1
|
Ji F, Wu Y, Pumera M, Zhang L. Collective Behaviors of Active Matter Learning from Natural Taxes Across Scales. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203959. [PMID: 35986637 DOI: 10.1002/adma.202203959] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Taxis orientation is common in microorganisms, and it provides feasible strategies to operate active colloids as small-scale robots. Collective taxes involve numerous units that collectively perform taxis motion, whereby the collective cooperation between individuals enables the group to perform efficiently, adaptively, and robustly. Hence, analyzing and designing collectives is crucial for developing and advancing microswarm toward practical or clinical applications. In this review, natural taxis behaviors are categorized and synthetic microrobotic collectives are discussed as bio-inspired realizations, aiming at closing the gap between taxis strategies of living creatures and those of functional active microswarms. As collective behaviors emerge within a group, the global taxis to external stimuli guides the group to conduct overall tasks, whereas the local taxis between individuals induces synchronization and global patterns. By encoding the local orientations and programming the global stimuli, various paradigms can be introduced for coordinating and controlling such collective microrobots, from the viewpoints of fundamental science and practical applications. Therefore, by discussing the key points and difficulties associated with collective taxes of different paradigms, this review potentially offers insights into mimicking natural collective behaviors and constructing intelligent microrobotic systems for on-demand control and preassigned tasks.
Collapse
Affiliation(s)
- Fengtong Ji
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Yilin Wu
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Martin Pumera
- Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava, 70800, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| |
Collapse
|
2
|
Bouvard J, Douarche C, Mergaert P, Auradou H, Moisy F. Direct measurement of the aerotactic response in a bacterial suspension. Phys Rev E 2022; 106:034404. [PMID: 36266851 DOI: 10.1103/physreve.106.034404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/29/2022] [Indexed: 06/16/2023]
Abstract
Aerotaxis is the ability of motile cells to navigate toward oxygen. A key question is the dependence of the aerotactic velocity with the local oxygen concentration c. Here we combine simultaneous bacteria tracking and local oxygen concentration measurements using Ruthenium encapsulated in micelles to characterize the aerotactic response of Burkholderia contaminans, a motile bacterium ubiquitous in the environment. In our experiments, an oxygen gradient is produced by the bacterial respiration in a sealed glass capillary permeable to oxygen at one end, producing a bacterial band traveling toward the oxygen source. We compute the aerotactic response χ(c) both at the population scale, from the drift velocity in the bacterial band, and at the bacterial scale, from the angular modulation of the run times. Both methods are consistent with a power-law χ∝c^{-2}, in good agreement with existing models based on the biochemistry of bacterial membrane receptors.
Collapse
Affiliation(s)
- J Bouvard
- Université Paris-Saclay, CNRS, FAST, 91405, Orsay, France
| | - C Douarche
- Université Paris-Saclay, CNRS, FAST, 91405, Orsay, France
| | - P Mergaert
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - H Auradou
- Université Paris-Saclay, CNRS, FAST, 91405, Orsay, France
| | - F Moisy
- Université Paris-Saclay, CNRS, FAST, 91405, Orsay, France
| |
Collapse
|
3
|
Aalismail NA, Ngugi DK, Díaz-Rúa R, Alam I, Cusack M, Duarte CM. Functional metagenomic analysis of dust-associated microbiomes above the Red Sea. Sci Rep 2019; 9:13741. [PMID: 31551441 PMCID: PMC6760216 DOI: 10.1038/s41598-019-50194-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/06/2019] [Indexed: 02/08/2023] Open
Abstract
Atmospheric transport is a major vector for the long-range transport of microbial communities, maintaining connectivity among them and delivering functionally important microbes, such as pathogens. Though the taxonomic diversity of aeolian microorganisms is well characterized, the genomic functional traits underpinning their survival during atmospheric transport are poorly characterized. Here we use functional metagenomics of dust samples collected on the Global Dust Belt to initiate a Gene Catalogue of Aeolian Microbiome (GCAM) and explore microbial genetic traits enabling a successful aeolian lifestyle in Aeolian microbial communities. The GCAM reported here, derived from ten aeolian microbial metagenomes, includes a total of 2,370,956 non-redundant coding DNA sequences, corresponding to a yield of ~31 × 106 predicted genes per Tera base-pair of DNA sequenced for the aeolian samples sequenced. Two-thirds of the cataloged genes were assigned to bacteria, followed by eukaryotes (5.4%), archaea (1.1%), and viruses (0.69%). Genes encoding proteins involved in repairing UV-induced DNA damage and aerosolization of cells were ubiquitous across samples, and appear as fundamental requirements for the aeolian lifestyle, while genes coding for other important functions supporting the aeolian lifestyle (chemotaxis, aerotaxis, germination, thermal resistance, sporulation, and biofilm formation) varied among the communities sampled.
