels in the mesenteric arteries. In testosterone-treated rats, mesenteric artery contractile responses to angiotensin II were significantly greater, whereas contractile responses to K(+) depolarization and phenylephrine were unaffected. The results demonstrate that elevated testosterone during gestation induces hypertension in pregnant rats via heightened angiotensin II type 1 receptor-mediated signaling, providing a molecular mechanism linking elevated maternal testosterone levels with gestational hypertension.
Collapse
Affiliation(s)
- Vijayakumar Chinnathambi
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas
| | - Amar S More
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas
| | - Gary D Hankins
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas
| | - Chandra Yallampalli
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| | - Kunju Sathishkumar
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
25
|
Leach DA, Need EF, Trotta AP, Grubisha MJ, DeFranco DB, Buchanan G. Hic-5 influences genomic and non-genomic actions of the androgen receptor in prostate myofibroblasts. Mol Cell Endocrinol 2014; 384:185-99. [PMID: 24440747 DOI: 10.1016/j.mce.2014.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 12/27/2013] [Accepted: 01/03/2014] [Indexed: 01/31/2023]
Abstract
There is extensive knowledge of androgen receptor (AR) signaling in cancer cells, but less regarding androgen action in stromal cells of the tumor microenvironment. We report here the genome-wide effects of a stromal cell specific molecular adapter and AR coregulator, hydrogen peroxide-inducible gene 5 (Hic-5/TGFB1I1), on AR function in prostate myofibroblasts. Following androgen stimulation, Hic-5 rapidly translocates to the nucleus, coincident with increased phosphorylation of focal adhesion kinase. As a coregulator, Hic-5 acted to amplify or inhibit regulation of approximately 50% of AR target genes, affected androgen regulation of growth, cell adhesion, motility and invasion. These data suggest Hic-5 as a transferable adaptor between focal adhesions and the nucleus of prostate myofibroblasts, where it acts a key mediator of the specificity and sensitivity of AR signaling. We propose a model in which Hic-5 coordinates AR signaling with adhesion and extracellular matrix contacts to regulate cell behavior in the tumor microenvironment.
Collapse
Affiliation(s)
- Damien A Leach
- Cancer Biology Group, The Basil Hetzel Institute for Translational Health Research, School of Medicine, University of Adelaide, SA, Australia
| | - Eleanor F Need
- Cancer Biology Group, The Basil Hetzel Institute for Translational Health Research, School of Medicine, University of Adelaide, SA, Australia
| | - Andrew P Trotta
- Cancer Biology Group, The Basil Hetzel Institute for Translational Health Research, School of Medicine, University of Adelaide, SA, Australia
| | - Melanie J Grubisha
- School of Medicine, Department of Pharmacology and Chemical Biology, University of Pittsburgh, PA, USA
| | - Donald B DeFranco
- School of Medicine, Department of Pharmacology and Chemical Biology, University of Pittsburgh, PA, USA
| | - Grant Buchanan
- Cancer Biology Group, The Basil Hetzel Institute for Translational Health Research, School of Medicine, University of Adelaide, SA, Australia.
| |
Collapse
|
26
|
Van Tilborgh N, Spans L, Helsen C, Clinckemalie L, Dubois V, Lerut E, Boonen S, Vanderschueren D, Claessens F. The transcription intermediary factor 1β coactivates the androgen receptor. J Endocrinol Invest 2013; 36:699-706. [PMID: 23563173 DOI: 10.3275/8927] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The androgen receptor (AR) is a ligand-inducible transcription factor. Its transcription activation domain consists of the two transcription activation units called Tau-1 and Tau- 5. Tau-5 interacts with p160 coactivators like the transcription intermediary factor 2 (TIF2), which in their turn recruit histone modifiers and chromatin-remodelling complexes. The mechanism of action of Tau-1, however, remains elusive. Here, we demonstrate that transcription intermediary factor 1β (TIF1β) can induce the activity of the AR up to five fold when tested in vitro. Although there is no evidence for direct interactions between TIF1β and AR, mutation studies show that the activity of TIF1β depends on the integrity of Tau-1 in AR on the one hand, and the so-called tripartite motif domain in TIF1β on the other. Surprisingly, the coactivation by TIF1β via Tau-1 seems additive rather than cooperative with the AR coactivation by TIF2. Some mutations naturally occurring in androgen-insensitivity syndrome patients that reside in Tau-1 seem to impair the TIF1β coactivation of the AR, indicating that TIF1β could also be relevant for the in vivo androgen response in humans. Moreover, since TIF1β is well expressed in prostate cancer cells, its functional interaction with androgen signalling could in the long run be a therapeutic target for this disease.
