1
|
Clark-Hachtel CM, Hibshman JD, De Buysscher T, Stair ER, Hicks LM, Goldstein B. The tardigrade Hypsibius exemplaris dramatically upregulates DNA repair pathway genes in response to ionizing radiation. Curr Biol 2024; 34:1819-1830.e6. [PMID: 38614079 PMCID: PMC11078613 DOI: 10.1016/j.cub.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/19/2024] [Accepted: 03/13/2024] [Indexed: 04/15/2024]
Abstract
Tardigrades can survive remarkable doses of ionizing radiation, up to about 1,000 times the lethal dose for humans. How they do so is incompletely understood. We found that the tardigrade Hypsibius exemplaris suffers DNA damage upon gamma irradiation, but the damage is repaired. We show that this species has a specific and robust response to ionizing radiation: irradiation induces a rapid upregulation of many DNA repair genes. This upregulation is unexpectedly extreme-making some DNA repair transcripts among the most abundant transcripts in the animal. By expressing tardigrade genes in bacteria, we validate that increased expression of some repair genes can suffice to increase radiation tolerance. We show that at least one such gene is important in vivo for tardigrade radiation tolerance. We hypothesize that the tardigrades' ability to sense ionizing radiation and massively upregulate specific DNA repair pathway genes may represent an evolved solution for maintaining DNA integrity.
Collapse
Affiliation(s)
- Courtney M Clark-Hachtel
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Biology Department, The University of North Carolina at Asheville, Asheville, NC 28804, USA.
| | - Jonathan D Hibshman
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tristan De Buysscher
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Bioinformatics & Analytics Research Collaborative, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Evan R Stair
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leslie M Hicks
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bob Goldstein
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Al-Jarf R, Karmakar M, Myung Y, Ascher DB. Uncovering the Molecular Drivers of NHEJ DNA Repair-Implicated Missense Variants and Their Functional Consequences. Genes (Basel) 2023; 14:1890. [PMID: 37895239 PMCID: PMC10606680 DOI: 10.3390/genes14101890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Variants in non-homologous end joining (NHEJ) DNA repair genes are associated with various human syndromes, including microcephaly, growth delay, Fanconi anemia, and different hereditary cancers. However, very little has been done previously to systematically record the underlying molecular consequences of NHEJ variants and their link to phenotypic outcomes. In this study, a list of over 2983 missense variants of the principal components of the NHEJ system, including DNA Ligase IV, DNA-PKcs, Ku70/80 and XRCC4, reported in the clinical literature, was initially collected. The molecular consequences of variants were evaluated using in silico biophysical tools to quantitatively assess their impact on protein folding, dynamics, stability, and interactions. Cancer-causing and population variants within these NHEJ factors were statistically analyzed to identify molecular drivers. A comprehensive catalog of NHEJ variants from genes known to be mutated in cancer was curated, providing a resource for better understanding their role and molecular mechanisms in diseases. The variant analysis highlighted different molecular drivers among the distinct proteins, where cancer-driving variants in anchor proteins, such as Ku70/80, were more likely to affect key protein-protein interactions, whilst those in the enzymatic components, such as DNA-PKcs, were likely to be found in intolerant regions undergoing purifying selection. We believe that the information acquired in our database will be a powerful resource to better understand the role of non-homologous end-joining DNA repair in genetic disorders, and will serve as a source to inspire other investigations to understand the disease further, vital for the development of improved therapeutic strategies.
Collapse
Affiliation(s)
- Raghad Al-Jarf
- Structural Biology and Bioinformatics, Department of Biochemistry, University of Melbourne, Parkville, VIC 3052, Australia (M.K.)
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Parkville, VIC 3052, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Malancha Karmakar
- Structural Biology and Bioinformatics, Department of Biochemistry, University of Melbourne, Parkville, VIC 3052, Australia (M.K.)
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Parkville, VIC 3052, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Yoochan Myung
- Structural Biology and Bioinformatics, Department of Biochemistry, University of Melbourne, Parkville, VIC 3052, Australia (M.K.)
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Parkville, VIC 3052, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - David B. Ascher
- Structural Biology and Bioinformatics, Department of Biochemistry, University of Melbourne, Parkville, VIC 3052, Australia (M.K.)
- Systems and Computational Biology, Bio21 Institute, University of Melbourne, Parkville, VIC 3052, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
3
|
Hänggeli KPA, Hemphill A, Müller N, Schimanski B, Olias P, Müller J, Boubaker G. Single- and duplex TaqMan-quantitative PCR for determining the copy numbers of integrated selection markers during site-specific mutagenesis in Toxoplasma gondii by CRISPR-Cas9. PLoS One 2022; 17:e0271011. [PMID: 36112587 PMCID: PMC9481009 DOI: 10.1371/journal.pone.0271011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/04/2022] [Indexed: 11/30/2022] Open
Abstract
Herein, we developed a single and a duplex TaqMan quantitative PCR (qPCR) for absolute quantification of copy numbers of integrated dihydrofolate reductase-thymidylate synthase (mdhfr-ts) drug selectable marker for pyrimethamine resistance in Toxoplasma gondii knockouts (KOs). The single TaqMan qPCR amplifies a 174 bp DNA fragment of the inserted mdhfr-ts and of the wild-type (WT) dhfr-ts (wtdhfr-ts) which is present as single copy gene in Toxoplasma and encodes a sensitive enzyme to pyrimethamine. Thus, the copy number of the dhfr-ts fragment in a given DNA quantity from KO parasites with a single site-specific integration should be twice the number of dhfr-ts copies recorded in the same DNA quantity from WT parasites. The duplex TaqMan qPCR allows simultaneous amplification of the 174 bp dhfr-ts fragment and the T. gondii 529-bp repeat element. Accordingly, for a WT DNA sample, the determined number of tachyzoites given by dhfr-ts amplification is equal to the number of tachyzoites determined by amplification of the Toxoplasma 529-bp, resulting thus in a ratio of 1. However, for a KO clone having a single site-specific integration of mdhfr-ts, the calculated ratio is 2. We then applied both approaches to test T. gondii RH mutants in which the major surface antigen (SAG1) was disrupted through insertion of mdhfr-ts using CRISPR-Cas9. Results from both assays were in correlation showing a high accuracy in detecting KOs with multiple integrated mdhfr-ts. Southern blot analyses using BsaBI and DraIII confirmed qPCRs results. Both TaqMan qPCRs are needed for reliable diagnostic of T. gondii KOs following CRISPR-Cas9-mediated mutagenesis, particularly with respect to off-target effects resulting from multiple insertions of mdhfr-ts. The principle of the duplex TaqMan qPCR is applicable for other selectable markers in Toxoplasma. TaqMan qPCR tools may contribute to more frequent use of WT Toxoplasma strains during functional genomics.
Collapse
Affiliation(s)
- Kai Pascal Alexander Hänggeli
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Andrew Hemphill
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, University of Bern, Bern, Switzerland
- * E-mail: (GB); (AH)
| | - Norbert Müller
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, University of Bern, Bern, Switzerland
| | - Bernd Schimanski
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Philipp Olias
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Joachim Müller
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, University of Bern, Bern, Switzerland
| | - Ghalia Boubaker
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, University of Bern, Bern, Switzerland
- * E-mail: (GB); (AH)
| |
Collapse
|
4
|
Abbasi S, Parmar G, Kelly RD, Balasuriya N, Schild-Poulter C. The Ku complex: recent advances and emerging roles outside of non-homologous end-joining. Cell Mol Life Sci 2021; 78:4589-4613. [PMID: 33855626 PMCID: PMC11071882 DOI: 10.1007/s00018-021-03801-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/29/2021] [Accepted: 02/24/2021] [Indexed: 12/15/2022]
Abstract
Since its discovery in 1981, the Ku complex has been extensively studied under multiple cellular contexts, with most work focusing on Ku in terms of its essential role in non-homologous end-joining (NHEJ). In this process, Ku is well-known as the DNA-binding subunit for DNA-PK, which is central to the NHEJ repair process. However, in addition to the extensive study of Ku's role in DNA repair, Ku has also been implicated in various other cellular processes including transcription, the DNA damage response, DNA replication, telomere maintenance, and has since been studied in multiple contexts, growing into a multidisciplinary point of research across various fields. Some advances have been driven by clarification of Ku's structure, including the original Ku crystal structure and the more recent Ku-DNA-PKcs crystallography, cryogenic electron microscopy (cryoEM) studies, and the identification of various post-translational modifications. Here, we focus on the advances made in understanding the Ku heterodimer outside of non-homologous end-joining, and across a variety of model organisms. We explore unique structural and functional aspects, detail Ku expression, conservation, and essentiality in different species, discuss the evidence for its involvement in a diverse range of cellular functions, highlight Ku protein interactions and recent work concerning Ku-binding motifs, and finally, we summarize the clinical Ku-related research to date.
Collapse
Affiliation(s)
- Sanna Abbasi
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Gursimran Parmar
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Rachel D Kelly
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Nileeka Balasuriya
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Caroline Schild-Poulter
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada.
| |
Collapse
|
5
|
Saydam O, Saydam N. Deficiency of Ku Induces Host Cell Exploitation in Human Cancer Cells. Front Cell Dev Biol 2021; 9:651818. [PMID: 33855027 PMCID: PMC8040742 DOI: 10.3389/fcell.2021.651818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/25/2021] [Indexed: 12/02/2022] Open
Abstract
Cancer metastasis is the major cause of death from cancer (Massague and Obenauf, 2016; Steeg, 2016). The extensive genetic heterogeneity and cellular plasticity of metastatic tumors set a prime barrier for the current cancer treatment protocols (Boumahdi and de Sauvage, 2020). In addition, acquired therapy resistance has become an insurmountable obstacle that abolishes the beneficial effects of numerous anti-cancer regimens (De Angelis et al., 2019; Boumahdi and de Sauvage, 2020). Here we report that deficiency of Ku leads to the exploitation of host cells in human cancer cell line models. We found that, upon conditional deletion of XRCC6 that codes for Ku70, HCT116 human colorectal cancer cells gain a parasitic lifestyle that is characterized by the continuous cycle of host cell exploitation. We also found that DAOY cells, a human medulloblastoma cell line, innately lack nuclear Ku70/Ku86 proteins and utilize the host-cell invasion/exit mechanism for maintenance of their survival, similarly to the Ku70 conditionally-null HCT116 cells. Our study demonstrates that a functional loss of Ku protein promotes an adaptive, opportunistic switch to a parasitic lifestyle in human cancer cells, providing evidence for a previously unknown mechanism of cell survival in response to severe genomic stress. We anticipate that our study will bring a new perspective for understanding the mechanisms of cancer cell evolution, leading to a shift in the current concepts of cancer therapy protocols directed to the prevention of cancer metastasis and therapy resistance.
Collapse
Affiliation(s)
- Okay Saydam
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Nurten Saydam
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
6
|
Targeting the Hypoxic and Acidic Tumor Microenvironment with pH-Sensitive Peptides. Cells 2021; 10:cells10030541. [PMID: 33806273 PMCID: PMC8000199 DOI: 10.3390/cells10030541] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/27/2022] Open
Abstract
The delivery of cancer therapeutics can be limited by pharmacological issues such as poor bioavailability and high toxicity to healthy tissue. pH-low insertion peptides (pHLIPs) represent a promising tool to overcome these limitations. pHLIPs allow for the selective delivery of agents to tumors on the basis of pH, taking advantage of the acidity of the hypoxic tumor microenvironment. This review article highlights the various applications in which pHLIPs have been utilized for targeting and treating diseases in hypoxic environments, including delivery of small molecule inhibitors, toxins, nucleic acid analogs, fluorescent dyes, and nanoparticles.
