1
|
Babl V, Girke P, Kruse S, Pinz S, Hannig K, Schächner C, Hergert K, Wittner M, Seufert W, Milkereit P, Tschochner H, Griesenbeck J. Establishment of closed 35S ribosomal RNA gene chromatin in stationary Saccharomyces cerevisiae cells. Nucleic Acids Res 2024; 52:12208-12226. [PMID: 39373531 PMCID: PMC11551728 DOI: 10.1093/nar/gkae838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 10/08/2024] Open
Abstract
As a first step in eukaryotic ribosome biogenesis RNA polymerase (Pol) I synthesizes a large ribosomal RNA (rRNA) precursor from multicopy rRNA gene loci. This process is essential for cellular growth and regulated in response to the cell's physiological state. rRNA gene transcription is downregulated upon growth to stationary phase in the yeast Saccharomyces cerevisiae. This reduction correlates with characteristic changes in rRNA gene chromatin structure from a transcriptionally active 'open' state to a non-transcribed 'closed' state. The conserved lysine deacetylase Rpd3 was shown to be required for this chromatin transition. We found that Rpd3 is needed for tight repression of Pol I transcription upon growth to stationary phase as a prerequisite for the establishment of the closed chromatin state. We provide evidence that Rpd3 regulates Pol I transcription by adjusting cellular levels of the Pol I preinitiation complex component core factor (CF). Importantly, our study identifies CF as the complex limiting the number of open rRNA genes in exponentially growing and stationary cells.
Collapse
Affiliation(s)
- Virginia Babl
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Philipp Girke
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Sebastian Kruse
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Sophia Pinz
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Katharina Hannig
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Christopher Schächner
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Kristin Hergert
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Manuel Wittner
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Wolfgang Seufert
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Philipp Milkereit
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Herbert Tschochner
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Joachim Griesenbeck
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| |
Collapse
|
2
|
Jacobs RQ, Schneider DA. Transcription elongation mechanisms of RNA polymerases I, II, and III and their therapeutic implications. J Biol Chem 2024; 300:105737. [PMID: 38336292 PMCID: PMC10907179 DOI: 10.1016/j.jbc.2024.105737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Transcription is a tightly regulated, complex, and essential cellular process in all living organisms. Transcription is comprised of three steps, transcription initiation, elongation, and termination. The distinct transcription initiation and termination mechanisms of eukaryotic RNA polymerases I, II, and III (Pols I, II, and III) have long been appreciated. Recent methodological advances have empowered high-resolution investigations of the Pols' transcription elongation mechanisms. Here, we review the kinetic similarities and differences in the individual steps of Pol I-, II-, and III-catalyzed transcription elongation, including NTP binding, bond formation, pyrophosphate release, and translocation. This review serves as an important summation of Saccharomyces cerevisiae (yeast) Pol I, II, and III kinetic investigations which reveal that transcription elongation by the Pols is governed by distinct mechanisms. Further, these studies illustrate how basic, biochemical investigations of the Pols can empower the development of chemotherapeutic compounds.
Collapse
Affiliation(s)
- Ruth Q Jacobs
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
3
|
Schwank K, Schmid C, Fremter T, Engel C, Milkereit P, Griesenbeck J, Tschochner H. Features of yeast RNA polymerase I with special consideration of the lobe binding subunits. Biol Chem 2023; 404:979-1002. [PMID: 37823775 DOI: 10.1515/hsz-2023-0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/13/2023] [Indexed: 10/13/2023]
Abstract
Ribosomal RNAs (rRNAs) are structural components of ribosomes and represent the most abundant cellular RNA fraction. In the yeast Saccharomyces cerevisiae, they account for more than 60 % of the RNA content in a growing cell. The major amount of rRNA is synthesized by RNA polymerase I (Pol I). This enzyme transcribes exclusively the rRNA gene which is tandemly repeated in about 150 copies on chromosome XII. The high number of transcribed rRNA genes, the efficient recruitment of the transcription machinery and the dense packaging of elongating Pol I molecules on the gene ensure that enough rRNA is generated. Specific features of Pol I and of associated factors confer promoter selectivity and both elongation and termination competence. Many excellent reviews exist about the state of research about function and regulation of Pol I and how Pol I initiation complexes are assembled. In this report we focus on the Pol I specific lobe binding subunits which support efficient, error-free, and correctly terminated rRNA synthesis.
Collapse
Affiliation(s)
- Katrin Schwank
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| | - Catharina Schmid
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| | - Tobias Fremter
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| | - Christoph Engel
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| | - Philipp Milkereit
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| | - Joachim Griesenbeck
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| | - Herbert Tschochner
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
4
|
Daiß JL, Griesenbeck J, Tschochner H, Engel C. Synthesis of the ribosomal RNA precursor in human cells: mechanisms, factors and regulation. Biol Chem 2023; 404:1003-1023. [PMID: 37454246 DOI: 10.1515/hsz-2023-0214] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
The ribosomal RNA precursor (pre-rRNA) comprises three of the four ribosomal RNAs and is synthesized by RNA polymerase (Pol) I. Here, we describe the mechanisms of Pol I transcription in human cells with a focus on recent insights gained from structure-function analyses. The comparison of Pol I-specific structural and functional features with those of other Pols and with the excessively studied yeast system distinguishes organism-specific from general traits. We explain the organization of the genomic rDNA loci in human cells, describe the Pol I transcription cycle regarding structural changes in the enzyme and the roles of human Pol I subunits, and depict human rDNA transcription factors and their function on a mechanistic level. We disentangle information gained by direct investigation from what had apparently been deduced from studies of the yeast enzymes. Finally, we provide information about how Pol I mutations may contribute to developmental diseases, and why Pol I is a target for new cancer treatment strategies, since increased rRNA synthesis was correlated with rapidly expanding cell populations.
Collapse
Affiliation(s)
- Julia L Daiß
- Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Joachim Griesenbeck
- Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Herbert Tschochner
- Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Christoph Engel
- Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
5
|
Yang DL, Huang K, Deng D, Zeng Y, Wang Z, Zhang Y. DNA-dependent RNA polymerases in plants. THE PLANT CELL 2023; 35:3641-3661. [PMID: 37453082 PMCID: PMC10533338 DOI: 10.1093/plcell/koad195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 06/09/2023] [Accepted: 05/29/2023] [Indexed: 07/18/2023]
Abstract
DNA-dependent RNA polymerases (Pols) transfer the genetic information stored in genomic DNA to RNA in all organisms. In eukaryotes, the typical products of nuclear Pol I, Pol II, and Pol III are ribosomal RNAs, mRNAs, and transfer RNAs, respectively. Intriguingly, plants possess two additional Pols, Pol IV and Pol V, which produce small RNAs and long noncoding RNAs, respectively, mainly for silencing transposable elements. The five plant Pols share some subunits, but their distinct functions stem from unique subunits that interact with specific regulatory factors in their transcription cycles. Here, we summarize recent advances in our understanding of plant nucleus-localized Pols, including their evolution, function, structures, and transcription cycles.
Collapse
Affiliation(s)
- Dong-Lei Yang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Kun Huang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Deyin Deng
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin’an, Hangzhou 311300, China
| | - Yuan Zeng
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhenxing Wang
- College of Horticulture, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
6
|
McNamar R, Freeman E, Baylor KN, Fakhouri AM, Huang S, Knutson BA, Rothblum LI. PAF49: An RNA Polymerase I subunit essential for rDNA transcription and stabilization of PAF53. J Biol Chem 2023; 299:104951. [PMID: 37356716 PMCID: PMC10365956 DOI: 10.1016/j.jbc.2023.104951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/30/2023] [Accepted: 06/09/2023] [Indexed: 06/27/2023] Open
Abstract
The application of genetic and biochemical techniques in yeast has informed our knowledge of transcription in mammalian cells. Such systems have allowed investigators to determine whether a gene was essential and to determine its function in rDNA transcription. However, there are significant differences in the nature of the transcription factors essential for transcription by Pol I in yeast and mammalian cells, and yeast RNA polymerase I contains 14 subunits while mammalian polymerase contains 13 subunits. We previously reported the adaptation of the auxin-dependent degron that enabled a combination of a "genetics-like" approach and biochemistry to study mammalian rDNA transcription. Using this system, we studied the mammalian orthologue of yeast RPA34.5, PAF49, and found that it is essential for rDNA transcription and cell division. The auxin-induced degradation of PAF49 induced nucleolar stress and the accumulation of P53. Interestingly, the auxin-induced degradation of AID-tagged PAF49 led to the degradation of its binding partner, PAF53, but not vice versa. A similar pattern of co-dependent expression was also found when we studied the non-essential, yeast orthologues. An analysis of the domains of PAF49 that are essential for rDNA transcription demonstrated a requirement for both the dimerization domain and an "arm" of PAF49 that interacts with PolR1B. Further, we demonstrate this interaction can be disrupted to inhibit Pol I transcription in normal and cancer cells which leads to the arrest of normal cells and cancer cell death. In summary, we have shown that both PAF53 and PAF49 are necessary for rDNA transcription and cell growth.