Collapse
Affiliation(s)
- N Van Tilborgh
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lallous N, Dalal K, Cherkasov A, Rennie PS. Targeting alternative sites on the androgen receptor to treat castration-resistant prostate cancer. Int J Mol Sci 2013; 14:12496-519. [PMID: 23771019 PMCID: PMC3709796 DOI: 10.3390/ijms140612496] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 05/29/2013] [Accepted: 06/03/2013] [Indexed: 01/22/2023] Open
Abstract
Recurrent, metastatic prostate cancer continues to be a leading cause of cancer-death in men. The androgen receptor (AR) is a modular, ligand-inducible transcription factor that regulates the expression of genes that can drive the progression of this disease, and as a consequence, this receptor is a key therapeutic target for controlling prostate cancer. The current drugs designed to directly inhibit the AR are called anti-androgens, and all act by competing with androgens for binding to the androgen/ligand binding site. Unfortunately, with the inevitable progression of the cancer to castration resistance, many of these drugs become ineffective. However, there are numerous other regulatory sites on this protein that have not been exploited therapeutically. The regulation of AR activity involves a cascade of complex interactions with numerous chaperones, co-factors and co-regulatory proteins, leading ultimately to direct binding of AR dimers to specific DNA androgen response elements within the promoter and enhancers of androgen-regulated genes. As part of the family of nuclear receptors, the AR is organized into modular structural and functional domains with specialized roles in facilitating their inter-molecular interactions. These regions of the AR present attractive, yet largely unexploited, drug target sites for reducing or eliminating androgen signaling in prostate cancers. The design of small molecule inhibitors targeting these specific AR domains is only now being realized and is the culmination of decades of work, including crystallographic and biochemistry approaches to map the shape and accessibility of the AR surfaces and cavities. Here, we review the structure of the AR protein and describe recent advancements in inhibiting its activity with small molecules specifically designed to target areas distinct from the receptor’s androgen binding site. It is anticipated that these new classes of anti-AR drugs will provide an additional arsenal to treat castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Nada Lallous
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada.
| | | | | | | |
Collapse
|
28
|
Myung JK, Banuelos CA, Fernandez JG, Mawji NR, Wang J, Tien AH, Yang YC, Tavakoli I, Haile S, Watt K, McEwan IJ, Plymate S, Andersen RJ, Sadar MD. An androgen receptor N-terminal domain antagonist for treating prostate cancer. J Clin Invest 2013; 123:2948-60. [PMID: 23722902 DOI: 10.1172/jci66398] [Citation(s) in RCA: 246] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 03/28/2013] [Indexed: 12/27/2022] Open
Abstract
Hormone therapies for advanced prostate cancer target the androgen receptor (AR) ligand-binding domain (LBD), but these ultimately fail and the disease progresses to lethal castration-resistant prostate cancer (CRPC). The mechanisms that drive CRPC are incompletely understood, but may involve constitutively active AR splice variants that lack the LBD. The AR N-terminal domain (NTD) is essential for AR activity, but targeting this domain with small-molecule inhibitors is complicated by its intrinsic disorder. Here we investigated EPI-001, a small-molecule antagonist of AR NTD that inhibits protein-protein interactions necessary for AR transcriptional activity. We found that EPI analogs covalently bound the NTD to block transcriptional activity of AR and its splice variants and reduced the growth of CRPC xenografts. These findings suggest that the development of small-molecule inhibitors that bind covalently to intrinsically disordered proteins is a promising strategy for development of specific and effective anticancer agents.
Collapse
Affiliation(s)
- Jae-Kyung Myung
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
In Schizosaccharomyces pombe, over 90% of transcription factor genes are nonessential. Moreover, the majority do not exhibit significant growth defects under optimal conditions when deleted, complicating their functional characterization and target gene identification. Here, we systematically overexpressed 99 transcription factor genes with the nmt1 promoter and found that 64 transcription factor genes exhibited reduced fitness when ectopically expressed. Cell cycle defects were also often observed. We further investigated three uncharacterized transcription factor genes (toe1(+)-toe3(+)) that displayed cell elongation when overexpressed. Ectopic expression of toe1(+) resulted in a G1 delay while toe2(+) and toe3(+) overexpression produced an accumulation of septated cells with abnormalities in septum formation and nuclear segregation, respectively. Transcriptome profiling and ChIP-chip analysis of the transcription factor overexpression strains indicated that Toe1 activates target genes of the pyrimidine-salvage pathway, while Toe3 regulates target genes involved in polyamine synthesis. We also found that ectopic expression of the putative target genes SPBC3H7.05c, and dad5(+) and SPAC11D3.06 could recapitulate the cell cycle phenotypes of toe2(+) and toe3(+) overexpression, respectively. Furthermore, single deletions of the putative target genes urg2(+) and SPAC1399.04c, and SPBC3H7.05c, SPACUNK4.15, and rds1(+), could suppress the phenotypes of toe1(+) and toe2(+) overexpression, respectively. This study implicates new transcription factors and metabolism genes in cell cycle regulation and demonstrates the potential of systematic overexpression analysis to elucidate the function and target genes of transcription factors in S. pombe.
Collapse
|
30
|
Puzianowska-Kuznicka M, Pawlik-Pachucka E, Owczarz M, Budzińska M, Polosak J. Small-molecule hormones: molecular mechanisms of action. Int J Endocrinol 2013; 2013:601246. [PMID: 23533406 PMCID: PMC3603355 DOI: 10.1155/2013/601246] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 12/30/2012] [Accepted: 01/17/2013] [Indexed: 01/01/2023] Open
Abstract
Small-molecule hormones play crucial roles in the development and in the maintenance of an adult mammalian organism. On the molecular level, they regulate a plethora of biological pathways. Part of their actions depends on their transcription-regulating properties, exerted by highly specific nuclear receptors which are hormone-dependent transcription factors. Nuclear hormone receptors interact with coactivators, corepressors, basal transcription factors, and other transcription factors in order to modulate the activity of target genes in a manner that is dependent on tissue, age and developmental and pathophysiological states. The biological effect of this mechanism becomes apparent not earlier than 30-60 minutes after hormonal stimulus. In addition, small-molecule hormones modify the function of the cell by a number of nongenomic mechanisms, involving interaction with proteins localized in the plasma membrane, in the cytoplasm, as well as with proteins localized in other cellular membranes and in nonnuclear cellular compartments. The identity of such proteins is still under investigation; however, it seems that extranuclear fractions of nuclear hormone receptors commonly serve this function. A direct interaction of small-molecule hormones with membrane phospholipids and with mRNA is also postulated. In these mechanisms, the reaction to hormonal stimulus appears within seconds or minutes.