Collapse
|
7
|
Gavande NS, VanderVere-Carozza PS, Pawelczak KS, Mendoza-Munoz P, Vernon TL, Hanakahi LA, Summerlin M, Dynlacht JR, Farmer AH, Sears CR, Nasrallah NA, Garrett J, Turchi JJ. Discovery and development of novel DNA-PK inhibitors by targeting the unique Ku-DNA interaction. Nucleic Acids Res 2020; 48:11536-11550. [PMID: 33119767 PMCID: PMC7672428 DOI: 10.1093/nar/gkaa934] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 01/05/2023] Open
Abstract
DNA-dependent protein kinase (DNA-PK) plays a critical role in the non-homologous end joining (NHEJ) repair pathway and the DNA damage response (DDR). DNA-PK has therefore been pursued for the development of anti-cancer therapeutics in combination with ionizing radiation (IR). We report the discovery of a new class of DNA-PK inhibitors that act via a novel mechanism of action, inhibition of the Ku-DNA interaction. We have developed a series of highly potent and specific Ku-DNA binding inhibitors (Ku-DBi's) that block the Ku-DNA interaction and inhibit DNA-PK kinase activity. Ku-DBi's directly interact with the Ku and inhibit in vitro NHEJ, cellular NHEJ, and potentiate the cellular activity of radiomimetic agents and IR. Analysis of Ku-null cells demonstrates that Ku-DBi's cellular activity is a direct result of Ku inhibition, as Ku-null cells are insensitive to Ku-DBi's. The utility of Ku-DBi's was also revealed in a CRISPR gene-editing model where we demonstrate that the efficiency of gene insertion events was increased in cells pre-treated with Ku-DBi's, consistent with inhibition of NHEJ and activation of homologous recombination to facilitate gene insertion. These data demonstrate the discovery and application of new series of compounds that modulate DNA repair pathways via a unique mechanism of action.
Collapse
Affiliation(s)
- Navnath S Gavande
- Department of Medicine, Indiana University School of Medicine, Indianapolis IN 46202, USA
- Department of Pharmaceutical Sciences, Wayne State University College of Pharmacy and Health Sciences, Detroit, MI 48201, USA
| | | | | | - Pamela Mendoza-Munoz
- Department of Medicine, Indiana University School of Medicine, Indianapolis IN 46202, USA
| | - Tyler L Vernon
- Department of Medicine, Indiana University School of Medicine, Indianapolis IN 46202, USA
| | - Leslyn A Hanakahi
- Department of Biopharmaceutical Sciences, University of Illinois College of Pharmacy, Rockford, IL 61107, USA
| | - Matthew Summerlin
- Department of Biopharmaceutical Sciences, University of Illinois College of Pharmacy, Rockford, IL 61107, USA
| | - Joseph R Dynlacht
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Annabelle H Farmer
- Department of Medicine, Indiana University School of Medicine, Indianapolis IN 46202, USA
| | - Catherine R Sears
- Department of Medicine, Indiana University School of Medicine, Indianapolis IN 46202, USA
| | - Nawar Al Nasrallah
- Department of Medicine, Indiana University School of Medicine, Indianapolis IN 46202, USA
| | - Joy Garrett
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - John J Turchi
- Department of Medicine, Indiana University School of Medicine, Indianapolis IN 46202, USA
- NERx Biosciences, 212 W 10th St. Suite A480, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
8
|
Shao Z, Lee BJ, Rouleau-Turcotte É, Langelier MF, Lin X, Estes VM, Pascal JM, Zha S. Clinical PARP inhibitors do not abrogate PARP1 exchange at DNA damage sites in vivo. Nucleic Acids Res 2020; 48:9694-9709. [PMID: 32890402 PMCID: PMC7515702 DOI: 10.1093/nar/gkaa718] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/13/2020] [Accepted: 08/31/2020] [Indexed: 12/26/2022] Open
Abstract
DNA breaks recruit and activate PARP1/2, which deposit poly-ADP-ribose (PAR) to recruit XRCC1-Ligase3 and other repair factors to promote DNA repair. Clinical PARP inhibitors (PARPi) extend the lifetime of damage-induced PARP1/2 foci, referred to as ‘trapping’. To understand the molecular nature of ‘trapping’ in cells, we employed quantitative live-cell imaging and fluorescence recovery after photo-bleaching. Unexpectedly, we found that PARP1 exchanges rapidly at DNA damage sites even in the presence of clinical PARPi, suggesting the persistent foci are not caused by physical stalling. Loss of Xrcc1, a major downstream effector of PAR, also caused persistent PARP1 foci without affecting PARP1 exchange. Thus, we propose that the persistent PARP1 foci are formed by different PARP1 molecules that are continuously recruited to and exchanging at DNA lesions due to attenuated XRCC1-LIG3 recruitment and delayed DNA repair. Moreover, mutation analyses of the NAD+ interacting residues of PARP1 showed that PARP1 can be physically trapped at DNA damage sites, and identified H862 as a potential regulator for PARP1 exchange. PARP1-H862D, but not PARylation-deficient PARP1-E988K, formed stable PARP1 foci upon activation. Together, these findings uncovered the nature of persistent PARP1 foci and identified NAD+ interacting residues involved in the PARP1 exchange.
Collapse
Affiliation(s)
- Zhengping Shao
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| | - Brian J Lee
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| | - Élise Rouleau-Turcotte
- Université de Montréal, Biochemistry and Molecular Medicine, Montréal, Québec H3T 1J4, Canada
| | - Marie-France Langelier
- Université de Montréal, Biochemistry and Molecular Medicine, Montréal, Québec H3T 1J4, Canada
| | - Xiaohui Lin
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| | - Verna M Estes
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| | - John M Pascal
- Université de Montréal, Biochemistry and Molecular Medicine, Montréal, Québec H3T 1J4, Canada
| | - Shan Zha
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA.,Division of Pediatric Oncology, Hematology and Stem Cell Transplantation, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, New York City, NY 10032, USA
| |
Collapse
|
9
|
Inagawa T, Wennink T, Lebbink JHG, Keijzers G, Florea BI, Verkaik NS, van Gent DC. C-Terminal Extensions of Ku70 and Ku80 Differentially Influence DNA End Binding Properties. Int J Mol Sci 2020; 21:ijms21186725. [PMID: 32937838 PMCID: PMC7555691 DOI: 10.3390/ijms21186725] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/04/2020] [Accepted: 09/11/2020] [Indexed: 11/16/2022] Open
Abstract
The Ku70/80 heterodimer binds to DNA ends and attracts other proteins involved in the non-homologous end-joining (NHEJ) pathway of DNA double-strand break repair. We developed a novel assay to measure DNA binding and release kinetics using differences in Förster resonance energy transfer (FRET) of the ECFP-Ku70/EYFP-Ku80 heterodimer in soluble and DNA end bound states. We confirmed that the relative binding efficiencies of various DNA substrates (blunt, 3 nucleotide 5′ extension, and DNA hairpin) measured in the FRET assay reflected affinities obtained from direct measurements using surface plasmon resonance. The FRET assay was subsequently used to investigate Ku70/80 behavior in the context of a DNA-dependent kinase (DNA-PK) holocomplex. As expected, this complex was much more stable than Ku70/80 alone, and its stability was influenced by DNA-PK phosphorylation status. Interestingly, the Ku80 C-terminal extension contributed to DNA-PK complex stability but was not absolutely required for its formation. The Ku70 C-terminal SAP domain, on the other hand, was required for the stable association of Ku70/80 to DNA ends, but this effect was abrogated in DNA-PK holocomplexes. We conclude that FRET measurements can be used to determine Ku70/80 binding kinetics. The ability to do this in complex mixtures makes this assay particularly useful to study larger NHEJ protein complexes on DNA ends.
Collapse
Affiliation(s)
- Takabumi Inagawa
- Department of Molecular Genetics, Erasmus MC, University Medical Centre, 3015 GD Rotterdam, The Netherlands; (T.I.); (T.W.); (J.H.G.L.); (G.K.); (B.I.F.); (N.S.V.)
| | - Thomas Wennink
- Department of Molecular Genetics, Erasmus MC, University Medical Centre, 3015 GD Rotterdam, The Netherlands; (T.I.); (T.W.); (J.H.G.L.); (G.K.); (B.I.F.); (N.S.V.)
| | - Joyce H. G. Lebbink
- Department of Molecular Genetics, Erasmus MC, University Medical Centre, 3015 GD Rotterdam, The Netherlands; (T.I.); (T.W.); (J.H.G.L.); (G.K.); (B.I.F.); (N.S.V.)
- Department of Radiation Oncology, Erasmus MC, University Medical Centre, 3015 GD Rotterdam, The Netherlands
| | - Guido Keijzers
- Department of Molecular Genetics, Erasmus MC, University Medical Centre, 3015 GD Rotterdam, The Netherlands; (T.I.); (T.W.); (J.H.G.L.); (G.K.); (B.I.F.); (N.S.V.)
| | - Bogdan I. Florea
- Department of Molecular Genetics, Erasmus MC, University Medical Centre, 3015 GD Rotterdam, The Netherlands; (T.I.); (T.W.); (J.H.G.L.); (G.K.); (B.I.F.); (N.S.V.)
| | - Nicole S. Verkaik
- Department of Molecular Genetics, Erasmus MC, University Medical Centre, 3015 GD Rotterdam, The Netherlands; (T.I.); (T.W.); (J.H.G.L.); (G.K.); (B.I.F.); (N.S.V.)
| | - Dik C. van Gent
- Department of Molecular Genetics, Erasmus MC, University Medical Centre, 3015 GD Rotterdam, The Netherlands; (T.I.); (T.W.); (J.H.G.L.); (G.K.); (B.I.F.); (N.S.V.)
- Correspondence: ; Tel.: +31-10-7043932
| |
Collapse
|
10
|
DNA-PK in human malignant disorders: Mechanisms and implications for pharmacological interventions. Pharmacol Ther 2020; 215:107617. [PMID: 32610116 DOI: 10.1016/j.pharmthera.2020.107617] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022]
Abstract
The DNA-PK holoenzyme is a fundamental element of the DNA damage response machinery (DDR), which is responsible for cellular genomic stability. Consequently, and predictably, over the last decades since its identification and characterization, numerous pre-clinical and clinical studies reported observations correlating aberrant DNA-PK status and activity with cancer onset, progression and responses to therapeutic modalities. Notably, various studies have established in recent years the role of DNA-PK outside the DDR network, corroborating its role as a pleiotropic complex involved in transcriptional programs that operate biologic processes as epithelial to mesenchymal transition (EMT), hypoxia, metabolism, nuclear receptors signaling and inflammatory responses. In particular tumor entities as prostate cancer, immense research efforts assisted mapping and describing the overall signaling networks regulated by DNA-PK that control metastasis and tumor progression. Correspondingly, DNA-PK emerges as an obvious therapeutic target in cancer and data pertaining to various pharmacological approaches have been published, largely in context of combination with DNA-damaging agents (DDAs) that act by inflicting DNA double strand breaks (DSBs). Currently, new generation inhibitors are tested in clinical trials. Several excellent reviews have been published in recent years covering the biology of DNA-PK and its role in cancer. In the current article we are aiming to systematically describe the main findings on DNA-PK signaling in major cancer types, focusing on both preclinical and clinical reports and present a detailed current status of the DNA-PK inhibitors repertoire.