Collapse
Affiliation(s)
- Nojood A Aalismail
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.
| | - David K Ngugi
- Department of Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Culture, Inhoffenstrasse 7B, B38124, Braunschweig, Germany
| | - Rubén Díaz-Rúa
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Intikhab Alam
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Michael Cusack
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Carlos M Duarte
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| |
Collapse
|
4
|
Komitopoulou E, Bainton NJ, Adams MR. Oxidation-reduction potential regulates RpoS levels in Salmonella Typhimurium. J Appl Microbiol 2004; 96:271-8. [PMID: 14723688 DOI: 10.1046/j.1365-2672.2003.02152.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS The aim of this work was to investigate the connection between oxidation-reduction (redox) potential and stationary phase induction of RpoS in Salmonella Typhimurium. METHODS AND RESULTS A lux-based reporter was used to evaluate RpoS activity in S. Typhimurium pure cultures. During growth of S. Typhimurium, a drop in the redox potential of the growth medium occurred at the same time as RpoS induction and entry into stationary phase. An artificially induced decrease in redox potential earlier during growth reduced the time to RpoS induction and Salmonella entered the stationary phase prematurely. In contrast, under high redox conditions, Salmonella grew unaffected and entered the stationary growth phase as normal, although RpoS induction did not occur. As a consequence, stationary phase cells grown in the high redox environment were significantly more heat sensitive (P < 0.05) than those grown under normal conditions. CONCLUSIONS This work suggests that redox potential can regulate RpoS levels in S. Typhimurium and can thus, control the expression of genes responsible for thermal resistance. SIGNIFICANCE AND IMPACT OF THE STUDY The ability to manipulate RpoS induction and control stationary phase gene expression can have important implications in food safety. Early RpoS induction under low redox potential conditions can lead to enhanced resistance in low cell concentrations to inimical processes such as heat stress. Inhibition of RpoS induction would abolish stationary phase protective properties making cells more sensitive to common food control measures.
Collapse
Affiliation(s)
- E Komitopoulou
- School of Biomedical and Molecular Sciences, University of Surrey, Guildford, Surrey, UK
| | | | | |
Collapse
|
5
|
Zhang W, Phillips GN. Structure of the oxygen sensor in Bacillus subtilis: signal transduction of chemotaxis by control of symmetry. Structure 2003; 11:1097-110. [PMID: 12962628 DOI: 10.1016/s0969-2126(03)00169-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Much is now known about chemotaxis signaling transduction for Escherichia coli and Salmonella typhimurium. The mechanism of chemotaxis of Bacillus subtilis is, in a sense, reversed. Attractant binding strengthens the activity of histidine kinase in B. subtilis, instead of an inhibition reaction. The HemAT from B. subtilis can detect oxygen and transmit the signal to regulatory proteins that control the direction of flagella rotation. We have determined the crystal structures of the HemAT sensor domain in liganded and unliganded forms at 2.15 A and 2.7 A resolution, respectively. The liganded structure reveals a highly symmetrical organization. Tyrosine70 shows distinct conformational changes on one subunit when ligands are removed. Our study suggests that disruption of the symmetry of HemAT plays an important role in initiating the chemotaxis signaling transduction cascade.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | | |
Collapse
|
6
|
Hahn ME. The aryl hydrocarbon receptor: a comparative perspective. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1998; 121:23-53. [PMID: 9972449 DOI: 10.1016/s0742-8413(98)10028-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aryl hydrocarbon receptor (Ah receptor or AHR) is a ligand-activated transcription factor involved in the regulation of several genes, including those for xenobiotic-metabolizing enzymes such as cytochrome P450 1A and 1B forms. Ligands for the AHR include a variety of aromatic hydrocarbons, including the chlorinated dioxins and related halogenated aromatic hydrocarbons whose toxicity occurs through activation of the AHR. The AHR and its dimerization partner ARNT are members of the emerging bHLH-PAS family of transcriptional regulatory proteins. In this review, our current understanding of the AHR signal transduction pathway in non-mammalian and other non-traditional species is summarized, with an emphasis on similarities and differences in comparison to the AHR pathway in rodents and humans. Evidence and prospects for the presence of a functional AHR in early vertebrates and invertebrates are also examined. An overview of the bHLH-PAS family is presented in relation to the diversity of bHLH-PAS proteins and the functional and evolutionary relationships of the AHR and ARNT to the other members of this family. Finally, some of the most promising directions for future research on the comparative biochemistry and molecular biology of the AHR and ARNT are discussed.
Collapse
Affiliation(s)
- M E Hahn
- Biology Department, Woods Hole Oceanographic Institution, MA 02543-1049, USA.
| |
Collapse
|