Collapse
Affiliation(s)
- Monika Puzianowska-Kuznicka
- Department of Human Epigenetics, Mossakowski Medical Research Centre, 5 Pawinskiego Street, 02-106 Warsaw, Poland
- Department of Geriatrics and Gerontology, Medical Center of Postgraduate Education, 61/63 Kleczewska Street, 01-826 Warsaw, Poland
- *Monika Puzianowska-Kuznicka:
| | - Eliza Pawlik-Pachucka
- Department of Human Epigenetics, Mossakowski Medical Research Centre, 5 Pawinskiego Street, 02-106 Warsaw, Poland
- Department of Geriatrics and Gerontology, Medical Center of Postgraduate Education, 61/63 Kleczewska Street, 01-826 Warsaw, Poland
| | - Magdalena Owczarz
- Department of Geriatrics and Gerontology, Medical Center of Postgraduate Education, 61/63 Kleczewska Street, 01-826 Warsaw, Poland
| | - Monika Budzińska
- Department of Geriatrics and Gerontology, Medical Center of Postgraduate Education, 61/63 Kleczewska Street, 01-826 Warsaw, Poland
| | - Jacek Polosak
- Department of Human Epigenetics, Mossakowski Medical Research Centre, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| |
Collapse
|
31
|
van de Wijngaart DJ, Dubbink HJ, van Royen ME, Trapman J, Jenster G. Androgen receptor coregulators: recruitment via the coactivator binding groove. Mol Cell Endocrinol 2012; 352:57-69. [PMID: 21871527 DOI: 10.1016/j.mce.2011.08.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 08/08/2011] [Accepted: 08/10/2011] [Indexed: 02/08/2023]
Abstract
Androgens are key regulators of male sexual differentiation and essential for development and maintenance of male reproductive tissues. The androgens testosterone and dihydrotestosterone mediate their effect by binding to, and activation of the androgen receptor (AR). Upon activation, the AR is able to recognize specific DNA sequences in gene promoters and enhancers from where it recruits coregulators to orchestrate chromatin remodeling and transcription regulation. The number of proteins that bind to the AR has surpassed 200 and many of them enhance (coactivator) or repress (corepressor) its transactivating capacity. For most of these coregulators, their AR binding interface and their exact mode of action still needs to be elucidated, but for some of the more classical coactivators and corepressors, we gained insight in their working mechanisms. Of particular interest are specific sequences (LxxLL and FxxLF-like motifs) in a subset of coactivators that interact with the AR via a coactivator binding groove in the ligand-binding domain. As compared to other steroid receptors, the conformation of the AR coactivator binding pocket is unique and preferentially binds FxxLF-like motifs. This predisposition is expected to contribute to the regulation of specific sets of target genes via recruitment of selected coregulators. This review provides an overview of these (inter)actions with a focus on the unique characteristics of the AR coactivator binding groove.
Collapse
|
32
|
McEwan IJ. Intrinsic disorder in the androgen receptor: identification, characterisation and drugability. MOLECULAR BIOSYSTEMS 2011; 8:82-90. [PMID: 21822504 DOI: 10.1039/c1mb05249g] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The androgen receptor (AR) regulates networks of genes in response to the steroid hormones testosterone and dihydrotestosterone. The receptor protein is made up of both stably folded globular domains, involved in hormone and DNA binding, and regions of intrinsic disorder, including the N-terminal domain (NTD). The AR-NTD has a modular activation function (termed AF1) and is important for gene regulation, participating in multiple protein-protein interactions. Biophysical studies have revealed that AR-NTD/AF1 has limited stable secondary structure and conforms to a 'collapsed disordered' conformation. The AR-NTD/AF1 has the propensity to adopt an α-helical conformation in response to a natural osmolyte or a co-regulatory binding partner. The AR is a key drug target in the management of advanced prostate cancer and recently a small molecule inhibitor was identified that interacts with the NTD/AF1 and impairs protein-protein interactions and recruitment of the receptor to target genes. In this review the role of intrinsic disorder in AR function is discussed along with the potential to develop new drugs that will target the structurally plastic NTD.
Collapse
Affiliation(s)
- Iain J McEwan
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK.
| |
Collapse
|
33
|
Muthusamy T, Murugesan P, Srinivasan C, Balasubramanian K. Sex steroids influence glucose oxidation through modulation of insulin receptor expression and IRS-1 serine phosphorylation in target tissues of adult male rat. Mol Cell Biochem 2011; 352:35-45. [PMID: 21301931 DOI: 10.1007/s11010-011-0737-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 01/21/2011] [Indexed: 12/26/2022]
Abstract
Skeletal muscle, liver, and adipose tissue are major insulin responsive target organs that also express androgen receptor. Testosterone (T) plays a role in maintaining normal insulin sensitivity in men but its effects on insulin target tissues are not fully understood. Our previous study showed that orchidectomy impairs glucose oxidation through decreased insulin receptor (IR) mRNA expression in skeletal muscles, liver, and adipose tissue of male rat. Furthermore, T replacement restored IR mRNA expression in skeletal muscles and liver, but did not have any effect in adipose tissue. In the present study, orchidectomy decreased IR mRNA and protein levels in muscle, liver, and adipose tissue. Treatment with a combination of T plus estradiol (E) was necessary to restore the IR mRNA and protein to control levels in adipose tissue. T or E treatment alone had no effect on IR mRNA levels in adipose tissue. T alone also had no effect on the IR protein, whereas E alone had a stimulatory effect. In comparison, in muscle and liver, T or T plus E restored the IR mRNA and protein to control levels. In muscle and liver, E alone had no effect on IR mRNA expression but restored the IR protein. In addition, orchidectomy was seen to have a stimulatory effect on IRS-1 Serine(636/639) phosphorylation in the three tissues studied. Following T, E or combined supplementation to castrated rats, the pattern of IRS-1 serine phosphorylation was restored to normal control levels. Furthermore, orchidectomy decreased serum insulin and glucose oxidation in all three tissues, and this was restored by T and its combination with E replacement, whereas E alone had no effect. It is concluded from the present study that sex steroid deficiency induces impaired glucose oxidation in insulin responsive tissues, which is mediated through reduced IR expression, and increased IRS-1 serine phosphorylation.
