1
|
Zhu H, Uno H, Matsuba K, Hamachi I. Profiling Proteins Involved in Peroxynitrite Homeostasis Using ROS/RNS Conditional Proteomics. J Am Chem Soc 2025; 147:7305-7316. [PMID: 39988859 DOI: 10.1021/jacs.4c14060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Peroxynitrite (ONOO-), the product of the diffusion-controlled reaction of superoxide (O2•-) with nitric oxide (NO•), plays a crucial role in oxidative and nitrative stress and modulates key physiological processes such as redox signaling. While biological ONOO- is conventionally analyzed using 3-nitrotyrosine antibodies and fluorescent sensors, such probes lack specificity and sensitivity, making high-throughput and comprehensive profiling of ONOO--associated proteins challenging. In this study, we used a conditional proteomics approach to investigate ONOO- homeostasis by identifying its protein neighbors in cells. We developed Peroxynitrite-responsive protein Labeling reagents (Porp-L) and, for the first time, discovered 2,6-dichlorophenol as an ideal moiety that can be selectively and rapidly activated by ONOO- for labeling of proximal proteins. The reaction of Porp-L with ONOO- generated several short-lived reactive intermediates that can modify Tyr, His, and Lys residues on the protein surface. We have demonstrated the Porp-L-based conditional proteomics in immune-stimulated macrophages, which indeed identified proteins known to be involved in the generation and modification of ONOO- and revealed the endoplasmic reticulum (ER) as a ONOO- hot spot. Moreover, we discovered a previously unknown role for Ero1a, an ER-resident protein, in the formation of ONOO-. Overall, Porp-L represent a promising research tool for advancing our understanding of the biological roles of ONOO-.
Collapse
Affiliation(s)
- Hao Zhu
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroaki Uno
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kyoichi Matsuba
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO (Exploratory Research for Advanced Technology, JST), Sanbancho, Chiyodaku, Tokyo 102-0075, Japan
| |
Collapse
|
2
|
Mladenov M, Sazdova I, Hadzi-Petrushev N, Konakchieva R, Gagov H. The Role of Reductive Stress in the Pathogenesis of Endocrine-Related Metabolic Diseases and Cancer. Int J Mol Sci 2025; 26:1910. [PMID: 40076537 PMCID: PMC11899626 DOI: 10.3390/ijms26051910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/14/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Reductive stress (RS), characterized by excessive accumulation of reducing equivalents such as NADH and NADPH, is emerging as a key factor in metabolic disorders and cancer. While oxidative stress (OS) has been widely studied, RS and its complex interplay with endocrine regulation remain less understood. This review explores molecular circuits of bidirectional crosstalk between metabolic hormones and RS, focusing on their role in diabetes, obesity, cardiovascular diseases, and cancer. RS disrupts insulin secretion and signaling, exacerbates metabolic inflammation, and contributes to adipose tissue dysfunction, ultimately promoting insulin resistance. In cardiovascular diseases, RS alters vascular smooth muscle cell function and myocardial metabolism, influencing ischemia-reperfusion injury outcomes. In cancer, RS plays a dual role: it enhances tumor survival by buffering OS and promoting metabolic reprogramming, yet excessive RS can trigger proteotoxicity and mitochondrial dysfunction, leading to apoptosis. Recent studies have identified RS-targeting strategies, including redox-modulating therapies, nanomedicine, and drug repurposing, offering potential for novel treatments. However, challenges remain, particularly in distinguishing physiological RS from pathological conditions and in overcoming therapy-induced resistance. Future research should focus on developing selective RS biomarkers, optimizing therapeutic interventions, and exploring the role of RS in immune and endocrine regulation.
Collapse
Affiliation(s)
- Mitko Mladenov
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; (M.M.); (N.H.-P.)
- Department of Fundamental and Applied Physiology, Russian States Medical University, 117997 Moscow, Russia
| | - Iliyana Sazdova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria;
| | - Nikola Hadzi-Petrushev
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; (M.M.); (N.H.-P.)
| | - Rossitza Konakchieva
- Department of Cell and Developmental Biology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria;
| | - Hristo Gagov
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria;
| |
Collapse
|
3
|
Xiong Y, Li J, Jiang X, Zhen W, Ma X, Lin W. Nitric Oxide-Releasing Nanoscale Metal-Organic Layer Overcomes Hypoxia and Reactive Oxygen Species Diffusion Barriers to Enhance Cancer Radiotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413518. [PMID: 39742392 PMCID: PMC11848595 DOI: 10.1002/advs.202413518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/17/2024] [Indexed: 01/03/2025]
Abstract
Hafnium (Hf)-based nanoscale metal-organic layers (MOLs) enhance radiotherapeutic effects of tissue-penetrating X-rays via a unique radiotherapy-radiodynamic therapy (RT-RDT) process through efficient generation of hydroxy radical (RT) and singlet oxygen (RDT). However, their radiotherapeutic efficacy is limited by hypoxia in deep-seated tumors and short half-lives of reactive oxygen species (ROS). Herein the conjugation of a nitric oxide (NO) donor, S-nitroso-N-acetyl-DL-penicillamine (SNAP), to the Hf12 secondary building units (SBUs) of Hf-5,5'-di-p-benzoatoporphyrin MOL is reported to afford SNAP/MOL for enhanced cancer radiotherapy. Under X-ray irradiation, SNAP/MOL efficiently generates superoxide anion (O2 -.) and releases nitric oxide (NO) in a spatio-temporally synchronized fashion. The released NO rapidly reacts with O2 -. to form long-lived and highly cytotoxic peroxynitrite which diffuses freely to the cell nucleus and efficiently causes DNA double-strand breaks. Meanwhile, the sustained release of NO from SNAP/MOL in the tumor microenvironment relieves tumor hypoxia to reduce radioresistance of tumor cells. Consequently, SNAP/MOL plus low-dose X-ray irradiation efficiently inhibits tumor growth and reduces metastasis in colorectal and triple-negative breast cancer models.
