1
|
Chatzinikolaou G, Stratigi K, Siametis A, Goulielmaki E, Akalestou-Clocher A, Tsamardinos I, Topalis P, Austin C, Bouwman BA, Crosetto N, Altmüller J, Garinis GA. XPF interacts with TOP2B for R-loop processing and DNA looping on actively transcribed genes. SCIENCE ADVANCES 2023; 9:eadi2095. [PMID: 37939182 PMCID: PMC10631727 DOI: 10.1126/sciadv.adi2095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Co-transcriptional RNA-DNA hybrids can not only cause DNA damage threatening genome integrity but also regulate gene activity in a mechanism that remains unclear. Here, we show that the nucleotide excision repair factor XPF interacts with the insulator binding protein CTCF and the cohesin subunits SMC1A and SMC3, leading to R-loop-dependent DNA looping upon transcription activation. To facilitate R-loop processing, XPF interacts and recruits with TOP2B on active gene promoters, leading to double-strand break accumulation and the activation of a DNA damage response. Abrogation of TOP2B leads to the diminished recruitment of XPF, CTCF, and the cohesin subunits to promoters of actively transcribed genes and R-loops and the concurrent impairment of CTCF-mediated DNA looping. Together, our findings disclose an essential role for XPF with TOP2B and the CTCF/cohesin complex in R-loop processing for transcription activation with important ramifications for DNA repair-deficient syndromes associated with transcription-associated DNA damage.
Collapse
Affiliation(s)
- Georgia Chatzinikolaou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas, GR70013, Heraklion, Crete, Greece
| | - Kalliopi Stratigi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas, GR70013, Heraklion, Crete, Greece
| | - Athanasios Siametis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas, GR70013, Heraklion, Crete, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Evi Goulielmaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas, GR70013, Heraklion, Crete, Greece
| | - Alexia Akalestou-Clocher
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas, GR70013, Heraklion, Crete, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Ioannis Tsamardinos
- Computer Science Department of University of Crete, Heraklion, Crete, Greece
| | - Pantelis Topalis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas, GR70013, Heraklion, Crete, Greece
| | - Caroline Austin
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Britta A. M. Bouwman
- Division of Microbiology, Tumor and Cell Biology, Karolinska Institutet and Science for Life Laboratory, Stockholm 17177, Sweden
| | - Nicola Crosetto
- Division of Microbiology, Tumor and Cell Biology, Karolinska Institutet and Science for Life Laboratory, Stockholm 17177, Sweden
- Human Technopole, Viale Rita Levi-Montalcini 1, 22157 Milan, Italy
| | - Janine Altmüller
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Core Facility Genomics, Charitéplatz 1, 10117 Berlin, Germany
| | - George A. Garinis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas, GR70013, Heraklion, Crete, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
2
|
Li S, Lu H, Wang Z, Hu Q, Wang H, Xiang R, Chiba T, Wu X. ERCC1/XPF Is Important for Repair of DNA Double-Strand Breaks Containing Secondary Structures. iScience 2019; 16:63-78. [PMID: 31153042 PMCID: PMC6543133 DOI: 10.1016/j.isci.2019.05.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/02/2019] [Accepted: 05/10/2019] [Indexed: 12/15/2022] Open
Abstract
The structure-specific endonuclease ERCC1/XPF plays an important role in nucleotide excision repair and interstrand cross-link repair. In this study, we identified new functions of ERCC1/XPF in DNA double-strand break (DSB) repair. We found that the conserved function of ERCC1/XPF to remove non-homologous sequences at DSBs is a rate-limiting step for homologous recombination in mammalian cells, and more importantly, we uncovered an indispensable role of ERCC1/XPF in repair of DSBs containing DNA secondary structures, including the structure-prone AT-rich DNA sequences derived from common fragile sites and G-quadruplexes (G4s). We also demonstrated a synthetic lethal interaction of XPF with DNA translocase FANCM that is involved in removing DNA secondary structures. Furthermore, inactivation of XPF sensitizes FANCM-deficient cells to G4-interacting compounds. These results suggest an important function of ERCC1/XPF in protecting DNA secondary structures and provide a rationale for targeted treatment of FANCM-deficient tumors through inhibition of XPF.
Collapse
Affiliation(s)
- Shibo Li
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hongyan Lu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Zi Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; Biomedical Gerontology Laboratory, Department of Health Science and Social Welfare, School of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan
| | - Qing Hu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hongjun Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rong Xiang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Takuya Chiba
- Biomedical Gerontology Laboratory, Department of Health Science and Social Welfare, School of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan
| | - Xiaohua Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
3
|
Guyon-Debast A, Rossetti P, Charlot F, Epert A, Neuhaus JM, Schaefer DG, Nogué F. The XPF-ERCC1 Complex Is Essential for Genome Stability and Is Involved in the Mechanism of Gene Targeting in Physcomitrella patens. FRONTIERS IN PLANT SCIENCE 2019; 10:588. [PMID: 31143199 PMCID: PMC6521618 DOI: 10.3389/fpls.2019.00588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
The XPF-ERCC1 complex, a highly conserved structure-specific endonuclease, functions in multiple DNA repair pathways that are pivotal for maintaining genome stability, including nucleotide excision repair, interstrand crosslink repair, and homologous recombination. XPF-ERCC1 incises double-stranded DNA at double-strand/single-strand junctions, making it an ideal enzyme for processing DNA structures that contain partially unwound strands. Here, we have examined the role of the XPF-ERCC1 complex in the model bryophyte Physcomitrella patens which exhibits uniquely high gene targeting frequencies. We undertook targeted knockout of the Physcomitrella ERCC1 and XPF genes. Mutant analysis shows that the endonuclease complex is essential for resistance to UV-B and to the alkylating agent MMS, and contributes to the maintenance of genome integrity but is also involved in gene targeting in this model plant. Using different constructs we determine whether the function of the XPF-ERCC1 endonuclease complex in gene targeting was removal of 3' non-homologous termini, similar to SSA, or processing of looped-out heteroduplex intermediates. Interestingly, our data suggest a role of the endonuclease in both pathways and have implications for the mechanism of targeted gene replacement in plants and its specificities compared to yeast and mammalian cells.
Collapse
Affiliation(s)
- Anouchka Guyon-Debast
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Patricia Rossetti
- Laboratoire de Biologie Moléculaire et Cellulaire, Institut de Biologie, Université de Neuchâtel, Neuchâtel, Switzerland
| | - Florence Charlot
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Aline Epert
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Jean-Marc Neuhaus
- Laboratoire de Biologie Moléculaire et Cellulaire, Institut de Biologie, Université de Neuchâtel, Neuchâtel, Switzerland
| | - Didier G. Schaefer
- Laboratoire de Biologie Moléculaire et Cellulaire, Institut de Biologie, Université de Neuchâtel, Neuchâtel, Switzerland
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| |
Collapse
|
4
|
Lehmann J, Schubert S, Seebode C, Apel A, Ohlenbusch A, Emmert S. Splice variants of the endonucleases XPF and XPG contain residual DNA repair capabilities and could be a valuable tool for personalized medicine. Oncotarget 2018; 9:1012-1027. [PMID: 29416673 PMCID: PMC5787415 DOI: 10.18632/oncotarget.23105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/15/2017] [Indexed: 11/25/2022] Open
Abstract
The two endonucleases XPF and XPG are essentially involved in nucleotide excision repair (NER) and interstrand crosslink (ICL) repair. Defects in these two proteins result in severe diseases like xeroderma pigmentosum (XP). We applied our newly CRISPR/Cas9 generated human XPF knockout cell line with complete loss of XPF and primary fibroblasts from an XP-G patient (XP20BE) to analyze until now uncharacterized spontaneous mRNA splice variants of these two endonucleases. Functional analyses of these variants were performed using luciferase-based reporter gene assays. Two XPF and XPG splice variants with residual repair capabilities in NER, as well as ICL repair could be identified. Almost all variants are severely C-terminally truncated and lack important protein-protein interaction domains. Interestingly, XPF-202, differing to XPF-003 in the first 12 amino acids only, had no repair capability at all, suggesting an important role of this region during DNA repair, potentially concerning protein-protein interaction. We also identified splice variants of XPF and XPG exerting inhibitory effects on NER. Moreover, we showed that the XPF and XPG splice variants presented with different inter-individual expression patterns in healthy donors, as well as in various tissues. With regard to their residual repair capability and dominant-negative effects, functionally relevant spontaneous XPF and XPG splice variants present promising prognostic marker candidates for individual cancer risk, disease outcome, or therapeutic success. This merits further investigations, large association studies, and translational research within clinical trials in the future.
Collapse
Affiliation(s)
- Janin Lehmann
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| | - Steffen Schubert
- Information Network of Departments of Dermatology (IVDK), University Medical Center Goettingen, Goettingen, Germany
| | - Christina Seebode
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| | - Antje Apel
- Department of Dermatology, Venereology and Allergology, University Medical Center Goettingen, Goettingen, Germany
| | - Andreas Ohlenbusch
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
5
|
Reh WA, Nairn RS, Lowery MP, Vasquez KM. The homologous recombination protein RAD51D protects the genome from large deletions. Nucleic Acids Res 2017; 45:1835-1847. [PMID: 27924006 PMCID: PMC5389663 DOI: 10.1093/nar/gkw1204] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/28/2016] [Indexed: 12/20/2022] Open
Abstract
Homologous recombination (HR) is a DNA double-strand break (DSB) repair pathway that protects the genome from chromosomal instability. RAD51 mediator proteins (i.e. paralogs) are critical for efficient HR in mammalian cells. However, how HR-deficient cells process DSBs is not clear. Here, we utilized a loss-of-function HR-reporter substrate to simultaneously monitor HR-mediated gene conversion and non-conservative mutation events. The assay is designed around a heteroallelic duplication of the Aprt gene at its endogenous locus in isogenic Chinese hamster ovary cell lines. We found that RAD51D-deficient cells had a reduced capacity for HR-mediated gene conversion both spontaneously and in response to I-SceI-induced DSBs. Further, RAD51D-deficiency shifted DSB repair toward highly deleterious single-strand annealing (SSA) and end-joining processes that led to the loss of large chromosomal segments surrounding site-specific DSBs at an exceptionally high frequency. Deletions in the proximity of the break were due to a non-homologous end-joining pathway, while larger deletions were processed via a SSA pathway. Overall, our data revealed that, in addition to leading to chromosomal abnormalities, RAD51D-deficiency resulted in a high frequency of deletions advancing our understanding of how a RAD51 paralog is involved in maintaining genomic stability and how its deficiency may predispose cells to tumorigenesis.