Collapse
Affiliation(s)
- Rachel McNamar
- Department of Cell Biology, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma, USA
| | - Emma Freeman
- Department of Cell and Development Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kairo N Baylor
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Aula M Fakhouri
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Sui Huang
- Department of Cell and Development Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bruce A Knutson
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Lawrence I Rothblum
- Department of Cell Biology, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
7
|
Dörner K, Ruggeri C, Zemp I, Kutay U. Ribosome biogenesis factors-from names to functions. EMBO J 2023; 42:e112699. [PMID: 36762427 PMCID: PMC10068337 DOI: 10.15252/embj.2022112699] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
The assembly of ribosomal subunits is a highly orchestrated process that involves a huge cohort of accessory factors. Most eukaryotic ribosome biogenesis factors were first identified by genetic screens and proteomic approaches of pre-ribosomal particles in Saccharomyces cerevisiae. Later, research on human ribosome synthesis not only demonstrated that the requirement for many of these factors is conserved in evolution, but also revealed the involvement of additional players, reflecting a more complex assembly pathway in mammalian cells. Yet, it remained a challenge for the field to assign a function to many of the identified factors and to reveal their molecular mode of action. Over the past decade, structural, biochemical, and cellular studies have largely filled this gap in knowledge and led to a detailed understanding of the molecular role that many of the players have during the stepwise process of ribosome maturation. Such detailed knowledge of the function of ribosome biogenesis factors will be key to further understand and better treat diseases linked to disturbed ribosome assembly, including ribosomopathies, as well as different types of cancer.
Collapse
Affiliation(s)
- Kerstin Dörner
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,Molecular Life Sciences Ph.D. Program, Zurich, Switzerland
| | - Chiara Ruggeri
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,RNA Biology Ph.D. Program, Zurich, Switzerland
| | - Ivo Zemp
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Ulrike Kutay
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
The long and short of rDNA and yeast replicative aging. Proc Natl Acad Sci U S A 2022; 119:e2205124119. [PMID: 35658078 DOI: 10.1073/pnas.2205124119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
9
|
Baudin F, Murciano B, Fung HKH, Fromm SA, Mattei S, Mahamid J, Müller CW. Mechanism of RNA polymerase I selection by transcription factor UAF. SCIENCE ADVANCES 2022; 8:eabn5725. [PMID: 35442737 PMCID: PMC9020658 DOI: 10.1126/sciadv.abn5725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Preribosomal RNA is selectively transcribed by RNA polymerase (Pol) I in eukaryotes. The yeast transcription factor upstream activating factor (UAF) represses Pol II transcription and mediates Pol I preinitiation complex (PIC) formation at the 35S ribosomal RNA gene. To visualize the molecular intermediates toward PIC formation, we determined the structure of UAF in complex with native promoter DNA and transcription factor TATA-box-binding protein (TBP). We found that UAF recognizes DNA using a hexameric histone-like scaffold with markedly different interactions compared with the nucleosome and the histone-fold-rich transcription factor IID (TFIID). In parallel, UAF positions TBP for Core Factor binding, which leads to Pol I recruitment, while sequestering it from DNA and Pol II/III-specific transcription factors. Our work thus reveals the structural basis of RNA Pol selection by a transcription factor.
Collapse
Affiliation(s)
- Florence Baudin
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Brice Murciano
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Herman K. H. Fung
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Simon A. Fromm
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- EMBL Imaging Centre, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Simone Mattei
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- EMBL Imaging Centre, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christoph W. Müller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
10
|
Rocha MA, Gowda BS, Fleischmann J. RNAP II produces capped 18S and 25S ribosomal RNAs resistant to 5′-monophosphate dependent processive 5′ to 3′ exonuclease in polymerase switched Saccharomyces cerevisiae. BMC Mol Cell Biol 2022; 23:17. [PMID: 35399070 PMCID: PMC8994892 DOI: 10.1186/s12860-022-00417-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/31/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
We have previously found that, in the pathogenic yeast Candida albicans, 18S and 25S ribosomal RNA components, containing more than one phosphate on their 5′-end were resistant to 5′-monophosphate requiring 5′ → 3″ exonuclease. Several lines of evidence pointed to RNAP II as the enzyme producing them.
Results
We now show the production of such 18S and 25S rRNAs in Saccharomyces cerevisiae that have been permanently switched to RNAP II (due to deletion of part of RNAP I upstream activator alone, or in combination with deletion of one component of RNAP I itself). They contain more than one phosphate at their 5′-end and an anti-cap specific antibody binds to them indicating capping of these molecules. These molecules are found in RNA isolated from nuclei, therefore are unlikely to have been modified in the cytoplasm.
Conclusions
Our data confirm the existence of such molecules and firmly establish RNAP II playing a role in their production. The fact that we see these molecules in wild type Saccharomyces cerevisiae indicates that they are not only a result of mutations but are part of the cells physiology. This adds another way RNAP II is involved in ribosome production in addition to their role in the production of ribosome associated proteins.
Collapse
|
11
|
Molecular Topology of RNA Polymerase I Upstream Activation Factor. Mol Cell Biol 2020; 40:MCB.00056-20. [PMID: 32253346 DOI: 10.1128/mcb.00056-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/27/2020] [Indexed: 11/20/2022] Open
Abstract
Upstream activation factor (UAF) is a multifunctional transcription factor in Saccharomyces cerevisiae that plays dual roles in activating RNA polymerase I (Pol I) transcription and repression of Pol II. For Pol I, UAF binds to a specific upstream element in the ribosomal DNA (rDNA) promoter and interacts with two other Pol I initiation factors, the TATA-binding protein (TBP) and core factor (CF). We used an integrated combination of chemical cross-linking mass spectrometry (CXMS), molecular genetics, protein biochemistry, and structural modeling to understand the topological framework responsible for UAF complex formation. Here, we report the molecular topology of the UAF complex, describe new structural and functional domains that play roles in UAF complex integrity, assembly, and biological function, and provide roles for previously identified UAF domains that include the Rrn5 SANT and histone fold domains. We highlight the role of new domains in Uaf30 that include an N-terminal winged helix domain and a disordered tethering domain as well as a BORCS6-like domain found in Rrn9. Together, our results reveal a unique network of topological features that coalesce around a histone tetramer-like core to form the dual-function UAF complex.
Collapse
|
12
|
Kramm K, Schröder T, Gouge J, Vera AM, Gupta K, Heiss FB, Liedl T, Engel C, Berger I, Vannini A, Tinnefeld P, Grohmann D. DNA origami-based single-molecule force spectroscopy elucidates RNA Polymerase III pre-initiation complex stability. Nat Commun 2020; 11:2828. [PMID: 32504003 PMCID: PMC7275037 DOI: 10.1038/s41467-020-16702-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 05/13/2020] [Indexed: 01/03/2023] Open
Abstract
The TATA-binding protein (TBP) and a transcription factor (TF) IIB-like factor are important constituents of all eukaryotic initiation complexes. The reason for the emergence and strict requirement of the additional initiation factor Bdp1 in the RNA polymerase (RNAP) III system, however, remained elusive. A poorly studied aspect in this context is the effect of DNA strain arising from DNA compaction and transcriptional activity on initiation complex formation. We made use of a DNA origami-based force clamp to follow the assembly of human initiation complexes in the RNAP II and RNAP III systems at the single-molecule level under piconewton forces. We demonstrate that TBP-DNA complexes are force-sensitive and TFIIB is sufficient to stabilise TBP on a strained promoter. In contrast, Bdp1 is the pivotal component that ensures stable anchoring of initiation factors, and thus the polymerase itself, in the RNAP III system. Thereby, we offer an explanation for the crucial role of Bdp1 for the high transcriptional output of RNAP III.
Collapse
Affiliation(s)
- Kevin Kramm
- Single-Molecule Biochemistry Lab, Institute of Microbiology and Archaea Centre, University of Regensburg, 93053, Regensburg, Germany
| | - Tim Schröder
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Jerome Gouge
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Andrés Manuel Vera
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Kapil Gupta
- Bristol Synthetic Biology Centre BrisSynBio, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Clifton, BS8 1TD, UK
| | - Florian B Heiss
- Regensburg Center of Biochemistry (RCB), University of Regensburg, 93053, Regensburg, Germany
| | - Tim Liedl
- Faculty of Physics and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Christoph Engel
- Regensburg Center of Biochemistry (RCB), University of Regensburg, 93053, Regensburg, Germany
| | - Imre Berger
- Bristol Synthetic Biology Centre BrisSynBio, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Clifton, BS8 1TD, UK
| | - Alessandro Vannini
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK
- Human Technopole Foundation, Centre of Structural Biology, 20157, Milan, Italy
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Dina Grohmann
- Single-Molecule Biochemistry Lab, Institute of Microbiology and Archaea Centre, University of Regensburg, 93053, Regensburg, Germany.
- Regensburg Center of Biochemistry (RCB), University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
13
|
Wakatsuki T, Sasaki M, Kobayashi T. Defects in the NuA4 acetyltransferase complex increase stability of the ribosomal RNA gene and extend replicative lifespan. Genes Genet Syst 2019; 94:197-206. [PMID: 31694990 DOI: 10.1266/ggs.19-00022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Genome instability is a cause of cellular senescence. The ribosomal RNA gene repeat (rDNA) is one of the most unstable regions in the genome and its instability is proposed to be a major inducer of cellular senescence and restricted lifespan. We previously conducted a genome-wide screen using a budding yeast deletion library to identify mutants that exhibit a change in the stability of the rDNA region, compared to the wild-type. To investigate the correlation between rDNA stability and lifespan, we examined deletion mutants with very stable rDNA and found that deletion of EAF3, encoding a component of the NuA4 histone acetyltransferase complex, reproducibly resulted in increased stabilization of the rDNA. In the absence of Eaf3, and of other subunits of the NuA4 complex, we observed lower levels of extrachromosomal rDNA circles that are produced by recombination in the rDNA and are thus an indicator of rDNA instability. The replicative lifespan in the eaf3 mutant was extended by ~30%, compared to the wild-type strain. Our findings provide evidence that rDNA stability is correlated with extended replicative lifespan. The eaf3 mutation possibly affects the non-coding transcription in rDNA that regulates rDNA recombination through cohesin dissociation.