Collapse
Affiliation(s)
- Yuxuan Xiong
- Department of ChemistryThe University of ChicagoChicagoIL60637USA
| | - Jinhong Li
- Department of ChemistryThe University of ChicagoChicagoIL60637USA
| | - Xiaomin Jiang
- Department of ChemistryThe University of ChicagoChicagoIL60637USA
| | - Wenyao Zhen
- Department of ChemistryThe University of ChicagoChicagoIL60637USA
| | - Xin Ma
- Department of ChemistryThe University of ChicagoChicagoIL60637USA
| | - Wenbin Lin
- Department of ChemistryThe University of ChicagoChicagoIL60637USA
- Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis ResearchThe University of ChicagoChicagoIL60637USA
| |
Collapse
|
4
|
Zuercher EC, Poore AT, Prajapat D, Palazzo J, Thomas A, Birthright C, Lawrence J, Chen M, Tian S. Secondary sphere interactions modulate peroxynitrite scavenging by the E2 domain of amyloid precursor protein. Dalton Trans 2025; 54:571-581. [PMID: 39670805 PMCID: PMC11640295 DOI: 10.1039/d4dt02552k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Peroxynitrite (ONOO-) is a highly reactive nitrogen species that can cause significant damage to proteins, lipids, and DNA. Various enzymes, including metalloenzymes, play crucial roles in reducing ONOO- concentrations to protect cellular components. While the interaction of ONOO- with heme proteins is well known, the reduction by Cu-containing proteins is less studied. Amyloid precursor protein (APP), implicated in Alzheimer's disease, has an E2 domain that binds copper ions with a dissociation constant of KD ∼ 10-12 M and is proposed to be involved in iron homeostasis, copper trafficking, and oxidative stress response. Our recent studies using EXAFS, UV-Vis, and EPR spectroscopy revealed a previously unidentified labile water ligand in the Cu(II) site of the E2 domain, suggesting reactivity with anionic substrates like ONOO-. Experimental data showed that Cu(I)-E2 reduces ONOO- at a significant rate (1.1 × 105 M-1 s-1), comparable to native peroxynitrite scavengers, while maintaining active site integrity through multiple redox cycles. This study further investigates the mechanism of ONOO- reduction by Cu(I)-E2 using the Griess assay, demonstrating that reduction occurs via single electron transfer, forming nitrite and nitrate. This process aligns with previous findings that Cu(I)-E2 is oxidized to Cu(II)-E2 upon ONOO- reduction. Mutations at Lys435, affecting secondary sphere interactions, revealed that factors beyond electrostatics are involved in substrate recruitment. MD simulations suggest that steric hindrance from a newly formed hydrogen bond also plays a role. Understanding ONOO- reduction by the E2 domain of APP expands our knowledge of copper proteins in mitigating oxidative stress and elucidates their physiological and pathological roles, particularly in Alzheimer's disease.
Collapse
Affiliation(s)
- Eli C Zuercher
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, USA.
| | - Andrew T Poore
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, USA.
| | - Devendra Prajapat
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, USA.
| | - Joseph Palazzo
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, USA.
| | - Alana Thomas
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, USA.
| | - Caitlin Birthright
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, USA.
| | - Jack Lawrence
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, USA.
| | - Ming Chen
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, USA.
| | - Shiliang Tian
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, USA.
| |
Collapse
|
5
|
Dewan A, Jain C, Das M, Tripathi A, Sharma AK, Singh H, Malhotra N, Seshasayee ASN, Chakrapani H, Singh A. Intracellular peroxynitrite perturbs redox balance, bioenergetics, and Fe-S cluster homeostasis in Mycobacterium tuberculosis. Redox Biol 2024; 75:103285. [PMID: 39128229 PMCID: PMC11369450 DOI: 10.1016/j.redox.2024.103285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024] Open
Abstract
The ability of Mycobacterium tuberculosis (Mtb) to tolerate nitric oxide (•NO) and superoxide (O2•-) produced by phagocytes contributes to its success as a human pathogen. Recombination of •NO and O2•- generates peroxynitrite (ONOO-), a potent oxidant produced inside activated macrophages causing lethality in diverse organisms. While the response of Mtb toward •NO and O2•- is well established, how Mtb responds to ONOO- remains unclear. Filling this knowledge gap is important to understand the persistence mechanisms of Mtb during infection. We synthesized a series of compounds that generate both •NO and O2•-, which should combine to produce ONOO-. From this library, we identified CJ067 that permeates Mtb to reliably enhance intracellular ONOO- levels. CJ067-exposed Mtb strains, including multidrug-resistant (MDR) and extensively drug-resistant (XDR) clinical isolates, exhibited dose-dependent, long-lasting oxidative stress and growth inhibition. In contrast, Mycobacterium smegmatis (Msm), a fast-growing, non-pathogenic mycobacterial species, maintained redox balance and growth in response to intracellular ONOO-. RNA-sequencing with Mtb revealed that CJ067 induces antioxidant machinery, sulphur metabolism, metal homeostasis, and a 4Fe-4S cluster repair pathway (suf operon). CJ067 impaired the activity of the 4Fe-4S cluster-containing TCA cycle enzyme, aconitase, and diminished bioenergetics of Mtb. Work with Mtb strains defective in SUF and IscS involved in Fe-S cluster biogenesis pathways showed that both systems cooperatively protect Mtb from intracellular ONOO- in vitro and inducible nitric oxide synthase (iNOS)-dependent growth inhibition during macrophage infection. Thus, Mtb is uniquely sensitive to intracellular ONOO- and targeting Fe-S cluster homeostasis is expected to promote iNOS-dependent host immunity against tuberculosis (TB).
Collapse
Affiliation(s)
- Arshiya Dewan
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, 560012, India
| | - Charu Jain
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Mayashree Das
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, 560012, India
| | - Ashutosh Tripathi
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, 560012, India
| | - Ajay Kumar Sharma
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Harshit Singh
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Nitish Malhotra
- National Center for Biological Sciences, Bengaluru, 560065, India
| | | | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, 411008, India.
| | - Amit Singh
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, 560012, India.
| |
Collapse
|
6
|
Stapelmann K, Gershman S, Miller V. Plasma-liquid interactions in the presence of organic matter-A perspective. JOURNAL OF APPLIED PHYSICS 2024; 135:160901. [PMID: 38681528 PMCID: PMC11055635 DOI: 10.1063/5.0203125] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024]
Abstract
As investigations in the biomedical applications of plasma advance, a demand for describing safe and efficacious delivery of plasma is emerging. It is quite clear that not all plasmas are "equal" for all applications. This Perspective discusses limitations of the existing parameters used to define plasma in context of the need for the "right plasma" at the "right dose" for each "disease system." The validity of results extrapolated from in vitro studies to preclinical and clinical applications is discussed. We make a case for studying the whole system as a single unit, in situ. Furthermore, we argue that while plasma-generated chemical species are the proposed key effectors in biological systems, the contribution of physical effectors (electric fields, surface charging, dielectric properties of target, changes in gap electric fields, etc.) must not be ignored.
Collapse
Affiliation(s)
- Katharina Stapelmann
- Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Sophia Gershman
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540, USA
| | - Vandana Miller
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA
| |
Collapse
|
7
|
Borkar SB, Negi M, Acharya TR, Lamichhane P, Kaushik N, Choi EH, Kaushik NK. Mitigation of T3SS-mediated virulence in waterborne pathogenic bacteria by multi-electrode cylindrical-DBD plasma-generated nitric oxide water. CHEMOSPHERE 2024; 350:140997. [PMID: 38128737 DOI: 10.1016/j.chemosphere.2023.140997] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
S. enterica, S. flexneri, and V. parahaemolyticus bacteria are globally recognized to cause severe diarrheal diseases, consisting of Type III Secretion System (T3SS) effectors that help in bacterial infection and virulence in host cells. This study investigates the properties of multi-electrode cylindrical DBD plasma-generated nitric oxide water (MCDBD-PG-NOW) treatment on the survival and virulence of S. enterica, S. flexneri, and V. parahaemolyticus bacteria. The Colony Forming Unit (CFU) assay, live/dead cell staining, lipid peroxidation assay, and bacteria morphological analysis showed substantial growth inhibition of bacteria. Moreover, to confirm the interaction of reactive nitrogen species (RNS) with bacterial membrane biotin switch assay, DAF-FM, and FTIR analysis were carried out, which established the formation of S-nitrosothiols in the cell membrane, intracellular accumulation of RNS, and changes in the cell composition post-PG-NOW treatment. Furthermore, the conventional culture-based method and a quantitative PCR using propidium monoazide showed minimal VBNC induction under similar condition. The efficiency of bacteria to adhere to mammalian colon cells was significantly reduced. In addition, the infection rate was also controlled by disrupting the virulent genes, leading to the collapse of the infection mechanism. This study provides insights into whether RNS generated from PG-NOW might be beneficial for preventing diarrheal infections.