Collapse
|
11
|
Wang XS, Lee BJ, Zha S. The recent advances in non-homologous end-joining through the lens of lymphocyte development. DNA Repair (Amst) 2020; 94:102874. [PMID: 32623318 DOI: 10.1016/j.dnarep.2020.102874] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/16/2020] [Accepted: 05/24/2020] [Indexed: 12/17/2022]
Abstract
Lymphocyte development requires ordered assembly and subsequent modifications of the antigen receptor genes through V(D)J recombination and Immunoglobulin class switch recombination (CSR), respectively. While the programmed DNA cleavage events are initiated by lymphocyte-specific factors, the resulting DNA double-strand break (DSB) intermediates activate the ATM kinase-mediated DNA damage response (DDR) and rely on the ubiquitously expressed classical non-homologous end-joining (cNHEJ) pathway including the DNA-dependent protein kinase (DNA-PK), and, in the case of CSR, also the alternative end-joining (Alt-EJ) pathway, for repair. Correspondingly, patients and animal models with cNHEJ or DDR defects develop distinct types of immunodeficiency reflecting their specific DNA repair deficiency. The unique end-structure, sequence context, and cell cycle regulation of V(D)J recombination and CSR also provide a valuable platform to study the mechanisms of, and the interplay between, cNHEJ and DDR. Here, we compare and contrast the genetic consequences of DNA repair defects in V(D)J recombination and CSR with a focus on the newly discovered cNHEJ factors and the kinase-dependent structural roles of ATM and DNA-PK in animal models. Throughout, we try to highlight the pending questions and emerging differences that will extend our understanding of cNHEJ and DDR in the context of primary immunodeficiency and lymphoid malignancies.
Collapse
Affiliation(s)
- Xiaobin S Wang
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Graduate Program of Pathobiology and Molecular Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States
| | - Brian J Lee
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States; Department of Immunology and Microbiology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, United States.
| |
Collapse
|
12
|
Involvement of POLA2 in Double Strand Break Repair and Genotoxic Stress. Int J Mol Sci 2020; 21:ijms21124245. [PMID: 32549188 PMCID: PMC7352189 DOI: 10.3390/ijms21124245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 02/04/2023] Open
Abstract
Cellular survival is dependent on the efficient replication and transmission of genomic information. DNA damage can be introduced into the genome by several different methods, one being the act of DNA replication. Replication is a potent source of DNA damage and genomic instability, especially through the formation of DNA double strand breaks (DSBs). DNA polymerase alpha is responsible for replication initiation. One subunit of the DNA polymerase alpha replication machinery is POLA2. Given the connection between replication and genomic instability, we decided to examine the role of POLA2 in DSB repair, as little is known about this topic. We found that loss of POLA2 leads to an increase in spontaneous DSB formation. Loss of POLA2 also slows DSB repair kinetics after treatment with etoposide and inhibits both of the major double strand break repair pathways: non-homologous end-joining and homologous recombination. In addition, loss of POLA2 leads to increased sensitivity to ionizing radiation and PARP1 inhibition. Lastly, POLA2 expression is elevated in glioblastoma multiforme tumors and correlates with poor overall patient survival. These data demonstrate a role for POLA2 in DSB repair and resistance to genotoxic stress.
Collapse
|
13
|
Kaplan AR, Pham H, Liu Y, Oyaghire S, Bahal R, Engelman DM, Glazer PM. Ku80-Targeted pH-Sensitive Peptide-PNA Conjugates Are Tumor Selective and Sensitize Cancer Cells to Ionizing Radiation. Mol Cancer Res 2020; 18:873-882. [PMID: 32098827 DOI: 10.1158/1541-7786.mcr-19-0661] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 01/19/2020] [Accepted: 02/20/2020] [Indexed: 11/16/2022]
Abstract
The development of therapeutic agents that specifically target cancer cells while sparing healthy tissue could be used to enhance the efficacy of cancer therapy without increasing its toxicity. Specific targeting of cancer cells can be achieved through the use of pH-low insertion peptides (pHLIP), which take advantage of the acidity of the tumor microenvironment to deliver cargoes selectively to tumor cells. We developed a pHLIP-peptide nucleic acid (PNA) conjugate as an antisense reagent to reduce expression of the otherwise undruggable DNA double-strand break repair factor, KU80, and thereby radiosensitize tumor cells. Increased antisense activity of the pHLIP-PNA conjugate was achieved by partial mini-PEG sidechain substitution of the PNA at the gamma position, designated pHLIP-αKu80(γ). We evaluated selective effects of pHLIP-αKu80(γ) in cancer cells in acidic culture conditions as well as in two subcutaneous mouse tumor models. Fluorescently labeled pHLIP-αKu80(γ) delivers specifically to acidic cancer cells and accumulates preferentially in tumors when injected i.v. in mice. Furthermore, pHLIP-αKu80(γ) selectively reduced KU80 expression in cells under acidic conditions and in tumors in vivo. When pHLIP-αKu80(γ) was administered to mice prior to local tumor irradiation, tumor growth was substantially reduced compared with radiation treatment alone. Furthermore, there was no evidence of acute toxicity associated with pHLIP-αKu80(γ) administration to the mice. These results establish pHLIP-αKu80(γ) as a tumor-selective radiosensitizing agent. IMPLICATIONS: This study describes a novel agent, pHLIP-αKu80(γ), which combines PNA antisense and pHLIP technologies to selectively reduce the expression of the DNA repair factor KU80 in tumors and confer tumor-selective radiosensitization.
Collapse
Affiliation(s)
- Alanna R Kaplan
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.,Department of Pathology, Yale University, New Haven, Connecticut
| | - Ha Pham
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.,University of Central Florida College of Medicine, Orlando, Florida
| | - Yanfeng Liu
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut
| | - Stanley Oyaghire
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut
| | - Raman Bahal
- University of Connecticut, Storrs, Connecticut
| | - Donald M Engelman
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut. .,Department of Genetics, Yale University, New Haven, Connecticut
| |
Collapse
|
14
|
Pharmacological methods to transcriptionally modulate double-strand break DNA repair. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 354:187-213. [PMID: 32475473 DOI: 10.1016/bs.ircmb.2019.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is much interest in targeting DNA repair pathways for use in cancer therapy, as the effectiveness of many therapeutic agents relies on their ability to cause damage to DNA, and deficiencies in DSB repair pathways can make cells more sensitive to specific cancer therapies. For example, defects in the double-strand break (DSB) pathways, non-homologous end joining (NHEJ) and homology-directed repair (HDR), induce sensitivity to radiation therapy and poly(ADP)-ribose polymerase (PARP) inhibitors, respectively. However, traditional approaches to inhibit DNA repair through small molecule inhibitors have often been limited by toxicity and poor bioavailability. This review identifies several pharmacologic manipulations that modulate DSB repair by reducing expression of DNA repair factors. A number of pathways have been identified that modulate activity of NHEJ and HDR through this mechanism, including growth and hormonal receptor signaling pathways as well as epigenetic modifiers. We also discuss the effects of anti-angiogenic therapy on DSB repair. Preclinically, these pharmacological manipulations of DNA repair factor expression have been shown to increase sensitivity to specific cancer therapies, including ionizing radiation and PARP inhibitors. When applicable, relevant clinical trials are discussed and areas for future study are identified.
Collapse
|
15
|
ATM, DNA-PKcs and ATR: shaping development through the regulation of the DNA damage responses. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42764-019-00003-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
So CC, Ramachandran S, Martin A. E3 Ubiquitin Ligases RNF20 and RNF40 Are Required for Double-Stranded Break (DSB) Repair: Evidence for Monoubiquitination of Histone H2B Lysine 120 as a Novel Axis of DSB Signaling and Repair. Mol Cell Biol 2019; 39:e00488-18. [PMID: 30692271 PMCID: PMC6447412 DOI: 10.1128/mcb.00488-18] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/13/2018] [Accepted: 01/23/2019] [Indexed: 01/13/2023] Open
Abstract
Histone posttranslational modifications play fundamental roles in the regulation of double-stranded DNA break (DSB) repair. RNF20/RNF40-mediated monoubiquitination of histone H2B on lysine 120 (H2Bub) has been suggested as a potential mediator of DSB repair, although the nature and function of this posttranslational modification remain enigmatic. In this report, we demonstrate that RNF20 and RNF40 are required for DSB repair leading to homologous recombination (HR) and class switch recombination, a process driven by nonhomologous end joining (NHEJ), in mouse B cells. These findings suggest a role for RNF20 and RNF40 in DSB repair proximal to NHEJ/HR pathway choice and likely in the signaling of DSBs. We found that DSBs led to a global increase in H2Bub but not the transcription-associated posttranslational modifications H3K4me3 and H3K79me2. We also found that H2AX phosphorylation was dispensable for H2Bub and that ATM and ATR jointly regulate ionizing radiation (IR)-induced H2Bub. Together, our results suggest that RNF20, RNF40, and H2Bub may represent a novel pathway for DSB sensing and repair.
Collapse
Affiliation(s)
- Clare C So
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | - Alberto Martin
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Calcium influx-mediated translocation of m-calpain induces Ku80 cleavage and enhances the Ku80-related DNA repair pathway. Oncotarget 2017; 7:30831-44. [PMID: 27121057 PMCID: PMC5058721 DOI: 10.18632/oncotarget.8791] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 04/01/2016] [Indexed: 01/14/2023] Open
Abstract
Proteomic analysis of ionomycin-treated and untreated mammary epithelial MCF10A cells elucidated differences in Ku80 cleavage. Ku80, a subunit of the Ku protein complex, is an initiator of the non-homologous, end-joining (NHEJ), double-strand breaks (DSBs) repair pathway. The nuclear Ku80 was cleaved in a calcium concentration-dependent manner by m-calpain but not by m-calpain. The cleavage of nuclear Ku80 at its α/β domain was validated by Western blotting analysis using flag-tagged expression vectors of truncated versions of Ku80 and a flag antibody and was confirmed in m-calpain knock-down cells and in vitro cell-free evaluation with recombinant proteins of calpains, Ku70, and Ku80. In addition, the cleaved Ku80 still formed a Ku heterodimer and promoted DNA DSB repair activity. Taken together, these findings indicate that translocated m-calpain enhances the NHEJ pathway through the cleavage of Ku80. Based on the present study, m-calpain in DNA repair pathways might be a novel anticancer drug target, or its mechanism might be a possible route for resistance acquisition of DNA damage-inducing chemotherapeutics.
Collapse
|
18
|
Khan FA, Ali SO. Physiological Roles of DNA Double-Strand Breaks. J Nucleic Acids 2017; 2017:6439169. [PMID: 29181194 PMCID: PMC5664317 DOI: 10.1155/2017/6439169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 09/24/2017] [Indexed: 12/20/2022] Open
Abstract
Genomic integrity is constantly threatened by sources of DNA damage, internal and external alike. Among the most cytotoxic lesions is the DNA double-strand break (DSB) which arises from the cleavage of both strands of the double helix. Cells boast a considerable set of defences to both prevent and repair these breaks and drugs which derail these processes represent an important category of anticancer therapeutics. And yet, bizarrely, cells deploy this very machinery for the intentional and calculated disruption of genomic integrity, harnessing potentially destructive DSBs in delicate genetic transactions. Under tight spatiotemporal regulation, DSBs serve as a tool for genetic modification, widely used across cellular biology to generate diverse functionalities, ranging from the fundamental upkeep of DNA replication, transcription, and the chromatin landscape to the diversification of immunity and the germline. Growing evidence points to a role of aberrant DSB physiology in human disease and an understanding of these processes may both inform the design of new therapeutic strategies and reduce off-target effects of existing drugs. Here, we review the wide-ranging roles of physiological DSBs and the emerging network of their multilateral regulation to consider how the cell is able to harness DNA breaks as a critical biochemical tool.