Collapse
Affiliation(s)
- Tsuyoshi Wakatsuki
- Institute for Quantitative Biosciences, The University of Tokyo.,Department of Life Science and Technology, Tokyo Institute of Technology
| | - Mariko Sasaki
- Institute for Quantitative Biosciences, The University of Tokyo
| | - Takehiko Kobayashi
- Institute for Quantitative Biosciences, The University of Tokyo.,Department of Life Science and Technology, Tokyo Institute of Technology.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| |
Collapse
|
14
|
How do cells count multi-copy genes?: "Musical Chair" model for preserving the number of rDNA copies. Curr Genet 2019; 65:883-885. [PMID: 30904990 DOI: 10.1007/s00294-019-00956-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 01/20/2023]
Abstract
To supply abundant ribosomes, multiple copies of ribosomal RNA genes (rDNA) are conserved from bacterial to human cells. In eukaryotic genomes, clusters of tandemly repeated rDNA units are present, and their number is stably maintained. Due to high level of transcription of rRNA genes, the repetitive structure is prone to rearrangement. In budding yeast, rDNA homeostasis can compensate for this by the regulation of recombination events that will change the copy number. The histone deacetylase Sir2 plays a key role in rDNA copy maintenance and its expression level determines a state of "maintenance" or "amplification" of rDNA copy number. We recently showed that Upstream Activating Factors (UAF) for RNA polymerase I act as a RNA polymerase II repressor of SIR2 transcription in response to rDNA copy loss. Furthermore, the amount of UAF, which is limited in the cell, determines the stable copy number of rDNA and is a molecular switch for rDNA recovery. In this mini-review, we propose a "Musical Chair" model for rDNA copy counting as mediated by UAF and Sir2. The model describes how a straightforward molecular mechanism can account for the "cellular memory" of the proper rDNA copy number.
Collapse
|
15
|
Iida T, Kobayashi T. RNA Polymerase I Activators Count and Adjust Ribosomal RNA Gene Copy Number. Mol Cell 2019; 73:645-654.e13. [PMID: 30612878 DOI: 10.1016/j.molcel.2018.11.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/18/2018] [Accepted: 11/19/2018] [Indexed: 01/08/2023]
Abstract
Ribosome is the most abundant RNA-protein complex in a cell, and many copies of the ribosomal RNA gene (rDNA) have to be maintained. However, arrays of tandemly repeated rDNA genes can lose the copies by intra-repeat recombination. Loss of the rDNA copies of Saccharomyces cerevisiae is counteracted by gene amplification whereby the number of rDNA repeats stabilizes around 150 copies, suggesting the presence of a monitoring mechanism that counts and adjusts the number. Here, we report that, in response to rDNA copy loss, the upstream activating factor (UAF) for RNA polymerase I that transcribes the rDNA is released and directly binds to a RNA polymerase II-transcribed gene, SIR2, whose gene products silence rDNA recombination, to repress. We show that the amount of UAF determines the rDNA copy number that is stably maintained. UAF ensures rDNA production not only by rDNA transcription activation but also by its copy-number maintenance.
Collapse
Affiliation(s)
- Tetsushi Iida
- Laboratory of Genome Regeneration, Research Center for Biological Visualization, The Institute for Quantitative Biosciences (IQB), 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| | - Takehiko Kobayashi
- Laboratory of Genome Regeneration, Research Center for Biological Visualization, The Institute for Quantitative Biosciences (IQB), 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; Collaborative Research Institute for Innovative Microbiology, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
16
|
Liang X, Hart KJ, Dong G, Siddiqui FA, Sebastian A, Li X, Albert I, Miao J, Lindner SE, Cui L. Puf3 participates in ribosomal biogenesis in malaria parasites. J Cell Sci 2018; 131:jcs.212597. [PMID: 29487181 DOI: 10.1242/jcs.212597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/16/2018] [Indexed: 12/11/2022] Open
Abstract
In this study, we characterized the Puf family gene member Puf3 in the malaria parasites Plasmodium falciparum and Plasmodium yoelii Secondary structure prediction suggested that the RNA-binding domains of the Puf3 proteins consisted of 11 pumilio repeats that were similar to those in the human Puf-A (also known as PUM3) and Saccharomyces cerevisiae Puf6 proteins, which are involved in ribosome biogenesis. Neither P. falciparum (Pf)Puf3 nor P. yoelii (Py)Puf3 could be genetically disrupted, suggesting they may be essential for the intraerythrocytic developmental cycle. Cellular fractionation of PfPuf3 in the asexual stages revealed preferential partitioning to the nuclear fraction, consistent with nuclear localization of PfPuf3::GFP and PyPuf3::GFP as detected by immunofluorescence. Furthermore, PfPuf3 colocalized with the nucleolar marker PfNop1, demonstrating that PfPuf3 is a nucleolar protein in the asexual stages. We found, however, that PyPuf3 changed its localization from being nucleolar to being present in cytosolic puncta in the mosquito and liver stages, which may reflect alternative functions in these stages. Affinity purification of molecules that associated with a PTP-tagged variant of PfPuf3 revealed 31 proteins associated with the 60S ribosome, and an enrichment of 28S rRNA and internal transcribed spacer 2 sequences. Taken together, these results suggest an essential function for PfPuf3 in ribosomal biogenesis.
Collapse
Affiliation(s)
- Xiaoying Liang
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Kevin J Hart
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA
| | - Gang Dong
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, 1030 Vienna, Austria
| | - Faiza A Siddiqui
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Aswathy Sebastian
- Bioinformatics Consulting Center, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Xiaolian Li
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Istvan Albert
- Bioinformatics Consulting Center, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Jun Miao
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Scott E Lindner
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA
| | - Liwang Cui
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
17
|
Smith ML, Cui W, Jackobel AJ, Walker-Kopp N, Knutson BA. Reconstitution of RNA Polymerase I Upstream Activating Factor and the Roles of Histones H3 and H4 in Complex Assembly. J Mol Biol 2018; 430:641-654. [PMID: 29357286 PMCID: PMC9746128 DOI: 10.1016/j.jmb.2018.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 12/16/2022]
Abstract
RNA polymerase I (Pol I) transcription in Saccharomyces cerevisiae requires four separate factors that recruit Pol I to the promoter to form a pre-initiation complex. Upstream Activating Factor (UAF) is one of two multi-subunit complexes that regulate pre-initiation complex formation by binding to the ribosomal DNA promoter and by stimulating recruitment of downstream Pol I factors. UAF is composed of Rrn9, Rrn5, Rrn10, Uaf30, and histones H3 and H4. We developed a recombinant Escherichia coli-based system to coexpress and purify transcriptionally active UAF complex and to investigate the importance of each subunit in complex formation. We found that no single subunit is required for UAF assembly, including histones H3 and H4. We also demonstrate that histone H3 is able to interact with each UAF-specific subunit, and show that there are at least two copies of histone H3 and one copy of H4 present in the complex. Together, our results provide a new model suggesting that UAF contains a hybrid H3-H4 tetramer-like subcomplex.
Collapse
Affiliation(s)
- Marissa L. Smith
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, United States
| | - Weidong Cui
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, United States
| | - Ashleigh J. Jackobel
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, United States
| | - Nancy Walker-Kopp
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, United States
| | - Bruce A. Knutson
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, United States
| |
Collapse
|
18
|
Pilsl M, Crucifix C, Papai G, Krupp F, Steinbauer R, Griesenbeck J, Milkereit P, Tschochner H, Schultz P. Structure of the initiation-competent RNA polymerase I and its implication for transcription. Nat Commun 2016; 7:12126. [PMID: 27418187 PMCID: PMC4947174 DOI: 10.1038/ncomms12126] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 06/02/2016] [Indexed: 01/12/2023] Open
Abstract
Eukaryotic RNA polymerase I (Pol I) is specialized in rRNA gene transcription synthesizing up to 60% of cellular RNA. High level rRNA production relies on efficient binding of initiation factors to the rRNA gene promoter and recruitment of Pol I complexes containing initiation factor Rrn3. Here, we determine the cryo-EM structure of the Pol I-Rrn3 complex at 7.5 Å resolution, and compare it with Rrn3-free monomeric and dimeric Pol I. We observe that Rrn3 contacts the Pol I A43/A14 stalk and subunits A190 and AC40, that association re-organizes the Rrn3 interaction interface, thereby preventing Pol I dimerization; and Rrn3-bound and monomeric Pol I differ from the dimeric enzyme in cleft opening, and localization of the A12.2 C-terminus in the active centre. Our findings thus support a dual role for Rrn3 in transcription initiation to stabilize a monomeric initiation competent Pol I and to drive pre-initiation complex formation. Eukaryotic RNA polymerase I (Pol I) is responsible for the transcription of rRNA genes. Here the authors determine the cryo-EM structure of the Pol I-Rrn3 complex, providing insight into how Rrn3 stabilizes the monomeric initiation competent Pol I to drive pre-initiation complex formation.