Collapse
Affiliation(s)
- Thirupathi Muthusamy
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, Tamil Nadu, India
| | | | | | | |
Collapse
|
34
|
Slupianek A, Yerrum S, Safadi FF, Monroy MA. The chromatin remodeling factor SRCAP modulates expression of prostate specific antigen and cellular proliferation in prostate cancer cells. J Cell Physiol 2010; 224:369-75. [PMID: 20432434 DOI: 10.1002/jcp.22132] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The SNF2-related CBP activator protein (SRCAP) serves as a coactivator for several nuclear receptors including the androgen receptor (AR). SRCAP is an ATPase that is the core subunit of a large multiprotein complex and was shown to incorporate the histone variant H2A.Z into nucleosomes. In this report, we demonstrate that SRCAP is expressed in the epithelium of normal prostate and in prostate carcinoma cells, and is associated with AR in the nucleus. Using transient transfection assays we demonstrate that SRCAP activates hormone-dependent transcription of the androgen responsive, prostate specific antigen (PSA)-Luciferase reporter gene in human prostate cells. The in vivo occupancy of SRCAP at the endogenous PSA promoter is demonstrated using chromatin immunoprecipitation assays. ShRNA mediated knockdown of SRCAP resulted in decreased H2A.Z binding at the enhancer region of the PSA promoter and decreased expression of PSA in prostate cancer cells. Furthermore, inhibition of SRCAP expression significantly inhibited androgen dependent prostate cancer cell growth. These data identify SRCAP as a physiologically relevant mediator of PSA expression, and demonstrate that SRCAP plays a role in prostate cancer cell proliferation.
Collapse
Affiliation(s)
- Artur Slupianek
- Department of Microbiology & Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | |
Collapse
|
35
|
Muthusamy T, Murugesan P, Balasubramanian K. Sex steroids deficiency impairs glucose transporter 4 expression and its translocation through defective Akt phosphorylation in target tissues of adult male rat. Metabolism 2009; 58:1581-92. [PMID: 19615701 DOI: 10.1016/j.metabol.2009.05.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 05/07/2009] [Accepted: 05/15/2009] [Indexed: 12/27/2022]
Abstract
There is a substantial body of evidence suggesting that altered level of sex steroids in male is associated with insulin resistance and type 2 diabetes mellitus. However, the mechanism of this effect is not apparent. Our recent study indicated that testosterone deprivation decreases insulin receptor expression and glucose oxidation in insulin target tissues. The present study was designed to assess the impact of deficiency of testosterone and estradiol on Akt phosphorylation, glucose transporter expression, and glucose uptake in skeletal muscle, adipose tissue, and liver of adult male rat. Adult male albino rats of Wistar strain were orchidectomized and supplemented with testosterone (100 microg/100 g body weight per day), estradiol (5 microg/100 g body weight per day), and their combination (100 microg testosterone plus 5 microg estradiol per 100 g body weight per day) for 15 days from the 11th day postorchidectomy. On the day after the last treatment, animals were perfused; and blood was collected for the assay of plasma glucose, serum insulin, testosterone, and estradiol. Gastrocnemius muscle, adipose tissue, and liver were dissected out and used for the assay of various parameters such as Akt phosphorylation, glucose transporter (GLUT) 2 and 4 expression, glucose uptake, and glycogenic and glycogenolytic enzymes activity. Castration elevated the blood glucose level, which was accompanied by inhibitory effect on serum insulin, Akt phosphorylation, GLUT4 expression and its plasma membrane population, glucose uptake, glycogen and glycogen synthase activity, and stimulatory effect on GLUT2 expression and glycogen phosphorylase activity in tissues studied. After testosterone and its combination with estradiol supplementation to castrated rats, a normal pattern of all these parameters was restored. Estradiol administration to castrated rats increased the Akt phosphorylation without altering other parameters studied. It is concluded from the present study that sex steroids deficiency-induced defective glucose uptake in skeletal muscle and adipose tissue is mediated through defective Akt phosphorylation and GLUT4 expression in plasma membrane.
