1
|
Cardenas R, Fernandez-Silva A, Ramirez-Bello V, Amero C. Characterization of the Interaction of Human γS Crystallin with Metal Ions and Its Effect on Protein Aggregation. Biomolecules 2024; 14:1644. [PMID: 39766351 PMCID: PMC11674332 DOI: 10.3390/biom14121644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Cataracts are diseases characterized by the opacity of the ocular lens and the subsequent deterioration of vision. Metal ions are one of the factors that have been reported to induce crystallin aggregation. For HγS crystallin, several equivalent ratios of Cu(II) promote protein aggregation. However, reports on zinc are contradictory. To characterize the process of metal ion binding and subsequent HγS crystallin aggregation, we performed dynamic light scattering, turbidimetry, isothermal titration calorimetry, fluorescence, and nuclear magnetic resonance experiments. The data show that both metal ions have multiple binding sites and promote aggregation. Zinc interacts mainly with the N-terminal domain, inducing small conformational changes, while copper interacts with both domains and induces unfolding, exposing the tryptophan residues to the solvent. Our work provides insight into the mechanisms of metal-induced aggregation at one of the lowest doses that appreciably promote aggregation over time.
Collapse
Affiliation(s)
- Reinier Cardenas
- LABRMN, Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; (R.C.); (A.F.-S.); (V.R.-B.)
| | - Arline Fernandez-Silva
- LABRMN, Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; (R.C.); (A.F.-S.); (V.R.-B.)
| | - Vanesa Ramirez-Bello
- LABRMN, Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; (R.C.); (A.F.-S.); (V.R.-B.)
- Grupo de Investigación en Producción y Sanidad en Ciencias Veterinarias y Zootecnias (PROSAVEZ), Facultad de Medicina Veterinaria y Zootecnia, Fundación Universitaria San Martín, Cali 760001, Colombia
| | - Carlos Amero
- LABRMN, Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; (R.C.); (A.F.-S.); (V.R.-B.)
| |
Collapse
|
2
|
Ribeiro TP, Martins-de-Sa D, Macedo LLP, Lourenço-Tessutti IT, Ruffo GC, Sousa JPA, Rósario Santana JMD, Oliveira-Neto OB, Moura SM, Silva MCM, Morgante CV, Oliveira NG, Basso MF, Grossi-de-Sa MF. Cotton plants overexpressing the Bacillus thuringiensis Cry23Aa and Cry37Aa binary-like toxins exhibit high resistance to the cotton boll weevil (Anthonomus grandis). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 344:112079. [PMID: 38588981 DOI: 10.1016/j.plantsci.2024.112079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
The cotton boll weevil (CBW, Anthonomus grandis) stands as one of the most significant threats to cotton crops (Gossypium hirsutum). Despite substantial efforts, the development of a commercially viable transgenic cotton event for effective open-field control of CBW has remained elusive. This study describes a detailed characterization of the insecticidal toxins Cry23Aa and Cry37Aa against CBW. Our findings reveal that CBW larvae fed on artificial diets supplemented exclusively with Cry23Aa decreased larval survival by roughly by 69%, while supplementation with Cry37Aa alone displayed no statistical difference compared to the control. However, the combined provision of both toxins in the artificial diet led to mortality rates approaching 100% among CBW larvae (LC50 equal to 0.26 PPM). Additionally, we engineered transgenic cotton plants by introducing cry23Aa and cry37Aa genes under control of the flower bud-specific pGhFS4 and pGhFS1 promoters, respectively. Seven transgenic cotton events expressing high levels of Cry23Aa and Cry37Aa toxins in flower buds were selected for greenhouse bioassays, and the mortality rate of CBW larvae feeding on their T0 and T1 generations ranged from 75% to 100%. Our in silico analyses unveiled that Cry23Aa displays all the hallmark characteristics of β-pore-forming toxins (β-PFTs) that bind to sugar moieties in glycoproteins. Intriguingly, we also discovered a distinctive zinc-binding site within Cry23Aa, which appears to be involved in protein-protein interactions. Finally, we discuss the major structural features of Cry23Aa that likely play a role in the toxin's mechanism of action. In view of the low LC50 for CBW larvae and the significant accumulation of these toxins in the flower buds of both T0 and T1 plants, we anticipate that through successive generations of these transgenic lines, cotton plants engineered to overexpress cry23Aa and cry37Aa hold promise for effectively managing CBW infestations in cotton crops.
Collapse
Affiliation(s)
- Thuanne Pires Ribeiro
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Diogo Martins-de-Sa
- Department of Cellular Biology, University of Brasília, Brasília, DF 70910-900, Brazil; Genesilico Biotech, Brasília, DF 71503-508, Brazil
| | - Leonardo Lima Pepino Macedo
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Isabela Tristan Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Gustavo Caseca Ruffo
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Graduate Program in Genomic Science and Biotechnology, Catholic University of Brasília, Brasília, DF 71966-700, Brazil
| | - João Pedro Abreu Sousa
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Graduate Program in Genomic Science and Biotechnology, Catholic University of Brasília, Brasília, DF 71966-700, Brazil
| | - Julia Moura do Rósario Santana
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Graduate Program in Genomic Science and Biotechnology, Catholic University of Brasília, Brasília, DF 71966-700, Brazil
| | - Osmundo Brilhante Oliveira-Neto
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Euroamerican University Center, Unieuro, Brasília, DF 70790-160, Brazil
| | - Stéfanie Menezes Moura
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Maria Cristina Mattar Silva
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Carolina Vianna Morgante
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Embrapa Semi-Arid, Pretrolina, PE 56302-970, Brazil
| | - Nelson Geraldo Oliveira
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Marcos Fernando Basso
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Graduate Program in Genomic Science and Biotechnology, Catholic University of Brasília, Brasília, DF 71966-700, Brazil; Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, MS 79117-900, Brazil.
| |
Collapse
|
3
|
Csizi KS, Reiher M. Automated preparation of nanoscopic structures: Graph-based sequence analysis, mismatch detection, and pH-consistent protonation with uncertainty estimates. J Comput Chem 2024; 45:761-776. [PMID: 38124290 DOI: 10.1002/jcc.27276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Structure and function in nanoscale atomistic assemblies are tightly coupled, and every atom with its specific position and even every electron will have a decisive effect on the electronic structure, and hence, on the molecular properties. Molecular simulations of nanoscopic atomistic structures therefore require accurately resolved three-dimensional input structures. If extracted from experiment, these structures often suffer from severe uncertainties, of which the lack of information on hydrogen atoms is a prominent example. Hence, experimental structures require careful review and curation, which is a time-consuming and error-prone process. Here, we present a fast and robust protocol for the automated structure analysis and pH-consistent protonation, in short, ASAP. For biomolecules as a target, the ASAP protocol integrates sequence analysis and error assessment of a given input structure. ASAP allows for pK a prediction from reference data through Gaussian process regression including uncertainty estimation and connects to system-focused atomistic modeling described in Brunken and Reiher (J. Chem. Theory Comput. 16, 2020, 1646). Although focused on biomolecules, ASAP can be extended to other nanoscopic objects, because most of its design elements rely on a general graph-based foundation guaranteeing transferability. The modular character of the underlying pipeline supports different degrees of automation, which allows for (i) efficient feedback loops for human-machine interaction with a low entrance barrier and for (ii) integration into autonomous procedures such as automated force field parametrizations. This facilitates fast switching of the pH-state through on-the-fly system-focused reparametrization during a molecular simulation at virtually no extra computational cost.
Collapse
Affiliation(s)
- Katja-Sophia Csizi
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Markus Reiher
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Hoffnagle AM, Tezcan FA. Atomically Accurate Design of Metalloproteins with Predefined Coordination Geometries. J Am Chem Soc 2023; 145:14208-14214. [PMID: 37352018 PMCID: PMC10439731 DOI: 10.1021/jacs.3c04047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Abstract
We report a new computational protein design method for the construction of oligomeric protein assemblies around metal centers with predefined coordination geometries. We apply this method to design two homotrimeric assemblies, Tet4 and TP1, with tetrahedral and trigonal-pyramidal tris(histidine) metal coordination geometries, respectively, and demonstrate that both assemblies form the targeted metal centers with ≤0.2 Å accuracy. Although Tet4 and TP1 are constructed from the same parent protein building block, they are distinct in terms of their overall architectures, the environment surrounding the metal centers, and their metal-based reactivities, illustrating the versatility of our approach.