Collapse
Affiliation(s)
- Michael Pilsl
- Universität Regensburg, Biochemie-Zentrum Regensburg (BZR), Institut für Biochemie, Genetik und Mikrobiologie, Lehrstuhl Biochemie III, 93053 Regensburg, Germany
| | - Corinne Crucifix
- Department of Integrated Structural Biology, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire) INSERM, U964; CNRS/Strasbourg University, UMR7104 1, rue Laurent Fries, BP10142, 67404 Illkirch, France
| | - Gabor Papai
- Department of Integrated Structural Biology, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire) INSERM, U964; CNRS/Strasbourg University, UMR7104 1, rue Laurent Fries, BP10142, 67404 Illkirch, France
| | - Ferdinand Krupp
- Department of Integrated Structural Biology, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire) INSERM, U964; CNRS/Strasbourg University, UMR7104 1, rue Laurent Fries, BP10142, 67404 Illkirch, France
| | - Robert Steinbauer
- Universität Regensburg, Biochemie-Zentrum Regensburg (BZR), Institut für Biochemie, Genetik und Mikrobiologie, Lehrstuhl Biochemie III, 93053 Regensburg, Germany
| | - Joachim Griesenbeck
- Universität Regensburg, Biochemie-Zentrum Regensburg (BZR), Institut für Biochemie, Genetik und Mikrobiologie, Lehrstuhl Biochemie III, 93053 Regensburg, Germany
| | - Philipp Milkereit
- Universität Regensburg, Biochemie-Zentrum Regensburg (BZR), Institut für Biochemie, Genetik und Mikrobiologie, Lehrstuhl Biochemie III, 93053 Regensburg, Germany
| | - Herbert Tschochner
- Universität Regensburg, Biochemie-Zentrum Regensburg (BZR), Institut für Biochemie, Genetik und Mikrobiologie, Lehrstuhl Biochemie III, 93053 Regensburg, Germany
| | - Patrick Schultz
- Department of Integrated Structural Biology, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire) INSERM, U964; CNRS/Strasbourg University, UMR7104 1, rue Laurent Fries, BP10142, 67404 Illkirch, France
| |
Collapse
|
19
|
Panday A, Xiao L, Grove A. Yeast high mobility group protein HMO1 stabilizes chromatin and is evicted during repair of DNA double strand breaks. Nucleic Acids Res 2015; 43:5759-70. [PMID: 25979266 PMCID: PMC4499126 DOI: 10.1093/nar/gkv498] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 05/04/2015] [Indexed: 01/19/2023] Open
Abstract
DNA is packaged into condensed chromatin fibers by association with histones and architectural proteins such as high mobility group (HMGB) proteins. However, this DNA packaging reduces accessibility of enzymes that act on DNA, such as proteins that process DNA after double strand breaks (DSBs). Chromatin remodeling overcomes this barrier. We show here that the Saccharomyces cerevisiae HMGB protein HMO1 stabilizes chromatin as evidenced by faster chromatin remodeling in its absence. HMO1 was evicted along with core histones during repair of DSBs, and chromatin remodeling events such as histone H2A phosphorylation and H3 eviction were faster in absence of HMO1. The facilitated chromatin remodeling in turn correlated with more efficient DNA resection and recruitment of repair proteins; for example, inward translocation of the DNA-end-binding protein Ku was faster in absence of HMO1. This chromatin stabilization requires the lysine-rich C-terminal extension of HMO1 as truncation of the HMO1 C-terminal tail phenocopies hmo1 deletion. Since this is reminiscent of the need for the basic C-terminal domain of mammalian histone H1 in chromatin compaction, we speculate that HMO1 promotes chromatin stability by DNA bending and compaction imposed by its lysine-rich domain and that it must be evicted along with core histones for efficient DSB repair.
Collapse
Affiliation(s)
- Arvind Panday
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - LiJuan Xiao
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Anne Grove
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
20
|
Viktorovskaya OV, Schneider DA. Functional divergence of eukaryotic RNA polymerases: unique properties of RNA polymerase I suit its cellular role. Gene 2014; 556:19-26. [PMID: 25445273 DOI: 10.1016/j.gene.2014.10.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 02/08/2023]
Abstract
Eukaryotic cells express at least three unique nuclear RNA polymerases. The selective advantage provided by this enhanced complexity is a topic of fundamental interest in cell biology. It has long been known that the gene targets and transcription initiation pathways for RNA polymerases (Pols) I, II and III are distinct; however, recent genetic, biochemical and structural data suggest that even the core enzymes have evolved unique properties. Among the three eukaryotic RNA polymerases, Pol I is considered the most divergent. Transcription of the ribosomal DNA by Pol I is unmatched in its high rate of initiation, complex organization within the nucleolus and functional connection to ribosome assembly. Furthermore, ribosome synthesis is intimately linked to cell growth and proliferation. Thus, there is intense selective pressure on Pol I. This review describes key features of Pol I transcription, discusses catalytic activities of the enzyme and focuses on recent advances in understanding its unique role among eukaryotic RNA polymerases.
Collapse
Affiliation(s)
- Olga V Viktorovskaya
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, United States
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, United States.
| |
Collapse
|
21
|
Increased transcription of RPL40A and RPL40B is important for the improvement of RNA production in Saccharomyces cerevisiae. J Biosci Bioeng 2013; 116:423-32. [DOI: 10.1016/j.jbiosc.2013.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 03/24/2013] [Accepted: 04/01/2013] [Indexed: 11/21/2022]
|
22
|
Hamperl S, Wittner M, Babl V, Perez-Fernandez J, Tschochner H, Griesenbeck J. Chromatin states at ribosomal DNA loci. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:405-17. [PMID: 23291532 DOI: 10.1016/j.bbagrm.2012.12.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/16/2012] [Accepted: 12/21/2012] [Indexed: 12/29/2022]
Abstract
Eukaryotic transcription of ribosomal RNAs (rRNAs) by RNA polymerase I can account for more than half of the total cellular transcripts depending on organism and growth condition. To support this level of expression, eukaryotic rRNA genes are present in multiple copies. Interestingly, these genes co-exist in different chromatin states that may differ significantly in their nucleosome content and generally correlate well with transcriptional activity. Here we review how these chromatin states have been discovered and characterized focusing particularly on their structural protein components. The establishment and maintenance of rRNA gene chromatin states and their impact on rRNA synthesis are discussed. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Stephan Hamperl
- Lehrstuhl Biochemie III, Universität Regensburg, 93053 Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Knutson BA, Hahn S. TFIIB-related factors in RNA polymerase I transcription. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:265-73. [PMID: 22960599 DOI: 10.1016/j.bbagrm.2012.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 08/20/2012] [Accepted: 08/21/2012] [Indexed: 01/24/2023]
Abstract
Eukaryotic RNA polymerases (Pol) I, II, III and archaeal Pol use a related set of general transcription factors to recognize promoter sequences and recruit Pol to promoters and to function at key points in the transcription initiation mechanism. The TFIIB-like general transcription factors (GTFs) function during several important and conserved steps in the initiation pathway for Pols II, III, and archaeal Pol. Until recently, the mechanism of Pol I initiation seemed unique, since it appeared to lack a GTF paralogous to the TFIIB-like proteins. The surprising recent discovery of TFIIB-related Pol I general factors in yeast and humans highlights the evolutionary conservation of transcription initiation mechanisms for all eukaryotic and archaeal Pols. These findings reveal new roles for the function of the Pol I GTFs and insight into the function of TFIIB-related factors. Models for Pol I transcription initiation are reexamined in light of these recent findings. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Bruce A Knutson
- Fred Hutchinson Cancer Research Center, Division of Basic Sciences, 1100 Fairview Ave. N, P.O. Box 19024, Mailstop A1-162, Seattle, WA 98109, USA.
| | | |
Collapse
|
24
|
Efficient transcription by RNA polymerase I using recombinant core factor. Gene 2011; 492:94-9. [PMID: 22093875 DOI: 10.1016/j.gene.2011.10.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 10/28/2011] [Accepted: 10/30/2011] [Indexed: 11/24/2022]
Abstract
Transcription of ribosomal DNA by RNA polymerase I is a central feature of eukaryotic ribosome biogenesis. Since ribosome synthesis is closely linked to cell proliferation, there is a need to define the molecular mechanisms that control transcription by RNA polymerase I. To fully define the factors that control RNA polymerase I activity, biochemical analyses using purified transcription factors are essential. Although such assays exist, one limitation is the low abundance and difficult purification strategies required for some of the essential transcription factors for RNA polymerase I. Here, we describe a new method for expression and purification of the three subunit core factor complex from Escherichia coli. We demonstrate that the recombinant material is more active than yeast-derived core factor in assays for RNA polymerase I transcription in vitro. Finally, we use recombinant core factor to differentiate between two opposing models for the role of the TATA-binding protein in transcription by RNA polymerase I.