Collapse
Affiliation(s)
- Farhaan A. Khan
- School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge CB2 0SP, UK
| | - Syed O. Ali
- School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge CB2 0SP, UK
| |
Collapse
|
19
|
The Role of the Core Non-Homologous End Joining Factors in Carcinogenesis and Cancer. Cancers (Basel) 2017; 9:cancers9070081. [PMID: 28684677 PMCID: PMC5532617 DOI: 10.3390/cancers9070081] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 12/20/2022] Open
Abstract
DNA double-strand breaks (DSBs) are deleterious DNA lesions that if left unrepaired or are misrepaired, potentially result in chromosomal aberrations, known drivers of carcinogenesis. Pathways that direct the repair of DSBs are traditionally believed to be guardians of the genome as they protect cells from genomic instability. The prominent DSB repair pathway in human cells is the non-homologous end joining (NHEJ) pathway, which mediates template-independent re-ligation of the broken DNA molecule and is active in all phases of the cell cycle. Its role as a guardian of the genome is supported by the fact that defects in NHEJ lead to increased sensitivity to agents that induce DSBs and an increased frequency of chromosomal aberrations. Conversely, evidence from tumors and tumor cell lines has emerged that NHEJ also promotes chromosomal aberrations and genomic instability, particularly in cells that have a defect in one of the other DSB repair pathways. Collectively, the data present a conundrum: how can a single pathway both suppress and promote carcinogenesis? In this review, we will examine NHEJ's role as both a guardian and a disruptor of the genome and explain how underlying genetic context not only dictates whether NHEJ promotes or suppresses carcinogenesis, but also how it alters the response of tumors to conventional therapeutics.
Collapse
|
20
|
Irianto J, Xia Y, Pfeifer CR, Athirasala A, Ji J, Alvey C, Tewari M, Bennett RR, Harding SM, Liu AJ, Greenberg RA, Discher DE. DNA Damage Follows Repair Factor Depletion and Portends Genome Variation in Cancer Cells after Pore Migration. Curr Biol 2016; 27:210-223. [PMID: 27989676 DOI: 10.1016/j.cub.2016.11.049] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/11/2016] [Accepted: 11/23/2016] [Indexed: 11/25/2022]
Abstract
Migration through micron-size constrictions has been seen to rupture the nucleus, release nuclear-localized GFP, and cause localized accumulations of ectopic 53BP1-a DNA repair protein. Here, constricted migration of two human cancer cell types and primary mesenchymal stem cells (MSCs) increases DNA breaks throughout the nucleoplasm as assessed by endogenous damage markers and by electrophoretic "comet" measurements. Migration also causes multiple DNA repair proteins to segregate away from DNA, with cytoplasmic mis-localization sustained for many hours as is relevant to delayed repair. Partial knockdown of repair factors that also regulate chromosome copy numbers is seen to increase DNA breaks in U2OS osteosarcoma cells without affecting migration and with nucleoplasmic patterns of damage similar to constricted migration. Such depletion also causes aberrant levels of DNA. Migration-induced nuclear damage is nonetheless reversible for wild-type and sub-cloned U2OS cells, except for lasting genomic differences between stable clones as revealed by DNA arrays and sequencing. Gains and losses of hundreds of megabases in many chromosomes are typical of the changes and heterogeneity in bone cancer. Phenotypic differences that arise from constricted migration of U2OS clones are further illustrated by a clone with a highly elongated and stable MSC-like shape that depends on microtubule assembly downstream of the transcription factor GATA4. Such changes are consistent with reversion to a more stem-like state upstream of cancerous osteoblastic cells. Migration-induced genomic instability can thus associate with heritable changes.
Collapse
Affiliation(s)
- Jerome Irianto
- Physical Sciences Oncology Center at Penn (PSOC@Penn), 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA; Molecular and Cell Biophysics Lab, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuntao Xia
- Physical Sciences Oncology Center at Penn (PSOC@Penn), 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA; Molecular and Cell Biophysics Lab, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charlotte R Pfeifer
- Physical Sciences Oncology Center at Penn (PSOC@Penn), 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA; Molecular and Cell Biophysics Lab, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group, Department of Physics and Astronomy, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Avathamsa Athirasala
- Molecular and Cell Biophysics Lab, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jiazheng Ji
- Physical Sciences Oncology Center at Penn (PSOC@Penn), 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA; Molecular and Cell Biophysics Lab, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cory Alvey
- Physical Sciences Oncology Center at Penn (PSOC@Penn), 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA; Molecular and Cell Biophysics Lab, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Manu Tewari
- Physical Sciences Oncology Center at Penn (PSOC@Penn), 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA; Molecular and Cell Biophysics Lab, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel R Bennett
- Physical Sciences Oncology Center at Penn (PSOC@Penn), 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group, Department of Physics and Astronomy, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shane M Harding
- Physical Sciences Oncology Center at Penn (PSOC@Penn), 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA; Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrea J Liu
- Physical Sciences Oncology Center at Penn (PSOC@Penn), 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group, Department of Physics and Astronomy, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roger A Greenberg
- Physical Sciences Oncology Center at Penn (PSOC@Penn), 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA; Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dennis E Discher
- Physical Sciences Oncology Center at Penn (PSOC@Penn), 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA; Molecular and Cell Biophysics Lab, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group, Department of Physics and Astronomy, 129 Towne Building, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
21
|
EAF2 regulates DNA repair through Ku70/Ku80 in the prostate. Oncogene 2016; 36:2054-2065. [PMID: 27721405 PMCID: PMC5386836 DOI: 10.1038/onc.2016.373] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 07/27/2016] [Accepted: 08/19/2016] [Indexed: 12/11/2022]
Abstract
Androgens are known to protect prostate cancer cells from DNA damage. Recent studies showed regulation of DNA repair genes by androgen receptor signaling in prostate cancers. ELL-associated factor 2 (EAF2) is an androgen-regulated tumor suppressor and its intracellular localization can be modulated by ultraviolet light, suggesting a potential role for EAF2 in androgen regulation of DNA repair in prostate cancer cells. Here we show that knockdown of EAF2 or its homolog EAF1 sensitized prostate cancer cells to DNA damage and the sensitization did not require p53. EAF2 knockout mouse prostate was also sensitized to γ-irradiation. Furthermore, EAF2 knockdown blocked androgen repression of LNCaP or C4-2 cells from doxorubicin induction of γH2ax, a DNA damage marker. In human prostate cancer specimens, EAF2 expression was inversely correlated with the level of γH2ax. Further analysis showed that EAF2 and EAF1 are required for the recruitment and retention of Ku70/Ku80 to DNA damage sites and play a functional role in nonhomologous end-joining DNA repair. These findings provide evidence for EAF2 as a key factor mediating androgen protection of DNA damage via Ku70/Ku80 in prostate cancer cells.
Collapse
|
22
|
DNA repair kinetics in SCID mice Sertoli cells and DNA-PKcs-deficient mouse embryonic fibroblasts. Chromosoma 2016; 126:287-298. [PMID: 27136939 PMCID: PMC5371645 DOI: 10.1007/s00412-016-0590-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 10/29/2022]
Abstract
Noncycling and terminally differentiated (TD) cells display differences in radiosensitivity and DNA damage response. Unlike other TD cells, Sertoli cells express a mixture of proliferation inducers and inhibitors in vivo and can reenter the cell cycle. Being in a G1-like cell cycle stage, TD Sertoli cells are expected to repair DSBs by the error-prone nonhomologous end-joining pathway (NHEJ). Recently, we have provided evidence for the involvement of Ku-dependent NHEJ in protecting testis cells from DNA damage as indicated by persistent foci of the DNA double-strand break (DSB) repair proteins phospho-H2AX, 53BP1, and phospho-ATM in TD Sertoli cells of Ku70-deficient mice. Here, we analyzed the kinetics of 53BP1 foci induction and decay up to 12 h after 0.5 Gy gamma irradiation in DNA-PKcs-deficient (Prkdc scid ) and wild-type Sertoli cells. In nonirradiated mice and Prkdc scid Sertoli cells displayed persistent DSBs foci in around 12 % of cells and a fivefold increase in numbers of these DSB DNA damage-related foci relative to the wild type. In irradiated mice, Prkdc scid Sertoli cells showed elevated levels of DSB-indicating foci in 82 % of cells 12 h after ionizing radiation (IR) exposure, relative to 52 % of irradiated wild-type Sertoli cells. These data indicate that Sertoli cells respond to and repair IR-induced DSBs in vivo, with repair kinetics being slow in the wild type and inefficient in Prkdc scid . Applying the same dose of IR to Prdkc -/- and Ku -/- mouse embryonic fibroblast (MEF) cells revealed a delayed induction of 53BP1 DSB-indicating foci 5 min post-IR in Prdkc -/- cells. Inefficient DSB repair was evident 7 h post-IR in DNA-PKcs-deficient cells, but not in Ku -/- MEFs. Our data show that quiescent Sertoli cells repair genotoxic DSBs by DNA-PKcs-dependent NEHJ in vivo with a slower kinetics relative to somatic DNA-PKcs-deficient cells in vitro, while DNA-PKcs deficiency caused inefficient DSB repair at later time points post-IR in both conditions. These observations suggest that DNA-PKcs contributes to the fast and slow repair of DSBs by NHEJ.
Collapse
|
23
|
Streptococcus pneumoniae secretes hydrogen peroxide leading to DNA damage and apoptosis in lung cells. Proc Natl Acad Sci U S A 2015; 112:E3421-30. [PMID: 26080406 DOI: 10.1073/pnas.1424144112] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Streptococcus pneumoniae is a leading cause of pneumonia and one of the most common causes of death globally. The impact of S. pneumoniae on host molecular processes that lead to detrimental pulmonary consequences is not fully understood. Here, we show that S. pneumoniae induces toxic DNA double-strand breaks (DSBs) in human alveolar epithelial cells, as indicated by ataxia telangiectasia mutated kinase (ATM)-dependent phosphorylation of histone H2AX and colocalization with p53-binding protein (53BP1). Furthermore, results show that DNA damage occurs in a bacterial contact-independent fashion and that Streptococcus pyruvate oxidase (SpxB), which enables synthesis of H2O2, plays a critical role in inducing DSBs. The extent of DNA damage correlates with the extent of apoptosis, and DNA damage precedes apoptosis, which is consistent with the time required for execution of apoptosis. Furthermore, addition of catalase, which neutralizes H2O2, greatly suppresses S. pneumoniae-induced DNA damage and apoptosis. Importantly, S. pneumoniae induces DSBs in the lungs of animals with acute pneumonia, and H2O2 production by S. pneumoniae in vivo contributes to its genotoxicity and virulence. One of the major DSBs repair pathways is nonhomologous end joining for which Ku70/80 is essential for repair. We find that deficiency of Ku80 causes an increase in the levels of DSBs and apoptosis, underscoring the importance of DNA repair in preventing S. pneumoniae-induced genotoxicity. Taken together, this study shows that S. pneumoniae-induced damage to the host cell genome exacerbates its toxicity and pathogenesis, making DNA repair a potentially important susceptibility factor in people who suffer from pneumonia.