Collapse
Affiliation(s)
- Thirupathi Muthusamy
- Department of Endocrinology, Dr ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600 113, Tamil Nadu, India
| | | | | |
Collapse
|
36
|
Norris JD, Joseph JD, Sherk AB, Juzumiene D, Turnbull PS, Rafferty SW, Cui H, Anderson E, Fan D, Dye DA, Deng X, Kazmin D, Chang CY, Willson TM, McDonnell DP. Differential presentation of protein interaction surfaces on the androgen receptor defines the pharmacological actions of bound ligands. ACTA ACUST UNITED AC 2009; 16:452-60. [PMID: 19389631 DOI: 10.1016/j.chembiol.2009.01.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 01/27/2009] [Accepted: 01/30/2009] [Indexed: 10/20/2022]
Abstract
The pharmacological activity of different nuclear receptor ligands is reflected by their impact on receptor structure. Thus, we asked whether differential presentation of protein-protein interaction surfaces on the androgen receptor (AR), a surrogate assay of receptor conformation, could be used in a prospective manner to define the pharmacological activity of bound ligands. To this end, we identified over 150 proteins/polypeptides whose ability to interact with AR is influenced in a differential manner by ligand binding. The most discriminatory of these protein-AR interactions were used to develop a robust compound-profiling tool that enabled the separation of ligands into functionally distinguishable classes. Importantly, the ligands within each class exhibited similar pharmacological activities, a result that highlights the relationship between receptor structure and activity and provides direction for the discovery of novel AR modulators.
Collapse
Affiliation(s)
- John David Norris
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wang G, Sadar MD. Amino-terminus domain of the androgen receptor as a molecular target to prevent the hormonal progression of prostate cancer. J Cell Biochem 2009; 98:36-53. [PMID: 16440300 DOI: 10.1002/jcb.20802] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Prostate cancer has a propensity to metastasize to the bone. Currently the only effective systemic treatment for these patients is androgen ablation therapy. However, the tumor will invariably progress to an androgen-independent stage and the patient will succumb to his disease within approximately 2 years. The earliest indication of hormonal progression is the rising titer of serum prostate specific antigen. Current evidence implicates the androgen receptor (AR) as a key factor in maintaining the growth of prostate cancer cells in an androgen-depleted state. Under normal conditions, binding of ligand activates the receptor, allowing it to effectively bind to its respective DNA element. However, AR is also transformed in the absence of androgen (ligand-independent activation) in prostate cells via multiple protein kinase pathways and the interleukin-6 (IL-6) pathway that converge upon the N-terminal domain of the AR. This domain is the main region for phosphorylation and is also critical for normal coregulator recruitment. Here we discuss evidence supporting the role of the AR, IL-6 and other protein kinase pathways in the hormonal progression of prostate cancer to androgen independence and the mechanisms involved in activation of the AR by these pathways. Receptor-targeted therapy, especially potential drugs targeting the N-terminal domain, may effectively prevent or delay the hormonal progression of AR-dependent prostate cancer.
Collapse
Affiliation(s)
- Gang Wang
- Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, V5Z1L3, Canada
| | | |
Collapse
|
38
|
Mallik I, Davila M, Tapia T, Schanen B, Chakrabarti R. Androgen regulates Cdc6 transcription through interactions between androgen receptor and E2F transcription factor in prostate cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1737-44. [DOI: 10.1016/j.bbamcr.2008.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 04/21/2008] [Accepted: 05/08/2008] [Indexed: 10/22/2022]
|
39
|
Claessens F, Denayer S, Van Tilborgh N, Kerkhofs S, Helsen C, Haelens A. Diverse roles of androgen receptor (AR) domains in AR-mediated signaling. NUCLEAR RECEPTOR SIGNALING 2008; 6:e008. [PMID: 18612376 PMCID: PMC2443950 DOI: 10.1621/nrs.06008] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 05/29/2008] [Indexed: 01/07/2023]
Abstract
Androgens control male sexual development and maintenance of the adult male phenotype. They have very divergent effects on their target organs like the reproductive organs, muscle, bone, brain and skin. This is explained in part by the fact that different cell types respond differently to androgen stimulus, even when all these responses are mediated by the same intracellular androgen receptor. To understand these tissue- and cell-specific readouts of androgens, we have to learn the many different steps in the transcription activation mechanisms of the androgen receptor (NR3C4). Like all nuclear receptors, the steroid receptors have a central DNA-binding domain connected to a ligand-binding domain by a hinge region. In addition, all steroid receptors have a relatively large amino-terminal domain. Despite the overall structural homology with other nuclear receptors, the androgen receptor has several specific characteristics which will be discussed here. This receptor can bind two types of androgen response elements (AREs): one type being similar to the classical GRE/PRE-type elements, the other type being the more divergent and more selective AREs. The hormone-binding domain has low intrinsic transactivation properties, a feature that correlates with the low affinity of this domain for the canonical LxxLL-bearing coactivators. For the androgen receptor, transcriptional activation involves the alternative recruitment of coactivators to different regions in the amino-terminal domain, as well as the hinge region. Finally, a very strong ligand-induced interaction between the amino-terminal domain and the ligand-binding domain of the androgen receptor seems to be involved in many aspects of its function as a transcription factor. This review describes the current knowledge on the structure-function relationships within the domains of the androgen receptor and tries to integrate the involvement of different domains, subdomains and motifs in the functioning of this receptor as a transcription factor with tissue- and cell-specific readouts.