Collapse
Affiliation(s)
- Shweta B Borkar
- Department of Electrical and Biological Physics /Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea
| | - Manorma Negi
- Department of Electrical and Biological Physics /Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea
| | - Tirtha Raj Acharya
- Department of Electrical and Biological Physics /Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea
| | - Prajwal Lamichhane
- Department of Electrical and Biological Physics /Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, 18323, South Korea.
| | - Eun Ha Choi
- Department of Electrical and Biological Physics /Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea.
| | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics /Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea.
| |
Collapse
|
8
|
Masuda D, Nakanishi I, Ohkubo K, Ito H, Matsumoto KI, Ichikawa H, Chatatikun M, Klangbud WK, Kotepui M, Imai M, Kawakami F, Kubo M, Matsui H, Tangpong J, Ichikawa T, Ozawa T, Yen HC, St Clair DK, Indo HP, Majima HJ. Mitochondria Play Essential Roles in Intracellular Protection against Oxidative Stress-Which Molecules among the ROS Generated in the Mitochondria Can Escape the Mitochondria and Contribute to Signal Activation in Cytosol? Biomolecules 2024; 14:128. [PMID: 38275757 PMCID: PMC10813015 DOI: 10.3390/biom14010128] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024] Open
Abstract
Questions about which reactive oxygen species (ROS) or reactive nitrogen species (RNS) can escape from the mitochondria and activate signals must be addressed. In this study, two parameters, the calculated dipole moment (debye, D) and permeability coefficient (Pm) (cm s-1), are listed for hydrogen peroxide (H2O2), hydroxyl radical (•OH), superoxide (O2•-), hydroperoxyl radical (HO2•), nitric oxide (•NO), nitrogen dioxide (•NO2), peroxynitrite (ONOO-), and peroxynitrous acid (ONOOH) in comparison to those for water (H2O). O2•- is generated from the mitochondrial electron transport chain (ETC), and several other ROS and RNS can be generated subsequently. The candidates which pass through the mitochondrial membrane include ROS with a small number of dipoles, i.e., H2O2, HO2•, ONOOH, •OH, and •NO. The results show that the dipole moment of •NO2 is 0.35 D, indicating permeability; however, •NO2 can be eliminated quickly. The dipole moments of •OH (1.67 D) and ONOOH (1.77 D) indicate that they might be permeable. This study also suggests that the mitochondria play a central role in protecting against further oxidative stress in cells. The amounts, the long half-life, the diffusion distance, the Pm, the one-electron reduction potential, the pKa, and the rate constants for the reaction with ascorbate and glutathione are listed for various ROS/RNS, •OH, singlet oxygen (1O2), H2O2, O2•-, HO2•, •NO, •NO2, ONOO-, and ONOOH, and compared with those for H2O and oxygen (O2). Molecules with negative electrical charges cannot directly diffuse through the phospholipid bilayer of the mitochondrial membranes. Short-lived molecules, such as •OH, would be difficult to contribute to intracellular signaling. Finally, HO2• and ONOOH were selected as candidates for the ROS/RNS that pass through the mitochondrial membrane.
Collapse
Affiliation(s)
- Daisuke Masuda
- Department of Space Environmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Kagoshima, Japan;
- Utilization & Engineering Department, Japan Manned Space Systems Corporation, 2-1-6 Tsukuba, Tsukuba 305-0047, Ibaraki, Japan
| | - Ikuo Nakanishi
- Quantum RedOx Chemistry Team, Institute for Quantum Life Science (iQLS), Quantum Life and Medical Science Directorate (QLMS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan;
| | - Kei Ohkubo
- Institute for Advanced Co-Creation Studies, Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan;
| | - Hiromu Ito
- Quantum RedOx Chemistry Team, Institute for Quantum Life Science (iQLS), Quantum Life and Medical Science Directorate (QLMS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan;
- Department of Maxillofacial Radiology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Kagoshima, Japan
| | - Ken-ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Radiation Regulatory Science Research, Institute for Radiological Science (NIRS), Quantum Life and Medical Science Directorate (QLMS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan;
| | - Hiroshi Ichikawa
- Department of Medical Life Systems, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Kyoto, Japan;
| | - Moragot Chatatikun
- School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand; (M.C.); (W.K.K.); (M.K.); (J.T.)
- Center of Excellence Research for Melioidosis and Microorganisms, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand
| | - Wiyada Kwanhian Klangbud
- School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand; (M.C.); (W.K.K.); (M.K.); (J.T.)
- Center of Excellence Research for Melioidosis and Microorganisms, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand
| | - Manas Kotepui
- School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand; (M.C.); (W.K.K.); (M.K.); (J.T.)
| | - Motoki Imai
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Kanagawa, Japan; (M.I.); (F.K.); (M.K.); (T.I.)
- Department of Molecular Diagnostics, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Kanagawa, Japan
| | - Fumitaka Kawakami
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Kanagawa, Japan; (M.I.); (F.K.); (M.K.); (T.I.)
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara 252-0373, Kanagawa, Japan
- Department of Health Administration, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Kanagawa, Japan
| | - Makoto Kubo
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Kanagawa, Japan; (M.I.); (F.K.); (M.K.); (T.I.)
- Division of Microbiology, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0373, Kanagawa, Japan
- Department of Environmental Microbiology, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0373, Kanagawa, Japan
| | - Hirofumi Matsui
- Division of Gastroenterology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan;
| | - Jitbanjong Tangpong
- School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand; (M.C.); (W.K.K.); (M.K.); (J.T.)
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
| | - Takafumi Ichikawa
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Kanagawa, Japan; (M.I.); (F.K.); (M.K.); (T.I.)
- Department of Molecular Diagnostics, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Kanagawa, Japan
| | - Toshihiko Ozawa
- Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Saitama, Japan;
| | - Hsiu-Chuan Yen
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Nephrology, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Daret K. St Clair
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA;
| | - Hiroko P. Indo
- Department of Maxillofacial Radiology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Kagoshima, Japan
| | - Hideyuki J. Majima
- Department of Space Environmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Kagoshima, Japan;
- Department of Maxillofacial Radiology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Kagoshima, Japan
- School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand; (M.C.); (W.K.K.); (M.K.); (J.T.)