Collapse
|
25
|
Schneider DA. RNA polymerase I activity is regulated at multiple steps in the transcription cycle: recent insights into factors that influence transcription elongation. Gene 2011; 493:176-84. [PMID: 21893173 DOI: 10.1016/j.gene.2011.08.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 07/11/2011] [Accepted: 08/08/2011] [Indexed: 01/21/2023]
Abstract
Synthesis of the translation apparatus is a central activity in growing and/or proliferating cells. Because of its fundamental importance and direct connection to cell proliferation, ribosome synthesis has been a focus of ongoing research for several decades. As a consequence, much is known about the essential factors involved in this process. Many studies have shown that transcription of the ribosomal DNA by RNA polymerase I is a major target for cellular regulation of ribosome synthesis rates. The initiation of transcription by RNA polymerase I has been implicated as a regulatory target, however, recent studies suggest that the elongation step in transcription is also influenced and regulated by trans-acting factors. This review describes the factors required for rRNA synthesis and focuses on recent works that have begun to identify and characterize factors that influence transcription elongation by RNA polymerase I and its regulation.
Collapse
Affiliation(s)
- David Alan Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 720 20th Street South, Kaul Human Genetics, Room 442, Birmingham, AL 35294, USA.
| |
Collapse
|
26
|
Abstract
My journey into a research career began in fermentation biochemistry in an applied science department during the difficult post-World War II time in Japan. Subsequently, my desire to do research in basic science developed. I was fortunate to be a postdoctoral fellow in the United States during the early days of molecular biology. From 1957 to 1960, I worked with three pioneers of molecular biology, Sol Spiegelman, James Watson, and Seymour Benzer. These experiences helped me develop into a basic research scientist. My initial research projects at Osaka University, and subsequently at the University of Wisconsin, Madison, were on the mode of action of colicins as well as on mRNA and ribosomes. Following success in the reconstitution of ribosomal subunits, my efforts focused more on ribosomes, initially on the aspects of structure, function, and in vitro assembly, such as the construction of the 30S subunit assembly map. After this, my laboratory studied the regulation of the synthesis of ribosomes and ribosomal components in Escherichia coli. Our achievements included the discovery of translational feedback regulation of ribosomal protein synthesis and the identification of several repressor ribosomal proteins used in this regulation. In 1984, I moved to the University of California, Irvine, and initiated research on rRNA transcription by RNA polymerase I in the yeast Saccharomyces cerevisiae. The use of yeast genetics combined with biochemistry allowed us to identify genes uniquely involved in rRNA synthesis and to elucidate the mechanism of initiation of transcription. This essay is a reflection on my life as a research scientist.
Collapse
Affiliation(s)
- Masayasu Nomura
- Department of Biological Chemistry, University of California, Irvine, California 92697-1700
| |
Collapse
|
27
|
Chuwattanakul V, Kim YH, Sugiyama M, Nishiuchi H, Miwa H, Kaneko Y, Harashima S. Construction of a Saccharomyces cerevisiae strain with a high level of RNA. J Biosci Bioeng 2011; 112:1-7. [DOI: 10.1016/j.jbiosc.2011.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 02/26/2011] [Accepted: 03/21/2011] [Indexed: 11/30/2022]
|
28
|
Histone occupancy in vivo at the 601 nucleosome binding element is determined by transcriptional history. Mol Cell Biol 2011; 31:3485-96. [PMID: 21690290 DOI: 10.1128/mcb.05599-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We report in vivo analysis of histone and RNA polymerase II (pol II) occupancy at the 601 element, which functions as a strong in vitro nucleosome-positioning element and transcriptional pause site. Surprisingly, nucleosomes were not strongly positioned over the 601 element inserted either within a yeast chromosomal open reading frame (ORF) (GAL1-YLR454W) or in an intergenic region. In fact 601 within GAL1-YLR454W was actually depleted of histones relative to flanking sequences and did not cause pol II pausing. Upstream of an inserted 601 element within GAL1-YLR454W, a positioned nucleosome was formed whose location depended on transcriptional history; it shifted after a round of activation and repression. Transcriptional activation caused histone eviction throughout the GAL1-YLR454W ORF, except at 601, where there was no loss and some net histone deposition. In contrast, a second round of activation after glucose shutoff caused histone eviction both at 601 and elsewhere in the ORF. We conclude that the intrinsic high-affinity histone-DNA interactions at 601 do not necessarily play a dominant role in establishing nucleosomes or pol II pause sites within a coding region in vivo and that transcriptional history can have an important influence on histone occupancy flanking this sequence.
Collapse
|
29
|
NOF1 encodes an Arabidopsis protein involved in the control of rRNA expression. PLoS One 2010; 5:e12829. [PMID: 20877469 PMCID: PMC2942902 DOI: 10.1371/journal.pone.0012829] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 08/13/2010] [Indexed: 02/01/2023] Open
Abstract
The control of ribosomal RNA biogenesis is essential for the regulation of protein synthesis in eukaryotic cells. Here, we report the characterization of NOF1 that encodes a putative nucleolar protein involved in the control of rRNA expression in Arabidopsis. The gene has been isolated by T-DNA tagging and its function verified by the characterization of a second allele and genetic complementation of the mutants. The nof1 mutants are affected in female gametogenesis and embryo development. This result is consistent with the detection of NOF1 mRNA in all tissues throughout plant life's cycle, and preferentially in differentiating cells. Interestingly, the closely related proteins from zebra fish and yeast are also necessary for cell division and differentiation. We showed that the nof1-1 mutant displays higher rRNA expression and hypomethylation of rRNA promoter. Taken together, the results presented here demonstrated that NOF1 is an Arabidopsis gene involved in the control of rRNA expression, and suggested that it encodes a putative nucleolar protein, the function of which may be conserved in eukaryotes.
Collapse
|
30
|
Floer M, Wang X, Prabhu V, Berrozpe G, Narayan S, Spagna D, Alvarez D, Kendall J, Krasnitz A, Stepansky A, Hicks J, Bryant GO, Ptashne M. A RSC/nucleosome complex determines chromatin architecture and facilitates activator binding. Cell 2010; 141:407-18. [PMID: 20434983 PMCID: PMC3032599 DOI: 10.1016/j.cell.2010.03.048] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 12/23/2009] [Accepted: 02/16/2010] [Indexed: 11/19/2022]
Abstract
How is chromatin architecture established and what role does it play in transcription? We show that the yeast regulatory locus UASg bears, in addition to binding sites for the activator Gal4, sites bound by the RSC complex. RSC positions a nucleosome, evidently partially unwound, in a structure that facilitates Gal4 binding to its sites. The complex comprises a barrier that imposes characteristic features of chromatin architecture. In the absence of RSC, ordinary nucleosomes encroach over the UASg and compete with Gal4 for binding. Taken with our previous work, the results show that both prior to and following induction, specific DNA-binding proteins are the predominant determinants of chromatin architecture at the GAL1/10 genes. RSC/nucleosome complexes are also found scattered around the yeast genome. Higher eukaryotic RSC lacks the specific DNA-binding determinants found on yeast RSC, and evidently Gal4 works in those organisms despite whatever obstacle broadly positioned nucleosomes present.
Collapse
Affiliation(s)
- Monique Floer
- Molecular Biology Program, Sloan Kettering Institute, 1275 York Ave., New York, NY 10021
| | - Xin Wang
- Molecular Biology Program, Sloan Kettering Institute, 1275 York Ave., New York, NY 10021
| | - Vidya Prabhu
- Molecular Biology Program, Sloan Kettering Institute, 1275 York Ave., New York, NY 10021
| | - Georgina Berrozpe
- Molecular Biology Program, Sloan Kettering Institute, 1275 York Ave., New York, NY 10021
| | - Santosh Narayan
- Molecular Biology Program, Sloan Kettering Institute, 1275 York Ave., New York, NY 10021
| | - Dan Spagna
- Molecular Biology Program, Sloan Kettering Institute, 1275 York Ave., New York, NY 10021
| | - David Alvarez
- Molecular Biology Program, Sloan Kettering Institute, 1275 York Ave., New York, NY 10021
| | - Jude Kendall
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724
| | - Alexander Krasnitz
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724
| | - Asya Stepansky
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724
| | - James Hicks
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724
| | - Gene O. Bryant
- Molecular Biology Program, Sloan Kettering Institute, 1275 York Ave., New York, NY 10021
| | - Mark Ptashne
- Molecular Biology Program, Sloan Kettering Institute, 1275 York Ave., New York, NY 10021
| |
Collapse
|
31
|
Alternative chromatin structures of the 35S rRNA genes in Saccharomyces cerevisiae provide a molecular basis for the selective recruitment of RNA polymerases I and II. Mol Cell Biol 2010; 30:2028-45. [PMID: 20154141 DOI: 10.1128/mcb.01512-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In all eukaryotes, a specialized enzyme, RNA polymerase I (Pol I), is dedicated to transcribe the 35S rRNA gene from a multicopy gene cluster, the ribosomal DNA (rDNA). In certain Saccharomyces cerevisiae mutants, 35S rRNA genes can be transcribed by RNA polymerase II (Pol II). In these mutants, rDNA silencing of Pol II transcription is impaired. It has been speculated that upstream activating factor (UAF), which binds to a specific DNA element within the Pol I promoter, plays a crucial role in forming chromatin structures responsible for polymerase specificity and silencing at the rDNA locus. We therefore performed an in-depth analysis of chromatin structure and composition in different mutant backgrounds. We demonstrate that chromatin architecture of the entire Pol I-transcribed region is substantially altered in the absence of UAF, allowing RNA polymerases II and III to access DNA elements flanking a Pol promoter-proximal Reb1 binding site. Furthermore, lack of UAF leads to the loss of Sir2 from rDNA, correlating with impaired Pol II silencing. This analysis of rDNA chromatin provides a molecular basis, explaining many phenotypes observed in previous genetic analyses.