Collapse
Affiliation(s)
- Frank Claessens
- Molecular Endocrinology Laboratory, Campus Gasthuisberg, University of Leuven, Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
40
|
Lavery DN, McEwan IJ. Functional characterization of the native NH2-terminal transactivation domain of the human androgen receptor: binding kinetics for interactions with TFIIF and SRC-1a. Biochemistry 2008; 47:3352-9. [PMID: 18284209 DOI: 10.1021/bi702220p] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The androgen receptor (AR) is a ligand-activated transcription factor that mediates the actions of the steroid hormones testosterone and dihydrotestosterone at the level of gene transcription. The main transactivation function is modular in structure, maps to the N-terminal domain (NTD), and is termed AF1. This region of the AR is structurally flexible and functions in multiple protein-protein interactions with coregulatory proteins and components of the general transcription machinery. Using surface plasmon resonance, the binding kinetics for the interaction of AR-AF1 with the large subunit of the general transcription factor TFIIF, termed RAP74, and the coactivator SRC-1a were measured. AR-AF1 interacts with both the NTD and CTD of RAP74 and the CTD of SRC-1a. The dissociation constants ( Kd) for the binding of polypeptides derived from RAP74 are in the submicromolar range, while a peptide from SRC-1a bound with a Kd of 14 microM. Significantly, the individual NTD and CTD of RAP74 interacted with AR-AF1 with distinct binding kinetics, with the NTD exhibiting slower on and off rates. TFIIF is involved in transcription initiation and elongation, and the CTD of RAP74 binds to the RNA polymerase II enzyme, the general transcription factor TFIIB, and a CTD phosphatase, FCP1. We have mutated hydrophobic residues in the RAP74-CTD structure to disrupt secondary structure elements and show that binding of AR-AF1 depends upon helix 3 in the winged-helix domain of the RAP74-CTD polypeptide. Altogether, a model is suggested for AR-AF1-dependent transactivation of receptor-target genes.
Collapse
Affiliation(s)
- Derek N Lavery
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | | |
Collapse
|
41
|
Lavery DN, McEwan IJ. Structural Characterization of the Native NH2-Terminal Transactivation Domain of the Human Androgen Receptor: A Collapsed Disordered Conformation Underlies Structural Plasticity and Protein-Induced Folding. Biochemistry 2008; 47:3360-9. [DOI: 10.1021/bi702221e] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Derek N. Lavery
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Iain J. McEwan
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| |
Collapse
|
42
|
Heemers HV, Tindall DJ. Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr Rev 2007; 28:778-808. [PMID: 17940184 DOI: 10.1210/er.2007-0019] [Citation(s) in RCA: 517] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Androgens, acting through the androgen receptor (AR), are responsible for the development of the male phenotype during embryogenesis, the achievement of sexual maturation at puberty, and the maintenance of male reproductive function and behavior in adulthood. In addition, androgens affect a wide variety of nonreproductive tissues. Moreover, aberrant androgen action plays a critical role in multiple pathologies, including prostate cancer and androgen insensitivity syndromes. The formation of a productive AR transcriptional complex requires the functional and structural interaction of the AR with its coregulators. In the last decade, an overwhelming and ever increasing number of proteins have been proposed to possess AR coactivating or corepressing characteristics. Intriguingly, a vast diversity of functions has been ascribed to these proteins, indicating that a multitude of cellular functions and signals converge on the AR to regulate its function. The current review aims to provide an overview of the AR coregulator proteins identified to date and to propose a classification of these AR coregulator proteins according to the function(s) ascribed to them. Taken together, this approach will increase our understanding of the cellular pathways that converge on the AR to ensure an appropriate transcriptional response to androgens.
Collapse
Affiliation(s)
- Hannelore V Heemers
- Department of Urology Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
43
|
Muthusamy T, Dhevika S, Murugesan P, Balasubramanian K. Testosterone deficiency impairs glucose oxidation through defective insulin and its receptor gene expression in target tissues of adult male rats. Life Sci 2007; 81:534-42. [PMID: 17673259 DOI: 10.1016/j.lfs.2007.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 06/06/2007] [Accepted: 06/15/2007] [Indexed: 11/29/2022]
Abstract
Testosterone and insulin interact in their actions on target tissues. Most of the studies that address this issue have focused on the physiological concentration of testosterone, which maintains normal insulin sensitivity but has deleterious effects on the same when the concentration of testosterone is out of this range. However, molecular basis of the action of testosterone in the early step of insulin action is not known. The present study has been designed to assess the impact of testosterone on insulin receptor gene expression and glucose oxidation in target tissues of adult male rat. Adult male albino rats were orchidectomized and supplemented with testosterone (100 microg/100 g b. wt., twice daily) for 15 days from the 11th day of post orchidectomy. On the day after the last treatment, animals were euthanized and blood was collected for the assay of plasma glucose, serum testosterone and insulin. Skeletal muscles, such as gracilis and quadriceps, liver and adipose tissue were dissected out and used for the assay of various parameters such as insulin receptor concentration, insulin receptor mRNA level and glucose oxidation. Testosterone deprivation due to orchidectomy decreased serum insulin concentration. In addition to this, insulin receptor number and its mRNA level and glucose oxidation in target tissues were significantly decreased (p<0.05) when compared to control. However, testosterone replacement in orchidectomized rats restored all these parameters to control level. It is concluded from this study that testosterone deficiency-induced defective glucose oxidation in skeletal muscles, liver and adipose tissue is mediated through impaired expression of insulin and its receptor gene.
Collapse
Affiliation(s)
- Thirupathi Muthusamy
- Department of Endocrinology, Dr ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai-600 113, Tamil Nadu, India
| | | | | | | |
Collapse
|
44
|
Chmelar R, Buchanan G, Need EF, Tilley W, Greenberg NM. Androgen receptor coregulators and their involvement in the development and progression of prostate cancer. Int J Cancer 2007; 120:719-33. [PMID: 17163421 DOI: 10.1002/ijc.22365] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The androgen receptor signaling axis plays an essential role in the development, function and homeostasis of male urogenital structures including the prostate gland although the mechanism by which the AR axis contributes to the initiation, progression and metastatic spread of prostate cancer remains somewhat enigmatic. A number of molecular events have been proposed to act at the level of the AR and associated coregulators to influence the natural history of prostate cancer including deregulated expression, somatic mutation, and post-translational modification. The purpose of this article is to review the evidence for deregulated expression and function of the AR and associated coactivators and corepressors and how such events might contribute to the progression of prostate cancer by controlling the selection and expression of AR targets.