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
9
|
Camp OG, Bembenek JN, Goud PT, Awonuga AO, Abu-Soud HM. The Implications of Insufficient Zinc on the Generation of Oxidative Stress Leading to Decreased Oocyte Quality. Reprod Sci 2023; 30:2069-2078. [PMID: 36920672 PMCID: PMC11047769 DOI: 10.1007/s43032-023-01212-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
Zinc is a transition metal that displays wide physiological implications ranging from participation in hundreds of enzymes and proteins to normal growth and development. In the reproductive tract of both sexes, zinc maintains a functional role in spermatogenesis, ovulation, fertilization, normal pregnancy, fetal development, and parturition. In this work, we review evidence to date regarding the importance of zinc in oocyte maturation and development, with emphasis on the role of key zinc-binding proteins, as well as examine the effects of zinc and reactive oxygen species (ROS) on oocyte quality and female fertility. We summarize our current knowledge about the participation of zinc in the developing oocyte bound to zinc finger proteins as well as loosely bound zinc ion in the intracellular and extracellular environments. These include aspects related to (1) the impact of zinc deficiency and overwhelming production of ROS under inflammatory conditions on the offset of the physiological antioxidant machinery disturbing biomolecules, proteins, and cellular processes, and their role in contributing to further oxidative stress; (2) the role of ROS in modulating damage to proteins containing zinc, such as zinc finger proteins and nitric oxide synthases (NOS), and expelling the zinc resulting in loss of protein function; and (3) clarify the different role of oxidative stress and zinc deficiency in the pathophysiology of infertility diseases with special emphasis on endometriosis-associated infertility.
Collapse
Affiliation(s)
- Olivia G Camp
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock, Detroit, MI, 48201, USA
| | - Joshua N Bembenek
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock, Detroit, MI, 48201, USA
| | - Pravin T Goud
- Division of Reproductive Endocrinology and Infertility & California IVF Fertility Center, Department of Obstetrics and Gynecology, University of California Davis, Sacramento, CA, 95833, USA
- Laurel Fertility Care, San Francisco, CA, 94109, USA
- California Northstate University Medical College, Elk Grove, CA, 95757, USA
| | - Awoniyi O Awonuga
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock, Detroit, MI, 48201, USA
| | - Husam M Abu-Soud
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock, Detroit, MI, 48201, USA.
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
10
|
Pang Y, Huang M, Fan Y, Yeh HW, Xiong Y, Ng HL, Ai HW. Development, Characterization, and Structural Analysis of a Genetically Encoded Red Fluorescent Peroxynitrite Biosensor. ACS Chem Biol 2023; 18:1388-1397. [PMID: 37185019 PMCID: PMC10330634 DOI: 10.1021/acschembio.3c00139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Boronic acid-containing fluorescent molecules have been widely used to sense hydrogen peroxide and peroxynitrite, which are important reactive oxygen and nitrogen species in biological systems. However, it has been challenging to gain specificity. Our previous studies developed genetically encoded, green fluorescent peroxynitrite biosensors by genetically incorporating a boronic acid-containing noncanonical amino acid (ncAA), p-boronophenylalanine (pBoF), into the chromophore of circularly permuted green fluorescent proteins (cpGFPs). In this work, we introduced pBoF to amino acid residues spatially close to the chromophore of an enhanced circularly permuted red fluorescent protein (ecpApple). Our effort has resulted in two responsive ecpApple mutants: one bestows reactivity toward both peroxynitrite and hydrogen peroxide, while the other, namely, pnRFP, is a selective red fluorescent peroxynitrite biosensor. We characterized pnRFP in vitro and in live mammalian cells. We further studied the structure and sensing mechanism of pnRFP using X-ray crystallography, 11B-NMR, and computational methods. The boron atom in pnRFP adopts an sp2-hybridization geometry in a hydrophobic pocket, and the reaction of pnRFP with peroxynitrite generates a product with a twisted chromophore, corroborating the observed "turn-off" fluorescence response. Thus, this study extends the color palette of genetically encoded peroxynitrite biosensors, provides insight into the response mechanism of the new biosensor, and demonstrates the versatility of using protein scaffolds to modulate chemoreactivity.
Collapse
Affiliation(s)
- Yu Pang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Mian Huang
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Yichong Fan
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Hsien-Wei Yeh
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Ying Xiong
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Ho Leung Ng
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Hui-wang Ai
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- The UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
11
|
Omar NM, Fleury K, Beardsall B, Prášil O, Campbell DA. Genomic capacities for Reactive Oxygen Species metabolism across marine phytoplankton. PLoS One 2023; 18:e0284580. [PMID: 37098087 PMCID: PMC10128935 DOI: 10.1371/journal.pone.0284580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 04/04/2023] [Indexed: 04/26/2023] Open
Abstract
Marine phytoplankton produce and scavenge Reactive Oxygen Species, to support cellular processes, while limiting damaging reactions. Some prokaryotic picophytoplankton have, however, lost all genes encoding scavenging of hydrogen peroxide. Such losses of metabolic function can only apply to Reactive Oxygen Species which potentially traverse the cell membrane outwards, before provoking damaging intracellular reactions. We hypothesized that cell radius influences which elements of Reactive Oxygen Species metabolism are partially or fully dispensable from a cell. We therefore investigated genomes and transcriptomes from diverse marine eukaryotic phytoplankton, ranging from 0.4 to 44 μm radius, to analyze the genomic allocations encoding enzymes metabolizing Reactive Oxygen Species. Superoxide has high reactivity, short lifetimes and limited membrane permeability. Genes encoding superoxide scavenging are ubiquitous across phytoplankton, but the fractional gene allocation decreased with increasing cell radius, consistent with a nearly fixed set of core genes for scavenging superoxide pools. Hydrogen peroxide has lower reactivity, longer intracellular and extracellular lifetimes and readily crosses cell membranes. Genomic allocations to both hydrogen peroxide production and scavenging decrease with increasing cell radius. Nitric Oxide has low reactivity, long intracellular and extracellular lifetimes and readily crosses cell membranes. Neither Nitric Oxide production nor scavenging genomic allocations changed with increasing cell radius. Many taxa, however, lack the genomic capacity for nitric oxide production or scavenging. The probability of presence of capacity to produce nitric oxide decreases with increasing cell size, and is influenced by flagella and colony formation. In contrast, the probability of presence of capacity to scavenge nitric oxide increases with increasing cell size, and is again influenced by flagella and colony formation.