Collapse
|
24
|
Qi D, Hu Y, Li J, Peng T, Su J, He Y, Ji W. Hyperthermia Induces Apoptosis of 786-O Cells through Suppressing Ku80 Expression. PLoS One 2015; 10:e0122977. [PMID: 25902193 PMCID: PMC4406445 DOI: 10.1371/journal.pone.0122977] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/26/2015] [Indexed: 11/24/2022] Open
Abstract
Hyperthermia as an anticancer method has been paid increasing attention in recent years. Several studies have shown that hyperthermia can kill tumor cells by inducing apoptosis. However, the underlying molecular mechanisms of hyperthermia-induced apoptosis are largely unknown. To investigate the effects and molecular mechanism of hyperthermia on the apoptosis in renal carcinoma 786-O cells, we firstly examined apoptosis and Ku expression in 786-O cell line treated with heat exposure (42°C for 0-4 h). The results showed that hyperthermia induced apoptosis of 786-O cells, and suppressed significantly Ku80 expression, but not Ku70 expression. Next, we knock-down Ku80 in 786-O cells, generating stable cell line 786-O-shKu80, and detected apoptosis, cell survival and cell cycle distribution. Our data showed higher apoptotic rate and lower surviving fraction in the stable cell line 786-O-shKu80 compared with those in control cells, exposed to the same heat stress (42°C for 0-4 h). Moreover, the results also showed suppression of Ku80 led to G2/M phase arrest in the stable cell line 786-O-shKu80 following heat treatment. Together, these findings indicate that Ku80 may play an important role in hyperthermia-induced apoptosis and heat-sensitivity of renal carcinoma cells through influencing the cell cycle distribution.
Collapse
Affiliation(s)
- Defeng Qi
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Urology, Guangzhou, China
- * E-mail: (DQ); (YH); (WJ)
| | - Yuan Hu
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Urology, Guangzhou, China
| | - Jinhui Li
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Urology, Guangzhou, China
| | - Tao Peng
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Urology, Guangzhou, China
| | - Jialin Su
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Urology, Guangzhou, China
| | - Yun He
- School of public health, Sun Yat-sen University, Guangzhou, China
- * E-mail: (DQ); (YH); (WJ)
| | - Weidong Ji
- The center for translational medicine, The first affiliated hospital, Sun Yat-Sen University, Guangzhou, China
- * E-mail: (DQ); (YH); (WJ)
| |
Collapse
|
25
|
Chang CY, Leu JD, Lee YJ. The actin depolymerizing factor (ADF)/cofilin signaling pathway and DNA damage responses in cancer. Int J Mol Sci 2015; 16:4095-120. [PMID: 25689427 PMCID: PMC4346946 DOI: 10.3390/ijms16024095] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/26/2015] [Accepted: 02/09/2015] [Indexed: 01/06/2023] Open
Abstract
The actin depolymerizing factor (ADF)/cofilin protein family is essential for actin dynamics, cell division, chemotaxis and tumor metastasis. Cofilin-1 (CFL-1) is a primary non-muscle isoform of the ADF/cofilin protein family accelerating the actin filamental turnover in vitro and in vivo. In response to environmental stimulation, CFL-1 enters the nucleus to regulate the actin dynamics. Although the purpose of this cytoplasm-nucleus transition remains unclear, it is speculated that the interaction between CFL-1 and DNA may influence various biological responses, including DNA damage repair. In this review, we will discuss the possible involvement of CFL-1 in DNA damage responses (DDR) induced by ionizing radiation (IR), and the implications for cancer radiotherapy.
Collapse
Affiliation(s)
- Chun-Yuan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan.
| | - Jyh-Der Leu
- Division of Radiation Oncology, Taipei City Hospital RenAi Branch, Taipei 106, Taiwan.
| | - Yi-Jang Lee
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan.
- Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei 112, Taiwan.
| |
Collapse
|
26
|
Keijzers G, Maynard S, Shamanna RA, Rasmussen LJ, Croteau DL, Bohr VA. The role of RecQ helicases in non-homologous end-joining. Crit Rev Biochem Mol Biol 2014; 49:463-72. [PMID: 25048400 DOI: 10.3109/10409238.2014.942450] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
DNA double-strand breaks are highly toxic DNA lesions that cause genomic instability, if not efficiently repaired. RecQ helicases are a family of highly conserved proteins that maintain genomic stability through their important roles in several DNA repair pathways, including DNA double-strand break repair. Double-strand breaks can be repaired by homologous recombination (HR) using sister chromatids as templates to facilitate precise DNA repair, or by an HR-independent mechanism known as non-homologous end-joining (NHEJ) (error-prone). NHEJ is a non-templated DNA repair process, in which DNA termini are directly ligated. Canonical NHEJ requires DNA-PKcs and Ku70/80, while alternative NHEJ pathways are DNA-PKcs and Ku70/80 independent. This review discusses the role of RecQ helicases in NHEJ, alternative (or back-up) NHEJ (B-NHEJ) and microhomology-mediated end-joining (MMEJ) in V(D)J recombination, class switch recombination and telomere maintenance.
Collapse
Affiliation(s)
- Guido Keijzers
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen , Copenhagen , Denmark and
| | | | | | | | | | | |
Collapse
|
27
|
The Ku heterodimer: function in DNA repair and beyond. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:15-29. [PMID: 25795113 DOI: 10.1016/j.mrrev.2014.06.002] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/07/2014] [Accepted: 06/25/2014] [Indexed: 01/11/2023]
Abstract
Ku is an abundant, highly conserved DNA binding protein found in both prokaryotes and eukaryotes that plays essential roles in the maintenance of genome integrity. In eukaryotes, Ku is a heterodimer comprised of two subunits, Ku70 and Ku80, that is best characterized for its central role as the initial DNA end binding factor in the "classical" non-homologous end joining (C-NHEJ) pathway, the main DNA double-strand break (DSB) repair pathway in mammals. Ku binds double-stranded DNA ends with high affinity in a sequence-independent manner through a central ring formed by the intertwined strands of the Ku70 and Ku80 subunits. At the break, Ku directly and indirectly interacts with several C-NHEJ factors and processing enzymes, serving as the scaffold for the entire DNA repair complex. There is also evidence that Ku is involved in signaling to the DNA damage response (DDR) machinery to modulate the activation of cell cycle checkpoints and the activation of apoptosis. Interestingly, Ku is also associated with telomeres, where, paradoxically to its DNA end-joining functions, it protects the telomere ends from being recognized as DSBs, thereby preventing their recombination and degradation. Ku, together with the silent information regulator (Sir) complex is also required for transcriptional silencing through telomere position effect (TPE). How Ku associates with telomeres, whether it is through direct DNA binding, or through protein-protein interactions with other telomere bound factors remains to be determined. Ku is central to the protection of organisms through its participation in C-NHEJ to repair DSBs generated during V(D)J recombination, a process that is indispensable for the establishment of the immune response. Ku also functions to prevent tumorigenesis and senescence since Ku-deficient mice show increased cancer incidence and early onset of aging. Overall, Ku function is critical to the maintenance of genomic integrity and to proper cellular and organismal development.
Collapse
|
28
|
Liu G, Stevens JB, Horne SD, Abdallah BY, Ye KJ, Bremer SW, Ye CJ, Chen DJ, Heng HH. Genome chaos: survival strategy during crisis. Cell Cycle 2013; 13:528-37. [PMID: 24299711 DOI: 10.4161/cc.27378] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Genome chaos, a process of complex, rapid genome re-organization, results in the formation of chaotic genomes, which is followed by the potential to establish stable genomes. It was initially detected through cytogenetic analyses, and recently confirmed by whole-genome sequencing efforts which identified multiple subtypes including "chromothripsis", "chromoplexy", "chromoanasynthesis", and "chromoanagenesis". Although genome chaos occurs commonly in tumors, both the mechanism and detailed aspects of the process are unknown due to the inability of observing its evolution over time in clinical samples. Here, an experimental system to monitor the evolutionary process of genome chaos was developed to elucidate its mechanisms. Genome chaos occurs following exposure to chemotherapeutics with different mechanisms, which act collectively as stressors. Characterization of the karyotype and its dynamic changes prior to, during, and after induction of genome chaos demonstrates that chromosome fragmentation (C-Frag) occurs just prior to chaotic genome formation. Chaotic genomes seem to form by random rejoining of chromosomal fragments, in part through non-homologous end joining (NHEJ). Stress induced genome chaos results in increased karyotypic heterogeneity. Such increased evolutionary potential is demonstrated by the identification of increased transcriptome dynamics associated with high levels of karyotypic variance. In contrast to impacting on a limited number of cancer genes, re-organized genomes lead to new system dynamics essential for cancer evolution. Genome chaos acts as a mechanism of rapid, adaptive, genome-based evolution that plays an essential role in promoting rapid macroevolution of new genome-defined systems during crisis, which may explain some unwanted consequences of cancer treatment.
Collapse
Affiliation(s)
- Guo Liu
- Center for Molecular Medicine and Genetics; Wayne State University School of Medicine; Detroit, MI USA
| | - Joshua B Stevens
- Center for Molecular Medicine and Genetics; Wayne State University School of Medicine; Detroit, MI USA
| | - Steven D Horne
- Center for Molecular Medicine and Genetics; Wayne State University School of Medicine; Detroit, MI USA
| | - Batoul Y Abdallah
- Center for Molecular Medicine and Genetics; Wayne State University School of Medicine; Detroit, MI USA
| | | | - Steven W Bremer
- Center for Molecular Medicine and Genetics; Wayne State University School of Medicine; Detroit, MI USA
| | - Christine J Ye
- Department of Hematology Oncology; Karmanos Cancer Institute; Detroit, MI USA
| | - David J Chen
- Division of Molecular Radiation Biology, Department of Radiation Oncology; The University of Texas Southwestern Medical Center; Dallas TX USA
| | - Henry H Heng
- Center for Molecular Medicine and Genetics; Wayne State University School of Medicine; Detroit, MI USA; Department of Pathology; Wayne State University School of Medicine; Detroit, MI USA
| |
Collapse
|
29
|
Ahmed EA, Sfeir A, Takai H, Scherthan H. Ku70 and non-homologous end joining protect testicular cells from DNA damage. J Cell Sci 2013; 126:3095-104. [PMID: 23857907 DOI: 10.1242/jcs.122788] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Spermatogenesis is a complex process that generates haploid germ cells or spores and implements meiosis, a succession of two special cell divisions that are required for homologous chromosome segregation. During prophase to the first meiotic division, homologous recombination (HR) repairs Spo11-dependent DNA double-strand breaks (DSBs) in the presence of telomere movements to allow for chromosome pairing and segregation at the meiosis I division. In contrast to HR, non-homologous end joining (NHEJ), the major DSB repair mechanism during the G1 cell cycle phase, is downregulated during early meiotic prophase. At somatic mammalian telomeres, the NHEJ factor Ku70/80 inhibits HR, as does the Rap1 component of the shelterin complex. Here, we investigated the role of Ku70 and Rap1 in meiotic telomere redistribution and genome protection in spermatogenesis by studying single and double knockout mice. Ku70(-/-) mice display reduced testis size and compromised spermatogenesis, whereas meiotic telomere dynamics and chromosomal bouquet formation occurred normally in Ku70(-/-) and Ku70(-/-)Rap1(Δ/Δ) knockout spermatocytes. Elevated mid-preleptotene frequencies were associated with significantly increased DNA damage in Ku-deficient B spermatogonia, and in differentiated Sertoli cells. Significantly elevated levels of γH2AX foci in Ku70(-/-) diplotene spermatocytes suggest compromised progression of DNA repair at a subset of DSBs. This might explain the elevated meiotic metaphase apoptosis that is present in Ku70-deficient stage XII testis tubules, indicating spindle assembly checkpoint activation. In summary, our data indicate that Ku70 is important for repairing DSBs in somatic cells and in late spermatocytes of the testis, thereby assuring the fidelity of spermatogenesis.