Collapse
|
32
|
McKeown PC, Shaw PJ. Chromatin: linking structure and function in the nucleolus. Chromosoma 2009; 118:11-23. [PMID: 18925405 DOI: 10.1007/s00412-008-0184-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 09/17/2008] [Accepted: 09/18/2008] [Indexed: 01/07/2023]
Abstract
The nucleolus is an informative model structure for studying how chromatin-regulated transcription relates to nuclear organisation. In this review, we describe how chromatin controls nucleolar structure through both the modulation of rDNA activity by convergently-evolved remodelling complexes and by direct effects upon rDNA packaging. This packaging not only regulates transcription but may also be important for suppressing internal recombination between tandem rDNA repeats. The identification of nucleolar histone chaperones and novel chromatin proteins by mass spectrometry suggests that structure-specific chromatin components remain to be characterised and may regulate the nucleolus in novel ways. However, it also suggests that there is considerable overlap between nucleolar and non-nucleolar-chromatin components. We conclude that a fuller understanding of nucleolar chromatin will be essential for understanding how gene organisation is linked with nuclear architecture.
Collapse
Affiliation(s)
- Peter C McKeown
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, Norfolk, UK.
| | | |
Collapse
|
33
|
Transcription of multiple yeast ribosomal DNA genes requires targeting of UAF to the promoter by Uaf30. Mol Cell Biol 2008; 28:6709-19. [PMID: 18765638 DOI: 10.1128/mcb.00703-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Upstream activating factor (UAF) is a multisubunit complex that functions in the activation of ribosomal DNA (rDNA) transcription by RNA polymerase I (Pol I). Cells lacking the Uaf30 subunit of UAF reduce the rRNA synthesis rate by approximately 70% compared to wild-type cells and produce rRNA using both Pol I and Pol II. Miller chromatin spreads demonstrated that even though there is an overall reduction in rRNA synthesis in uaf30 mutants, the active rDNA genes in such strains are overloaded with polymerases. This phenotype was specific to defects in Uaf30, as mutations in other UAF subunits resulted in a complete absence of rDNA genes with high or even modest Pol densities. The lack of Uaf30 prevented UAF from efficiently binding to the rDNA promoter in vivo, leading to an inability to activate a large number of rDNA genes. The relatively few genes that did become activated were highly transcribed, apparently to compensate for the reduced rRNA synthesis capacity. The results show that Uaf30p is a key targeting factor for the UAF complex that facilitates activation of a large proportion of rDNA genes in the tandem array.
Collapse
|
34
|
Merz K, Hondele M, Goetze H, Gmelch K, Stoeckl U, Griesenbeck J. Actively transcribed rRNA genes in S. cerevisiae are organized in a specialized chromatin associated with the high-mobility group protein Hmo1 and are largely devoid of histone molecules. Genes Dev 2008; 22:1190-204. [PMID: 18451108 DOI: 10.1101/gad.466908] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Synthesis of ribosomal RNAs (rRNAs) is the major transcriptional event in proliferating cells. In eukaryotes, ribosomal DNA (rDNA) is transcribed by RNA polymerase I from a multicopy locus coexisting in at least two different chromatin states. This heterogeneity of rDNA chromatin has been an obstacle to defining its molecular composition. We developed an approach to analyze differential protein association with each of the two rDNA chromatin states in vivo in the yeast Saccharomyces cerevisiae. We demonstrate that actively transcribed rRNA genes are largely devoid of histone molecules, but instead associate with the high-mobility group protein Hmo1.
Collapse
Affiliation(s)
- Katharina Merz
- Universitaet Regensburg, Institut für Biochemie, Genetik und Mikrobiologie, 93053 Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Dasgupta A, Sprouse RO, French S, Aprikian P, Hontz R, Juedes SA, Smith JS, Beyer AL, Auble DT. Regulation of rRNA synthesis by TATA-binding protein-associated factor Mot1. Mol Cell Biol 2007; 27:2886-96. [PMID: 17296733 PMCID: PMC1899949 DOI: 10.1128/mcb.00054-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mot1 is an essential, conserved, TATA-binding protein (TBP)-associated factor in Saccharomyces cerevisiae with well-established roles in the global control of RNA polymerase II (Pol II) transcription. Previous results have suggested that Mot1 functions exclusively in Pol II transcription, but here we report a novel role for Mot1 in regulating transcription by RNA polymerase I (Pol I). In vivo, Mot1 is associated with the ribosomal DNA, and loss of Mot1 results in decreased rRNA synthesis. Consistent with a direct role for Mot1 in Pol I transcription, Mot1 also associates with the Pol I promoter in vitro in a reaction that depends on components of the Pol I general transcription machinery. Remarkably, in addition to Mot1's role in initiation, rRNA processing is delayed in mot1 cells. Taken together, these results support a model in which Mot1 affects the rate and efficiency of rRNA synthesis by both direct and indirect mechanisms, with resulting effects on transcription activation and the coupling of rRNA synthesis to processing.
Collapse
MESH Headings
- Adenosine Triphosphatases/metabolism
- Chromatin/metabolism
- DNA Helicases/metabolism
- DNA, Ribosomal/ultrastructure
- Gene Expression Regulation, Fungal
- Genes, Fungal
- Mutation/genetics
- Promoter Regions, Genetic/genetics
- Protein Transport
- RNA Polymerase I/metabolism
- RNA Processing, Post-Transcriptional/genetics
- RNA, Ribosomal/biosynthesis
- RNA, Ribosomal/genetics
- RNA, Ribosomal/ultrastructure
- Repetitive Sequences, Nucleic Acid/genetics
- Saccharomyces cerevisiae/cytology
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae/ultrastructure
- Saccharomyces cerevisiae Proteins/metabolism
- TATA-Binding Protein Associated Factors/metabolism
- Transcription Factors/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Arindam Dasgupta
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, 1300 Jefferson Park Avenue, Charlottesville, Virginia 22908-0733, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Braun MA, Costa PJ, Crisucci EM, Arndt KM. Identification of Rkr1, a nuclear RING domain protein with functional connections to chromatin modification in Saccharomyces cerevisiae. Mol Cell Biol 2007; 27:2800-11. [PMID: 17283062 PMCID: PMC1899926 DOI: 10.1128/mcb.01947-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Proper transcription by RNA polymerase II is dependent on the modification state of the chromatin template. The Paf1 complex is associated with RNA polymerase II during transcription elongation and is required for several histone modifications that mark active genes. To uncover additional factors that regulate chromatin or transcription, we performed a genetic screen for mutations that cause lethality in the absence of the Paf1 complex component Rtf1. Our results have led to the discovery of a previously unstudied gene, RKR1. Strains lacking RKR1 exhibit phenotypes associated with defects in transcription and chromatin function. These phenotypes include inositol auxotrophy, impaired telomeric silencing, and synthetic lethality with mutations in SPT10, a gene that encodes a putative histone acetyltransferase. In addition, deletion of RKR1 causes severe genetic interactions with mutations that prevent histone H2B lysine 123 ubiquitylation or histone H3 lysine 4 methylation. RKR1 encodes a conserved nuclear protein with a functionally important RING domain at its carboxy terminus. In vitro experiments indicate that Rkr1 possesses ubiquitin-protein ligase activity. Taken together, our results identify a new participant in a protein ubiquitylation pathway within the nucleus that acts to modulate chromatin function and transcription.
Collapse
Affiliation(s)
- Mary A Braun
- Department of Biological Sciences, University of Pittsburgh, 269 Crawford Hall, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | | | | | | |
Collapse
|
37
|
Jones HS, Kawauchi J, Braglia P, Alen CM, Kent NA, Proudfoot NJ. RNA polymerase I in yeast transcribes dynamic nucleosomal rDNA. Nat Struct Mol Biol 2007; 14:123-30. [PMID: 17259992 PMCID: PMC6941936 DOI: 10.1038/nsmb1199] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Accepted: 01/02/2007] [Indexed: 11/09/2022]
Abstract
RNA polymerase (Pol) I-transcribed ribosomal genes of budding yeast exist as a tandem array (about 150 repeats) with transcription units separated by spacer sequences. Half of these rDNAs are inactivated by repressive chromatin structure, whereas the rest exist in an open conformation transcribed by closely spaced Pol I elongation complexes. Whereas previous studies have suggested that active rDNA is devoid of nucleosomal structure, we demonstrate that active rDNA has nucleosomal structure, according to chromatin immunoprecipitation and biochemical fractionation. Using a yeast strain with reduced numbers of all actively transcribed rDNA repeats, we show that rDNA exists in a dynamic chromatin structure of unphased nucleosomes. Furthermore, it is associated with chromatin-remodeling enzymes Chd1p, Isw1p and Isw2p, whose inactivation causes defects in transcription termination. We suggest that Pol I transcription, like that of Pol II, may be modulated by specific chromatin structures.