Collapse
Affiliation(s)
- Naaman M Omar
- Department of Biology, Mount Allison University, Sackville, NB, Canada
| | - Katherine Fleury
- Department of Biology, Mount Allison University, Sackville, NB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Brian Beardsall
- Department of Biology, Mount Allison University, Sackville, NB, Canada
- Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
| | - Ondřej Prášil
- Institute of Microbiology, Center Algatech, Laboratory of Photosynthesis, Trebon, CZ, Czech Republic
| | | |
Collapse
|
12
|
Sousa T, Gouveia M, Travasso RD, Salvador A. How abundant are superoxide and hydrogen peroxide in the vasculature lumen, how far can they reach? Redox Biol 2022; 58:102527. [PMID: 36335761 PMCID: PMC9640316 DOI: 10.1016/j.redox.2022.102527] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Paracrine superoxide (O2•−) and hydrogen peroxide (H2O2) signaling critically depends on these substances' concentrations, half-lives and transport ranges in extracellular media. Here we estimated these parameters for the lumen of human capillaries, arterioles and arteries using reaction-diffusion-advection models. These models considered O2•− and H2O2 production by endothelial cells and uptake by erythrocytes and endothelial cells, O2•− dismutation, O2•− and H2O2 diffusion and advection by the blood flow. Results show that in this environment O2•− and H2O2 have half-lives <60. ms and <40. ms, respectively, the former determined by the plasma SOD3 activity, the latter by clearance by endothelial cells and erythrocytes. H2O2 concentrations do not exceed the 10 nM scale. Maximal O2•− concentrations near vessel walls exceed H2O2's several-fold when the latter results solely from O2•− dismutation. Cytosolic dismutation of inflowing O2•− may thus significantly contribute to H2O2 delivery to cells. O2•− concentrations near vessel walls decay to 50% of maximum 12 μm downstream from O2•− production sites. H2O2 concentrations in capillaries decay to 50% of maximum 22 μm (6.0 μm) downstream from O2•− (H2O2) production sites. Near arterioles' (arteries') walls, they decay by 50% within 6.0 μm (4. μm) of H2O2 production sites. However, they reach maximal values 50 μm (24 μm) downstream from O2•− production sites and decrease by 50% over 650 μm (500 μm). Arterial/olar endothelial cells might thus signal over a mm downstream through O2•−-derived H2O2, though this requires nM-sensitive H2O2 transduction mechanisms. Physiological local H2O2 concentrations in vasculature lumen are up to 10's of μM. H2O2 transport range in capillaries is just ≈20 μm. Faster blood flow in arteri(ol)es transports O2•−-derived H2O2 over 100's of μm Similar H2O2 abundances and distribution near arterioles' and arteries' walls, likewise for O2•−. Inflowing O2•− may significantly feed H2O2 to the cytosol of endothelial cells
Collapse
|
13
|
Shen L, Gan Q, Yang Y, Reis C, Zhang Z, Xu S, Zhang T, Sun C. Mitophagy in Cerebral Ischemia and Ischemia/Reperfusion Injury. Front Aging Neurosci 2021; 13:687246. [PMID: 34168551 PMCID: PMC8217453 DOI: 10.3389/fnagi.2021.687246] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/10/2021] [Indexed: 02/03/2023] Open
Abstract
Ischemic stroke is a severe cerebrovascular disease with high mortality and morbidity. In recent years, reperfusion treatments based on thrombolytic and thrombectomy are major managements for ischemic stroke patients, and the recanalization time window has been extended to over 24 h. However, with the extension of the time window, the risk of ischemia/reperfusion (I/R) injury following reperfusion therapy becomes a big challenge for patient outcomes. I/R injury leads to neuronal death due to the imbalance in metabolic supply and demand, which is usually related to mitochondrial dysfunction. Mitophagy is a type of selective autophagy referring to the process of specific autophagic elimination of damaged or dysfunctional mitochondria to prevent the generation of excessive reactive oxygen species (ROS) and the subsequent cell death. Recent advances have implicated the protective role of mitophagy in cerebral ischemia is mainly associated with its neuroprotective effects in I/R injury. This review discusses the involvement of mitochondria dynamics and mitophagy in the pathophysiology of ischemic stroke and I/R injury in particular, focusing on the therapeutic potential of mitophagy regulation and the possibility of using mitophagy-related interventions as an adjunctive approach for neuroprotective time window extension after ischemic stroke.
Collapse
Affiliation(s)
- Luoan Shen
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, China
| | - Qinyi Gan
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, China
| | - Youcheng Yang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, China
| | - Cesar Reis
- VA Loma Linda Healthcare System, Loma Linda University, Loma Linda, CA, United States
| | - Zheng Zhang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, China
| | - Shanshan Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Tongyu Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chengmei Sun
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, China.,Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
14
|
Bengtson C, Bogaerts A. The Quest to Quantify Selective and Synergistic Effects of Plasma for Cancer Treatment: Insights from Mathematical Modeling. Int J Mol Sci 2021; 22:ijms22095033. [PMID: 34068601 PMCID: PMC8126141 DOI: 10.3390/ijms22095033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/30/2022] Open
Abstract
Cold atmospheric plasma (CAP) and plasma-treated liquids (PTLs) have recently become a promising option for cancer treatment, but the underlying mechanisms of the anti-cancer effect are still to a large extent unknown. Although hydrogen peroxide (H2O2) has been recognized as the major anti-cancer agent of PTL and may enable selectivity in a certain concentration regime, the co-existence of nitrite can create a synergistic effect. We develop a mathematical model to describe the key species and features of the cellular response toward PTL. From the numerical solutions, we define a number of dependent variables, which represent feasible measures to quantify cell susceptibility in terms of the H2O2 membrane diffusion rate constant and the intracellular catalase concentration. For each of these dependent variables, we investigate the regimes of selective versus non-selective, and of synergistic versus non-synergistic effect to evaluate their potential role as a measure of cell susceptibility. Our results suggest that the maximal intracellular H2O2 concentration, which in the selective regime is almost four times greater for the most susceptible cells compared to the most resistant cells, could be used to quantify the cell susceptibility toward exogenous H2O2. We believe our theoretical approach brings novelty to the field of plasma oncology, and more broadly, to the field of redox biology, by proposing new ways to quantify the selective and synergistic anti-cancer effect of PTL in terms of inherent cell features.
Collapse
|
15
|
Saha A, Bagchi A, Chatterjee S, Dutta S, Misra S, Bhattacharjee D, Chatterjee S, Mondal S, Ghosh P, Chatterjee M, Ghosh A. Phenotypic characterization of circulating endothelial cells induced by inflammation and oxidative stress in ankylosing spondylitis. Free Radic Res 2021; 55:520-532. [PMID: 33517802 DOI: 10.1080/10715762.2020.1870113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ankylosing spondylitis (AS) is a chronic auto-immune disease, affecting the spine, sacroiliac, and sometimes peripheral joints. It is also involved with cardio-vascular risk factors due to accelerated atherosclerosis. Oxidative burst, systemic inflammation coupled with endothelial dysfunction (ED), resulting in reduced bioavailability of the vasodilator nitric oxide (NO) and an increased number of circulating endothelial cells (CECs) may correlate with disease activity and its sustenance. Hence, the study was aimed to detect and quantify CECs and assess the oxidative stress and inflammatory status in AS patients vis-à-vis healthy controls, as well as relate these parameters with AS disease activity and atherosclerotic markers in patients. Our study showed an increased frequency of endothelial cells in peripheral blood of AS patients in pro-inflammatory conditions. In AS patient population, they showed significant reduction of flow-mediated dilatation (%FMD) (p < 0.05), and increased soluble adhesion molecules such as sICAM-1 (p < 0.01) and sVCAM-1 (p < 0.05) compared to healthy controls. A marked increase in pro-inflammatory markers such as TNF-α (p < 0.01) and IL-1β (p < 0.001) and reactive free radicals (p < 0.05) along with reduced serum nitrite in AS, provided a strong pro-inflammatory milieu which positively correlated with Bath ankylosing spondylitis disease activity and functional indices (BASDAI and BASFI). The observed significant upregulation in CECs (CD45-/CD31+/CD105+/CD144+) in patients compared to healthy controls positively correlated with disease activity and duration as well as with markers of oxidative stress. Thus, chronic inflammation and oxidative burst induce loss of NO bioavailability, leading to ED. This may cause the derangement of CECs that may be considered as a prognostic biomarker for ED.