Collapse
Affiliation(s)
- Wade A Reh
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX 78723, USA
| | - Rodney S Nairn
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center Science Park, Smithville, TX 78957, USA
| | - Megan P Lowery
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center Science Park, Smithville, TX 78957, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX 78723, USA
| |
Collapse
|
6
|
Lehmann J, Seebode C, Smolorz S, Schubert S, Emmert S. XPF knockout via CRISPR/Cas9 reveals that ERCC1 is retained in the cytoplasm without its heterodimer partner XPF. Cell Mol Life Sci 2017; 74:2081-2094. [PMID: 28130555 PMCID: PMC11107539 DOI: 10.1007/s00018-017-2455-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/01/2016] [Accepted: 01/03/2017] [Indexed: 01/05/2023]
Abstract
The XPF/ERCC1 heterodimeric complex is essentially involved in nucleotide excision repair (NER), interstrand crosslink (ICL), and double-strand break repair. Defects in XPF lead to severe diseases like xeroderma pigmentosum (XP). Up until now, XP-F patient cells have been utilized for functional analyses. Due to the multiple roles of the XPF/ERCC1 complex, these patient cells retain at least one full-length allele and residual repair capabilities. Despite the essential function of the XPF/ERCC1 complex for the human organism, we successfully generated a viable immortalised human XPF knockout cell line with complete loss of XPF using the CRISPR/Cas9 technique in fetal lung fibroblasts (MRC5Vi cells). These cells showed a markedly increased sensitivity to UVC, cisplatin, and psoralen activated by UVA as well as reduced repair capabilities for NER and ICL repair as assessed by reporter gene assays. Using the newly generated knockout cells, we could show that human XPF is markedly involved in homologous recombination repair (HRR) but dispensable for non-homologous end-joining (NHEJ). Notably, ERCC1 was not detectable in the nucleus of the XPF knockout cells indicating the necessity of a functional XPF/ERCC1 heterodimer to allow ERCC1 to enter the nucleus. Overexpression of wild-type XPF could reverse this effect as well as the repair deficiencies.
Collapse
Affiliation(s)
- Janin Lehmann
- Clinic and Policlinic for Dermatology and Venereology, University Medical Centre Rostock, Strempelstrasse 13, 18057, Rostock, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Centre Goettingen, Robert-Koch-Strasse 40, 37075, Goettingen, Germany
| | - Christina Seebode
- Clinic and Policlinic for Dermatology and Venereology, University Medical Centre Rostock, Strempelstrasse 13, 18057, Rostock, Germany
| | - Sabine Smolorz
- Department of Dermatology, Venereology and Allergology, University Medical Centre Goettingen, Robert-Koch-Strasse 40, 37075, Goettingen, Germany
| | - Steffen Schubert
- Department of Dermatology, Venereology and Allergology, University Medical Centre Goettingen, Robert-Koch-Strasse 40, 37075, Goettingen, Germany
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology and Venereology, University Medical Centre Rostock, Strempelstrasse 13, 18057, Rostock, Germany.
- Department of Dermatology, Venereology and Allergology, University Medical Centre Goettingen, Robert-Koch-Strasse 40, 37075, Goettingen, Germany.
| |
Collapse
|
7
|
Manandhar M, Boulware KS, Wood RD. The ERCC1 and ERCC4 (XPF) genes and gene products. Gene 2015; 569:153-61. [PMID: 26074087 DOI: 10.1016/j.gene.2015.06.026] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/01/2015] [Accepted: 06/09/2015] [Indexed: 12/22/2022]
Abstract
The ERCC1 and ERCC4 genes encode the two subunits of the ERCC1-XPF nuclease. This enzyme plays an important role in repair of DNA damage and in maintaining genomic stability. ERCC1-XPF nuclease nicks DNA specifically at junctions between double-stranded and single-stranded DNA, when the single-strand is oriented 5' to 3' away from a junction. ERCC1-XPF is a core component of nucleotide excision repair and also plays a role in interstrand crosslink repair, some pathways of double-strand break repair by homologous recombination and end-joining, as a backup enzyme in base excision repair, and in telomere length regulation. In many of these activities, ERCC1-XPF complex cleaves the 3' tails of DNA intermediates in preparation for further processing. ERCC1-XPF interacts with other proteins including XPA, RPA, SLX4 and TRF2 to perform its functions. Disruption of these interactions or direct targeting of ERCC1-XPF to decrease its DNA repair function might be a useful strategy to increase the sensitivity of cancer cells to some DNA damaging agents. Complete deletion of either ERCC1 or ERCC4 is not compatible with viability in mice or humans. However, mutations in the ERCC1 or ERCC4 genes cause a remarkable array of rare inherited human disorders. These include specific forms of xeroderma pigmentosum, Cockayne syndrome, Fanconi anemia, XFE progeria and cerebro-oculo-facio-skeletal syndrome.
Collapse
Affiliation(s)
- Mandira Manandhar
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Karen S Boulware
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Richard D Wood
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Reza F, Glazer PM. Therapeutic genome mutagenesis using synthetic donor DNA and triplex-forming molecules. Methods Mol Biol 2015; 1239:39-73. [PMID: 25408401 PMCID: PMC6608751 DOI: 10.1007/978-1-4939-1862-1_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Genome mutagenesis can be achieved in a variety of ways, though a select few are suitable for therapeutic settings. Among them, the harnessing of intracellular homologous recombination affords the safety and efficacy profile suitable for such settings. Recombinagenic donor DNA and mutagenic triplex-forming molecules co-opt this natural recombination phenomenon to enable the specific, heritable editing and targeting of the genome. Editing the genome is achieved by designing the sequence-specific recombinagenic donor DNA to have base mismatches, insertions, and deletions that will be incorporated into the genome when it is used as a template for recombination. Targeting the genome is similarly achieved by designing the sequence-specific mutagenic triplex-forming molecules to further recruit the recombination machinery thereby upregulating its activity with the recombinagenic donor DNA. This combination of extracellularly introduced, designed synthetic molecules and intercellularly ubiquitous, evolved natural machinery enables the mutagenesis of chromosomes and engineering of whole genomes with great fidelity while limiting nonspecific interactions. Herein, we demonstrate the harnessing of recombinagenic donor DNA and mutagenic triplex-forming molecular technology for potential therapeutic applications. These demonstrations involve, among others, utilizing this technology to correct genes so that they become physiologically functional, to induce dormant yet functional genes in place of non-functional counterparts, to place induced genes under regulatory elements, and to disrupt genes to abrogate a cellular vulnerability. Ancillary demonstrations of the design and synthesis of this recombinagenic and mutagenic molecular technology as well as their delivery and assayed interaction with duplex DNA reveal a potent technological platform for engineering specific changes into the living genome.
Collapse
Affiliation(s)
- Faisal Reza
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, 06520-8040, USA
| | | |
Collapse
|
9
|
Nucleases in homologous recombination as targets for cancer therapy. FEBS Lett 2014; 588:2446-56. [PMID: 24928444 DOI: 10.1016/j.febslet.2014.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/02/2014] [Accepted: 06/02/2014] [Indexed: 11/21/2022]
|
10
|
Abstract
Genome targeting and editing in vitro and in vivo can be achieved through an interplay of exogenously introduced molecules and the induction of endogenous recombination machinery. The former includes a repertoire of sequence-specific binding molecules for targeted induction and appropriation of this machinery, such as by triplex-forming oligonucleotides (TFOs) or triplex-forming peptide nucleic acids (PNAs) and recombinagenic donor DNA, respectively. This versatile targeting and editing via recombination approach facilitates high-fidelity and low-off-target genome mutagenesis, repair, expression, and regulation. Herein, we describe the current state-of-the-art in triplex-mediated genome targeting and editing with a perspective towards potential translational and therapeutic applications. We detail several materials and methods for the design, delivery, and use of triplex-forming and recombinagenic molecules for mediating and introducing specific, heritable, and safe genomic modifications. Furthermore we denote some guidelines for endogenous genome targeting and editing site identification and techniques to test targeting and editing efficiency.
Collapse
Affiliation(s)
- Faisal Reza
- Departments of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
11
|
Vare D, Groth P, Carlsson R, Johansson F, Erixon K, Jenssen D. DNA interstrand crosslinks induce a potent replication block followed by formation and repair of double strand breaks in intact mammalian cells. DNA Repair (Amst) 2012; 11:976-85. [DOI: 10.1016/j.dnarep.2012.09.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 09/17/2012] [Accepted: 09/19/2012] [Indexed: 11/17/2022]
|
12
|
McNeil EM, Melton DW. DNA repair endonuclease ERCC1-XPF as a novel therapeutic target to overcome chemoresistance in cancer therapy. Nucleic Acids Res 2012; 40:9990-10004. [PMID: 22941649 PMCID: PMC3488251 DOI: 10.1093/nar/gks818] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The ERCC1–XPF complex is a structure-specific endonuclease essential for the repair of DNA damage by the nucleotide excision repair pathway. It is also involved in other key cellular processes, including DNA interstrand crosslink (ICL) repair and DNA double-strand break (DSB) repair. New evidence has recently emerged, increasing our understanding of its requirement in these additional roles. In this review, we focus on the protein–protein and protein–DNA interactions made by the ERCC1 and XPF proteins and discuss how these coordinate ERCC1–XPF in its various roles. In a number of different cancers, high expression of ERCC1 has been linked to a poor response to platinum-based chemotherapy. We discuss prospects for the development of DNA repair inhibitors that target the activity, stability or protein interactions of the ERCC1–XPF complex as a novel therapeutic strategy to overcome chemoresistance.