Collapse
Affiliation(s)
- Hannah S Jones
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | | | | | | | |
Collapse
|
38
|
Sertil O, Vemula A, Salmon SL, Morse RH, Lowry CV. Direct role for the Rpd3 complex in transcriptional induction of the anaerobic DAN/TIR genes in yeast. Mol Cell Biol 2007; 27:2037-47. [PMID: 17210643 PMCID: PMC1820486 DOI: 10.1128/mcb.02297-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae adapts to hypoxia by expressing a large group of "anaerobic" genes. Among these, the eight DAN/TIR genes are regulated by the repressors Rox1 and Mot3 and the activator Upc2/Mox4. In attempting to identify factors recruited by the DNA binding repressor Mot3 to enhance repression of the DAN/TIR genes, we found that the histone deacetylase and global repressor complex, Rpd3-Sin3-Sap30, was not required for repression. Strikingly, the complex was instead required for activation. In addition, the histone H3 and H4 amino termini, which are targets of Rpd3, were also required for DAN1 expression. Epistasis tests demonstrated that the Rpd3 complex is not required in the absence of the repressor Mot3. Furthermore, the Rpd3 complex was required for normal function and stable binding of the activator Upc2 at the DAN1 promoter. Moreover, the Swi/Snf chromatin remodeling complex was strongly required for activation of DAN1, and chromatin immunoprecipitation analysis showed an Rpd3-dependent reduction in DAN1 promoter-associated nucleosomes upon induction. Taken together, these data provide evidence that during anaerobiosis, the Rpd3 complex acts at the DAN1 promoter to antagonize the chromatin-mediated repression caused by Mot3 and Rox1 and that chromatin remodeling by Swi/Snf is necessary for normal expression.
Collapse
Affiliation(s)
- Odeniel Sertil
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA.
| | | | | | | | | |
Collapse
|
39
|
Erkina TY, Erkine AM. Displacement of histones at promoters of Saccharomyces cerevisiae heat shock genes is differentially associated with histone H3 acetylation. Mol Cell Biol 2006; 26:7587-600. [PMID: 17015479 PMCID: PMC1636863 DOI: 10.1128/mcb.00666-06] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromatin remodeling at promoters of activated genes spans from mild histone modifications to outright displacement of nucleosomes in trans. Factors affecting these events are not always clear. Our results indicate that histone H3 acetylation associated with histone displacement differs drastically even between promoters of such closely related heat shock genes as HSP12, SSA4, and HSP82. The HSP12 promoter, with the highest level of histone displacement, showed the highest level of H3 acetylation, while the SSA4 promoter, with a lower histone displacement, showed only modest H3 acetylation. Moreover, for the HSP12 promoter, the level of acetylated H3 is temporarily increased prior to nucleosome departure. Individual promoters in strains expressing truncated versions of heat shock factor (HSF) showed that deletion of either one of two activating regions in HSF led to the diminished histone displacement and correspondingly lower H3 acetylation. The deletion of both regions simultaneously severely decreased histone displacement for all promoters tested, showing the dependence of these processes on HSF. The level of histone H3 acetylation at individual promoters in strains expressing truncated HSF also correlated with the extent of histone displacement. The beginning of chromatin remodeling coincides with the polymerase II loading on heat shock gene promoters and is regulated either by HSF binding or activation of preloaded HSF.
Collapse
Affiliation(s)
- T Y Erkina
- Division of Basic Biomedical Sciences, University of South Dakota, Sanford School of Medicine, 414 E. Clark St., Vermillion, SD 57069, USA
| | | |
Collapse
|
40
|
Oakes ML, Siddiqi I, French SL, Vu L, Sato M, Aris JP, Beyer AL, Nomura M. Role of histone deacetylase Rpd3 in regulating rRNA gene transcription and nucleolar structure in yeast. Mol Cell Biol 2006; 26:3889-901. [PMID: 16648483 PMCID: PMC1489006 DOI: 10.1128/mcb.26.10.3889-3901.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 10/31/2005] [Accepted: 03/06/2006] [Indexed: 02/06/2023] Open
Abstract
The 35S rRNA genes at the RDN1 locus in Saccharomyces cerevisiae can be transcribed by RNA polymerase (Pol) II in addition to Pol I, but Pol II transcription is usually silenced. The deletion of RRN9 encoding an essential subunit of the Pol I transcription factor, upstream activation factor, is known to abolish Pol I transcription and derepress Pol II transcription of rRNA genes, giving rise to polymerase switched (PSW) variants. We found that deletion of histone deacetylase gene RPD3 inhibits the appearance of PSW variants in rrn9 deletion mutants. This inhibition can be explained by the observed specific inhibition of Pol II transcription of rRNA genes by the rpd3Delta mutation. We propose that Rpd3 plays a role in the maintenance of an rRNA gene chromatin structure(s) that allows Pol II transcription of rRNA genes, which may explain the apparently paradoxical previous observation that rpd3 mutations increase, rather than decrease, silencing of reporter Pol II genes inserted in rRNA genes. We have additionally demonstrated that Rpd3 is not required for inhibition of Pol I transcription by rapamycin, supporting the model that Tor-dependent repression of the active form of rRNA genes during entry into stationary phase is Rpd3 independent.
Collapse
Affiliation(s)
- Melanie L Oakes
- Department of Biological Chemistry, University of California--Irvine, 240D Medical Sciences I, Irvine, California 92697-1700, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Kim H, Livingston DM. A high mobility group protein binds to long CAG repeat tracts and establishes their chromatin organization in Saccharomyces cerevisiae. J Biol Chem 2006; 281:15735-40. [PMID: 16603770 DOI: 10.1074/jbc.m512816200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Long CAG repeat tracts cause human hereditary neurodegenerative diseases and have a propensity to expand during parental passage. Unusual physical properties of CAG repeat tracts are thought to contribute to their instability. We investigated whether their unusual properties alter the organization of CAG repeat tract chromatin. We report that CAG repeat tracts, embedded in yeast chromosomes, have a noncanonical chromatin organization. Digestion of chromatin with the restriction enzyme Fnu4HI reveals hypersensitive sites occurring approximately 125 bp apart in the repeat tract. To determine whether a non-histone protein establishes this pattern, we performed a yeast one-hybrid screen using CAG repeat tracts embedded in front of two reporter genes. The screen identified the high mobility group box protein Hmo1. Chromatin immunoprecipitation of epitope-tagged Hmo1 selectively precipitates CAG repeat tracts DNAs that range from 26 to 126 repeat units. Moreover, deletion of HMO1 drastically alters the Fnu4HI digestion pattern of CAG repeat chromatin. These results show that Hmo1 binds to CAG repeat tracts in vivo and establish the basis of their novel chromatin organization.
Collapse
Affiliation(s)
- Haeyoung Kim
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
42
|
Zhao J, Herrera-Diaz J, Gross DS. Domain-wide displacement of histones by activated heat shock factor occurs independently of Swi/Snf and is not correlated with RNA polymerase II density. Mol Cell Biol 2005; 25:8985-99. [PMID: 16199876 PMCID: PMC1265789 DOI: 10.1128/mcb.25.20.8985-8999.2005] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We show that histone-DNA interactions are disrupted across entire yeast heat shock genes upon their transcriptional activation. At HSP82, nucleosomal disassembly spans a domain of approximately 3 kb, beginning upstream of the promoter and extending through the transcribed region. A kinetic analysis reveals that histone H4 loses contact with DNA within 45 s of thermal upshift. Nucleosomal reassembly, prompted by temperature downshift, is also rapid, detectable within 60 s. Prior to their eviction, promoter-associated histones are transiently hyperacetylated, while those in the coding region are not. An upstream activation sequence mutation that weakens the binding of heat shock factor obviates domain-wide remodeling, while deletion of the TATA box that nearly abolishes transcription is permissive to 5'-end remodeling. The Swi/Snf complex is rapidly recruited to HSP82 upon heat shock. Nonetheless, domain-wide remodeling occurs efficiently in Swi/Snf mutants despite a sixfold reduction in transcription; it is also seen in gcn5Delta, set1Delta, and paf1Delta mutants. Contrary to current models, we demonstrate that a high density of RNA polymerase (Pol) is insufficient to elicit histone displacement. This finding suggests that histone eviction is modulated by factors that are not linked to elongating Pol II. It further suggests that histone depletion plays a causal role in mediating vigorous transcription in vivo and is not merely a consequence of it.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, 71130-3932, USA
| | | | | |
Collapse
|
43
|
Abstract
Chromatin can be differentiated by the deposition of variant histones at centromeres, active genes, and silent loci. Variant histones are assembled into nucleosomes in a replication-independent manner, in contrast to assembly of bulk chromatin that is coupled to replication. Recent in vitro studies have provided the first glimpses of protein machines dedicated to building and replacing alternative nucleosomes. They deposit variant H2A and H3 histones and are targeted to particular functional sites in the genome. Differences between variant and canonical histones can have profound consequences, either for delivery of the histones to sites of assembly or for their function after incorporation into chromatin. Recent studies have also revealed connections between assembly of variant nucleosomes, chromatin remodeling, and histone post-translational modification. Taken together, these findings indicate that chromosome architecture can be highly dynamic at the most fundamental level, with epigenetic consequences.