Collapse
Affiliation(s)
- Alexander M. Hoffnagle
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA
| |
Collapse
|
5
|
Zhang Y, Gao H, Zheng W, Xu H. Current understanding of the interactions between metal ions and Apolipoprotein E in Alzheimer's disease. Neurobiol Dis 2022; 172:105824. [PMID: 35878744 DOI: 10.1016/j.nbd.2022.105824] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/05/2022] [Accepted: 07/19/2022] [Indexed: 11/15/2022] Open
Abstract
Alzheimer's disease (AD), the most common type of dementia in the elderly, is a chronic and progressive neurodegenerative disorder with no effective disease-modifying treatments to date. Studies have shown that an imbalance in brain metal ions, such as zinc, copper, and iron, is closely related to the onset and progression of AD. Many efforts have been made to understand metal-related mechanisms and therapeutic strategies for AD. Emerging evidence suggests that interactions of brain metal ions and apolipoprotein E (ApoE), which is the strongest genetic risk factor for late-onset AD, may be one of the mechanisms for neurodegeneration. Here, we summarize the key points regarding how metal ions and ApoE contribute to the pathogenesis of AD. We further describe the interactions between metal ions and ApoE in the brain and propose that their interactions play an important role in neuropathological alterations and cognitive decline in AD.
Collapse
Affiliation(s)
- Yanhui Zhang
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Huiling Gao
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Wei Zheng
- Department of Histology and Embryology, China Medical University, Shenyang, China
| | - He Xu
- Department of Anatomy, Histology and Embryology, School of Medicine, Shenzhen University, Shenzhen, China.
| |
Collapse
|
6
|
Lei L, Wang X, Zhu Y, Su W, Lv Q, Li D. Antimicrobial hydrogel microspheres for protein capture and wound healing. MATERIALS & DESIGN 2022; 215:110478. [DOI: 10.1016/j.matdes.2022.110478] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
|
7
|
The homogenous alternative to biomineralization: Zn- and Mn-rich materials enable sharp organismal "tools" that reduce force requirements. Sci Rep 2021; 11:17481. [PMID: 34471148 PMCID: PMC8410824 DOI: 10.1038/s41598-021-91795-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/18/2021] [Indexed: 11/09/2022] Open
Abstract
We measured hardness, modulus of elasticity, and, for the first time, loss tangent, energy of fracture, abrasion resistance, and impact resistance of zinc- and manganese-enriched materials from fangs, stings and other "tools" of an ant, spider, scorpion and nereid worm. The mechanical properties of the Zn- and Mn-materials tended to cluster together between plain and biomineralized "tool" materials, with the hardness reaching, and most abrasion resistance values exceeding, those of calcified salmon teeth and crab claws. Atom probe tomography indicated that Zn was distributed homogeneously on a nanometer scale and likely bound as individual atoms to more than ¼ of the protein residues in ant mandibular teeth. This homogeneity appears to enable sharper, more precisely sculpted "tools" than materials with biomineral inclusions do, and also eliminates interfaces with the inclusions that could be susceptible to fracture. Based on contact mechanics and simplified models, we hypothesize that, relative to plain materials, the higher elastic modulus, hardness and abrasion resistance minimize temporary or permanent tool blunting, resulting in a roughly 2/3 reduction in the force, energy, and muscle mass required to initiate puncture of stiff materials, and even greater force reductions when the cumulative effects of abrasion are considered. We suggest that the sharpness-related force reductions lead to significant energy savings, and can also enable organisms, especially smaller ones, to puncture, cut, and grasp objects that would not be accessible with plain or biomineralized "tools".
Collapse
|
8
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
9
|
Chakrabarty B, Naganathan V, Garg K, Agarwal Y, Parekh N. NAPS update: network analysis of molecular dynamics data and protein-nucleic acid complexes. Nucleic Acids Res 2020; 47:W462-W470. [PMID: 31106363 PMCID: PMC6602509 DOI: 10.1093/nar/gkz399] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/30/2019] [Accepted: 05/07/2019] [Indexed: 02/04/2023] Open
Abstract
Network theory is now a method of choice to gain insights in understanding protein structure, folding and function. In combination with molecular dynamics (MD) simulations, it is an invaluable tool with widespread applications such as analyzing subtle conformational changes and flexibility regions in proteins, dynamic correlation analysis across distant regions for allosteric communications, in drug design to reveal alternative binding pockets for drugs, etc. Updated version of NAPS now facilitates network analysis of the complete repertoire of these biomolecules, i.e., proteins, protein–protein/nucleic acid complexes, MD trajectories, and RNA. Various options provided for analysis of MD trajectories include individual network construction and analysis of intermediate time-steps, comparative analysis of these networks, construction and analysis of average network of the ensemble of trajectories and dynamic cross-correlations. For protein–nucleic acid complexes, networks of the whole complex as well as that of the interface can be constructed and analyzed. For analysis of proteins, protein–protein complexes and MD trajectories, network construction based on inter-residue interaction energies with realistic edge-weights obtained from standard force fields is provided to capture the atomistic details. Updated version of NAPS also provides improved visualization features, interactive plots and bulk execution. URL: http://bioinf.iiit.ac.in/NAPS/
Collapse
Affiliation(s)
- Broto Chakrabarty
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology - Hyderabad 500032, India
| | - Varun Naganathan
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology - Hyderabad 500032, India
| | - Kanak Garg
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology - Hyderabad 500032, India
| | - Yash Agarwal
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology - Hyderabad 500032, India
| | - Nita Parekh
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology - Hyderabad 500032, India
| |
Collapse
|
10
|
Specific metallo-protein interactions and antimicrobial activity in Histatin-5, an intrinsically disordered salivary peptide. Sci Rep 2019; 9:17303. [PMID: 31754129 PMCID: PMC6872563 DOI: 10.1038/s41598-019-52676-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/10/2019] [Indexed: 02/06/2023] Open
Abstract
Histatin-5 (Hst-5) is an antimicrobial, salivary protein that is involved in the host defense system. Hst-5 has been proposed to bind functionally relevant zinc and copper but presents challenges in structural studies due to its disordered conformation in aqueous solution. Here, we used circular dichroism (CD) and UV resonance Raman (UVRR) spectroscopy to define metallo-Hst-5 interactions in aqueous solution. A zinc-containing Hst-5 sample exhibits shifted Raman bands, relative to bands observed in the absence of zinc. Based on comparison to model compounds and to a family of designed, zinc-binding beta hairpins, the alterations in the Hst-5 UVRR spectrum are attributed to zinc coordination by imidazole side chains. Zinc addition also shifted a tyrosine aromatic ring UVRR band through an electrostatic interaction. Copper addition did not have these effects. A sequence variant, H18A/H19A, was employed; this mutant has less potent antifungal activity, when compared to Hst-5. Zinc addition had only a small effect on the thermal stability of this mutant. Interestingly, both zinc and copper addition shifted histidine UVRR bands in a manner diagnostic for metal coordination. Results obtained with a K13E/R22G mutant were similar to those obtained with wildtype. These experiments show that H18 and H19 contribute to a zinc binding site. In the H18A/H19A mutant the specificity of the copper/zinc binding sites is lost. The experiments implicate specific zinc binding to be important in the antimicrobial activity of Hst-5.
Collapse
|
11
|
Disruption of the Metal Ion Environment by EDTA for Silk Formation Affects the Mechanical Properties of Silkworm Silk. Int J Mol Sci 2019; 20:ijms20123026. [PMID: 31234286 PMCID: PMC6627089 DOI: 10.3390/ijms20123026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/16/2019] [Accepted: 06/16/2019] [Indexed: 11/22/2022] Open
Abstract
Silk fiber has become a research focus because of its comprehensive mechanical properties. Metal ions can influence the conformational transition of silk fibroin. Current research is mainly focused on the role of a single ion, rather than the whole metal ion environment. Here, we report the effects of the overall metal ion environment on the secondary structure and mechanical properties of silk fibers after direct injection and feeding of silkworms with EDTA. The metal composition of the hemolymph, silk gland, and silk fiber changed significantly post EDTA treatment. Synchrotron FTIR analysis indicated that the secondary structure of silk fiber after EDTA treatment changed dramatically; particularly, the β-sheets decreased and the β-turns increased. Post EDTA treatment, the silk fiber had significantly decreased strength, Young’s modulus, and toughness as compared with the control groups, while the strain exhibited no obvious change. These changes can be attributed to the change in the metal ion environment in the silk fibroin and sericin in the silk gland. Our investigation provides a new theoretical basis for the natural silk spinning process, and our findings could help develop a method to modify the mechanical properties of silk fiber using metal ions.