Collapse
Affiliation(s)
- Renée Chmelar
- Department of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
45
|
McEwan IJ, Lavery D, Fischer K, Watt K. Natural disordered sequences in the amino terminal domain of nuclear receptors: lessons from the androgen and glucocorticoid receptors. NUCLEAR RECEPTOR SIGNALING 2007; 5:e001. [PMID: 17464357 PMCID: PMC1853069 DOI: 10.1621/nrs.05001] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Accepted: 01/02/2007] [Indexed: 11/20/2022]
Abstract
Steroid hormones are a diverse class of structurally related molecules, derived from cholesterol, that include androgens, estrogens, progesterone and corticosteroids. They represent an important group of physiologically active signalling molecules that bind intracellular receptor proteins and regulate genes involved in developmental, reproductive and metabolic processes. The receptor proteins share structurally and functionally related ligand binding and DNA-binding domains, but possess distinct N-terminal domains (NTD) of unique length and amino acids sequence. The NTD contains sequences important for gene regulation, exhibit structure plasticity and are likely to contribute to the specificity of the steroid hormone/receptor response.
Collapse
MESH Headings
- Amino Acid Sequence
- Computer Simulation
- Hartnup Disease
- Models, Chemical
- Models, Molecular
- Molecular Sequence Data
- Mutation
- Protein Structure, Tertiary
- Receptors, Androgen/chemistry
- Receptors, Androgen/genetics
- Receptors, Androgen/ultrastructure
- Receptors, Glucocorticoid/chemistry
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/ultrastructure
- Sequence Analysis, Protein
Collapse
Affiliation(s)
- Iain J McEwan
- School of Medical Sciences, IMS Building, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK.
| | | | | | | |
Collapse
|
46
|
Lavery DN, McEwan IJ. The human androgen receptor AF1 transactivation domain: interactions with transcription factor IIF and molten-globule-like structural characteristics. Biochem Soc Trans 2006; 34:1054-7. [PMID: 17073749 DOI: 10.1042/bst0341054] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The AR (androgen receptor) is a ligand-activated transcription factor and member of the steroid receptor superfamily. The AR responds to the ligands testosterone and dihydrotestosterone and activates multiple downstream genes required in development and reproduction. During the events of transactivation, the AR makes specific protein–protein interactions with several basal transcription factors such as TBP (TATA-box-binding protein) and TFIIF (transcription factor IIF). These interactions occur predominantly within a defined region termed AF1 (activation function-1) located within the highly disordered N-terminal domain of the receptor. Our focus is on the structural aspects of AF1 and how this flexible and disordered domain generates functional interactions with regulators of transcription. Our working hypothesis is that AR-AF1 domain exhibits induced folding when contacted by transcription regulators (such as TFIIF) into a more compact and ‘active’ conformation, enabling further co-regulator recruitment and ultimately transcription. Structural flexibility and intrinsic disorder of AR-AF1 were studied using predictive algorithms and fluorescence spectroscopy under different experimental conditions and the results revealed this domain retains characteristics indicative of molten-globule or pre-molten-globule-like structures. We hypothesize that this partially folded intermediate state is important for, and enables the AF1 domain to make, multiple protein–protein interactions. The structural aspects of AR-AF1 and interactions with TFIIF are discussed.
Collapse
Affiliation(s)
- D N Lavery
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | | |
Collapse
|
47
|
Chen S, Xu Y, Yuan X, Bubley GJ, Balk SP. Androgen receptor phosphorylation and stabilization in prostate cancer by cyclin-dependent kinase 1. Proc Natl Acad Sci U S A 2006; 103:15969-74. [PMID: 17043241 PMCID: PMC1635111 DOI: 10.1073/pnas.0604193103] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Androgen receptors (ARs) are phosphorylated at multiple sites in response to ligand binding, but the kinases mediating AR phosphorylation and the importance of these kinases in AR function have not been established. Here we show that cyclin-dependent kinase 1 (Cdk1) mediates AR phosphorylation at Ser-81 and increases AR protein expression, and that Cdk1 inhibitors decrease AR Ser-81 phosphorylation, protein expression, and transcriptional activity in prostate cancer (PCa) cells. The decline in AR protein expression mediated by the Cdk inhibitor roscovitine was prevented by proteosome inhibitors, indicating that Cdk1 stabilizes AR protein, although roscovitine also decreased AR message levels. Analysis of an S81A AR mutant demonstrated that this site is not required for transcriptional activity or Cdk1-mediated AR stabilization in transfected cells. The AR is active and seems to be stabilized by low levels of androgen in "androgen-independent" PCas that relapse subsequent to androgen-deprivation therapy. Significantly, the expression of cyclin B and Cdk1 was increased in these tumors, and treatment with roscovitine abrogated responses to low levels of androgen in the androgen-independent C4-2 PCa cell line. Taken together, these findings identify Cdk1 as a Ser-81 kinase and indicate that Cdk1 stabilizes AR protein by phosphorylation at a site(s) distinct from Ser-81. Moreover, these results indicate that increased Cdk1 activity is a mechanism for increasing AR expression and stability in response to low androgen levels in androgen-independent PCas, and that Cdk1 antagonists may enhance responses to androgen-deprivation therapy.