Collapse
Affiliation(s)
- Emad A Ahmed
- Institut für Radiobiologie der Bundeswehr in Verbindung mit der Universität, Ulm, Neuherbergstrasse 1, D-80937 München, Germany
| | | | | | | |
Collapse
|
30
|
Li H, Marple T, Hasty P. Ku80-deleted cells are defective at base excision repair. Mutat Res 2013; 745-746:16-25. [PMID: 23567907 DOI: 10.1016/j.mrfmmm.2013.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/18/2013] [Accepted: 03/29/2013] [Indexed: 11/27/2022]
Abstract
Ku80 forms a heterodimer with Ku70, called Ku, that repairs DNA double-strand breaks (DSBs) via the nonhomologous end joining (NHEJ) pathway. As a consequence of deleting NHEJ, Ku80-mutant cells are hypersensitive to agents that cause DNA DSBs like ionizing radiation. Here we show that Ku80 deletion also decreased resistance to ROS and alkylating agents that typically cause base lesions and single-strand breaks (SSBs). This is unusual since base excision repair (BER), not NHEJ, typically repairs these types of lesions. However, we show that deletion of another NHEJ protein, DNA ligase IV (Lig4), did not cause hypersensitivity to these agents. In addition, the ROS and alkylating agents did not induce γ-H2AX foci that are diagnostic of DSBs. Furthermore, deletion of Ku80, but not Lig4 or Ku70, reduced BER capacity. Ku80 deletion also impaired BER at the initial lesion recognition/strand scission step; thus, involvement of a DSB is unlikely. Therefore, our data suggests that Ku80 deletion impairs BER via a mechanism that does not repair DSBs.
Collapse
Affiliation(s)
- Han Li
- The Department of Molecular Medicine, The University of Texas Health Science Center, San Antonio, TX 78245-3207, USA
| | | | | |
Collapse
|
31
|
Kashino G, Suzuki K, Kodama S, Watanabe M, Prise KM. Increased susceptibility to delayed genetic effects of low dose X-irradiation in DNA repair deficient cells. Int J Radiat Biol 2012; 89:295-300. [DOI: 10.3109/09553002.2013.752596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Deletion of the Pichia pastoris KU70 homologue facilitates platform strain generation for gene expression and synthetic biology. PLoS One 2012; 7:e39720. [PMID: 22768112 PMCID: PMC3387205 DOI: 10.1371/journal.pone.0039720] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 05/25/2012] [Indexed: 12/16/2022] Open
Abstract
Targeted gene replacement to generate knock-outs and knock-ins is a commonly used method to study the function of unknown genes. In the methylotrophic yeast Pichia pastoris, the importance of specific gene targeting has increased since the genome sequencing projects of the most commonly used strains have been accomplished, but rapid progress in the field has been impeded by inefficient mechanisms for accurate integration. To improve gene targeting efficiency in P. pastoris, we identified and deleted the P. pastoris KU70 homologue. We observed a substantial increase in the targeting efficiency using the two commonly known and used integration loci HIS4 and ADE1, reaching over 90% targeting efficiencies with only 250-bp flanking homologous DNA. Although the ku70 deletion strain was noted to be more sensitive to UV rays than the corresponding wild-type strain, no lethality, severe growth retardation or loss of gene copy numbers could be detected during repetitive rounds of cultivation and induction of heterologous protein production. Furthermore, we demonstrated the use of the ku70 deletion strain for fast and simple screening of genes in the search of new auxotrophic markers by targeting dihydroxyacetone synthase and glycerol kinase genes. Precise knock-out strains for the well-known P. pastoris AOX1, ARG4 and HIS4 genes and a whole series of expression vectors were generated based on the wild-type platform strain, providing a broad spectrum of precise tools for both intracellular and secreted production of heterologous proteins utilizing various selection markers and integration strategies for targeted or random integration of single and multiple genes. The simplicity of targeted integration in the ku70 deletion strain will further support protein production strain generation and synthetic biology using P. pastoris strains as platform hosts.
Collapse
|
33
|
Thompson LH. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Mutat Res 2012; 751:158-246. [PMID: 22743550 DOI: 10.1016/j.mrrev.2012.06.002] [Citation(s) in RCA: 261] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 06/09/2012] [Accepted: 06/16/2012] [Indexed: 12/15/2022]
Abstract
The faithful maintenance of chromosome continuity in human cells during DNA replication and repair is critical for preventing the conversion of normal diploid cells to an oncogenic state. The evolution of higher eukaryotic cells endowed them with a large genetic investment in the molecular machinery that ensures chromosome stability. In mammalian and other vertebrate cells, the elimination of double-strand breaks with minimal nucleotide sequence change involves the spatiotemporal orchestration of a seemingly endless number of proteins ranging in their action from the nucleotide level to nucleosome organization and chromosome architecture. DNA DSBs trigger a myriad of post-translational modifications that alter catalytic activities and the specificity of protein interactions: phosphorylation, acetylation, methylation, ubiquitylation, and SUMOylation, followed by the reversal of these changes as repair is completed. "Superfluous" protein recruitment to damage sites, functional redundancy, and alternative pathways ensure that DSB repair is extremely efficient, both quantitatively and qualitatively. This review strives to integrate the information about the molecular mechanisms of DSB repair that has emerged over the last two decades with a focus on DSBs produced by the prototype agent ionizing radiation (IR). The exponential growth of molecular studies, heavily driven by RNA knockdown technology, now reveals an outline of how many key protein players in genome stability and cancer biology perform their interwoven tasks, e.g. ATM, ATR, DNA-PK, Chk1, Chk2, PARP1/2/3, 53BP1, BRCA1, BRCA2, BLM, RAD51, and the MRE11-RAD50-NBS1 complex. Thus, the nature of the intricate coordination of repair processes with cell cycle progression is becoming apparent. This review also links molecular abnormalities to cellular pathology as much a possible and provides a framework of temporal relationships.
Collapse
Affiliation(s)
- Larry H Thompson
- Biology & Biotechnology Division, L452, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808, United States.
| |
Collapse
|
34
|
Urano M, Li GC, He F, Minami A, Burgman P, Ling CC. The effect of DN (dominant-negative) Ku70 and reoxygenation on hypoxia cell-kill: evidence of hypoxia-induced potentially lethal damage. Int J Radiat Biol 2012; 88:515-22. [PMID: 22617044 DOI: 10.3109/09553002.2012.690548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE To study the effect of DN (dominant-negative) Ku70 and reoxygenation on the hypoxia-induced cell-kill. MATERIALS AND METHODS Cell lines were human colorectal carcinoma HCT8 and HT29 cells and their respective derivatives, v-HCT8 and v-HT29 infected with DNKu70-containing adenovirus. Cells were plated in glass tubes and made hypoxic by flushing N(2) gas containing 0, 0.1 or 0.5% O(2). Cell survival was determined by colony formation assay immediately after 0-96 h hypoxia. To reoxygenate medium were replaced fresh following 48 or 72 h in hypoxia and cells were incubated in aerobic environment for 2-24 h before survival assay. RESULTS When incubated in hypoxia, cells lost reproductive capability ∼ exponentially as a function of time in hypoxia, and depending on the O(2) concentration. DNKu70 rendered cells more prone to hypoxia-induced cell-kill. Following reoxygenation cell survival increased rapidly but without detectable cell proliferation during first 24 hours. This evinced hypoxia-induced potentially lethal damage (PLD) that was repairable upon reoxygenation. DNKu70 did not significantly inhibit this repair. CONCLUSION Hypoxia-induced cell lethality was facilitated by DNKu70, but substantially repaired upon reoxygenation. This may have negative impact on the effect of reoxygenation in cancer therapy.
Collapse
Affiliation(s)
- Muneyasu Urano
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, NY, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Agrobacterium tumefaciens T-DNA Integration and Gene Targeting in Arabidopsis thaliana Non-Homologous End-Joining Mutants. ACTA ACUST UNITED AC 2012. [DOI: 10.1155/2012/989272] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In order to study the role of AtKu70 and AtKu80 in Agrobacterium-mediated transformation and gene targeting, plant lines with a T-DNA insertion in AtKu80 or AtKu70 genes were functionally characterized. Such plant lines lacked both subunits, indicating that heterodimer formation between AtKu70 and AtKu80 is needed for the stability of the proteins. Homozygous mutants were phenotypically indistinguishable from wild-type plants and were fertile. However, they were hypersensitive to the genotoxic agent bleomycin, resulting in more DSBs as quantified in comet assays. They had lower end-joining efficiency, suggesting that NHEJ is a critical pathway for DSB repair in plants. Both Atku mutants and a previously isolated Atmre11 mutant were impaired in Agrobacterium T-DNA integration via floral dip transformation, indicating that AtKu70, AtKu80, and AtMre11 play an important role in T-DNA integration in Arabidopsis. The frequency of gene targeting was not significantly increased in the Atku80 and Atku70 mutants, but it was increased at least 10-fold in the Atmre11 mutant compared with the wild type.
Collapse
|
36
|
Lakota K, Thallinger GG, Sodin-Semrl S, Rozman B, Ambrozic A, Tomsic M, Praprotnik S, Cucnik S, Mrak-Poljsak K, Ceribelli A, Cavazzana I, Franceschini F, Vencovsky J, Czirják L, Varjú C, Steiner G, Aringer M, Stamenkovic B, Distler O, Matucci-Cerinic M, Kveder T. International cohort study of 73 anti-Ku-positive patients: association of p70/p80 anti-Ku antibodies with joint/bone features and differentiation of disease populations by using principal-components analysis. Arthritis Res Ther 2012; 14:R2. [PMID: 22226402 PMCID: PMC3392788 DOI: 10.1186/ar3550] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 01/06/2012] [Indexed: 02/13/2023] Open
Abstract
Introduction An international cohort study of 73 anti-Ku-positive patients with different connective tissue diseases was conducted to differentiate the anti-Ku-positive populations of patients based on their autoantibody profile and clinical signs/symptoms and to establish possible correlations between antibodies against Ku p70 and Ku p80 with autoimmune diseases. Methods Sera of anti-Ku-positive patients were collected from six European centers and were all secondarily tested (in the reference center); 73 were confirmed as positive. Anti-Ku antibodies were detected with counter-immunoelectrophoresis (CIE), line immunoassay (LIA), and immunoblot analyses. All clinical and laboratory data were follow-up cumulative data, except for anti-Ku antibodies. Statistical analyses were performed by using R (V 2.12.1). The Fisher Exact test was used to evaluate the association between anti-Ku antibodies and diagnosis, gender, clinical signs, and other observed antibodies. The P values were adjusted for multiple testing. Separation of disease populations based on the presence of antibodies and clinical signs was investigated by principal-components analysis, which was performed by using thr// R's prcomp function with standard parameters. Results A 16% higher prevalence of anti-Ku p70 was found over anti-Ku p80 antibodies. In 41 (57%) patients, a combination of both was detected. Five (7%) patients, who were CIE and/or LIA anti-Ku positive, were negative for both subsets, as detected with the immunoblot; 31% of the patients had undifferentiated connective tissue disease (UCTD); 29% had systemic sclerosis (SSc); 18% had systemic lupus erythematosus (SLE); 11% had rheumatoid arthritis; 7% had polymyositis; and 3% had Sjögren syndrome. Conclusions A significant positive association was found between female patients with anti-Ku p70 and joint/bone features, and a significant negative association was found between female patients with anti-Ku p80 only and joint/bone features (P = 0.05, respectively). By using the first and the third components of the principal-component analysis (PCA) with 29 parameters evaluated, we observed that the anti-Ku-positive population of UCTD patients had overlapping parameters, especially with SLE, as opposed to SSc, which could be helpful in delineating UCTD patients.