Collapse
Affiliation(s)
- Ayindrila Saha
- Department of Clinical Immunology & Rheumatology, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Aniruddha Bagchi
- Department of Pharmacology, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Sulagna Chatterjee
- Department of Clinical Immunology & Rheumatology, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Satarupa Dutta
- Department of Clinical Immunology & Rheumatology, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Sanchaita Misra
- Department of Clinical Immunology & Rheumatology, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Dipanjan Bhattacharjee
- Department of Clinical Immunology & Rheumatology, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Sudipta Chatterjee
- Department of Clinical Immunology & Rheumatology, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Sumantro Mondal
- Department of Clinical Immunology & Rheumatology, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Parasar Ghosh
- Department of Clinical Immunology & Rheumatology, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Mitali Chatterjee
- Department of Pharmacology, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Alakendu Ghosh
- Department of Clinical Immunology & Rheumatology, Institute of Post Graduate Medical Education & Research, Kolkata, India
| |
Collapse
|
16
|
Structure-Dependent Effects of Bisphosphonates on Inflammatory Responses in Cultured Neonatal Mouse Calvaria. Antioxidants (Basel) 2020; 9:antiox9060503. [PMID: 32526922 PMCID: PMC7346192 DOI: 10.3390/antiox9060503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022] Open
Abstract
Bisphosphonates (BPs) are classified into two groups, according to their side chain structures, as nitrogen-containing BPs (NBPs) and non-nitrogen-containing BPs (non-NBPs). In this study, we examined the effects of NBPs and non-NBPs on inflammatory responses, by quantifying the inflammatory mediators, prostaglandin E2 (PGE2) and nitric oxide (NO), in cultured neonatal mouse calvaria. All examined NBPs (pamidronate, alendronate, incadronate, risedronate, zoledronate) stimulated lipopolysaccharide (LPS)-induced PGE2 and NO production by upregulating COX-2 and iNOS mRNA expression, whereas non-NBPs (etidronate, clodronate, tiludronate) suppressed PGE2 and NO production, by downregulating gene expression. Additionally, [4-(methylthio) phenylthio] methane bisphosphonate (MPMBP), a novel non-NBP with an antioxidant methylthio phenylthio group in its side chain, exhibited the most potent anti-inflammatory activity among non-NBPs. Furthermore, results of immunohistochemistry showed that the nuclear translocation of NF-κB/p65 and tyrosine nitration of cytoplasmic protein were stimulated by zoledronate, while MPMBP inhibited these phenomena, by acting as a superoxide anion (O2−) scavenger. These findings indicate that MPMBP can act as an efficacious agent that causes fewer adverse effects in patients with inflammatory bone diseases, including periodontitis and rheumatoid arthritis.
Collapse
|
17
|
Liang B, Su J. Inducible Nitric Oxide Synthase ( iNOS) Mediates Vascular Endothelial Cell Apoptosis in Grass Carp Reovirus (GCRV)-Induced Hemorrhage. Int J Mol Sci 2019; 20:ijms20246335. [PMID: 31888180 PMCID: PMC6941106 DOI: 10.3390/ijms20246335] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
Hemorrhage is one of the most obvious pathological phenomena in grass carp reovirus (GCRV) infection. The etiology of GCRV-induced hemorrhage is unclear. We found inducible nitric oxide synthase (iNOS) may relate to viral hemorrhage according to the previous studies, which is expressed at high levels after GCRV infection and is related to apoptosis. In this study, we aimed to investigate the mechanism of iNOS on apoptosis and hemorrhage at the cell level and individual level on subjects who were infected with GCRV and treated with S-methylisothiourea sulfate (SMT), an iNOS inhibitor. Cell structure, apoptosis rate, and hemorrhage were evaluated through fluorescence microscopy, Annexin V-FITC staining, and H&E staining, respectively. Cell samples and muscle tissues were collected for Western blotting, NO concentration measure, caspase activity assay, and qRT-PCR. iNOS-induced cell apoptosis and H&E staining showed that the vascular wall was broken after GCRV infection in vivo. When the function of iNOS was inhibited, NO content, apoptosis rate, caspase activity, and hemorrhage were reduced. Collectively, these results suggested iNOS plays a key role in apoptosis of vascular endothelial cells in GCRV-induced hemorrhage. This study is the first to elucidate the relationship between iNOS-induced cell apoptosis and GCRV-induced hemorrhage, which lays the foundation for further mechanistic research of virus-induced hemorrhage.
Collapse
Affiliation(s)
- Bo Liang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China;
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China;
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: ; Tel.: +86-27-8728-2227
| |
Collapse
|
18
|
Zeida A, Trujillo M, Ferrer-Sueta G, Denicola A, Estrin DA, Radi R. Catalysis of Peroxide Reduction by Fast Reacting Protein Thiols. Chem Rev 2019; 119:10829-10855. [PMID: 31498605 DOI: 10.1021/acs.chemrev.9b00371] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Life on Earth evolved in the presence of hydrogen peroxide, and other peroxides also emerged before and with the rise of aerobic metabolism. They were considered only as toxic byproducts for many years. Nowadays, peroxides are also regarded as metabolic products that play essential physiological cellular roles. Organisms have developed efficient mechanisms to metabolize peroxides, mostly based on two kinds of redox chemistry, catalases/peroxidases that depend on the heme prosthetic group to afford peroxide reduction and thiol-based peroxidases that support their redox activities on specialized fast reacting cysteine/selenocysteine (Cys/Sec) residues. Among the last group, glutathione peroxidases (GPxs) and peroxiredoxins (Prxs) are the most widespread and abundant families, and they are the leitmotif of this review. After presenting the properties and roles of different peroxides in biology, we discuss the chemical mechanisms of peroxide reduction by low molecular weight thiols, Prxs, GPxs, and other thiol-based peroxidases. Special attention is paid to the catalytic properties of Prxs and also to the importance and comparative outlook of the properties of Sec and its role in GPxs. To finish, we describe and discuss the current views on the activities of thiol-based peroxidases in peroxide-mediated redox signaling processes.