Collapse
|
12
|
Thomas SA, Mishra B, Myneni SCB. High Energy Resolution-X-ray Absorption Near Edge Structure Spectroscopy Reveals Zn Ligation in Whole Cell Bacteria. J Phys Chem Lett 2019; 10:2585-2592. [PMID: 31039606 DOI: 10.1021/acs.jpclett.9b01186] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Identifying the zinc (Zn) ligation and coordination environment in complex biological and environmental systems is crucial to understand the role of Zn as a biologically essential but sometimes toxic metal. Most studies on Zn coordination in biological or environmental samples rely on the extended X-ray absorption fine structure (EXAFS) region of a Zn K-edge X-ray absorption spectroscopy (XAS) spectrum. However, EXAFS analysis cannot identify unique nearest neighbors with similar atomic number (i.e., O versus N) and provides little information on Zn ligation. Herein, we demonstrate that high energy resolution-X-ray absorption near edge structure (HR-XANES) spectroscopy enables the direct determination of Zn ligation in whole cell bacteria, providing additional insights lost from EXAFS analysis at a fraction of the scan time and Zn concentration. HR-XANES is a relatively new technique that has improved our understanding of trace metals (e.g., Hg, Cu, and Ce) in dilute systems. This study is the first to show that HR-XANES can unambiguously detect Zn coordination to carboxyl, phosphoryl, imidazole, and/or thiol moieties in model microorganisms.
Collapse
Affiliation(s)
- Sara A Thomas
- Department of Geosciences , Princeton University , Guyot Hall, Princeton , New Jersey 08544 , United States
| | - Bhoopesh Mishra
- School of Chemical and Process Engineering , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Satish C B Myneni
- Department of Geosciences , Princeton University , Guyot Hall, Princeton , New Jersey 08544 , United States
| |
Collapse
|
13
|
Structure of tRNA-Modifying Enzyme TiaS and Motions of Its Substrate Binding Zinc Ribbon. J Mol Biol 2018; 430:4183-4194. [PMID: 30121296 DOI: 10.1016/j.jmb.2018.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 12/28/2022]
Abstract
The accurate modification of the tRNAIle anticodon wobble cytosine 34 is critical for AUA decoding in protein synthesis. Archaeal tRNAIle2 cytosine 34 is modified with agmatine in the presence of ATP by TiaS (tRNAIle2 agmatidine synthetase). However, no structure of apo-form full-length TiaS is available currently. Here, the crystal structures of apo TiaS and a complex of TiaS-agmatine-AMPPCP-Mg are presented, with properly folded zinc ribbon and Cys4-zinc coordination identified. Compared with tRNAIle2-bound form, the architecture of apo TiaS shows a totally different conformation of zinc ribbon. Molecular dynamics simulations of the docking complex between free-state TiaS and tRNAIle2 suggest that zinc ribbon domain is capable of performing large-scale motions to sample substrate binding-competent conformation. Principle component analysis and normal mode analysis show consistent results about the relative directionality of functionally correlated zinc ribbon motions. Apo TiaS and TiaS-agmatine-AMPPCP-Mg/TiaS-AMPCPP-Mg complex structures capture two snapshots of the flexible ATP-Mg binding p2loop step-by-step stabilization. Research from this study provides new insight into TiaS functional mechanism and the dynamic feature of zinc ribbons.
Collapse
|
14
|
Łoboda D, Rowińska-Żyrek M. Zinc binding sites in Pra1, a zincophore from Candida albicans. Dalton Trans 2018; 46:13695-13703. [PMID: 28725901 DOI: 10.1039/c7dt01675a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aim of this work is to understand the interactions of Zn(ii) with Pra1, a zincophore from Candida albicans, one of the most common causes of serious fungal infections in humans. Pra1 is a 299 amino acid protein, secreted from the fungus to specifically bind Zn(ii) and deliver it to a transmembrane zinc transporter, Zrt1. We take the first step towards understanding the bioinorganic chemistry of this process, by pointing out the Zn(ii) binding sites in Pra1 and understanding the thermodynamics of such interactions. Our approach involves working on model systems (unstructured parts of proteins) in order to identify those regions in Pra1, to which zinc binds with the highest affinity. Mass spectrometry shows the stoichiometry of Zn(ii)-peptide complex formation and potentiometric studies give us the partial and overall stability constants for all the formed zinc complexes. NMR clarifies binding sites in the case of doubts. A detailed comparison of these results shows that the C-terminal region of Pra1 binds Zn(ii) with the highest affinity, indicating that this region of the zincophore is responsible for the binding of zinc. Such knowledge is an input to the basic bioinorganic chemistry of zinc; it allows us to understand the inorganic biochemistry of zincophores, and it might be a stepping stone towards finding new, fungus specific treatments based on parts of zincophores coupled with antifungal drugs.
Collapse
Affiliation(s)
- Dorota Łoboda
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland.
| | | |
Collapse
|
15
|
Kluska K, Adamczyk J, Krężel A. Metal binding properties, stability and reactivity of zinc fingers. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.009] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Mazmanian K, Dudev T, Lim C. How First Shell–Second Shell Interactions and Metal Substitution Modulate Protein Function. Inorg Chem 2018; 57:14052-14061. [DOI: 10.1021/acs.inorgchem.8b01029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Karine Mazmanian
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 10617, Taiwan
- Taiwan and Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University, Sofia 1164, Bulgaria
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
17
|
Gumienna‐Kontecka E, Rowińska‐Żyrek M, Łuczkowski M. The Role of Trace Elements in Living Organisms. RECENT ADVANCES IN TRACE ELEMENTS 2018:177-206. [DOI: 10.1002/9781119133780.ch9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Grauffel C, Lim C. Factors governing when a metal-bound water is deprotonated in proteins. Phys Chem Chem Phys 2018; 20:29625-29636. [DOI: 10.1039/c8cp04776f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We evaluate the extent to which the pKw depends on the type, number, and metal-binding mode of the first-shell ligands, the metal–ligand bond distances, first-shell⋯second-shell H-bonding interactions, and the protein environment.
Collapse
Affiliation(s)
- Cédric Grauffel
- Institute of Biomedical Sciences
- Academia Sinica
- Taipei 115
- Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences
- Academia Sinica
- Taipei 115
- Taiwan
- Department of Chemistry
| |
Collapse
|
19
|
The crystal structure of the regulatory domain of the human sodium-driven chloride/bicarbonate exchanger. Sci Rep 2017; 7:12131. [PMID: 28935959 PMCID: PMC5608694 DOI: 10.1038/s41598-017-12409-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 09/06/2017] [Indexed: 12/12/2022] Open
Abstract
The sodium-driven chloride/bicarbonate exchanger (NDCBE) is essential for maintaining homeostatic pH in neurons. The crystal structure at 2.8 Å resolution of the regulatory N-terminal domain of human NDCBE represents the first crystal structure of an electroneutral sodium-bicarbonate cotransporter. The crystal structure forms an equivalent dimeric interface as observed for the cytoplasmic domain of Band 3, and thus establishes that the consensus motif VTVLP is the key minimal dimerization motif. The VTVLP motif is highly conserved and likely to be the physiologically relevant interface for all other members of the SLC4 family. A novel conserved Zn2+-binding motif present in the N-terminal domain of NDCBE is identified and characterized in vitro. Cellular studies confirm the Zn2+ dependent transport of two electroneutral bicarbonate transporters, NCBE and NBCn1. The Zn2+ site is mapped to a cluster of histidines close to the conserved ETARWLKFEE motif and likely plays a role in the regulation of this important motif. The combined structural and bioinformatics analysis provides a model that predicts with additional confidence the physiologically relevant interface between the cytoplasmic domain and the transmembrane domain.