Collapse
Affiliation(s)
- Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.
| | | |
Collapse
|
44
|
Tongaonkar P, French SL, Oakes ML, Vu L, Schneider DA, Beyer AL, Nomura M. Histones are required for transcription of yeast rRNA genes by RNA polymerase I. Proc Natl Acad Sci U S A 2005; 102:10129-34. [PMID: 16002464 PMCID: PMC1177414 DOI: 10.1073/pnas.0504563102] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nucleosomes and their histone components have generally been recognized to act negatively on transcription. However, purified upstream activating factor (UAF), a transcription initiation factor required for RNA polymerase (Pol) I transcription in Saccharomyces cerevisiae, contains histones H3 and H4 and four nonhistone protein subunits. Other studies have shown that histones H3 and H4 are associated with actively transcribed rRNA genes. To examine their functional role in Pol I transcription, we constructed yeast strains in which synthesis of H3 is achieved from the glucose-repressible GAL10 promoter. We found that partial depletion of H3 (approximately 50% depletion) resulted in a strong inhibition (>80%) of Pol I transcription. A combination of biochemical analysis and electron microscopic (EM) analysis of Miller chromatin spreads indicated that initiation and elongation steps and rRNA processing were compromised upon histone depletion. A clear decrease in relative amounts of UAF, presumably caused by reduced stability, was also observed under the conditions of H3 depletion. Therefore, the observed inhibition of initiation can be explained, in part, by the decrease in UAF concentration. In addition, the EM results suggested that the defects in rRNA transcript elongation and processing may be a result of loss of histones from rRNA genes rather than (or in addition to) an indirect consequence of effects of histone depletion on expression of other genes. Thus, these results show functional importance of histones associated with actively transcribed rRNA genes.
Collapse
Affiliation(s)
- Prasad Tongaonkar
- Department of Biological Chemistry, University of California, Irvine, CA 92697-1700, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Sekinger EA, Moqtaderi Z, Struhl K. Intrinsic Histone-DNA Interactions and Low Nucleosome Density Are Important for Preferential Accessibility of Promoter Regions in Yeast. Mol Cell 2005; 18:735-48. [PMID: 15949447 DOI: 10.1016/j.molcel.2005.05.003] [Citation(s) in RCA: 267] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 04/27/2005] [Accepted: 05/05/2005] [Indexed: 01/16/2023]
Abstract
In yeast cells, preferential accessibility of the HIS3-PET56 promoter region is determined by a general property of the DNA sequence, not by defined sequence elements. In vivo, this region is largely devoid of nucleosomes, and accessibility is directly related to reduced histone density. The HIS3-PET56 and DED1 promoter regions associate poorly with histones in vitro, indicating that intrinsic nucleosome stability is a major determinant of preferential accessibility. Specific and genome-wide analyses indicate that low nucleosome density is a very common feature of yeast promoter regions that correlates poorly with transcriptional activation. Thus, the yeast genome is organized into structurally distinct promoter and nonpromoter regions whose DNA sequences inherently differ with respect to nucleosome formation. This organization ensures that transcription factors bind preferentially to appropriate sites in promoters, rather than to the excess of irrelevant sites in nonpromoter regions.
Collapse
Affiliation(s)
- Edward A Sekinger
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
46
|
Meier A, Thoma F. RNA polymerase I transcription factors in active yeast rRNA gene promoters enhance UV damage formation and inhibit repair. Mol Cell Biol 2005; 25:1586-95. [PMID: 15713619 PMCID: PMC549387 DOI: 10.1128/mcb.25.5.1586-1595.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UV photofootprinting and repair of pyrimidine dimers by photolyase was used to investigate chromatin structure, protein-DNA interactions, and DNA repair in the spacer and promoter of Saccharomyces cerevisiae rRNA genes. Saccharomyces cerevisiae contains about 150 copies of rRNA genes separated by nontranscribed spacers. Under exponential growth conditions about half of the genes are transcribed by RNA polymerase I (RNAP-I). Initiation of transcription requires the assembly of the upstream activating factor (UAF), the core factor (CF), TATA binding protein, and RNAP-I with Rrn3p on the upstream element and core promoter. We show that UV irradiation of wild-type cells and transcription factor mutants generates photofootprints in the promoter elements. The core footprint depends on UAF, while the UAF footprint was also detected in absence of the CFs. Fractionation of active and inactive promoters showed the core footprint mainly in the active fraction and similar UAF footprints in both fractions. DNA repair by photolyase was strongly inhibited in active promoters but efficient in inactive promoters. The data suggest that UAF is present in vivo in active and inactive promoters and that recruitment of CF and RNAP-I to active promoters generates a stable complex which inhibits repair.
Collapse
Affiliation(s)
- Andreas Meier
- Institut für Zellbiologie, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | | |
Collapse
|
47
|
Schneider DA, Nomura M. RNA polymerase I remains intact without subunit exchange through multiple rounds of transcription in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2004; 101:15112-7. [PMID: 15477604 PMCID: PMC524078 DOI: 10.1073/pnas.0406746101] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous experiments using mammalian cells suggested that after each round of transcription, RNA polymerase I (Pol I) dissociates into subunits that leave and reenter the nucleolus as individual subunits, before formation of a new initiation complex. In this study, we show that the size and subunit composition of Pol I did not change significantly when Pol I was not engaged in rRNA transcription, brought about by either the absence of Pol I-specific rDNA template or specific inhibition of the transcription initiation step that requires Rrn3p. In fact, Pol I purified from cells completely lacking rDNA repeats was more active than when purified from wild-type cells in an in vitro transcription system designed to assay active Pol I-Rrn3p complexes. Furthermore, measurements of the exchange of A135 and A190 subunits between preexistent Pol I and newly synthesized Pol I showed that these two largest subunits of Pol I do not disassociate through many rounds of transcription in vivo. Thus, Pol I is not a dynamic protein complex but rather a stable enzyme.
Collapse
Affiliation(s)
- David A Schneider
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
48
|
Gao C, Wang L, Milgrom E, Shen WCW. On the mechanism of constitutive Pdr1 activator-mediated PDR5 transcription in Saccharomyces cerevisiae: evidence for enhanced recruitment of coactivators and altered nucleosome structures. J Biol Chem 2004; 279:42677-86. [PMID: 15294907 DOI: 10.1074/jbc.m406363200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Drug resistance as a result of overexpression of drug transporter genes presents a major obstacle in the treatment of cancers and infections. The molecular mechanisms underlying transcriptional up-regulation of drug transporter genes remains elusive. Employing Saccharomyces cerevisiae as a model, we analyzed here transcriptional regulation of the drug transporter gene PDR5 in a drug-resistant pdr1-3 strain. This mutant bears a gain-of-function mutation in PDR1, which encodes a transcriptional activator for PDR5. Similar to the well studied model gene GAL1, we provide evidence showing that PDR5 belongs to a group of genes whose transcription requires the Spt-Ada-Gcn5 acetyltransferase (SAGA) complex. We also show that the drugindependent PDR5 transcription is associated with enhanced promoter occupancy of coactivator complexes, including SAGA, Mediator, chromatin remodeling SWI/SNF complex, and TATA-binding protein. Analyzed by chromatin immunoprecipitations, loss of contacts between histones and DNA occurs at both promoter and coding sequences of PDR5. Consistently, micrococcal nuclease susceptibility analysis revealed altered chromatin structure at the promoter and coding sequences of PDR5. Our data provide molecular description of the changes associated with constitutive PDR5 transcription, and reveal the molecular mechanism underlying drug-independent transcriptional up-regulation of PDR5.
Collapse
Affiliation(s)
- Chen Gao
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|
49
|
Fath S, Kobor MS, Philippi A, Greenblatt J, Tschochner H. Dephosphorylation of RNA polymerase I by Fcp1p is required for efficient rRNA synthesis. J Biol Chem 2004; 279:25251-9. [PMID: 15073185 DOI: 10.1074/jbc.m401867200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Differently phosphorylated forms of RNA polymerase (Pol) II are required to guide the enzyme through the transcription cycle. Here, we show that a phosphorylation/dephosphorylation cycle is also important for RNA polymerase I-dependent synthesis of rRNA precursors. A key component of the Pol II transcription system is Fcp1p, a phosphatase that dephosphorylates the C-terminal domain of the largest Pol II subunit. Fcp1p stimulates transcription elongation and is required for Pol II recycling after transcription termination. We found that Fcp1p is also part of the RNA Pol I transcription apparatus. Fcp1p is required for efficient rDNA transcription in vivo, and also, recombinant Fcp1p stimulates rRNA synthesis both in promoter-dependent and in nonspecific transcription assays in vitro. We demonstrate that Fcp1 activity is not involved in the formation of the initiation-active form of Pol I (the Pol I-Rrn3p complex) and propose that dephosphorylation of Pol I by Fcp1p facilitates chain elongation during rRNA synthesis.
Collapse
Affiliation(s)
- Stephan Fath
- Biochemie-Zentrum Heidelberg, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
50
|
Tongaonkar P, Dodd JA, Nomura M. Purification and assay of upstream activation factor, core factor, Rrn3p, and yeast RNA polymerase I. Methods Enzymol 2004; 370:109-20. [PMID: 14712638 DOI: 10.1016/s0076-6879(03)70010-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Prasad Tongaonkar
- Department of Biological Chemistry, University of California-Irvine, 240 D Medical Sciences I, Irvine, California 92697-1700, USA
| | | | | |
Collapse
|