Collapse
Affiliation(s)
| | | | | | | | - Darío A Estrin
- Departamento de Química Inorgánica, Analítica y Química-Física and INQUIMAE-CONICET , Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , 2160 Buenos Aires , Argentina
| | | |
Collapse
|
19
|
Diffusion and Transport of Reactive Species Across Cell Membranes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1127:3-19. [PMID: 31140168 DOI: 10.1007/978-3-030-11488-6_1] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This chapter includes an overview of the structure of cell membranes and a review of the permeability of membranes to biologically relevant oxygen and nitrogen reactive species, namely oxygen, singlet oxygen, superoxide, hydrogen peroxide, hydroxyl radical, nitric oxide, nitrogen dioxide, peroxynitrite and also hydrogen sulfide. Physical interactions of these species with cellular membranes are discussed extensively, but also their relevance to chemical reactions such as lipid peroxidation. Most of these species are involved in different cellular redox processes ranging from physiological pathways to damaging reactions against biomolecules. Cell membranes separate and compartmentalize different processes, inside or outside cells, and in different organelles within cells. The permeability of these membranes to reactive species varies according to the physicochemical properties of each molecule. Some of them, such as nitric oxide and oxygen, are small and hydrophobic and can traverse cellular membranes virtually unhindered. Nitrogen dioxide and hydrogen sulfide find a slightly higher barrier to permeation, but still their diffusion is largely unimpeded by cellular membranes. In contrast, the permeability of cellular membranes to the more polar hydrogen peroxide, is up to five orders of magnitude lower, allowing the formation of concentration gradients, directionality and effective compartmentalization of its actions which can be further regulated by specific aquaporins that facilitate its diffusion through membranes. The compartmentalizing effect on anionic species such as superoxide and peroxynitrite is even more accentuated because of the large energetic barrier that the hydrophobic interior of membranes presents to ions that may be overcome by protonation or the use of anion channels. The large difference in cell membrane permeability for different reactive species indicates that compartmentalization is possible for some but not all of them.
Collapse
|
20
|
Shaik FB, Nagajothi G, Swarnalatha K, Kumar CV, Dhania KN, Kumar CS, Maddu N. Possible Association of Smokeless Tobacco Dependent Impairment in the Erythrocytes and Platelets Membranes of Human Male Volunteers: An Observation. Asian Pac J Cancer Prev 2019; 20:2167-2176. [PMID: 31350981 PMCID: PMC6745197 DOI: 10.31557/apjcp.2019.20.7.2167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Indexed: 11/25/2022] Open
Abstract
Background: Smokeless tobacco (SLT) acts as a modifier of erythrocyte and platelet membranes by disrupting antioxidant system with the concomitant increase in free radical production and induction of apoptosis. Methods: The SLT users was that individuals used gutkha and khaini products (Khaleja/mahak chaini brand respectively) habitually, at least >20 times per week consists of 50-60 g during the last 2-4 years. Results: The gutkha and khaini users found to be significantly increased levels of iNOS (Inducible nitric oxide synthase) enzyme in plasma, erythrocytes, and platelet membranes when compared to normal controls. The gutkha and khaini users exhibited that the significant increase in the levels of gene expression of apoptotic proteins (Bcl2-B cell lymphoma gene 2, Bax, caspases 8, caspase 10, and caspase 12), IL-6 (Interleukin-6), and decreased levels of TNF-α (Tumor necrosis factor-alpha) and decreased expression of caspase 12 of khaini users were observed from blood samples. The significant increase in the concentrations of peroxynitrites (ONOO-), nitric oxide (NO) (Nitrates and nitrites), malondialdehyde (MDA), cholesterol, and phospholipids were reported in the smokeless tobacco users of erythrocytes and platelets. The experimental subjects showed that the increased osmotic fragility and decreased membrane fluidity of erythrocytes and platelets in comparison with non-tobacco users. The normal subjects had been exposed that the proper functioning of antioxidant enzymes and decreased enzyme activities of antioxidants were reported by SLT users. Conclusion: The smokeless tobacco products are exerted chronic damage to membranes of erythrocytes and platelets and elevation of apoptosis in the prolonged periods of human male volunteers.
Collapse
Affiliation(s)
- Fareeda Begum Shaik
- Department of Biochemistry, Sri Krishnadevaraya University, Ananthapuramu, Andhra Pradesh, India.
| | - G Nagajothi
- Department of Corporate Secretary ship, Queen Mary's College (Autonomous), Chennai, Tamil Nadu, India
| | - K Swarnalatha
- Department of Biochemistry, Sri Krishnadevaraya University, Ananthapuramu, Andhra Pradesh, India.
| | - C Vinod Kumar
- Laboratory of Insect Molecular Biology and Biotechnology, Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - K Narender Dhania
- Laboratory of Insect Molecular Biology and Biotechnology, Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - C Suresh Kumar
- Department of Biochemistry, Sri Krishnadevaraya University, Ananthapuramu, Andhra Pradesh, India.
| | - Narendra Maddu
- Department of Biochemistry, Sri Krishnadevaraya University, Ananthapuramu, Andhra Pradesh, India.
| |
Collapse
|
21
|
Radi R. The origins of nitric oxide and peroxynitrite research in Uruguay: 25 years of contributions to the biochemical and biomedical sciences. Nitric Oxide 2019; 87:83-89. [DOI: 10.1016/j.niox.2019.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 12/12/2022]
|
22
|
Zhang K, Tu M, Gao W, Cai X, Song F, Chen Z, Zhang Q, Wang J, Jin C, Shi J, Yang X, Zhu Y, Gu W, Hu B, Zheng Y, Zhang H, Tian M. Hollow Prussian Blue Nanozymes Drive Neuroprotection against Ischemic Stroke via Attenuating Oxidative Stress, Counteracting Inflammation, and Suppressing Cell Apoptosis. NANO LETTERS 2019; 19:2812-2823. [PMID: 30908916 DOI: 10.1021/acs.nanolett.8b04729] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Ischemic stroke is a devastating disease and one of the leading causes of mortality worldwide. Overproduction of reactive oxygen and nitrogen species (RONS) following ischemic insult is known as a key factor in exacerbating brain damage. Thus, RONS scavengers that can block excessive production of RONS have great therapeutic potential. Herein, we propose an efficient treatment strategy in which an artificial nanozyme with multienzyme activity drives neuroprotection against ischemic stroke primarily by scavenging RONS. Specifically, through a facile, Bi3+-assisted, template-free synthetic strategy, we developed hollow Prussian blue nanozymes (HPBZs) with multienzyme activity to scavenge RONS in a rat model of ischemic stroke. The comprehensive characteristics of HPBZs against RONS were explored. Apart from attenuating oxidative stress, HPBZs also suppressed apoptosis and counteracted inflammation both in vitro and in vivo, thereby contributing to increased brain tolerance of ischemic injury with minimal side effects. This study provides a proof of concept for a novel class of neuroprotective nanoagents that might be beneficial for treatment of ischemic stroke and other RONS-related disorders.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital , Zhejiang University School of Medicine , Hangzhou , Zhejiang 310009 , P. R. China
| | - Mengjiao Tu
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital , Zhejiang University School of Medicine , Hangzhou , Zhejiang 310009 , P. R. China
| | - Wei Gao
- Shanghai Institute of Ultrasound in Medicine, Sixth People's Hospital , Shanghai Jiao Tong University Affiliated , Shanghai 200233 , P. R. China
| | - Xiaojun Cai
- Shanghai Institute of Ultrasound in Medicine, Sixth People's Hospital , Shanghai Jiao Tong University Affiliated , Shanghai 200233 , P. R. China
| | - Fahuan Song