Collapse
|
20
|
Kreider-Mueller A, Quinlivan PJ, Owen JS, Parkin G. Tris(2-mercaptoimidazolyl)hydroborato Cadmium Thiolate Complexes, [Tm But]CdSAr: Thiolate Exchange at Cadmium in a Sulfur-Rich Coordination Environment. Inorg Chem 2017; 56:4644-4654. [PMID: 28368611 PMCID: PMC5461919 DOI: 10.1021/acs.inorgchem.7b00296] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Indexed: 11/30/2022]
Abstract
A series of cadmium thiolate compounds that feature a sulfur-rich coordination environment, namely [TmBut]CdSAr, have been synthesized by the reactions of [TmBut]CdMe with ArSH (Ar = C6H4-4-F, C6H4-4-But, C6H4-4-OMe, and C6H4-3-OMe). In addition, the pyridine-2-thiolate and pyridine-2-selenolate derivatives, [TmBut]CdSPy and [TmBut]CdSePy have been obtained via the respective reactions of [TmBut]CdMe with pyridine-2-thione and pyridine-2-selone. The molecular structures of [TmBut]CdSAr and [TmBut]CdEPy (E = S or Se) have been determined by X-ray diffraction and demonstrate that, in each case, the [CdS4] motif is distorted tetrahedral and approaches a trigonal monopyramidal geometry in which the thiolate ligand adopts an equatorial position; [TmBut]CdSPy and [TmBut]CdSePy, however, exhibit an additional long-range interaction with the pyridyl nitrogen atoms. The ability of the thiolate ligands to participate in exchange was probed by 1H and 19F nuclear magnetic resonance (NMR) spectroscopic studies of the reactions of [TmBut]CdSC6H4-4-F with ArSH (Ar = C6H4-4-But or C6H4-4-OMe), which demonstrate that (i) exchange is facile and (ii) coordination of thiolate to cadmium is most favored for the p-fluorophenyl derivative. Furthermore, a two-dimensional EXSY experiment involving [TmBut]CdSC6H4-4-F and 4-fluorothiophenol demonstrates that degenerate thiolate ligand exchange is also facile on the NMR time scale.
Collapse
Affiliation(s)
- Ava Kreider-Mueller
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Patrick J. Quinlivan
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Jonathan S. Owen
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Gerard Parkin
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
21
|
Kasireddy C, Ellis JM, Bann JG, Mitchell-Koch KR. The Biophysical Probes 2-fluorohistidine and 4-fluorohistidine: Spectroscopic Signatures and Molecular Properties. Sci Rep 2017; 7:42651. [PMID: 28198426 PMCID: PMC5309746 DOI: 10.1038/srep42651] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/11/2017] [Indexed: 11/09/2022] Open
Abstract
Fluorinated amino acids serve as valuable biological probes, by reporting on local protein structure and dynamics through 19F NMR chemical shifts. 2-fluorohistidine and 4-fluorohistidine, studied here with DFT methods, have even more capabilities for biophysical studies, as their altered pKa values, relative to histidine, allow for studies of the role of proton transfer and tautomeric state in enzymatic mechanisms. Considering the two tautomeric forms of histidine, it was found that 2-fluorohistidine primarily forms the common (for histidine) τ-tautomer at neutral pH, while 4-fluorohistidine exclusively forms the less common π-tautomer. This suggests the two isomers of fluorohistidine can also serve as probes of tautomeric form within biomolecules, both by monitoring NMR chemical shifts and by potential perturbation of the tautomeric equilibrium within biomolecules. Fluorine also enables assignment of tautomeric states in crystal structures. The differences in experimental pKa values between the isomers was found to arise from solvation effects, providing insight into the polarization and molecular properties of each isomer. Results also encompass 13C and 19F NMR chemical shifts, from both tautomers of 2-fluorohistidine and 4-fluorohistidine in a number of different environments. This work can serve as a guide for interpretation of spectroscopic results in biophysical studies employing 2-fluorohistidine and 4-fluorohistidine.
Collapse
Affiliation(s)
- Chandana Kasireddy
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260-0051, CV4 7AL, United States
| | - Jonathan M Ellis
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260-0051, CV4 7AL, United States
| | - James G Bann
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260-0051, CV4 7AL, United States
| | - Katie R Mitchell-Koch
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260-0051, CV4 7AL, United States
| |
Collapse
|
22
|
Direct immobilization of antibodies on Zn-doped Fe 3 O 4 nanoclusters for detection of pathogenic bacteria. Anal Chim Acta 2017; 952:81-87. [DOI: 10.1016/j.aca.2016.11.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 12/11/2022]
|
23
|
Boukallaba M, Kerkeni B, Lepetit C, Berthomieu D. Coordination complexes of 4-methylimidazole with ZnII and CuII in gas phase and in water: a DFT study. J Mol Model 2016; 22:301. [DOI: 10.1007/s00894-016-3167-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/09/2016] [Indexed: 10/20/2022]
|
24
|
Wątły J, Potocki S, Rowińska-Żyrek M. Zinc Homeostasis at the Bacteria/Host Interface-From Coordination Chemistry to Nutritional Immunity. Chemistry 2016; 22:15992-16010. [DOI: 10.1002/chem.201602376] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Joanna Wątły
- Faculty of Chemistry; University of Wroclaw; F. Joliot-Curie 14 50-383 Wroclaw Poland
| | - Sławomir Potocki
- Faculty of Chemistry; University of Wroclaw; F. Joliot-Curie 14 50-383 Wroclaw Poland
| | | |
Collapse
|
25
|
Guffy SL, Der BS, Kuhlman B. Probing the minimal determinants of zinc binding with computational protein design. Protein Eng Des Sel 2016; 29:327-338. [PMID: 27358168 PMCID: PMC4955873 DOI: 10.1093/protein/gzw026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 11/15/2022] Open
Abstract
Structure-based protein design tests our understanding of the minimal determinants of protein structure and function. Previous studies have demonstrated that placing zinc binding amino acids (His, Glu, Asp or Cys) near each other in a folded protein in an arrangement predicted to be tetrahedral is often sufficient to achieve binding to zinc. However, few designs have been characterized with high-resolution structures. Here, we use X-ray crystallography, binding studies and mutation analysis to evaluate three alternative strategies for designing zinc binding sites with the molecular modeling program Rosetta. While several of the designs were observed to bind zinc, crystal structures of two designs reveal binding configurations that differ from the design model. In both cases, the modeling did not accurately capture the presence or absence of second-shell hydrogen bonds critical in determining binding-site structure. Efforts to more explicitly design second-shell hydrogen bonds were largely unsuccessful as evidenced by mutation analysis and low expression of proteins engineered with extensive primary and secondary networks. Our results suggest that improved methods for designing interaction networks will be needed for creating metal binding sites with high accuracy.
Collapse
Affiliation(s)
- Sharon L. Guffy
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | - Bryan S. Der
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| |
Collapse
|
26
|
Melesina J, Robaa D, Pierce RJ, Romier C, Sippl W. Homology modeling of parasite histone deacetylases to guide the structure-based design of selective inhibitors. J Mol Graph Model 2015; 62:342-361. [DOI: 10.1016/j.jmgm.2015.10.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 12/12/2022]
|
27
|
Xu H, Gupta VB, Martins IJ, Martins RN, Fowler CJ, Bush AI, Finkelstein DI, Adlard PA. Zinc affects the proteolytic stability of Apolipoprotein E in an isoform-dependent way. Neurobiol Dis 2015; 81:38-48. [PMID: 26117305 DOI: 10.1016/j.nbd.2015.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 05/26/2015] [Accepted: 06/21/2015] [Indexed: 11/29/2022] Open
Abstract
The pathological role of zinc in Alzheimer's disease (AD) is not yet fully elucidated, but there is strong evidence that zinc homeostasis is impaired in the AD brain and that this contributes to disease pathogenesis. In this study we examined the effects of zinc on the proteolysis of synthetic Apolipoprotein E (ApoE), a protein whose allelic variants differentially contribute to the onset/progression of disease. We have demonstrated that zinc promotes the proteolysis (using plasma kallikrein, thrombin and chymotrypsin) of synthetic ApoE in an isoform-specific way (E4>E2 and E3), resulting in more ApoE fragments, particularly for ApoE4. In the absence of exogenous proteases there was no effect of metal modulation on either lipidated or non-lipidated ApoE isoforms. Thus, increased zinc in the complex milieu of the ageing and AD brain could reduce the level of normal full-length ApoE and increase other forms that are involved in neurodegeneration. We further examined human plasma samples from people with different ApoE genotypes. Consistent with previous studies, plasma ApoE levels varied according to different genotypes, with ApoE2 carriers showing the highest total ApoE levels and ApoE4 carriers the lowest. The levels of plasma ApoE were not affected by either the addition of exogenous metals (copper, zinc or iron) or by chelation. Taken together, our study reveals that zinc may contribute to the pathogenesis of AD by affecting the proteolysis of ApoE, which to some extent explains why APOE4 carriers are more susceptible to AD.