Collapse
Affiliation(s)
- Katja Lakota
- Department of Rheumatology, University Medical Centre, Ljubljana, Slovenia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ku regulates signaling to DNA damage response pathways through the Ku70 von Willebrand A domain. Mol Cell Biol 2011; 32:76-87. [PMID: 22037767 DOI: 10.1128/mcb.05661-11] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Ku heterodimer (Ku70/Ku80) is a main component of the nonhomologous end-joining (NHEJ) pathway that repairs DNA double-strand breaks (DSBs). Ku binds the broken DNA end and recruits other proteins to facilitate the processing and ligation of the broken end. While Ku interacts with many proteins involved in DNA damage/repair-related functions, few interactions have been mapped to the N-terminal von Willebrand A (vWA) domain, a predicted protein interaction domain. The mutagenesis of Ku70 vWA domain S155/D156 unexpectedly increased cell survival following ionizing radiation (IR) treatment. DNA repair appeared unaffected, but defects in the activation of apoptosis and alterations in the DNA damage signaling response were identified. In particular, Ku70 S155A/D156A affected the IR-induced transcriptional response of several activating transcription factor 2 (ATF2)-regulated genes involved in apoptosis regulation. ATF2 phosphorylation and recruitment to DNA damage-induced foci was increased in Ku70-deficient cells, suggesting that Ku represses ATF2 activation. Ku70 S155A/D156A substitutions further enhanced this repression. S155A substitution alone was sufficient to confer enhanced survival, whereas alteration to a phosphomimetic residue (S155D) reversed this effect, suggesting that S155 is a phosphorylation site. Thus, these findings infer that Ku links signals from the DNA repair machinery to DNA damage signaling regulators that control apoptotic pathways.
Collapse
|
38
|
Zhao BX, Chen HZ, Du XD, Luo J, He JP, Wang RH, Wang Y, Wu R, Hou RR, Hong M, Wu Q. Orphan receptor TR3 enhances p53 transactivation and represses DNA double-strand break repair in hepatoma cells under ionizing radiation. Mol Endocrinol 2011; 25:1337-50. [PMID: 21659476 DOI: 10.1210/me.2011-0081] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In response to ionizing radiation (IR)-induced DNA double-strand breaks (DSB), cells elicit an evolutionarily conserved checkpoint response that induces cell cycle arrest and either DNA repair or apoptosis, thereby maintaining genomic stability. DNA-dependent protein kinase (DNA-PK) is a central enzyme involved in DSB repair for mammalian cells that comprises a DNA-PK catalytic subunit and the Ku protein, which act as regulatory elements. DNA-PK also functions as a signaling molecule to selectively regulate p53-dependent apoptosis in response to IR. Herein, we demonstrate that the orphan nuclear receptor TR3 suppresses DSB repair by blocking Ku80 DNA-end binding activity and promoting DNA-PK-induced p53 activity in hepatoma cells. We find that TR3 interacts with Ku80 and inhibits its binding to DNA ends, which then suppresses DSB repair. Furthermore, TR3 is a phosphorylation substrate for DNA-PK and interacts with DNA-PK catalytic subunit in a Ku80-independent manner. Phosphorylated TR3, in turn, enhances DNA-PK-induced phosphorylation and p53 transcription activity, thereby enhancing IR-induced apoptosis in hepatoma cells. Together, our findings reveal novel functions for TR3, not only in DSB repair regulation but also in IR-induced hepatoma cell apoptosis, and they suggest that TR3 is a potential target for cancer radiotherapy.
Collapse
Affiliation(s)
- Bi-xing Zhao
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Momčilović O, Navara C, Schatten G. Cell cycle adaptations and maintenance of genomic integrity in embryonic stem cells and induced pluripotent stem cells. Results Probl Cell Differ 2011; 53:415-458. [PMID: 21630155 DOI: 10.1007/978-3-642-19065-0_18] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Pluripotent stem cells have the capability to undergo unlimited self-renewal and differentiation into all somatic cell types. They have acquired specific adjustments in the cell cycle structure that allow them to rapidly proliferate, including cell cycle independent expression of cell cycle regulators and lax G(1) to S phase transition. However, due to the developmental role of embryonic stem cells (ES) it is essential to maintain genomic integrity and prevent acquisition of mutations that would be transmitted to multiple cell lineages. Several modifications in DNA damage response of ES cells accommodate dynamic cycling and preservation of genetic information. The absence of a G(1)/S cell cycle arrest promotes apoptotic response of damaged cells before DNA changes can be fixed in the form of mutation during the S phase, while G(2)/M cell cycle arrest allows repair of damaged DNA following replication. Furthermore, ES cells express higher level of DNA repair proteins, and exhibit enhanced repair of multiple types of DNA damage. Similarly to ES cells, induced pluripotent stem (iPS) cells are poised to proliferate and exhibit lack of G(1)/S cell cycle arrest, extreme sensitivity to DNA damage, and high level of expression of DNA repair genes. The fundamental mechanisms by which the cell cycle regulates genomic integrity in ES cells and iPS cells are similar, though not identical.
Collapse
Affiliation(s)
- Olga Momčilović
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | | |
Collapse
|
40
|
KOIKE M, YUTOKU Y, KOIKE A. Establishment of Ku70-Deficient Lung Epithelial Cell Lines and Their Hypersensitivity to Low-Dose X-Irradiation. J Vet Med Sci 2011; 73:549-54. [DOI: 10.1292/jvms.10-0454] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Manabu KOIKE
- DNA Repair Gene Res., National Institute of Radiological Sciences
| | - Yasutomo YUTOKU
- DNA Repair Gene Res., National Institute of Radiological Sciences
- Graduate School of Science, Chiba University
| | - Aki KOIKE
- DNA Repair Gene Res., National Institute of Radiological Sciences
| |
Collapse
|
41
|
Fink LS, Lerner CA, Torres PF, Sell C. Ku80 facilitates chromatin binding of the telomere binding protein, TRF2. Cell Cycle 2010; 9:3798-806. [PMID: 20890109 DOI: 10.4161/cc.9.18.13129] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Ku70/80 heterodimer is central to non-homologous end joining repair of DNA double-strand breaks and the Ku80 gene appears to be essential for human but not rodent cell survival. The Ku70/80 heterodimer is located at telomeres but its precise function in telomere maintenance is not known. In order to examine the role of Ku80 beyond DNA repair in more detail, we have taken a knockdown approach using a human fibroblast strain. Following targeted Ku80 knockdown, telomere defects are observed and the steady state levels of the TRF2 protein are reduced. Inhibitor studies indicate that this loss of TRF2 is mediated by the proteasome and degradation of TRF2 following Ku depletion appears to involve a decrease in chromatin binding of TRF2, suggesting that the Ku heterodimer enhances TRF2 chromatin association and that non-chromatin bound TRF2 is targeted to the proteasome.
Collapse
Affiliation(s)
- Lauren S Fink
- Drexel University College of Medicine, Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
42
|
Abstract
The Myc-deregulating chromosomal T(12;15)(Igh-Myc) translocation, the hallmark mutation of inflammation- and interleukin 6-dependent mouse plasmacytoma (PCT), is the premier model of cancer-associated chromosomal translocations because it is the only translocation in mice that occurs spontaneously (B lymphocyte lineage) and with predictably high incidence (approximately 85% of PCT), and has a direct counterpart in humans: Burkitt lymphoma t(8;14)(q24;q32) translocation. Here, we report on the development of a genetic system for the detection of T(12;15)(Igh-Myc) translocations in plasma cells of a mouse strain in which an enhanced green fluorescent protein (GFP)-encoding reporter gene has been targeted to Myc. Four of the PCTs that developed in the newly generated translocation reporter mice, designated iGFP(5'Myc), expressed GFP consequent to naturally occurring T(12;15) translocation. GFP expression did not interfere with tumor development or the deregulation of Myc on derivative 12 of translocation, der (12), because the reporter gene was allocated to the reciprocal product of translocation, der (15). Although the described reporter gene approach requires refinement before T(12;15) translocations can be quantitatively detected in vivo, including in B lymphocyte lineage cells that have not yet completed malignant transformation, our findings provide proof of principle that reporter gene tagging of oncogenes in gene-targeted mice can be used to elucidate unresolved questions on the occurrence, distribution and trafficking of cells that have acquired cancer-causing chromosomal translocations of great relevance for humans.
Collapse
|
43
|
Urano M, He F, Minami A, Ling CC, Li GC. Response to multiple radiation doses of human colorectal carcinoma cells infected with recombinant adenovirus containing dominant-negative Ku70 fragment. Int J Radiat Oncol Biol Phys 2010; 77:877-85. [PMID: 20510198 DOI: 10.1016/j.ijrobp.2009.12.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 12/23/2009] [Accepted: 12/28/2009] [Indexed: 11/30/2022]
Abstract
PURPOSE To investigate the effect of recombinant replication-defective adenovirus containing dominant-negative Ku70 fragment on the response of tumor cells to multiple small radiation doses. Our ultimate goal is to demonstrate the feasibility of using this virus in gene-radiotherapy to enhance the radiation response of tumor cells. METHODS AND MATERIALS Human colorectal HCT8 and HT29 carcinoma cells were plated in glass tubes, infected with virus (25 multiplicity of infection), and irradiated with a single dose or zero to five doses of 3 Gy each at 6-h intervals. Hypoxia was induced by flushing with 100% nitrogen gas. The cells were trypsinized 0 or 6 h after the final irradiation, and cell survival was determined by colony formation. The survival data were fitted to linear-quadratic model or exponential line. RESULTS Virus infection enhanced the radiation response of the HCT8 and HT29 cells. The virus enhancement ratio for single-dose irradiation at a surviving fraction of 0.1 was approximately 1.3 for oxic and hypoxic HCT8 and 1.4 and 1.1 for oxic and hypoxic HT29, respectively. A similar virus enhancement ratio of 1.2-1.3 was observed for both oxic and hypoxic cells irradiated with multiple doses; however, these values were smaller than the values found for dominant-negative Ku70-transfected Rat-1 cells. This difference has been discussed. The oxygen enhancement ratio for HCT8 and HT29 receiving fractionated doses was 1.2 and 2.0, respectively, and virus infection altered them slightly. CONCLUSION Infection of recombinant replication-defective adenovirus containing dominant-negative Ku70 fragment enhanced the response of human colorectal cancer cells to single and multiple radiation doses.