Collapse
Affiliation(s)
- Ewan M McNeil
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | | |
Collapse
|
13
|
The Rad1-Rad10 nuclease promotes chromosome translocations between dispersed repeats. Nat Struct Mol Biol 2012; 19:964-71. [PMID: 22885325 PMCID: PMC3443319 DOI: 10.1038/nsmb.2359] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 07/11/2012] [Indexed: 01/26/2023]
Abstract
Holliday junctions can be formed during homology-dependent repair of DNA double-strand breaks and their resolution is essential for chromosome segregation and generation of crossover products. The Mus81–Mms4 and Yen1 nucleases are required for mitotic crossovers between chromosome homologs in Saccharomyces cerevisiae; however, crossovers between dispersed repeats are still detected in their absence. Here we show the Rad1–Rad10 nuclease promotes formation of crossover and noncrossover recombinants between ectopic sequences. Crossover products were not recovered from the mus81Δ rad1Δ yen1Δ triple mutant indicating that all three nucleases participate in processing recombination intermediates that form between dispersed repeats. We suggest a novel mechanism for crossovers that involves Rad1–Rad10 clipping and resolution of a single Holliday junction-containing intermediate by Mus81–Mms4 or Yen1 cleavage, or by replication. Consistent with the model, we show the accumulation of Rad1 dependent joint molecules in the mus81Δ yen1Δ mutant.
Collapse
|
14
|
Rahn JJ, Adair GM, Nairn RS. Use of gene targeting to study recombination in mammalian cell DNA repair mutants. Methods Mol Biol 2012; 920:445-470. [PMID: 22941622 DOI: 10.1007/978-1-61779-998-3_31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The study of gene function has been greatly facilitated by the development of strategies to modify genomic DNA. Gene targeting is one of the most successfully applied techniques used to examine the roles of specific genes in a wide variety of model systems from yeast to mammals. Our laboratory has pioneered the use of the Chinese hamster ovary (CHO) cell culture model system to study pathways of DNA repair and recombination at the hemizygous CHO APRT locus. By using a simple and effective gene targeting method, we have generated a number of DNA repair-deficient cell lines that have been used in targeted recombination experiments to investigate pathways of recombinational repair in somatic mammalian cells. These methods can be readily customized to generate a variety of cell lines deficient in specific genes of interest and can be applied to study the roles of other DNA repair proteins in pathways of mammalian recombinational repair.
Collapse
Affiliation(s)
- Jennifer J Rahn
- Department of Molecular Carcinogenesis, Medical University of South Carolina, Charleston, SC, USA
| | | | | |
Collapse
|
15
|
Gregg SQ, Robinson AR, Niedernhofer LJ. Physiological consequences of defects in ERCC1-XPF DNA repair endonuclease. DNA Repair (Amst) 2011; 10:781-91. [PMID: 21612988 DOI: 10.1016/j.dnarep.2011.04.026] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
ERCC1-XPF is a structure-specific endonuclease required for nucleotide excision repair, interstrand crosslink repair, and the repair of some double-strand breaks. Mutations in ERCC1 or XPF cause xeroderma pigmentosum, XFE progeroid syndrome or cerebro-oculo-facio-skeletal syndrome, characterized by increased risk of cancer, accelerated aging and severe developmental abnormalities, respectively. This review provides a comprehensive overview of the health impact of ERCC1-XPF deficiency, based on these rare diseases and mouse models of them. This offers an understanding of the tremendous health impact of DNA damage derived from environmental and endogenous sources.
Collapse
Affiliation(s)
- Siobhán Q Gregg
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | | | | |
Collapse
|
16
|
Effects of varying gene targeting parameters on processing of recombination intermediates by ERCC1-XPF. DNA Repair (Amst) 2010; 10:188-98. [PMID: 21123118 DOI: 10.1016/j.dnarep.2010.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 10/28/2010] [Accepted: 10/29/2010] [Indexed: 11/20/2022]
Abstract
The ERCC1-XPF structure-specific endonuclease is necessary for correct processing of homologous recombination intermediates requiring the removal of end-blocking nonhomologies. We previously showed that targeting the endogenous CHO APRT locus with plasmids designed to generate such intermediates revealed defective recombination phenotypes in ERCC1 deficient cells, including suppression of targeted insertion and vector correction recombinants and the generation of a novel class of aberrant recombinants through a deletogenic mechanism. In the present study, we examined some of the mechanistic features of ERCC1-XPF in processing recombination intermediates by varying gene targeting parameters. These included altering the distance between the double-strand break (DSB) in the targeting vector and the inactivating mutation in the APRT target gene, and changing the position of the target gene mutation relative to the DSB to result in target mutations that were either upstream or downstream from the DSB. Increasing the distance from the DSB in the targeting vector to the chromosomal target gene mutation resulted in an ERCC1 dependent decrease in the efficiency of gene targeting from intermediates presenting lengthy end-blocking nonhomologies. This decrease was accompanied by a shift in the distribution of recombinant classes away from target gene conversions to targeted insertions in both wild-type and ERCC1 deficient cells, and a dramatic increase in the proportion of aberrant recombinants in ERCC1 deficient cells. Changing the position of the target gene mutation relative to the DSB in the plasmid also altered the distribution of targeted insertion subclasses recovered in wild-type cells, consistent with two-ended strand invasion followed by resolution into crossover-type products and vector integration. Our results confirm expectations from studies of Rad10-Rad1 in budding yeast that ERCC1-XPF activity affects conversion tract length, and provide evidence for the mechanism of generation of the novel, aberrant recombinant class first described in our previous study.
Collapse
|
17
|
Rahn JJ, Lowery MP, Della-Coletta L, Adair GM, Nairn RS. Depletion of Werner helicase results in mitotic hyperrecombination and pleiotropic homologous and nonhomologous recombination phenotypes. Mech Ageing Dev 2010; 131:562-73. [PMID: 20708636 DOI: 10.1016/j.mad.2010.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/22/2010] [Accepted: 08/03/2010] [Indexed: 11/30/2022]
Abstract
Werner syndrome (WS) is a rare, segmental progeroid syndrome caused by defects in the WRN gene, which encodes a RecQ helicase. WRN has roles in many aspects of DNA metabolism including DNA repair and recombination. In this study, we exploited two different recombination assays previously used to describe a role for the structure-specific endonuclease ERCC1-XPF in mitotic and targeted homologous recombination. We constructed Chinese hamster ovary (CHO) cell lines isogenic with the cell lines used in these previous studies by depleting WRN using shRNA vectors. When intrachromosomal, mitotic recombination was assayed in WRN-depleted CHO cells, a hyperrecombination phenotype was observed, and a small number of aberrant recombinants were generated. Targeted homologous recombination was also examined in WRN-depleted CHO cells using a plasmid-chromosome targeting assay. In these experiments, loss of WRN resulted in a significant decrease in nonhomologous integration events and ablation of recombinants that required random integration of the corrected targeting vector. Aberrant recombinants were also recovered, but only from WRN-depleted cells. The pleiotropic recombination phenotypes conferred by WRN depletion, reflected in distinct homologous and nonhomologous recombination pathways, suggest a role for WRN in processing specific types of homologous recombination intermediates as well as an important function in nonhomologous recombination.
Collapse
Affiliation(s)
- Jennifer J Rahn
- University of Texas M.D. Anderson Cancer Center, Department of Carcinogenesis, Science Park Research Division, P.O. Box 389, Smithville, TX 78597, United States
| | | | | | | | | |
Collapse
|
18
|
Rahn JJ, Adair GM, Nairn RS. Multiple roles of ERCC1-XPF in mammalian interstrand crosslink repair. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:567-581. [PMID: 20658648 DOI: 10.1002/em.20583] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
DNA interstrand crosslinks (ICLs) are among the most deleterious cytotoxic lesions encountered by cells, mainly due to the covalent linkage these lesions create between the two strands of DNA which effectively blocks replication and transcription. Although ICL repair in mammalian cells is not fully understood, processing of these lesions is thought to begin by "unhooking" at the site of the damaged base accompanied by the generation of a double strand break and ultimately repair through translesion synthesis and homologous recombination. A key player in this repair process is the heterodimeric protein complex ERCC1-XPF. Although some models of ICL repair restrict ERCC1-XPF activity to the unhooking step, recent data suggest that this protein complex acts in additional downstream steps. Here, we review the evidence implicating ERCC1-XPF in multiple steps of ICL repair.
Collapse
Affiliation(s)
- Jennifer J Rahn
- Department of Carcinogenesis, Science Park-Research Division, University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957, USA.
| | | | | |
Collapse
|
19
|
Vasquez KM. Targeting and processing of site-specific DNA interstrand crosslinks. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:527-39. [PMID: 20196133 PMCID: PMC2895014 DOI: 10.1002/em.20557] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
DNA interstrand crosslinks (ICLs) are among the most cytotoxic types of DNA damage, and thus ICL-inducing agents such as cyclophosphamide, melphalan, cisplatin, psoralen, and mitomycin C have been used clinically as anticancer drugs for decades. ICLs can also be formed endogenously as a consequence of cellular metabolic processes. ICL-inducing agents continue to be among the most effective chemotherapeutic treatments for many cancers; however, treatment with these agents can lead to secondary malignancies, in part due to mutagenic processing of the DNA lesions. The mechanisms of ICL repair have been characterized more thoroughly in bacteria and yeast than in mammalian cells. Thus, a better understanding of the molecular mechanisms of ICL processing offers the potential to improve the efficacy of these drugs in cancer therapy. In mammalian cells, it is thought that ICLs are repaired by the coordination of proteins from several pathways, including nucleotide excision repair (NER), base excision repair (BER), mismatch repair (MMR), homologous recombination (HR), translesion synthesis (TLS), and proteins involved in Fanconi anemia (FA). In this review, we focus on the potential functions of NER, MMR, and HR proteins in the repair of and response to ICLs in human cells and in mice. We will also discuss a unique approach, using psoralen covalently linked to triplex-forming oligonucleotides to direct ICLs to specific sites in the mammalian genome.