Collapse
Affiliation(s)
- He Xu
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria 3010, Australia
| | - Veer B Gupta
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, 6027 WA, Australia
| | - Ian J Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, 6027 WA, Australia
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, 6027 WA, Australia
| | - Christopher J Fowler
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria 3010, Australia
| | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria 3010, Australia
| | - David I Finkelstein
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria 3010, Australia
| | - Paul A Adlard
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria 3010, Australia.
| |
Collapse
|
28
|
Pedersen AV, Andreassen TF, Loland CJ. A conserved salt bridge between transmembrane segments 1 and 10 constitutes an extracellular gate in the dopamine transporter. J Biol Chem 2014; 289:35003-14. [PMID: 25339174 DOI: 10.1074/jbc.m114.586982] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neurotransmitter transporters play an important role in termination of synaptic transmission by mediating reuptake of neurotransmitter, but the molecular processes behind translocation are still unclear. The crystal structures of the bacterial homologue, LeuT, provided valuable insight into the structural and dynamic requirements for substrate transport. These structures support the existence of gating domains controlling access to a central binding site. On the extracellular side, access is controlled by the "thin gate" formed by an interaction between Arg-30 and Asp-404. In the human dopamine transporter (DAT), the corresponding residues are Arg-85 and Asp-476. Here, we present results supporting the existence of a similar interaction in DAT. The DAT R85D mutant has a complete loss of function, but the additional insertion of an arginine in opposite position (R85D/D476R), causing a charge reversal, results in a rescue of binding sites for the cocaine analogue [(3)H]CFT. Also, the coordination of Zn(2+) between introduced histidines (R85H/D476H) caused a ∼ 2.5-fold increase in [(3)H]CFT binding (Bmax). Importantly, Zn(2+) also inhibited [(3)H]dopamine transport in R85H/D476H, suggesting that a dynamic interaction is required for the transport process. Furthermore, cysteine-reactive chemistry shows that mutation of the gating residues causes a higher proportion of transporters to reside in the outward facing conformation. Finally, we show that charge reversal of the corresponding residues (R104E/E493R) in the serotonin transporter also rescues [(3)H](S)-citalopram binding, suggesting a conserved feature. Taken together, these data suggest that the extracellular thin gate is present in monoamine transporters and that a dynamic interaction is required for substrate transport.
Collapse
Affiliation(s)
- Anders V Pedersen
- From the Department of Neuroscience and Pharmacology, Molecular Neuropharmacology Laboratory, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Thorvald F Andreassen
- From the Department of Neuroscience and Pharmacology, Molecular Neuropharmacology Laboratory, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Claus J Loland
- From the Department of Neuroscience and Pharmacology, Molecular Neuropharmacology Laboratory, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
29
|
Degtyar E, Harrington MJ, Politi Y, Fratzl P. Die Bedeutung von Metallionen für die mechanischen Eigenschaften von Biomaterialien auf Proteinbasis. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
30
|
Degtyar E, Harrington MJ, Politi Y, Fratzl P. The Mechanical Role of Metal Ions in Biogenic Protein-Based Materials. Angew Chem Int Ed Engl 2014; 53:12026-44. [DOI: 10.1002/anie.201404272] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Indexed: 12/23/2022]
|
31
|
Xu H, Finkelstein DI, Adlard PA. Interactions of metals and Apolipoprotein E in Alzheimer's disease. Front Aging Neurosci 2014; 6:121. [PMID: 24971061 PMCID: PMC4054654 DOI: 10.3389/fnagi.2014.00121] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/27/2014] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia, which is characterized by the neuropathological accumulation of extracellular amyloid plaques and intracellular neurofibrillary tangles (NFTs). Clinically, patients will endure a gradual erosion of memory and other higher order cognitive functions. Whilst the underlying etiology of the disease remains to be definitively identified, a body of work has developed over the last two decades demonstrating that AD plasma/serum and brain are characterized by a dyshomeostasis in a number of metal ions. Furthermore, these metals (such as zinc, copper and iron) play roles in the regulation of the levels of AD-related proteins, including the amyloid precursor protein (APP) and tau. It is becoming apparent that metals also interact with other proteins, including apolipoprotein E (ApoE). The Apolipoprotein E gene (APOE) is critically associated with AD, with APOE4 representing the strongest genetic risk factor for the development of late-onset AD. In this review we will summarize the evidence supporting a role for metals in the function of ApoE and its consequent role in the pathogenesis of AD.
Collapse
Affiliation(s)
- He Xu
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Melbourne, VIC, Australia
| | - David I Finkelstein
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Melbourne, VIC, Australia
| | - Paul A Adlard
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Melbourne, VIC, Australia
| |
Collapse
|
32
|
NMR characterization of the interaction of the endonuclease domain of MutL with divalent metal ions and ATP. PLoS One 2014; 9:e98554. [PMID: 24901533 PMCID: PMC4047009 DOI: 10.1371/journal.pone.0098554] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 05/05/2014] [Indexed: 12/26/2022] Open
Abstract
MutL is a multi-domain protein comprising an N-terminal ATPase domain (NTD) and C-terminal dimerization domain (CTD), connected with flexible linker regions, that plays a key role in DNA mismatch repair. To expand understanding of the regulation mechanism underlying MutL endonuclease activity, our NMR-based study investigated interactions between the CTD of MutL, derived from the hyperthermophilic bacterium Aquifex aeolicus (aqMutL-CTD), and putative binding molecules. Chemical shift perturbation analysis with the model structure of aqMutL-CTD and circular dichroism results revealed that tight Zn2+ binding increased thermal stability without changing secondary structures to function at high temperatures. Peak intensity analysis exploiting the paramagnetic relaxation enhancement effect indicated the binding site for Mn2+, which shared binding sites for Zn2+. The coexistence of these two metal ions appears to be important for the function of MutL. Chemical shift perturbation analysis revealed a novel ATP binding site in aqMutL-CTD. A docking simulation incorporating the chemical shift perturbation data provided a putative scheme for the intermolecular interactions between aqMutL-CTD and ATP. We proposed a simple and understandable mechanical model for the regulation of MutL endonuclease activity in MMR based on the relative concentrations of ATP and CTD through ATP binding-regulated interdomain interactions between CTD and NTD.
Collapse
|
33
|
The transcriptional repressor domain of Gli3 is intrinsically disordered. PLoS One 2013; 8:e76972. [PMID: 24146948 PMCID: PMC3798401 DOI: 10.1371/journal.pone.0076972] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 08/26/2013] [Indexed: 01/03/2023] Open
Abstract
The transcription factor Gli3 is acting mainly as a transcriptional repressor in the Sonic hedgehog signal transduction pathway. Gli3 contains a repressor domain in its N-terminus from residue G106 to E236. In this study we have characterized the intracellular structure of the Gli3 repressor domain using a combined bioinformatics and experimental approach. According to our findings the Gli3 repressor domain while being intrinsically disordered contains predicted anchor sites for partner interactions. The obvious interaction partners to test were Ski and DNA; however, with both of these the structure of Gli3 repressor domain remained disordered. To locate residues important for the repressor function we mutated several residues within the Gli3 repressor domain. Two of these, H141A and H157N, targeting predicted helical regions, significantly decreased transcriptional repression and thus identify important functional parts of the domain.