Collapse
Affiliation(s)
- Shaoyong Chen
- Hematology–Oncology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215
| | - Youyuan Xu
- Hematology–Oncology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215
| | - Xin Yuan
- Hematology–Oncology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215
| | - Glenn J. Bubley
- Hematology–Oncology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215
| | - Steven P. Balk
- Hematology–Oncology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
48
|
Zanton SJ, Pugh BF. Full and partial genome-wide assembly and disassembly of the yeast transcription machinery in response to heat shock. Genes Dev 2006; 20:2250-65. [PMID: 16912275 PMCID: PMC1553208 DOI: 10.1101/gad.1437506] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Eukaryotic genes are controlled by sequence-specific DNA-binding proteins, chromatin regulators, general transcription factors, and elongation factors. Here we examine the genome-wide location of representative members of these groups and their redistribution when the Saccharomyces cerevisiae genome is reprogrammed by heat shock. As expected, assembly of active transcription complexes is coupled to eviction of H2A.Z nucleosomes, and disassembly is coupled to the return of nucleosomes. Remarkably, a large number of promoters assemble into partial preinitiation complexes (partial PICs), containing TFIIA, TFIID (and/or SAGA), TFIIB, TFIIE, and TFIIF. However, RNA polymerase II and TFIIH are generally not recruited, and nucleosomes are not displaced. These promoters may be preparing for additional stress that naturally accompany heat stress. For example, we find that oxidative stress, which often occurs with prolonged exposure of cells to high temperature, converts partial PICs into full PICs. Partial PICs therefore represent novel regulated intermediates that assemble at promoters in the midst of chromatin.
Collapse
Affiliation(s)
- Sara J Zanton
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
49
|
Abstract
In eukaryotes, the core promoter serves as a platform for the assembly of transcription preinitiation complex (PIC) that includes TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, and RNA polymerase II (pol II), which function collectively to specify the transcription start site. PIC formation usually begins with TFIID binding to the TATA box, initiator, and/or downstream promoter element (DPE) found in most core promoters, followed by the entry of other general transcription factors (GTFs) and pol II through either a sequential assembly or a preassembled pol II holoenzyme pathway. Formation of this promoter-bound complex is sufficient for a basal level of transcription. However, for activator-dependent (or regulated) transcription, general cofactors are often required to transmit regulatory signals between gene-specific activators and the general transcription machinery. Three classes of general cofactors, including TBP-associated factors (TAFs), Mediator, and upstream stimulatory activity (USA)-derived positive cofactors (PC1/PARP-1, PC2, PC3/DNA topoisomerase I, and PC4) and negative cofactor 1 (NC1/HMGB1), normally function independently or in combination to fine-tune the promoter activity in a gene-specific or cell-type-specific manner. In addition, other cofactors, such as TAF1, BTAF1, and negative cofactor 2 (NC2), can also modulate TBP or TFIID binding to the core promoter. In general, these cofactors are capable of repressing basal transcription when activators are absent and stimulating transcription in the presence of activators. Here we review the roles of these cofactors and GTFs, as well as TBP-related factors (TRFs), TAF-containing complexes (TFTC, SAGA, SLIK/SALSA, STAGA, and PRC1) and TAF variants, in pol II-mediated transcription, with emphasis on the events occurring after the chromatin has been remodeled but prior to the formation of the first phosphodiester bond.
Collapse
Affiliation(s)
- Mary C Thomas
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4935, USA
| | | |
Collapse
|
50
|
Thompson J, Lepikhova T, Teixido-Travesa N, Whitehead MA, Palvimo JJ, Jänne OA. Small carboxyl-terminal domain phosphatase 2 attenuates androgen-dependent transcription. EMBO J 2006; 25:2757-67. [PMID: 16724108 PMCID: PMC1500849 DOI: 10.1038/sj.emboj.7601161] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 05/02/2006] [Indexed: 01/08/2023] Open
Abstract
Small carboxyl-terminal domain (CTD) phosphatase 2 (SCP2) was identified and verified as a protein that interacts with the androgen receptor (AR). Ectopic expression of SCP2 or two other family members, SCP1 and SCP3, attenuated AR transcriptional activity in LNCaP cells and were recruited in an androgen- and AR-dependent fashion onto the prostate-specific antigen (PSA) promoter. Silencing SCP2 and SCP1 by short hairpin RNAs increased androgen-dependent transcription of the PSA gene and augmented AR loading onto the PSA promoter and enhancer. SCP2 also attenuated glucocorticoid receptor (GR) function, and its silencing increased dexamethasone-mediated PSA mRNA accumulation and GR loading onto the PSA enhancer in LNCaP 1F5 cells. SCP2 silencing was accompanied by augmented recruitment and earlier cycling of RNA polymerase II on the promoter. Ser 5 phosphorylation of the RNA polymerase II CTD, a process necessary for initiation of transcription elongation, occurred significantly earlier in SCP2-silenced than parental LNCaP cells. Collectively, our results suggest that SCP2 is involved in promoter clearance during steroid-activated transcription.
Collapse
Affiliation(s)
- James Thompson
- Institute of Biomedicine (Physiology), Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Tatyana Lepikhova
- Institute of Biomedicine (Physiology), Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Neus Teixido-Travesa
- Institute of Biomedicine (Physiology), Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Maria A Whitehead
- Institute of Biomedicine (Physiology), Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Jorma J Palvimo
- Institute of Biomedicine (Physiology), Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Department of Medical Biochemistry, University of Kuopio, Kuopio, Finland
| | - Olli A Jänne
- Institute of Biomedicine (Physiology), Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Department of Clinical Chemistry, Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|