Collapse
Affiliation(s)
- Karen M Vasquez
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA.
| |
Collapse
|
20
|
Muniandy PA, Liu J, Majumdar A, Liu ST, Seidman MM. DNA interstrand crosslink repair in mammalian cells: step by step. Crit Rev Biochem Mol Biol 2010; 45:23-49. [PMID: 20039786 PMCID: PMC2824768 DOI: 10.3109/10409230903501819] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Interstrand DNA crosslinks (ICLs) are formed by natural products of metabolism and by chemotherapeutic reagents. Work in E. coli identified a two cycle repair scheme involving incisions on one strand on either side of the ICL (unhooking) producing a gapped intermediate with the incised oligonucleotide attached to the intact strand. The gap is filled by recombinational repair or lesion bypass synthesis. The remaining monoadduct is then removed by nucleotide excision repair (NER). Despite considerable effort, our understanding of each step in mammalian cells is still quite limited. In part this reflects the variety of crosslinking compounds, each with distinct structural features, used by different investigators. Also, multiple repair pathways are involved, variably operative during the cell cycle. G(1) phase repair requires functions from NER, although the mechanism of recognition has not been determined. Repair can be initiated by encounters with the transcriptional apparatus, or a replication fork. In the case of the latter, the reconstruction of a replication fork, stalled or broken by collision with an ICL, adds to the complexity of the repair process. The enzymology of unhooking, the identity of the lesion bypass polymerases required to fill the first repair gap, and the functions involved in the second repair cycle are all subjects of active inquiry. Here we will review current understanding of each step in ICL repair in mammalian cells.
Collapse
Affiliation(s)
- Parameswary A Muniandy
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
21
|
XPF/ERCC4 and ERCC1: their products and biological roles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009. [PMID: 19181112 DOI: 10.1007/978-0-387-09599-8_8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
ERCC4 is the gene mutated in XPF cells and also in rodent cells representing the mutant complementation groups ERCC4 and ERCC 11. The protein functions principally as a complex with ERCC1 in a diversity of biological pathways that include NER, ICL repair, telomere maintenance and immunoglobulin switching. Sorting out these roles is an exciting and challenging problem and many important questions remain to be answered. The ERCC1/ERCC4 complex is conserved across most species presenting an opportunity to examine some functions in model organisms where mutants can be more readily generated and phenotypes more quickly assessed.
Collapse
|
22
|
Liu Y, Nairn RS, Vasquez KM. Processing of triplex-directed psoralen DNA interstrand crosslinks by recombination mechanisms. Nucleic Acids Res 2008; 36:4680-8. [PMID: 18628293 PMCID: PMC2504320 DOI: 10.1093/nar/gkn438] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Gene targeting via homologous recombination (HR) is an important application in biotechnology and medicine. However, in mammalian cells HR is much less efficient than random integration. Triplex-forming oligonucleotides (TFOs) linked to DNA damaging agents (e.g. psoralen) can stimulate HR, providing the potential to improve gene therapy applications. To elucidate factors affecting TFO-directed psoralen interstrand crosslink (ICL)-induced recombination, we constructed a series of plasmids with duplicated supF reporter genes, each containing an inactivating deletion, to measure HR frequencies in mammalian cells. Our results indicated that TFO-directed ICL-induced recombination frequencies were higher in the plasmids with larger distances between duplicated supF genes than with a smaller separation distance. However, the position of the ICL relative to the reporter genes did not affect HR frequencies. Recombination spectra were altered by the distance between supF copies. Although single-strand annealing (SSA) recombinants were predominant in all plasmid substrates, the plasmid with the shortest interval (60 bp) revealed a significant proportion of gene conversions (GCs). GCs occurred exclusively in the gene containing the shortest deletion, regardless of the distance between supF genes, ICL position or deletion orientation. Our analyses indicated that SSA is the predominant mechanism of ICL processing of these substrates in mammalian cells.
Collapse
Affiliation(s)
- Yaobin Liu
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, TX, USA
| | | | | |
Collapse
|
23
|
Talbert LL, Coletta LD, Lowery MG, Bolt A, Trono D, Adair GM, Nairn RS. Characterization of CHO XPF mutant UV41: influence of XPF heterozygosity on double-strand break-induced intrachromosomal recombination. DNA Repair (Amst) 2008; 7:1319-29. [PMID: 18547876 DOI: 10.1016/j.dnarep.2008.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 04/16/2008] [Accepted: 04/22/2008] [Indexed: 11/16/2022]
Abstract
The UV hypersensitive CHO cell mutant UV41 is the archetypal XPF mammalian cell mutant, and was essential for cloning the human nucleotide excision repair (NER) gene XPF by DNA transfection and rescue. The ERCC1 and XPF genes encode proteins that form the heterodimer responsible for making incisions required in NER and the processing of certain types of recombination intermediates. In this study, we cloned and sequenced the CHO cell XPF cDNA, determining that the XPF mutation in UV41 is a +1 insertion in exon 8 generating a premature stop codon at amino acid position 499; however, the second allele of XPF is apparently unaltered in UV41, resulting in XPF heterozygosity. XPF expression was found to be several-fold lower in UV41 compared to its parental cell line, AA8. Using approaches we previously developed to study intrachromosomal recombination in CHO cells, we modified UV41 and its parental cell line AA8 to allow site-specific gene targeting at a Flp recombination target (FRT) in intron 3 of the endogenous adenine phosphoribosyltransferase (APRT) locus. Using FLP/FRT targeting, we integrated a plasmid containing an I-SceI endonuclease sequence into this site in the paired cell lines to generate a heteroallelic APRT duplication. Frequencies of intrachromosomal recombination between APRT heteroalleles and the structures of resulting recombinants were analyzed after I-SceI induction of site-specific double-strand breaks (DSBs) in a non-homologous insertion contained within APRT homology. Our results show that I-SceI induced a small proportion of aberrant recombinants reflecting DSB-induced deletions/rearrangements in parental, repair-proficient AA8 cells. However, in XPF mutant UV41, XPF heterozygosity is responsible for a similar, but much more pronounced genomic instability phenotype, manifested independently of DSB induction. In addition, gene conversions were suppressed in UV41 cells compared to wild-type cells. These observations suggest that UV41 exhibits a genomic instability phenotype of aberrant recombinational repair, confirming a critical role for XPF in mammalian cell recombination.
Collapse
Affiliation(s)
- Leisa L Talbert
- Department of Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park-Research Division, Smithville, TX 78957, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Dion V, Lin Y, Price BA, Fyffe SL, Seluanov A, Gorbunova V, Wilson JH. Genome-wide demethylation promotes triplet repeat instability independently of homologous recombination. DNA Repair (Amst) 2008; 7:313-20. [PMID: 18083071 DOI: 10.1016/j.dnarep.2007.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 10/30/2007] [Accepted: 11/05/2007] [Indexed: 01/06/2023]
Abstract
Trinucleotide repeat instability is intrinsic to a family of human neurodegenerative diseases. The mechanism leading to repeat length variation is unclear. We previously showed that treatment with the demethylating agent 5-aza-2'-deoxycytidine (5-aza-CdR) dramatically increases triplet repeat instability in mammalian cells. Based on previous reports that demethylation increases homologous recombination (HR), and our own observations that HR destabilizes triplet repeats, we hypothesized that demethylation alters repeat stability by stimulating HR. Here, we test that hypothesis at the adenosine phosphoribosyl transferase (Aprt) locus in CHO cells, where CpG demethylation and HR have both been shown to increase CAG repeat instability. We find that the rate of HR at the Aprt locus is not altered by demethylation. The spectrum of recombinants, however, was shifted from the usual 6:1 ratio of conversions to crossovers to more equal proportions in 5-aza-CdR-treated cells. The subtle influences of demethylation on HR at the Aprt locus are not sufficient to account for its dramatic effects on repeat instability. We conclude that 5-aza-CdR promotes triplet repeat instability independently of HR.
Collapse
Affiliation(s)
- Vincent Dion
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Majumdar A, Muniandy PA, Liu J, Liu JL, Liu ST, Cuenoud B, Seidman MM. Targeted gene knock in and sequence modulation mediated by a psoralen-linked triplex-forming oligonucleotide. J Biol Chem 2008; 283:11244-52. [PMID: 18303025 DOI: 10.1074/jbc.m800607200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Information from exogenous donor DNA can be introduced into the genome via homology-directed repair (HDR) pathways. These pathways are stimulated by double strand breaks and by DNA damage such as interstrand cross-links. We have employed triple helix-forming oligonucleotides linked to psoralen (pso-TFO) to introduce a DNA interstrand cross-link at a specific site in the genome of living mammalian cells. Co-introduction of duplex DNA with target region homology resulted in precise knock in of the donor at frequencies 2-3 orders of magnitude greater than with donor alone. Knock-in was eliminated in cells deficient in ERCC1-XPF, which is involved in recombinational pathways as well as cross-link repair. Separately, single strand oligonucleotide donors (SSO) were co-introduced with the pso-TFO. These were 10-fold more active than the duplex knock-in donor. SSO efficacy was further elevated in cells deficient in ERCC1-XPF, in contrast to the duplex donor. Resected single strand ends have been implicated as critical intermediates in sequence modulation by SSO, as well as duplex donor knock in. We asked whether there would be a competition between the donor species for these ends if both were present with the pso-TFO. The frequency of duplex donor knock in was unaffected by a 100-fold molar excess of the SSO. The same result was obtained when the homing endonuclease I-SceI was used to initiate HDR at the target site. We conclude that the entry of double strand breaks into distinct HDR pathways is controlled by factors other than the nucleic acid partners in those pathways.
Collapse
Affiliation(s)
- Alokes Majumdar
- Laboratory of Molecular Gerontology, NIA, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Gene targeting with DNA-binding molecules such as triplex-forming oligonucleotides or peptide nucleic acids can be utilized to direct mutagenesis or induce recombination site-specifically. In this chapter, several detailed protocols are described for the design and use of triplex-forming molecules to bind and mediate gene modification at specific chromosomal targets. Target site identification, binding molecule design, as well as various methods to test binding and assess gene modification are described.