Collapse
|
34
|
|
35
|
Yi T, Vick JS, Vecchio MJH, Begin KJ, Bell SP, Delay RJ, Palmer BM. Identifying cellular mechanisms of zinc-induced relaxation in isolated cardiomyocytes. Am J Physiol Heart Circ Physiol 2013; 305:H706-15. [PMID: 23812383 DOI: 10.1152/ajpheart.00025.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We tested several molecular and cellular mechanisms of cardiomyocyte contraction-relaxation function that could account for the reduced systolic and enhanced diastolic function observed with exposure to extracellular Zn(2+). Contraction-relaxation function was monitored in isolated rat and mouse cardiomyocytes maintained at 37°C, stimulated at 2 or 6 Hz, and exposed to 32 μM Zn(2+) or vehicle. Intracellular Zn(2+) detected using FluoZin-3 rose to a concentration of ∼13 nM in 3-5 min. Peak sarcomere shortening was significantly reduced and diastolic sarcomere length was elongated after Zn(2+) exposure. Peak intracellular Ca(2+) detected by Fura-2FF was reduced after Zn(2+) exposure. However, the rate of cytosolic Ca(2+) decline reflecting sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA2a) activity and the rate of Na(+)/Ca(2+) exchanger activity evaluated by rapid Na(+)-induced Ca(2+) efflux were unchanged by Zn(2+) exposure. SR Ca(2+) load evaluated by rapid caffeine exposure was reduced by ∼50%, and L-type calcium channel inward current measured by whole cell patch clamp was reduced by ∼70% in cardiomyocytes exposed to Zn(2+). Furthermore, ryanodine receptor (RyR) S2808 and phospholamban (PLB) S16/T17 were markedly dephosphorylated after perfusing hearts with 50 μM Zn(2+). Maximum tension development and thin-filament Ca(2+) sensitivity in chemically skinned cardiac muscle strips were not affected by Zn(2+) exposure. These findings suggest that Zn(2+) suppresses cardiomyocyte systolic function and enhances relaxation function by lowering systolic and diastolic intracellular Ca(2+) concentrations due to a combination of competitive inhibition of Ca(2+) influx through the L-type calcium channel, reduction of SR Ca(2+) load resulting from phospholamban dephosphorylation, and lowered SR Ca(2+) leak via RyR dephosphorylation. The use of the low-Ca(2+)-affinity Fura-2FF likely prevented the detection of changes in diastolic Ca(2+) and SERCA2a function. Other strategies to detect diastolic Ca(2+) in the presence of Zn(2+) are essential for future work.
Collapse
Affiliation(s)
- Ting Yi
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont
| | | | | | | | | | | | | |
Collapse
|
36
|
Coordination of zinc ions to the key proteins of neurodegenerative diseases: Aβ, APP, α-synuclein and PrP. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2011.12.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
37
|
Stewart MD, Igumenova TI. Reactive cysteine in the structural Zn(2+) site of the C1B domain from PKCα. Biochemistry 2012; 51:7263-77. [PMID: 22913772 DOI: 10.1021/bi300750w] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Structural cysteine-rich Zn(2+) sites that stabilize protein folds are considered to be unreactive. In this article, we identified a reactive cysteine residue, Cys151, in a treble-clef zinc finger with a Cys(3)His coordination sphere. The protein in question is the C1B domain of Protein Kinase Cα (PKCα). Mass-tagging cysteine assays of several C1B variants were employed to ascertain the site specificity of the covalent modification. The reactivity of Cys151 in C1B also manifests itself in the structural dynamics of the Zn(2+) coordination sphere where the Sγ of Cys151 alternates between the Zn(2+)-bound thiolate and free thiol states. We used NMR-detected pH titrations, ZZ-exchange spectroscopy, and residual dipolar coupling (RDC)-driven structure refinement to characterize the two exchanging conformations of C1B that differ in zinc coordination. Our data suggest that Cys151 serves as an entry point for the reactive oxygen species that activate PKCα in a process involving Zn(2+) release.
Collapse
Affiliation(s)
- Mikaela D Stewart
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States
| | | |
Collapse
|
38
|
Chen J, Winarski KL, Myerburg MM, Pitt BR, Sheng S. Probing the structural basis of Zn2+ regulation of the epithelial Na+ channel. J Biol Chem 2012; 287:35589-35598. [PMID: 22930753 DOI: 10.1074/jbc.m112.394734] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Extracellular Zn(2+) activates the epithelial Na(+) channel (ENaC) by relieving Na(+) self-inhibition. However, a biphasic Zn(2+) dose response was observed, suggesting that Zn(2+) has dual effects on the channel (i.e. activating and inhibitory). To investigate the structural basis for this biphasic effect of Zn(2+), we examined the effects of mutating the 10 extracellular His residues of mouse γENaC. Four mutations within the finger subdomain (γH193A, γH200A, γH202A, and γH239A) significantly reduced the maximal Zn(2+) activation of the channel. Whereas γH193A, γH200A, and γH202A reduced the apparent affinity of the Zn(2+) activating site, γH239A diminished Na(+) self-inhibition and thus concealed the activating effects of Zn(2+). Mutation of a His residue within the palm subdomain (γH88A) abolished the low-affinity Zn(2+) inhibitory effect. Based on structural homology with acid-sensing ion channel 1, γAsp(516) was predicted to be in close proximity to γHis(88). Ala substitution of the residue (γD516A) blunted the inhibitory effect of Zn(2+). Our results suggest that external Zn(2+) regulates ENaC activity by binding to multiple extracellular sites within the γ-subunit, including (i) a high-affinity stimulatory site within the finger subdomain involving His(193), His(200), and His(202) and (ii) a low-affinity Zn(2+) inhibitory site within the palm subdomain that includes His(88) and Asp(516).
Collapse
Affiliation(s)
- Jingxin Chen
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Katie L Winarski
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Mike M Myerburg
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Bruce R Pitt
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Shaohu Sheng
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261.
| |
Collapse
|
39
|
Schaeffer D, Reis FP, Johnson SJ, Arraiano CM, van Hoof A. The CR3 motif of Rrp44p is important for interaction with the core exosome and exosome function. Nucleic Acids Res 2012; 40:9298-307. [PMID: 22833611 PMCID: PMC3467083 DOI: 10.1093/nar/gks693] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The 10-subunit RNA exosome is involved in a large number of diverse RNA processing and degradation events in eukaryotes. These reactions are carried out by the single catalytic subunit, Rrp44p/Dis3p, which is composed of three parts that are conserved throughout eukaryotes. The exosome is named for the 3' to 5' exoribonuclease activity provided by a large C-terminal region of the Rrp44p subunit that resembles other exoribonucleases. Rrp44p also contains an endoribonuclease domain. Finally, the very N-terminus of Rrp44p contains three Cys residues (CR3 motif) that are conserved in many eukaryotes but have no known function. These three conserved Cys residues cluster with a previously unrecognized conserved His residue in what resembles a metal-ion-binding site. Genetic and biochemical data show that this CR3 motif affects both endo- and exonuclease activity in vivo and both the nuclear and cytoplasmic exosome, as well as the ability of Rrp44p to associate with the other exosome subunits. These data provide the first direct evidence that the exosome-Rrp44p interaction is functionally important and also provides a molecular explanation for the functional defects when the conserved Cys residues are mutated.
Collapse
Affiliation(s)
- Daneen Schaeffer
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center-Houston, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
40
|
Citiulo F, Jacobsen ID, Miramón P, Schild L, Brunke S, Zipfel P, Brock M, Hube B, Wilson D. Candida albicans scavenges host zinc via Pra1 during endothelial invasion. PLoS Pathog 2012; 8:e1002777. [PMID: 22761575 PMCID: PMC3386192 DOI: 10.1371/journal.ppat.1002777] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 05/12/2012] [Indexed: 11/18/2022] Open
Abstract
The ability of pathogenic microorganisms to assimilate essential nutrients from their hosts is critical for pathogenesis. Here we report endothelial zinc sequestration by the major human fungal pathogen, Candida albicans. We hypothesised that, analogous to siderophore-mediated iron acquisition, C. albicans utilises an extracellular zinc scavenger for acquiring this essential metal. We postulated that such a “zincophore” system would consist of a secreted factor with zinc-binding properties, which can specifically reassociate with the fungal cell surface. In silico analysis of the C. albicans secretome for proteins with zinc binding motifs identified the pH-regulated antigen 1 (Pra1). Three-dimensional modelling of Pra1 indicated the presence of at least two zinc coordination sites. Indeed, recombinantly expressed Pra1 exhibited zinc binding properties in vitro. Deletion of PRA1 in C. albicans prevented fungal sequestration and utilisation of host zinc, and specifically blocked host cell damage in the absence of exogenous zinc. Phylogenetic analysis revealed that PRA1 arose in an ancient fungal lineage and developed synteny with ZRT1 (encoding a zinc transporter) before divergence of the Ascomycota and Basidiomycota. Structural modelling indicated physical interaction between Pra1 and Zrt1 and we confirmed this experimentally by demonstrating that Zrt1 was essential for binding of soluble Pra1 to the cell surface of C. albicans. Therefore, we have identified a novel metal acquisition system consisting of a secreted zinc scavenger (“zincophore”), which reassociates with the fungal cell. Furthermore, functional similarities with phylogenetically unrelated prokaryotic systems indicate that syntenic zinc acquisition loci have been independently selected during evolution. The capacity of disease-causing microbes to acquire nutrients from their host is one of the most fundamental aspects of infection. Host organisms therefore restrict microbial access to certain key nutrients in a process known as nutritional immunity. Recently, it was found that infected vertebrates sequester zinc from invading microorganisms to control infection. Therefore, the mechanisms of microbial zinc acquisition represent potential virulence attributes. Here we report the molecular mechanism of host-derived zinc acquisition by the major human fungal pathogen, Candida albicans. We show that C. albicans utilises a secreted protein, the pH-regulated antigen 1 (Pra1), to bind zinc from its environment. Pra1 then reassociates with the fungal cell via a syntenically encoded (genetically-linked) membrane transporter (Zrt1) to acquire this essential metal. Deletion of PRA1 prevented utilisation of host zinc and damage of host cells in the absence of exogenous zinc. Finally, we demonstrate that this zinc-scavenging locus arose in an ancient fungal lineage and remains conserved in many contemporary species. Syntenically arranged zinc acquisition systems have evolved independently in the fungal and bacterial kingdoms, suggesting that such an arrangement is evolutionary beneficial for microorganisms.