Collapse
Affiliation(s)
- Muneyasu Urano
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
44
|
Rotolo JA, Mesicek J, Maj J, Truman JP, Haimovitz-Friedman A, Kolesnick R, Fuks Z. Regulation of ceramide synthase-mediated crypt epithelium apoptosis by DNA damage repair enzymes. Cancer Res 2010; 70:957-67. [PMID: 20086180 DOI: 10.1158/0008-5472.can-09-1562] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Acute endothelial cell apoptosis and microvascular compromise couple gastrointestinal tract irradiation to reproductive death of intestinal crypt stem cell clonogens (SCCs) following high-dose radiation. Genetic or pharmacologic inhibition of endothelial apoptosis prevents intestinal damage, but as the radiation dose is escalated, SCCs become directly susceptible to an alternate cell death mechanism, mediated via ceramide synthase (CS)-stimulated de novo synthesis of the proapoptotic sphingolipid ceramide, and p53-independent apoptosis of crypt SCCs. We previously reported that ataxia-telangiectasia mutated deficiency resets the primary radiation lethal pathway, allowing CS-mediated apoptosis at the low-dose range of radiation. The mechanism for this event, termed target reordering, remains unknown. Here, we show that inactivation of DNA damage repair pathways signals CS-mediated apoptosis in crypt SCCs, presumably via persistent unrepaired DNA double-strand breaks (DSBs). Genetic loss of function of sensors and transducers of DNA DSB repair confers the CS-mediated lethal pathway in intestines of sv129/B6Mre11(ATLD1/ATLD1) and C57BL/6(Prkdc/SCID) (severe combined immunodeficient) mice exposed to low-dose radiation. In contrast, CS-mediated SCC lethality was mitigated in irradiated gain-of-function Rad50(s/s) mice, and epistasis studies order Rad50 upstream of Mre11. These studies suggest unrepaired DNA DSBs as causative in target reordering in intestinal SCCs. As such, we provide an in vivo model of DNA damage repair that is standardized, can be exploited to understand allele-specific regulation in intact tissue, and is pharmacologically tractable.
Collapse
Affiliation(s)
- Jimmy A Rotolo
- Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Kong D, Yaguchi SI, Yamori T. Effect of ZSTK474, a novel phosphatidylinositol 3-kinase inhibitor, on DNA-dependent protein kinase. Biol Pharm Bull 2009; 32:297-300. [PMID: 19182393 DOI: 10.1248/bpb.32.297] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphatidylinositol 3-kinase (PI3K) has been implicated in a variety of diseases including cancer. A number of PI3K inhibitors have recently been developed for use in cancer therapy. ZSTK474 is a highly promising antitumor agent targeting PI3K. We previously reported that ZSTK474 showed potent inhibition against four class I PI3K isoforms but not against 140 protein kinases. However, whether ZSTK474 inhibits DNA-dependent protein kinase (DNA-PK), which is structurally similar to PI3K, remains unknown. To investigate the inhibition of DNA-PK, we developed a new DNA-PK assay method using Kinase-Glo. The inhibition activity of ZSTK474 against DNA-PK was determined, and shown to be far weaker compared with that observed against PI3K. The inhibition selectivity of ZSTK474 for PI3K over DNA-PK was significantly higher than other PI3K inhibitors, namely NVP-BEZ235, PI-103 and LY294002. These results indicated that ZSTK474 was the most specific agent among these PI3K inhibitors.
Collapse
Affiliation(s)
- Dexin Kong
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | | | | |
Collapse
|
46
|
Tagging of endogenous genes in a Toxoplasma gondii strain lacking Ku80. EUKARYOTIC CELL 2009; 8:530-9. [PMID: 19218426 DOI: 10.1128/ec.00358-08] [Citation(s) in RCA: 396] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
As with other organisms with a completed genome sequence, opportunities for performing large-scale studies, such as expression and localization, on Toxoplasma gondii are now much more feasible. We present a system for tagging genes endogenously with yellow fluorescent protein (YFP) in a Deltaku80 strain. Ku80 is involved in DNA strand repair and nonhomologous DNA end joining; previous studies in other organisms have shown that in its absence, random integration is eliminated, allowing the insertion of constructs with homologous sequences into the proper loci. We generated a vector consisting of YFP and a dihydrofolate reductase-thymidylate synthase selectable marker. The YFP is preceded by a ligation-independent cloning (LIC) cassette, which allows the insertion of PCR products containing complementary LIC sequences. We demonstrated that the Deltaku80 strain is more effective and efficient in integrating the YFP-tagged constructs into the correct locus than wild-type strain RH. We then selected several hypothetical proteins that were identified by a proteomic screen of excreted-secreted antigens and that displayed microarray expression profiles similar to known micronemal proteins, with the thought that these could potentially be new proteins with roles in cell invasion. We localized these hypothetical proteins by YFP fluorescence and showed expression by immunoblotting. Our findings demonstrate that the combination of the Deltaku80 strain and the pYFP.LIC constructs reduces both the time and cost required to determine localization of a new gene of interest. This should allow the opportunity for performing larger-scale studies of novel T. gondii genes.
Collapse
|
47
|
Uehara Y, Ikehata H, Komura JI, Ito A, Ogata M, Itoh T, Hirayama R, Furusawa Y, Ando K, Paunesku T, Woloschak GE, Komatsu K, Matsuura S, Ikura T, Kamiya K, Ono T. Absence of Ku70 gene obliterates X-ray-induced lacZ mutagenesis of small deletions in mouse tissues. Radiat Res 2008; 170:216-23. [PMID: 18666816 DOI: 10.1667/rr1283.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2007] [Accepted: 03/25/2008] [Indexed: 11/03/2022]
Abstract
With the goal of understanding the role of non-homologous end-joining repair in the maintenance of genetic information at the tissue level, we studied mutations induced by radiation and subsequent repair of DNA double-strand breaks in Ku70 gene-deficient lacZ transgenic mice. The local mutation frequencies and types of mutations were analyzed on a lacZ gene that had been chromosomally integrated, which allowed us to monitor DNA sequence alterations within this 3.1-kbp region. The mutagenic process leading to the development of the most frequently observed small deletions in wild-type mice after exposure to 20 Gy of X rays was suppressed in Ku70(-/-) mice in the three tissues examined: spleen, liver and brain. Examination of DNA break rejoining and the phosphorylation of histone H2AX in Ku70-deficient and -proficient mice revealed that Ku70 deficiency decreased the frequency of DNA rejoining, suggesting that DNA rejoining is one of the causes of radiation-induced deletion mutations. Limited but statistically significant DNA rejoining was found in the liver and brain of Ku70-deficient mice 3.5 days after irradiation, showing the presence of a DNA double-strand break repair system other than non-homologous end joining. These data indicate a predominant role of non-homologous end joining in the production of radiation-induced mutations in vivo.
Collapse
Affiliation(s)
- Yoshihiko Uehara
- Department of Cell Biology, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tichy ED, Stambrook PJ. DNA repair in murine embryonic stem cells and differentiated cells. Exp Cell Res 2008; 314:1929-36. [PMID: 18374918 PMCID: PMC2532524 DOI: 10.1016/j.yexcr.2008.02.007] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 02/15/2008] [Accepted: 02/15/2008] [Indexed: 01/06/2023]
Abstract
Embryonic stem (ES) cells are rapidly proliferating, self-renewing cells that have the capacity to differentiate into all three germ layers to form the embryo proper. Since these cells are critical for embryo formation, they must have robust prophylactic mechanisms to ensure that their genomic integrity is preserved. Indeed, several studies have suggested that ES cells are hypersensitive to DNA damaging agents and readily undergo apoptosis to eliminate damaged cells from the population. Other evidence suggests that DNA damage can cause premature differentiation in these cells. Several laboratories have also begun to investigate the role of DNA repair in the maintenance of ES cell genomic integrity. It does appear that ES cells differ in their capacity to repair damaged DNA compared to differentiated cells. This minireview focuses on repair mechanisms ES cells may use to help preserve genomic integrity and compares available data regarding these mechanisms with those utilized by differentiated cells.
Collapse
Affiliation(s)
- Elisia D Tichy
- Department of Cell and Cancer Biology, University of Cincinnati, Cincinnati, OH 45267, USA.
| | | |
Collapse
|
49
|
Abstract
ERCC1-XPF endonuclease is required for nucleotide excision repair (NER) of helix-distorting DNA lesions. However, mutations in ERCC1 or XPF in humans or mice cause a more severe phenotype than absence of NER, prompting a search for novel repair activities of the nuclease. In Saccharomyces cerevisiae, orthologs of ERCC1-XPF (Rad10-Rad1) participate in the repair of double-strand breaks (DSBs). Rad10-Rad1 contributes to two error-prone DSB repair pathways: microhomology-mediated end joining (a Ku86-independent mechanism) and single-strand annealing. To determine if ERCC1-XPF participates in DSB repair in mammals, mutant cells and mice were screened for sensitivity to gamma irradiation. ERCC1-XPF-deficient fibroblasts were hypersensitive to gamma irradiation, and gammaH2AX foci, a marker of DSBs, persisted in irradiated mutant cells, consistent with a defect in DSB repair. Mutant mice were also hypersensitive to irradiation, establishing an essential role for ERCC1-XPF in protecting against DSBs in vivo. Mice defective in both ERCC1-XPF and Ku86 were not viable. However, Ercc1(-/-) Ku86(-/-) fibroblasts were hypersensitive to gamma irradiation compared to single mutants and accumulated significantly greater chromosomal aberrations. Finally, in vitro repair of DSBs with 3' overhangs led to large deletions in the absence of ERCC1-XPF. These data support the conclusion that, as in yeast, ERCC1-XPF facilitates DSB repair via an end-joining mechanism that is Ku86 independent.
Collapse
|
50
|
Fattah KR, Ruis BL, Hendrickson EA. Mutations to Ku reveal differences in human somatic cell lines. DNA Repair (Amst) 2008; 7:762-74. [PMID: 18387344 DOI: 10.1016/j.dnarep.2008.02.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 02/01/2008] [Accepted: 02/04/2008] [Indexed: 11/15/2022]
Abstract
NHEJ (non-homologous end joining) is the predominant mechanism for repairing DNA double-stranded breaks in human cells. One essential NHEJ factor is the Ku heterodimer, which is composed of Ku70 and Ku86. Here we have generated heterozygous loss-of-function mutations for each of these genes in two different human somatic cell lines, HCT116 and NALM-6, using gene targeting. Previous work had suggested that phenotypic differences might exist between the genes and/or between the cell lines. By providing a side-by-each comparison of the four cell lines, we demonstrate that there are indeed subtle differences between loss-of-function mutations for Ku70 versus Ku86, which is accentuated by whether the mutations were derived in the HCT116 or NALM-6 genetic background. Overall, however, the phenotypes of the four lines are quite similar and they provide a compelling argument for the hypothesis that Ku loss-of-function mutations in human somatic cells result in demonstrable haploinsufficiencies. Collectively, these studies demonstrate the importance of proper biallelic expression of these genes for NHEJ and telomere maintenance and they provide insights into why these genes are uniquely essential for primates.
Collapse
Affiliation(s)
- Kazi R Fattah
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, United States
| | | | | |
Collapse
|