Collapse
|
27
|
Al-Minawi AZ, Saleh-Gohari N, Helleday T. The ERCC1/XPF endonuclease is required for efficient single-strand annealing and gene conversion in mammalian cells. Nucleic Acids Res 2007; 36:1-9. [PMID: 17962301 PMCID: PMC2248766 DOI: 10.1093/nar/gkm888] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mammalian ERCC1-XPF endonuclease has a suggested role in the repair of DNA double-strand breaks (DSB) by single-strand annealing (SSA). Here, we investigated the role of ERCC1 in homologous recombination in mammalian cells, and confirm a role of ERCC1 in SSA. Interestingly, we also report an unexpected role for ERCC1 in gene conversion. This provides support that gene conversion in mammalian somatic cells is carried out through synthesis-dependent strand annealing, rather than through a double Holliday Junction mechanism. Moreover, we find low frequencies of SSA and gene conversion in G1-arrested cells, suggesting that SSA is not a frequent DSB repair pathway in G1-arrested mammalian cells, even in the presence of perfect repeats. Furthermore, we find that SSA is not influenced by inhibition of CDK2 (using Roscovitine), ATM (using Caffeine and KU55933), Chk1 (using CEP-3891) or DNA-PK (using NU7026).
Collapse
Affiliation(s)
- Ali Z Al-Minawi
- Institute for Cancer Studies, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | | | | |
Collapse
|
28
|
Abstract
Telomeres are the very ends of the chromosomes. They can be seen as natural double-strand breaks (DSB), specialized structures which prevent DSB repair and activation of DNA damage checkpoints. In somatic cells, attrition of telomeres occurs after each cell division until replicative senescence. In the absence of telomerase, telomeres shorten due to incomplete replication of the lagging strand at the very end of chromosome termini. Moreover, oxidative stress and accumulating reactive oxygen species (ROS) lead to an increased telomere shortening due to a less efficient repair of SSB in telomeres. The specialized structures at telomeres include proteins involved in both telomere maintenance and DNA repair. However when a telomere is damaged and has to be repaired, those proteins might fail to perform an accurate repair of the damage. This is the starting point of this article in which we first summarize the well-established relationships between DNA repair processes and maintenance of functional telomeres. We then examine how damaged telomeres would be processed, and show that irradiation alters telomere maintenance leading to possibly dramatic consequences. Our point is to suggest that those consequences are not restricted to the short term effects such as increased radiation-induced cell death. On the contrary, we postulate that the major impact of the loss of telomere integrity might occur in the long term, during multistep carcinogenesis. Its major role would be to act as an amplificator event unmasking in one single step recessive radiation-induced mutations among thousands of genes and providing cellular proliferative advantage. Moreover, the chromosomal instability generated by damaged telomeres will favour each step of the transformation from normal to fully transformed cells.
Collapse
|
29
|
Rabik CA, Dolan ME. Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat Rev 2006; 33:9-23. [PMID: 17084534 PMCID: PMC1855222 DOI: 10.1016/j.ctrv.2006.09.006] [Citation(s) in RCA: 1196] [Impact Index Per Article: 62.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 09/06/2006] [Accepted: 09/11/2006] [Indexed: 12/17/2022]
Abstract
Platinating agents, including cisplatin, carboplatin, and oxaliplatin, have been used clinically for nearly 30years as part of the treatment of many types of cancers, including head and neck, testicular, ovarian, cervical, lung, colorectal and relapsed lymphoma. The cytotoxic lesion of platinating agents is thought to be the platinum intrastrand crosslink that forms on DNA, although treatment activates a number of signal transduction pathways. Treatment with these agents is characterized by resistance, both acquired and intrinsic. This resistance can be caused by a number of cellular adaptations, including reduced uptake, inactivation by glutathione and other anti-oxidants, and increased levels of DNA repair or DNA tolerance. Here we investigate the pathways that treatment with platinating agents activate, the mechanisms of resistance, potential candidate genes involved in the development of resistance, and associated clinical toxicities. Although the purpose of this review is to provide an overview of cisplatin, carboplatin, and oxaliplatin, we have focused primarily on preclinical data that has clinical relevance generated over the past five years.
Collapse
Affiliation(s)
- Cara A Rabik
- Department of Medicine, Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, 5841 S. Maryland Avenue, Box MC2115, Section of Hem-Onc, Chicago, IL 60637, United States
| | | |
Collapse
|
30
|
Silva MJ, Costa P, Dias A, Valente M, Louro H, Boavida MG. Comparative analysis of the mutagenic activity of oxaliplatin and cisplatin in the Hprt gene of CHO cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2005; 46:104-15. [PMID: 15887215 DOI: 10.1002/em.20138] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Oxaliplatin is a platinum-derived antitumor drug that is active against cisplatin-resistant tumors and has lower overall toxicity than does cisplatin. DNA adduct formation is believed to mediate the cytotoxic activity of both compounds; however, the adducts may also be responsible for mutagenic and secondary tumorigenic activities. In this study, we have compared the mutagenicity of oxaliplatin and cisplatin in the Hprt gene of CHO-K1 cells. Both drugs produced dose-related increases in mutant frequency. For 1-hr treatments, oxaliplatin was less mutagenic than cisplatin at equimolar doses, while similar mutant frequencies were induced at equitoxic doses. Sequencing of mutant Hprt genes indicated that the mutation spectra of both oxaliplatin and cisplatin were significantly different from the spontaneous mutation spectrum (P = 0.014 and P = 0.008, respectively). A significant difference was also observed between the spectra of oxaliplatin- and cisplatin-induced mutations (P = 0.033). Although G:C-->T:A transversion was the most common mutation produced by both compounds, oxaliplatin produced higher frequencies of A:T-->T:A transversion than did cisplatin, most commonly at nucleotide 307, and higher frequencies of small deletions/insertions. Also, cisplatin induced tandem base-pair substitutions, mainly at positions 135/136, and a higher frequency of G:C-->A:T transition than did oxaliplatin. These results provide the first evidence that oxaliplatin is mutagenic and that the profiles of cisplatin- and oxaliplatin-induced mutations display not only similarities but also distinctive features relating to the type and sequence-context preference for mutation. Environ.
Collapse
Affiliation(s)
- Maria J Silva
- Centro de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal.
| | | | | | | | | | | |
Collapse
|
31
|
Guzder SN, Torres-Ramos C, Johnson RE, Haracska L, Prakash L, Prakash S. Requirement of yeast Rad1-Rad10 nuclease for the removal of 3'-blocked termini from DNA strand breaks induced by reactive oxygen species. Genes Dev 2004; 18:2283-91. [PMID: 15371342 PMCID: PMC517521 DOI: 10.1101/gad.1232804] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Rad1-Rad10 nuclease of yeast and its human counterpart ERCC1-XPF are indispensable for nucleotide excision repair, where they act by cleaving the damaged DNA strand on the 5'-side of the lesion. Intriguingly, the ERCC1- and XPF-deficient mice show a severe postnatal growth defect and they die at approximately 3 wk after birth. Here we present genetic and biochemical evidence for the requirement of Rad1-Rad10 nuclease in the removal of 3'-blocked termini from DNA strand breaks induced on treatment of yeast cells with the oxidative DNA damaging agent H(2)O(2). Our genetic studies indicate that 3'-blocked termini are removed in yeast by the three competing pathways that involve the Apn1, Apn2, and Rad1-Rad10 nucleases, and we show that the Rad1-Rad10 nuclease proficiently cleaves DNA modified with a 3'-phosphoglycolate terminus. From these observations, we infer that deficient removal of 3'-blocking groups formed from the action of oxygen free radicals generated during normal cellular metabolism is the primary underlying cause of the inviability of apn1Delta apn2Delta rad1Delta and apn1Deltaapn2Delta rad10Delta mutants and that such a deficiency accounts also for the severe growth defects of ERCC1- and XPF-deficient mice.
Collapse
Affiliation(s)
- Sami N Guzder
- Sealy Center for Molelcular Science, University of Texas Medical Branch at Galveston, Galveston, Texas 77555-1061, USA
| | | | | | | | | | | |
Collapse
|
32
|
Dubest S, Gallego ME, White CI. Roles of the AtErcc1 protein in recombination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 39:334-342. [PMID: 15255863 DOI: 10.1111/j.1365-313x.2004.02136.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Summary Atercc1, the recently characterized Arabidopsis homologue of the Ercc1 (Rad10) protein, is a key component of nucleotide excision repair as part of a structure-specific endonuclease which cleaves 5' to UV photoproducts in DNA. This endonuclease also acts in removing overhanging non-homologous DNA 'tails' in synapsed recombination intermediates. We have previously demonstrated this recombination function of the Arabidopsis thaliana Xpf homologue, AtRad1p, and show here that recombination between plasmid DNA substrates containing non-homologous tails is specifically reduced 12-fold in atercc1 mutant plants compared with the wild type. Furthermore, using chromosomal tandem-repeat recombination substrates, we show that AtErcc1p is required for bleomycin induction of mitotic recombination in the chromosomal context. This work thus confirms both the specific and general recombination roles of the Atercc1 protein in recombination in Arabidopsis.