Collapse
Affiliation(s)
- Francesco Citiulo
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Ilse D. Jacobsen
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Pedro Miramón
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Lydia Schild
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Peter Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
- Friedrich Schiller University, Jena, Germany
| | - Matthias Brock
- Microbial Biochemistry and Physiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
- Friedrich Schiller University, Jena, Germany
- * E-mail:
| | - Duncan Wilson
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| |
Collapse
|
41
|
Defining sequence space and reaction products within the cyanuric acid hydrolase (AtzD)/barbiturase protein family. J Bacteriol 2012; 194:4579-88. [PMID: 22730121 DOI: 10.1128/jb.00791-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyanuric acid hydrolases (AtzD) and barbiturases are homologous, found almost exclusively in bacteria, and comprise a rare protein family with no discernible linkage to other protein families or an X-ray structural class. There has been confusion in the literature and in genome projects regarding the reaction products, the assignment of individual sequences as either cyanuric acid hydrolases or barbiturases, and spurious connection of this family to another protein family. The present study has addressed those issues. First, the published enzyme reaction products of cyanuric acid hydrolase are incorrectly identified as biuret and carbon dioxide. The current study employed (13)C nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry to show that cyanuric acid hydrolase releases carboxybiuret, which spontaneously decarboxylates to biuret. This is significant because it revealed that homologous cyanuric acid hydrolases and barbiturases catalyze completely analogous reactions. Second, enzymes that had been annotated incorrectly in genome projects have been reassigned here by bioinformatics, gene cloning, and protein characterization studies. Third, the AtzD/barbiturase family has previously been suggested to consist of members of the amidohydrolase superfamily, a large class of metallohydrolases. Bioinformatics and the lack of bound metals both argue against a connection to the amidohydrolase superfamily. Lastly, steady-state kinetic measurements and observations of protein stability suggested that the AtzD/barbiturase family might be an undistinguished protein family that has undergone some resurgence with the recent introduction of industrial s-triazine compounds such as atrazine and melamine into the environment.
Collapse
|
42
|
The functions of MutL in mismatch repair: the power of multitasking. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:41-70. [PMID: 22749142 DOI: 10.1016/b978-0-12-387665-2.00003-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
DNA mismatch repair enhances genomic stability by correcting errors that have escaped polymerase proofreading. One of the critical steps in DNA mismatch repair is discriminating the new from the parental DNA strand as only the former needs repair. In Escherichia coli, the latent endonuclease MutH carries out this function. However, most prokaryotes and all eukaryotes lack a mutH gene. MutL is a key component of this system that mediates protein-protein interactions during mismatch recognition, strand discrimination, and strand removal. Hence, it had long been thought that the primary function of MutL was coordinating sequential mismatch repair steps. However, recent studies have revealed that most MutL homologs from organisms lacking MutH encode a conserved metal-binding motif associated with a weak endonuclease activity. As MutL homologs bearing this activity are found only in organisms relying on MutH-independent DNA mismatch repair, this finding unveils yet another crucial function of the MutL protein at the strand discrimination step. In this chapter, we review recent functional and structural work aimed at characterizing the multiple functions of MutL and discuss how the endonuclease activity of MutL is regulated by other repair factors.
Collapse
|
43
|
Giannozzi P, Jansen K, Penna GL, Minicozzi V, Morante S, Rossi G, Stellato F. Zn induced structural aggregation patterns of β-amyloid peptides by first-principle simulations and XAS measurements. Metallomics 2012; 4:156-65. [DOI: 10.1039/c2mt00148a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Andreini C, Bertini I, Cavallaro G. Minimal functional sites allow a classification of zinc sites in proteins. PLoS One 2011; 6:e26325. [PMID: 22043316 PMCID: PMC3197139 DOI: 10.1371/journal.pone.0026325] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 09/23/2011] [Indexed: 11/18/2022] Open
Abstract
Zinc is indispensable to all forms of life as it is an essential component of many different proteins involved in a wide range of biological processes. Not differently from other metals, zinc in proteins can play different roles that depend on the features of the metal-binding site. In this work, we describe zinc sites in proteins with known structure by means of three-dimensional templates that can be automatically extracted from PDB files and consist of the protein structure around the metal, including the zinc ligands and the residues in close spatial proximity to the ligands. This definition is devised to intrinsically capture the features of the local protein environment that can affect metal function, and corresponds to what we call a minimal functional site (MFS). We used MFSs to classify all zinc sites whose structures are available in the PDB and combined this classification with functional annotation as available in the literature. We classified 77% of zinc sites into ten clusters, each grouping zinc sites with structures that are highly similar, and an additional 16% into seven pseudo-clusters, each grouping zinc sites with structures that are only broadly similar. Sites where zinc plays a structural role are predominant in eight clusters and in two pseudo-clusters, while sites where zinc plays a catalytic role are predominant in two clusters and in five pseudo-clusters. We also analyzed the amino acid composition of the coordination sphere of zinc as a function of its role in the protein, highlighting trends and exceptions. In a period when the number of known zinc proteins is expected to grow further with the increasing awareness of the cellular mechanisms of zinc homeostasis, this classification represents a valuable basis for structure-function studies of zinc proteins, with broad applications in biochemistry, molecular pharmacology and de novo protein design.
Collapse
Affiliation(s)
- Claudia Andreini
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy
- Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Ivano Bertini
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy
- Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
- * E-mail:
| | - Gabriele Cavallaro
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
45
|
Zheng P, Li H. Direct measurements of the mechanical stability of zinc-thiolate bonds in rubredoxin by single-molecule atomic force microscopy. Biophys J 2011; 101:1467-73. [PMID: 21943428 DOI: 10.1016/j.bpj.2011.08.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/28/2011] [Accepted: 08/09/2011] [Indexed: 01/09/2023] Open
Abstract
Zinc (Zn) is one of the most abundant metals and is essential for life. Through ligand interactions, often with thiolate from cysteine residues in proteins, Zn can play important structural roles in organizing protein structure and augmenting protein folding and stability. However, it is difficult to separate the contributions of Zn-ligand interactions from those originating from intrinsic protein folding in experimental studies of Zn-containing metalloproteins, which makes the study of Zn-ligand interactions in proteins challenging. Here, we used single-molecule force spectroscopy to directly measure the mechanical rupture force of the Zn-thiolate bond in Zn-rubredoxin. Our results show that considerable force is needed to rupture Zn-thiolate bonds (~170 pN, which is significantly higher than the force necessary to rupture the coordination bond between Zn and histidines). To our knowledge, our study not only provides new information about Zn-thiolate bonds in rubredoxin, it also opens a new avenue for studying metal-ligand bonds in proteins using single-molecule force spectroscopy.
Collapse
Affiliation(s)
- Peng Zheng
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
46
|
Eijsink VGH, Matthews BW, Vriend G. The role of calcium ions in the stability and instability of a thermolysin-like protease. Protein Sci 2011; 20:1346-55. [PMID: 21648000 PMCID: PMC3189520 DOI: 10.1002/pro.670] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 11/06/2022]
Abstract
Thermolysin and other secreted broad-specificity proteases, such as subtilisin or alpha-lytic protease, are produced as pre-pro-proteins that stay at least partially unfolded while in the cytosol. After secretion, the pro-proteases fold to their active conformations in a process that includes the autolytic removal of the pro-peptide. We review the life cycle of the thermolysin-like protease from Bacillus stearothermophilus in light of the calcium dependent stability and instability of the N-terminal domain. The protease binds calcium ions in the regions that are involved in the autolytic maturation process. It is generally assumed that the calcium ions contribute to the extreme stability of the protease, but experimental evidence for TLP-ste indicates that at least one of the calcium ions plays a regulatory role. We hypothesize that this calcium ion plays an important role as a switch that modulates the protease between stable and unstable states as appropriate to the biological need.
Collapse
Affiliation(s)
- VGH Eijsink
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life SciencesN-1432 Ås, Norway
| | - BW Matthews
- Institute of Molecular Biology, University of OregonEugene, 97403-1229 Oregon, USA
| | - G Vriend
- CMBI, NCMLS, Radboud University Nijmegen Medical Centre6525 GA 26-28 Nijmegen, The Netherlands
| |
Collapse
|
47
|
Xia F, Zhu H. Alkaline hydrolysis of ethylene phosphate: an ab initio study by supermolecule model and polarizable continuum approach. J Comput Chem 2011; 32:2545-54. [PMID: 21598282 DOI: 10.1002/jcc.21834] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 02/26/2011] [Accepted: 10/20/2011] [Indexed: 11/06/2022]
Abstract
The alkaline hydrolysis reaction of ethylene phosphate (EP) has been investigated using a supermolecule model, in which several explicit water molecules are included. The structures and single-point energies for all of the stationary points are calculated in the gas phase and in solution at the B3LYP/6-31++G(df,p) and MP2/6-311++G(df,2p) levels. The effect of water bulk solvent is introduced by the polarizable continuum model (PCM). Water attack and hydroxide attack pathways are taken into account for the alkaline hydrolysis of EP. An associative mechanism is observed for both of the two pathways with a kinetically insignificant intermediate. The water attack pathway involves a water molecule attacking and a proton transfer from the attacking water to the hydroxide in the first step, followed by an endocyclic bond cleavage to the leaving group. While in the first step of the hydroxide attack pathway the nucleophile is the hydroxide anion. The calculated barriers in aqueous solution for the water attack and hydroxide attack pathways are all about 22 kcal/mol. The excellent agreement between the calculated and observed values demonstrates that both of the two pathways are possible for the alkaline hydrolysis of EP.
Collapse
Affiliation(s)
- Futing Xia
- School of Chemistry, Sichuan University, Chengdu, China
| | | |
Collapse
|
48
|
Brodkin HR, Novak WRP, Milne AC, D'Aquino JA, Karabacak NM, Goldberg IG, Agar JN, Payne MS, Petsko GA, Ondrechen MJ, Ringe D. Evidence of the participation of remote residues in the catalytic activity of Co-type nitrile hydratase from Pseudomonas putida. Biochemistry 2011; 50:4923-35. [PMID: 21473592 DOI: 10.1021/bi101761e] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Active sites may be regarded as layers of residues, whereby the residues that interact directly with substrate also interact with residues in a second shell and these in turn interact with residues in a third shell. These residues in the second and third layers may have distinct roles in maintaining the essential chemical properties of the first-shell catalytic residues, particularly their spatial arrangement relative to the substrate binding pocket, and their electrostatic and dynamic properties. The extent to which these remote residues participate in catalysis and precisely how they affect first-shell residues remains unexplored. To improve our understanding of the roles of second- and third-shell residues in catalysis, we used THEMATICS to identify residues in the second and third shells of the Co-type nitrile hydratase from Pseudomonas putida (ppNHase) that may be important for catalysis. Five of these predicted residues, and three additional, conserved residues that were not predicted, have been conservatively mutated, and their effects have been studied both kinetically and structurally. The eight residues have no direct contact with the active site metal ion or bound substrate. These results demonstrate that three of the predicted second-shell residues (α-Asp164, β-Glu56, and β-His147) and one predicted third-shell residue (β-His71) have significant effects on the catalytic efficiency of the enzyme. One of the predicted residues (α-Glu168) and the three residues not predicted (α-Arg170, α-Tyr171, and β-Tyr215) do not have any significant effects on the catalytic efficiency of the enzyme.
Collapse
Affiliation(s)
- Heather R Brodkin
- Department of Chemistry and Chemical Biology and Institute for Complex Scientific Software, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Furlan S, Hureau C, Faller P, La Penna G. Modeling the Cu+ Binding in the 1−16 Region of the Amyloid-β Peptide Involved in Alzheimer’s Disease. J Phys Chem B 2010; 114:15119-33. [DOI: 10.1021/jp102928h] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Sara Furlan
- LCC (Laboratoire de Chimie de Coordination), CNRS, 205 route de Narbonne, F-31077 Toulouse, France; UPS, INPT, LCC, Université de Toulouse, F-31077 Toulouse, France; and ICCOM (Institute for Chemistry of Organo-metallic Compounds), CNR (National Research Council), via Madonna del Piano 10, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Christelle Hureau
- LCC (Laboratoire de Chimie de Coordination), CNRS, 205 route de Narbonne, F-31077 Toulouse, France; UPS, INPT, LCC, Université de Toulouse, F-31077 Toulouse, France; and ICCOM (Institute for Chemistry of Organo-metallic Compounds), CNR (National Research Council), via Madonna del Piano 10, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Peter Faller
- LCC (Laboratoire de Chimie de Coordination), CNRS, 205 route de Narbonne, F-31077 Toulouse, France; UPS, INPT, LCC, Université de Toulouse, F-31077 Toulouse, France; and ICCOM (Institute for Chemistry of Organo-metallic Compounds), CNR (National Research Council), via Madonna del Piano 10, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Giovanni La Penna
- LCC (Laboratoire de Chimie de Coordination), CNRS, 205 route de Narbonne, F-31077 Toulouse, France; UPS, INPT, LCC, Université de Toulouse, F-31077 Toulouse, France; and ICCOM (Institute for Chemistry of Organo-metallic Compounds), CNR (National Research Council), via Madonna del Piano 10, I-50019 Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
50
|
Chakrabarti L, Zahra R, Jackson SM, Kazemi-Esfarjani P, Sopher BL, Mason AG, Toneff T, Ryu S, Shaffer S, Kansy JW, Eng J, Merrihew G, MacCoss MJ, Murphy A, Goodlett DR, Hook V, Bennett CL, Pallanck LJ, La Spada AR. Mitochondrial dysfunction in NnaD mutant flies and Purkinje cell degeneration mice reveals a role for Nna proteins in neuronal bioenergetics. Neuron 2010; 66:835-47. [PMID: 20620870 PMCID: PMC3101252 DOI: 10.1016/j.neuron.2010.05.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2010] [Indexed: 12/27/2022]
Abstract
The Purkinje cell degeneration (pcd) mouse is a recessive model of neurodegeneration, involving cerebellum and retina. Purkinje cell death in pcd is dramatic, as >99% of Purkinje neurons are lost in 3 weeks. Loss of function of Nna1 causes pcd, and Nna1 is a highly conserved zinc carboxypeptidase. To determine the basis of pcd, we implemented a two-pronged approach, combining characterization of loss-of-function phenotypes of the Drosophila Nna1 ortholog (NnaD) with proteomics analysis of pcd mice. Reduced NnaD function yielded larval lethality, with survivors displaying phenotypes that mirror disease in pcd. Quantitative proteomics revealed expression alterations for glycolytic and oxidative phosphorylation enzymes. Nna proteins localize to mitochondria, loss of NnaD/Nna1 produces mitochondrial abnormalities, and pcd mice display altered proteolytic processing of Nna1 interacting proteins. Our studies indicate that Nna1 loss of function results in altered bioenergetics and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Lisa Chakrabarti
- School of Biomedical Sciences, University of Nottingham Medical School, Nottingham NG72UH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|