Collapse
Affiliation(s)
- Sandra Dubest
- UMR 6547 CNRS, Université Blaise Pascal, 24, ave. des Landais, 63177 Aubière, France
| | | | | |
Collapse
|
33
|
Schrader CE, Vardo J, Linehan E, Twarog MZ, Niedernhofer LJ, Hoeijmakers JHJ, Stavnezer J. Deletion of the nucleotide excision repair gene Ercc1 reduces immunoglobulin class switching and alters mutations near switch recombination junctions. ACTA ACUST UNITED AC 2004; 200:321-30. [PMID: 15280420 PMCID: PMC2211985 DOI: 10.1084/jem.20040052] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structure-specific endonuclease ERCC1-XPF is an essential component of the nucleotide excision DNA repair pathway. ERCC1-XPF nicks double-stranded DNA immediately adjacent to 3′ single-strand regions. Substrates include DNA bubbles and flaps. Furthermore, ERCC1 interacts with Msh2, a mismatch repair (MMR) protein involved in class switch recombination (CSR). Therefore, ERCC1-XPF has abilities that might be useful for antibody CSR. We tested whether ERCC1 is involved in CSR and found that Ercc1−/− splenic B cells show moderately reduced CSR in vitro, demonstrating that ERCC1-XPF participates in, but is not required for, CSR. To investigate the role of ERCC1 in CSR, the nucleotide sequences of switch (S) regions were determined. The mutation frequency in germline Sμ segments and recombined Sμ-Sγ3 segments cloned from Ercc1−/− splenic B cells induced to switch in culture was identical to that of wild-type (WT) littermates. However, Ercc1−/− cells show increased targeting of the mutations to G:C bp in RGYW/WRCY hotspots and mutations occur at sites more distant from the S–S junctions compared with WT mice. The results indicate that ERCC1 is not epistatic with MMR and suggest that ERCC1 might be involved in processing or repair of DNA lesions in S regions during CSR.
Collapse
Affiliation(s)
- Carol E Schrader
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester, MA 01655, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Kusano K, Asami Y, Fujita A, Tanokura M, Kobayashi I. Type I restriction enzyme with RecA protein promotes illegitimate recombination. Plasmid 2004; 50:202-12. [PMID: 14597009 DOI: 10.1016/j.plasmid.2003.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Illegitimate (non-homologous) recombination requires little or no sequence homology between recombining DNAs and has been regarded as being a process distinct from homologous recombination, which requires a long stretch of homology between recombining DNAs. However, we have found a type of illegitimate recombination that requires an interaction between long homologous DNA sequences. It was detected when a plasmid that carried 2-kb-long inverted repeats was subjected to type I (EcoKI) restriction in vivo within a special mutant strain of Escherichia coli. In the present work, we analyzed genetic requirements for this type of illegitimate recombination in well-defined genetic backgrounds. Our analysis demonstrated dependence on RecA function and on the presence of two EcoKI sites on the substrate DNA. These results are in harmony with a model in which EcoKI restriction enzyme attacks an intermediate of homologous recombination to divert it to illegitimate recombination.
Collapse
Affiliation(s)
- Kohji Kusano
- Department of Molecular Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
35
|
Motycka TA, Bessho T, Post SM, Sung P, Tomkinson AE. Physical and functional interaction between the XPF/ERCC1 endonuclease and hRad52. J Biol Chem 2004; 279:13634-9. [PMID: 14734547 DOI: 10.1074/jbc.m313779200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The XPF/ERCC1 heterodimer is a DNA structure-specific endonuclease that participates in nucleotide excision repair and homology-dependent recombination reactions, including DNA single strand annealing and gene targeting. Here we show that XPF/ERCC1 is stably associated with hRad52, a recombinational repair protein, in human cell-free extracts and that these factors interact directly via the N-terminal domain of hRad52 and the XPF protein. Complex formation between hRad52 and XPF/ERCC1 concomitantly stimulates the DNA structure-specific endonuclease activity of XPF/ERCC1 and attenuates the DNA strand annealing activity of hRad52. Our results reveal a novel role for hRad52 as a subunit of a DNA structure-specific endonuclease and are congruent with evidence implicating both hRad52 and XPF/ERCC1 in a number of homologous recombination reactions. We propose that the ternary complex of hRad52 and XPF/ERCC1 is the active species that processes recombination intermediates generated during the repair of DNA double strand breaks and in homology-dependent gene targeting events.
Collapse
Affiliation(s)
- Teresa A Motycka
- Molecular Medicine Graduate Program, Institute of Biotechnology, The University of Texas Health Science Center, San Antonio, Texas 78245, USA
| | | | | | | | | |
Collapse
|
36
|
Uil TG, Haisma HJ, Rots MG. Therapeutic modulation of endogenous gene function by agents with designed DNA-sequence specificities. Nucleic Acids Res 2003; 31:6064-78. [PMID: 14576293 PMCID: PMC275457 DOI: 10.1093/nar/gkg815] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Designer molecules that can specifically target pre-determined DNA sequences provide a means to modulate endogenous gene function. Different classes of sequence-specific DNA-binding agents have been developed, including triplex-forming molecules, synthetic polyamides and designer zinc finger proteins. These different types of designer molecules with their different principles of engineered sequence specificity are reviewed in this paper. Furthermore, we explore and discuss the potential of these molecules as therapeutic modulators of endogenous gene function, focusing on modulation by stable gene modification and by regulation of gene transcription.
Collapse
Affiliation(s)
- Taco G Uil
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
37
|
Meservy JL, Sargent RG, Iyer RR, Chan F, McKenzie GJ, Wells RD, Wilson JH. Long CTG tracts from the myotonic dystrophy gene induce deletions and rearrangements during recombination at the APRT locus in CHO cells. Mol Cell Biol 2003; 23:3152-62. [PMID: 12697816 PMCID: PMC153196 DOI: 10.1128/mcb.23.9.3152-3162.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expansion of CTG triplet repeats in the 3' untranslated region of the DMPK gene causes the autosomal dominant disorder myotonic dystrophy. Instability of CTG repeats is thought to arise from their capacity to form hairpin DNA structures. How these structures interact with various aspects of DNA metabolism has been studied intensely for Escherichia coli and Saccharomyces cerevisiae but is relatively uncharacterized in mammalian cells. To examine the stability of (CTG)(17), (CTG)(98), and (CTG)(183) repeats during homologous recombination, we placed them in the second intron of one copy of a tandemly duplicated pair of APRT genes. Cells selected for homologous recombination between the two copies of the APRT gene displayed distinctive patterns of change. Among recombinants from cells with (CTG)(98) and (CTG)(183), 5% had lost large numbers of repeats and 10% had suffered rearrangements, a frequency more than 50-fold above normal levels. Analysis of individual rearrangements confirmed the involvement of the CTG repeats. Similar changes were not observed in proliferating (CTG)(98) and (CTG)(183) cells that were not recombinant at APRT. Instead, they displayed high frequencies of small changes in repeat number. The (CTG)(17) repeats were stable in all assays. These studies indicate that homologous recombination strongly destabilizes long tracts of CTG repeats.
Collapse
Affiliation(s)
- James L Meservy
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Symington LS. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 2002; 66:630-70, table of contents. [PMID: 12456786 PMCID: PMC134659 DOI: 10.1128/mmbr.66.4.630-670.2002] [Citation(s) in RCA: 790] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The process of homologous recombination is a major DNA repair pathway that operates on DNA double-strand breaks, and possibly other kinds of DNA lesions, to promote error-free repair. Central to the process of homologous recombination are the RAD52 group genes (RAD50, RAD51, RAD52, RAD54, RDH54/TID1, RAD55, RAD57, RAD59, MRE11, and XRS2), most of which were identified by their requirement for the repair of ionizing-radiation-induced DNA damage in Saccharomyces cerevisiae. The Rad52 group proteins are highly conserved among eukaryotes, and Rad51, Mre11, and Rad50 are also conserved in prokaryotes and archaea. Recent studies showing defects in homologous recombination and double-strand break repair in several human cancer-prone syndromes have emphasized the importance of this repair pathway in maintaining genome integrity. Although sensitivity to ionizing radiation is a universal feature of rad52 group mutants, the mutants show considerable heterogeneity in different assays for recombinational repair of double-strand breaks and spontaneous mitotic recombination. Herein, I provide an overview of recent biochemical and structural analyses of the Rad52 group proteins and discuss how this information can be incorporated into genetic studies of recombination.
Collapse
Affiliation(s)
- Lorraine S Symington
- Department of Microbiology and Institute of Cancer Research, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| |
Collapse
|
39
|
De Silva IU, McHugh PJ, Clingen PH, Hartley JA. Defects in interstrand cross-link uncoupling do not account for the extreme sensitivity of ERCC1 and XPF cells to cisplatin. Nucleic Acids Res 2002; 30:3848-56. [PMID: 12202770 PMCID: PMC137407 DOI: 10.1093/nar/gkf479] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2002] [Revised: 07/01/2002] [Accepted: 07/01/2002] [Indexed: 01/02/2023] Open
Abstract
The anticancer drug cisplatin reacts with DNA leading to the formation of interstrand and intrastrand cross-links that are the critical cytotoxic lesions. In contrast to cells bearing mutations in other components of the nucleotide excision repair apparatus (XPB, XPD, XPG and CSB), cells defective for the ERCC1-XPF structure-specific nuclease are highly sensitive to cisplatin. To determine if the extreme sensitivity of XPF and ERCC1 cells to cisplatin results from specific defects in the repair of either intrastrand or interstrand cross-links we measured the elimination of both lesions in a range of nucleotide excision repair Chinese hamster mutant cell lines, including XPF- and ERCC1-defective cells. Compared to the parental, repair-proficient cell line all the mutants tested were defective in the elimination of both classes of adduct despite their very different levels of increased sensitivity. Consequently, there is no clear relationship between initial incisions at interstrand cross-links or removal of intrastrand adducts and cellular sensitivity. These results demonstrate that the high cisplatin sensitivity of ERCC1 and XPF cells likely results from a defect other than in excision repair. In contrast to other conventional DNA cross-linking agents, we found that the repair of cisplatin adducts does not involve the formation of DNA double-strand breaks. Surprisingly, XRCC2 and XRCC3 cells are defective in the uncoupling step of cisplatin interstrand cross-link repair, suggesting that homologous recombination might be initiated prior to excision of this type of cross-link.
Collapse
Affiliation(s)
- Inusha U De Silva
- Cancer Research UK Drug-DNA Interactions Research Group, Department of Oncology, Royal Free and University College Medical School, 91 Riding House Street, London W1W 7BS, UK
| | | | | | | |
Collapse
|
40
|
Niedernhofer LJ, Essers J, Weeda G, Beverloo B, de Wit J, Muijtjens M, Odijk H, Hoeijmakers JH, Kanaar R. The structure-specific endonuclease Ercc1-Xpf is required for targeted gene replacement in embryonic stem cells. EMBO J 2001; 20:6540-9. [PMID: 11707424 PMCID: PMC125716 DOI: 10.1093/emboj/20.22.6540] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Ercc1-Xpf heterodimer, a highly conserved structure-specific endonuclease, functions in multiple DNA repair pathways that are pivotal for maintaining genome stability, including nucleotide excision repair, interstrand crosslink repair and homologous recombination. Ercc1-Xpf incises double-stranded DNA at double-strand/single-strand junctions, making it an ideal enzyme for processing DNA structures that contain partially unwound strands. Here we demonstrate that although Ercc1 is dispensable for recombination between sister chromatids, it is essential for targeted gene replacement in mouse embryonic stem cells. Surprisingly, the role of Ercc1-Xpf in gene targeting is distinct from its previously identified role in removing nonhomologous termini from recombination intermediates because it was required irrespective of whether the ends of the DNA targeting constructs were heterologous or homologous to the genomic locus. Our observations have implications for the mechanism of gene targeting in mammalian cells and define a new role for Ercc1-Xpf in mammalian homologous recombination. We propose a model for the mechanism of targeted gene replacement that invokes a role for Ercc1-Xpf in making the recipient genomic locus receptive for gene replacement.
Collapse
Affiliation(s)
- Laura J. Niedernhofer
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam and Department of Radiation Oncology, University Hospital Rotterdam/Daniel, The Netherlands Corresponding author e-mail:
| | - Jeroen Essers
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam and Department of Radiation Oncology, University Hospital Rotterdam/Daniel, The Netherlands Corresponding author e-mail:
| | - Geert Weeda
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam and Department of Radiation Oncology, University Hospital Rotterdam/Daniel, The Netherlands Corresponding author e-mail:
| | - Berna Beverloo
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam and Department of Radiation Oncology, University Hospital Rotterdam/Daniel, The Netherlands Corresponding author e-mail:
| | - Jan de Wit
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam and Department of Radiation Oncology, University Hospital Rotterdam/Daniel, The Netherlands Corresponding author e-mail:
| | - Manja Muijtjens
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam and Department of Radiation Oncology, University Hospital Rotterdam/Daniel, The Netherlands Corresponding author e-mail:
| | - Hanny Odijk
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam and Department of Radiation Oncology, University Hospital Rotterdam/Daniel, The Netherlands Corresponding author e-mail:
| | - Jan H.J. Hoeijmakers
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam and Department of Radiation Oncology, University Hospital Rotterdam/Daniel, The Netherlands Corresponding author e-mail:
| | - Roland Kanaar
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam and Department of Radiation Oncology, University Hospital Rotterdam/Daniel, The Netherlands Corresponding author e-mail:
| |
Collapse
|
41
|
Balestrieri E, Zanier R, Degrassi F. Molecular characterisation of camptothecin-induced mutations at the hprt locus in Chinese hamster cells. Mutat Res 2001; 476:63-9. [PMID: 11336984 DOI: 10.1016/s0027-5107(01)00083-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The capacity of the topoisomerase I inhibitor camptothecin (CPT) to induce single locus mutations at the hypoxanthine-guanine phosphoribosyltransferase (hprt) gene and the DNA changes underlying induced mutations were analysed in Chinese hamster ovary cells. Camptothecin treatments increased hprt mutations up to 50-fold over the spontaneous levels at highly cytotoxic doses. Genomic DNA was isolated from 6-thioguanine resistant clones and subjected to multiplex PCR to screen for gross alterations in the gene structure. The molecular analysis revealed that deletion mutants represented 80% of the analysed clones, including total hprt deletion, multiple and single exon deletions. Furthermore, a fraction of the analysed clones showed deletions of more than one exon that were characterised by the absence of non-contiguous exons. These data show that single locus mutations induced by camptothecin are characterised by large deletions or complex rearrangements rather than single base substitutions and suggest that the recombinational repair of camptothecin-induced strand breaks at replication fork may be involved in the generations of these alterations at the chromatin structure level.
Collapse
Affiliation(s)
- E Balestrieri
- Centre of Evolutionary Genetics, National Research Council, c/o Department of Genetics and Molecular Biology, La Sapienza University, Via degli Apuli 4, 00185 Rome, Italy
| | | | | |
Collapse
|
42
|
Colosimo A, Goncz KK, Novelli G, Dallapiccola B, Gruenert DC. Targeted correction of a defective selectable marker gene in human epithelial cells by small DNA fragments. Mol Ther 2001; 3:178-85. [PMID: 11237674 DOI: 10.1006/mthe.2000.0242] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A novel gene targeting strategy, small fragment homologous replacement (SFHR), has been used to correct specific genomic lesions in human epithelial cells. The frequency of targeting was estimated to be 1-10%. However, given the genomic target, the cystic fibrosis transmembrane conductance regulator (CFTR) gene, it is difficult to accurately quantify targeting frequency. As an alternative to targeting CFTR, targeted correction of a mutant selectable marker or reporter gene would be more amenable to accurate and rapid quantification of gene targeting efficiency. The present study evaluates the conditions that modulate SFHR-mediated correction of a defective Zeocin antibiotic resistance (Zeo(r)) gene that has been inactivated by a 4-bp insertion. The conditions include delivery systems, plasmid-to-fragment ratio, fragment length, and fragment strandedness (single- or double-stranded DNA). Targeting fragments comprise the wild-type Zeo(r) gene sequence and were either 410 (Zeo1) or 458 bp (Zeo3). Expression vectors containing the corrected Zeo(r) gene were isolated as episomal plasmids or were allowed to stably integrate into cultured human airway epithelial cells. Correction of the Zeo(r) gene was phenotypically defined as restoration of resistance to Zeocin in either bacteria or epithelial cell clones. Extrachromosomal gene correction was assayed using polymerase chain reaction amplification, restriction enzyme digestion, DNA sequencing, and Southern blot hybridization analysis of DNA from isolated prokaryotic and eukaryotic clones. Neither random sequence alteration in the target episomal gene nor random integration of the small fragments was detected. Targeted correction efficiencies of up to 4% were attained. These studies provide insight into parameters that can be modulated for the optimization of SFHR-mediated targeting.
Collapse
Affiliation(s)
- A Colosimo
- Human Molecular Genetics Unit, University of Vermont, Colchester, Vermont 05446, USA
| | | | | | | | | |
Collapse
|
43
|
Yao XD, Elias P. Recombination during early herpes simplex virus type 1 infection is mediated by cellular proteins. J Biol Chem 2001; 276:2905-13. [PMID: 11069901 DOI: 10.1074/jbc.m005627200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homologous recombination was examined in cells infected with herpes simplex virus type I. Circular and linear DNA with directly repeated sequences was introduced as recombination substrates into cells. Recombination was measured either by origin-dependent amplification of recombination products or by recombination-dependent expression of luciferase from a disrupted gene. Homologous recombination in baby hamster kidney cells converted linear DNA to circular templates for DNA replication and luciferase expression in the complete absence of virus. The products of homologous recombination were efficiently amplified by the viral replication apparatus. The efficiency of recombination was dependent on the structure of the substrate as well as the cell type. Linear DNA with the direct repeats at internal positions failed to recombine in Balb/c 3T3 cells and induced p53-dependent apoptosis. In contrast, linear DNA with directly repeated sequences precisely at the ends recombined and replicated in 3T3 cells. Homologous recombination in baby hamster kidney cells did not depend on the position of the repeated sequences. We conclude that homologous recombination is independent of viral gene functions and that it is likely to be carried out by cellular proteins. We suggest that homologous recombination between directly repeated sequences in the linear herpes simplex virus type 1 chromosome may help to avoid p53-dependent apoptosis and to promote viral DNA replication.
Collapse
Affiliation(s)
- X D Yao
- Department of Molecular Biology and Genetics, College of Biological Science, University of Guelph, Ontario N1G 2W1, Canada
| | | |
Collapse
|
44
|
Kilburn AE, Shea MJ, Sargent RG, Wilson JH. Insertion of a telomere repeat sequence into a mammalian gene causes chromosome instability. Mol Cell Biol 2001; 21:126-35. [PMID: 11113187 PMCID: PMC88786 DOI: 10.1128/mcb.21.1.126-135.2001] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Telomere repeat sequences cap the ends of eucaryotic chromosomes and help stabilize them. At interstitial sites, however, they may destabilize chromosomes, as suggested by cytogenetic studies in mammalian cells that correlate interstitial telomere sequence with sites of spontaneous and radiation-induced chromosome rearrangements. In no instance is the length, purity, or orientation of the telomere repeats at these potentially destabilizing interstitial sites known. To determine the effects of a defined interstitial telomere sequence on chromosome instability, as well as other aspects of DNA metabolism, we deposited 800 bp of the functional vertebrate telomere repeat, TTAGGG, in two orientations in the second intron of the adenosine phosphoribosyltransferase (APRT) gene in Chinese hamster ovary cells. In one orientation, the deposited telomere sequence did not interfere with expression of the APRT gene, whereas in the other it reduced mRNA levels slightly. The telomere sequence did not induce chromosome truncation and the seeding of a new telomere at a frequency above the limits of detection. Similarly, the telomere sequence did not alter the rate or distribution of homologous recombination events. The interstitial telomere repeat sequence in both orientations, however, dramatically increased gene rearrangements some 30-fold. Analysis of individual rearrangements confirmed the involvement of the telomere sequence. These studies define the telomere repeat sequence as a destabilizing element in the interior of chromosomes in mammalian cells.
Collapse
Affiliation(s)
- A E Kilburn
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
45
|
Zhang N, Zhang X, Peterson C, Li L, Legerski R. Differential processing of UV mimetic and interstrand crosslink damage by XPF cell extracts. Nucleic Acids Res 2000; 28:4800-4. [PMID: 11095693 PMCID: PMC115165 DOI: 10.1093/nar/28.23.4800] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have recently developed a mammalian cell free assay in which interstrand crosslinks induce DNA synthesis in both damaged and undamaged plasmids co-incubated in the same extract. We have also shown using hamster mutants that both ERCC1 and XPF are required for the observed incorporation. Here, we show that extracts from an XPF patient cell line differentially process UV mimetic damage and interstrand crosslinks in vitro. XPF extracts are highly defective in the stimulation of repair synthesis by N:-acetoxy-N:- acetylaminofluorene, but are proficient in the stimulation of DNA synthesis by psoralen interstrand crosslinks. In addition, we show that extracts from the hamster UV140 mutant, which has high UV sensitivity, but moderate mitomycin C sensitivity, are similar in both assays to XPF cell extracts. These findings support the hypothesis that the activities of XPF in nucleotide excision repair (NER) and crosslink repair are separable, and that mutations in XPF patients result in the abolition of NER, but not recombinational repair pathways, which are likely to be essential as has been observed in ERCC1 homozygous -/- mice.
Collapse
Affiliation(s)
- N Zhang
- Department of Molecular Genetics, The University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
46
|
De Silva IU, McHugh PJ, Clingen PH, Hartley JA. Defining the roles of nucleotide excision repair and recombination in the repair of DNA interstrand cross-links in mammalian cells. Mol Cell Biol 2000; 20:7980-90. [PMID: 11027268 PMCID: PMC86408 DOI: 10.1128/mcb.20.21.7980-7990.2000] [Citation(s) in RCA: 332] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The mechanisms by which DNA interstrand cross-links (ICLs) are repaired in mammalian cells are unclear. Studies in bacteria and yeasts indicate that both nucleotide excision repair (NER) and recombination are required for their removal and that double-strand breaks are produced as repair intermediates in yeast cells. The role of NER and recombination in the repair of ICLs induced by nitrogen mustard (HN2) was investigated using Chinese hamster ovary mutant cell lines. XPF and ERCC1 mutants (defective in genes required for NER and some types of recombination) and XRCC2 and XRCC3 mutants (defective in RAD51-related homologous recombination genes) were highly sensitive to HN2. Cell lines defective in other genes involved in NER (XPB, XPD, and XPG), together with a mutant defective in nonhomologous end joining (XRCC5), showed only mild sensitivity. In agreement with their extreme sensitivity, the XPF and ERCC1 mutants were defective in the incision or "unhooking" step of ICL repair. In contrast, the other mutants defective in NER activities, the XRCC2 and XRCC3 mutants, and the XRCC5 mutant all showed normal unhooking kinetics. Using pulsed-field gel electrophoresis, DNA double-strand breaks (DSBs) were found to be induced following nitrogen mustard treatment. DSB induction and repair were normal in all the NER mutants, including XPF and ERCC1. The XRCC2, XRCC3, and XRCC5 mutants also showed normal induction kinetics. The XRCC2 and XRCC3 homologous recombination mutants were, however, severely impaired in the repair of DSBs. These results define a role for XPF and ERCC1 in the excision of ICLs, but not in the recombinational components of cross-link repair. In addition, homologous recombination but not nonhomologous end joining appears to play an important role in the repair of DSBs resulting from nitrogen mustard treatment.
Collapse
Affiliation(s)
- I U De Silva
- CRC Drug-DNA Interactions Research Group, Department of Oncology, Royal Free and University College Medical School, University College London, London W1P 8BT, United Kingdom
| | | | | | | |
Collapse
|
47
|
Adair GM, Rolig RL, Moore-Faver D, Zabelshansky M, Wilson JH, Nairn RS. Role of ERCC1 in removal of long non-homologous tails during targeted homologous recombination. EMBO J 2000; 19:5552-61. [PMID: 11032822 PMCID: PMC313999 DOI: 10.1093/emboj/19.20.5552] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The XpF/Ercc1 structure-specific endonuclease performs the 5' incision in nucleotide excision repair and is the apparent mammalian counterpart of the Rad1/Rad10 endonuclease from Saccharomyces cerevisiae. In yeast, Rad1/Rad10 endonuclease also functions in mitotic recombination. To determine whether XpF/Ercc1 endonuclease has a similar role in mitotic recombination, we targeted the APRT locus in Chinese hamster ovary ERCC1(+) and ERCC1(-) cell lines with insertion vectors having long or short terminal non-homologies flanking each side of a double-strand break. No substantial differences were evident in overall recombination frequencies, in contrast to results from targeting experiments in yeast. However, profound differences were observed in types of APRT(+) recombinants recovered from ERCC1(-) cells using targeting vectors with long terminal non-homologies-almost complete ablation of gap repair and single-reciprocal exchange events, and generation of a new class of aberrant insertion/deletion recombinants absent in ERCC1(+) cells. These results represent the first demonstration of a requirement for ERCC1 in targeted homologous recombination in mammalian cells, specifically in removal of long non-homologous tails from invading homologous strands.
Collapse
Affiliation(s)
- G M Adair
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, TX 78957, USA
| | | | | | | | | | | |
Collapse
|
48
|
Sargent RG, Meservy JL, Perkins BD, Kilburn AE, Intody Z, Adair GM, Nairn RS, Wilson JH. Role of the nucleotide excision repair gene ERCC1 in formation of recombination-dependent rearrangements in mammalian cells. Nucleic Acids Res 2000; 28:3771-8. [PMID: 11000269 PMCID: PMC110761 DOI: 10.1093/nar/28.19.3771] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2000] [Revised: 08/11/2000] [Accepted: 08/11/2000] [Indexed: 11/12/2022] Open
Abstract
Spontaneous recombination between direct repeats at the adenine phosphoribosyltransferase (APRT) locus in ERCC1-deficient cells generates a high frequency of rearrangements that are dependent on the process of homologous recombination, suggesting that rearrangements are formed by misprocessing of recombination intermediates. Given the specificity of the structure-specific Ercc1/Xpf endonuclease, two potential recombination intermediates are substrates for misprocessing in ERCC1(-) cells: heteroduplex loops and heteroduplex intermediates with non-homologous 3' tails. To investigate the roles of each, we constructed repeats that would yield no heteroduplex loops during spontaneous recombination or that would yield two non-homologous 3' tails after treatment with the rare-cutting endonuclease I-SCE:I. Our results indicate that misprocessing of heteroduplex loops is not the major source of recombination-dependent rearrangements in ERCC1-deficient cells. Our results also suggest that the Ercc1/Xpf endonuclease is required for efficient removal of non-homologous 3' tails, like its Rad1/Rad10 counterpart in yeast. Thus, it is likely that misprocessing of non-homologous 3' tails is the primary source of recombination-dependent rearrangements in mammalian cells. We also find an unexpected effect of ERCC1 deficiency on I-SCE:I-stimulated rearrangements, which are not dependent on homologous recombination, suggesting that the ERCC1 gene product may play a role in generating the rearrangements that arise after I-SCE:I-induced double-strand breaks.
Collapse
Affiliation(s)
- R G Sargent
- The Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Kuraoka I, Kobertz WR, Ariza RR, Biggerstaff M, Essigmann JM, Wood RD. Repair of an interstrand DNA cross-link initiated by ERCC1-XPF repair/recombination nuclease. J Biol Chem 2000; 275:26632-6. [PMID: 10882712 DOI: 10.1074/jbc.c000337200] [Citation(s) in RCA: 235] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interstrand DNA cross-link damage is a severe challenge to genomic integrity. Nucleotide excision repair plays some role in the repair of DNA cross-links caused by psoralens and other agents. However, in mammalian cells there is evidence that the ERCC1-XPF nuclease has a specialized additional function during interstrand DNA cross-link repair, beyond its role in nucleotide excision repair. We placed a psoralen monoadduct or interstrand cross-link in a duplex, 4-6 bases from a junction with unpaired DNA. ERCC1-XPF endonucleolytically cleaved within the duplex on either side of the adduct, on the strand having an unpaired 3' tail. Cross-links that were cleaved only on the 5' side were purified and reincubated with ERCC1-XPF. A second cleavage was then observed on the 3' side. Relevant partially unwound structures near a cross-link may be expected to arise frequently, for example at stalled DNA replication forks. The results show that the single enzyme ERCC1-XPF can release one arm of a cross-link and suggest a novel mechanism for interstrand cross-link repair.
Collapse
Affiliation(s)
- I Kuraoka
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, United Kingdom
| | | | | | | | | | | |
Collapse
|
50
|
Núñez F, Chipchase MD, Clarke AR, Melton DW. Nucleotide excision repair gene (ERCC1) deficiency causes G(2) arrest in hepatocytes and a reduction in liver binucleation: the role of p53 and p21. FASEB J 2000; 14:1073-82. [PMID: 10834928 DOI: 10.1096/fasebj.14.9.1073] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A wide range of DNA lesions, both UV and chemically induced, are dealt with by the nucleotide excision repair (NER) pathway. Defects in NER result in human syndromes such as xeroderma pigmentosum (XP), where there is a 1000-fold increased incidence of skin cancer. The ERCC1 protein is essential for NER, but ERCC1 knockout mice are not a model for XP. In the absence of exogenous DNA-damaging agents, these mice are runted and die before weaning, with dramatically accelerated liver polyploidy and elevated levels of p53. Here we present a morphological, immunological, and molecular study to understand the mechanism for the unusual liver pathology in ERCC1-deficient mice. We show that the enlarged ERCC1-deficient hepatocytes are arrested in G(2) and that DNA replication and the normal process of binucleation are both reduced. This is associated with a p53-independent increase in expression of the cyclin-dependent kinase inhibitor p21. The most dramatic feature of the ERCC1-deficient liver phenotype, the accelerated polyploidy, is not rescued by p53 deficiency, but we show that p53 is responsible for the reduced DNA replication and binucleation. We consider that the liver phenotype is a response to unrepaired endogenous DNA damage, which may reflect an additional non-NER-related function for the ERCC1 protein.
Collapse
Affiliation(s)
- F Núñez
- Institute of Cell and Molecular Biology, Edinburgh University, King's Buildings, Edinburgh, Scotland, U.K
| | | | | | | |
Collapse
|