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital , Zhejiang University School of Medicine , Hangzhou , Zhejiang 310009 , P. R. China
| | - Zheng Chen
- Department of Neurosurgery, Xinhua Hospital , Shanghai Jiao Tong University , Shanghai 200082 , P. R. China
| | - Qian Zhang
- Department of Oncology, Tenth People's Hospital , Tongji University , Shanghai 200072 , P. R. China
| | - Jing Wang
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital , Zhejiang University School of Medicine , Hangzhou , Zhejiang 310009 , P. R. China
| | - Chentao Jin
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital , Zhejiang University School of Medicine , Hangzhou , Zhejiang 310009 , P. R. China
| | - Jingjing Shi
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital , Zhejiang University School of Medicine , Hangzhou , Zhejiang 310009 , P. R. China
| | - Xiang Yang
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital , Zhejiang University School of Medicine , Hangzhou , Zhejiang 310009 , P. R. China
| | - Yuankai Zhu
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital , Zhejiang University School of Medicine , Hangzhou , Zhejiang 310009 , P. R. China
| | - Weizhong Gu
- Department of Pathology, Children's Hospital , Zhejiang University School of Medicine , Hangzhou , Zhejiang 310051 , P. R. China
| | - Bing Hu
- Shanghai Institute of Ultrasound in Medicine, Sixth People's Hospital , Shanghai Jiao Tong University Affiliated , Shanghai 200233 , P. R. China
| | - Yuanyi Zheng
- Shanghai Institute of Ultrasound in Medicine, Sixth People's Hospital , Shanghai Jiao Tong University Affiliated , Shanghai 200233 , P. R. China
| | - Hong Zhang
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital , Zhejiang University School of Medicine , Hangzhou , Zhejiang 310009 , P. R. China
- Shanxi Medical University , Taiyuan , Shanxi 030001 , P. R. China
| | - Mei Tian
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital , Zhejiang University School of Medicine , Hangzhou , Zhejiang 310009 , P. R. China
| |
Collapse
|
23
|
Mu X, Wang J, Li Y, Xu F, Long W, Ouyang L, Liu H, Jing Y, Wang J, Dai H, Liu Q, Sun Y, Liu C, Zhang XD. Redox Trimetallic Nanozyme with Neutral Environment Preference for Brain Injury. ACS NANO 2019; 13:1870-1884. [PMID: 30753061 DOI: 10.1021/acsnano.8b08045] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Metal nanozyme has attracted wide interest for biomedicine, and a highly catalytic material in the physiological environment is highly desired. However, catalytic selectivity of nanozyme is still highly challenging, limiting its wide application. Here, we show a trimetallic (triM) nanozyme with highly catalytic activity and environmental selectivity. Enzyme-mimicked investigations find that the triM system possesses multi-enzyme-mimetic activity for removing reactive oxygen species (ROS) and reactive nitrogen species (RNS), such as 1O2, H2O2, •OH, and •NO. Importantly, triM nanozyme exhibits the significant neutral environment preference for removing the •OH, 1O2, and •NO free radical, indicating its highly catalytic selectivity. The density functional theory (DFT) calculations reveal that triM nanozyme can capture electrons very easily and provides more attraction to reactive oxygen and nitrogen species (RONS) radicals in the neutral environment. In vitro experiments show that triM nanozyme can improve the viability of injured neural cell. In the LPS-induced brain injury model, the superoxide dismutase (SOD) activity and lipid peroxidation can be greatly recovered after triM nanozyme treatment. Moreover, the triM nanozyme treatment can significantly improve the survival rate, neuroinflammation, and reference memory of injured mice. Present work provides a feasible route for improving selectivity of nanozyme in the physiological environment as well as exploring potential applications in brain science.
Collapse
Affiliation(s)
- Xiaoyu Mu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences , Tianjin University , Tianjin 300350 , China
| | - Junying Wang
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences , Tianjin University , Tianjin 300350 , China
| | - Yonghui Li
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences , Tianjin University , Tianjin 300350 , China
| | - Fujuan Xu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences , Tianjin University , Tianjin 300350 , China
| | - Wei Long
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine , Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192 , China
| | - Lufei Ouyang
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences , Tianjin University , Tianjin 300350 , China
| | - Haile Liu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences , Tianjin University , Tianjin 300350 , China
| | - Yaqi Jing
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences , Tianjin University , Tianjin 300350 , China
| | - Jingya Wang
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine , Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192 , China
| | - Haitao Dai
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences , Tianjin University , Tianjin 300350 , China
| | - Qiang Liu
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine , Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192 , China
| | - Yuanming Sun
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine , Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192 , China
| | - Changlong Liu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences , Tianjin University , Tianjin 300350 , China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences , Tianjin University , Tianjin 300350 , China
| |
Collapse
|
24
|
Luu AZ, Chowdhury B, Al-Omran M, Teoh H, Hess DA, Verma S. Role of Endothelium in Doxorubicin-Induced Cardiomyopathy. JACC Basic Transl Sci 2018; 3:861-870. [PMID: 30623145 PMCID: PMC6314956 DOI: 10.1016/j.jacbts.2018.06.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/19/2018] [Indexed: 12/29/2022]
Abstract
The clinical use of doxorubicin in cancer is limited by cardiotoxic effects that can lead to heart failure. Whereas earlier work focused on the direct impact of doxorubicin on cardiomyocytes, recent studies have turned to the endothelium, because doxorubicin-damaged endothelial cells can trigger the development and progression of cardiomyopathy by decreasing the release and activity of key endothelial factors and inducing endothelial cell death. Thus, the endothelium represents a novel target for improving the detection, management, and prevention of doxorubicin-induced cardiomyopathy.
Collapse
Key Words
- AKT, protein kinase B
- Bcl-2, B-cell lymphoma-2
- DNA, deoxyribonucleic acid
- ERK1/2, extracellular signal-regulated kinase 1/2
- ET, endothelin
- LV, left ventricular
- MRP, multidrug resistance protein
- NADPH, nicotinamide adenine dinucleotide phosphate
- NO, nitric oxide
- NOS, nitric oxide synthase
- NRG-1, neuregulin-1
- PGI2, prostaglandin I2
- PI3K, phosphoinositide 3-kinase
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- ZO, zona occludens
- cardiomyopathy
- doxorubicin
- endothelium
- heart failure
Collapse
Affiliation(s)
- Albert Z Luu
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Biswajit Chowdhury
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Mohammed Al-Omran
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Division of Vascular Surgery, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Hwee Teoh
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,Division of Endocrinology and Metabolism, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - David A Hess
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Division of Vascular Surgery, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,Molecular Medicine Research Laboratories, Krembil Centre for Stem Cell Biology, Robarts Research Institute, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Subodh Verma
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Oxidative Stress in Poultry: Lessons from the Viral Infections. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5123147. [PMID: 30647810 PMCID: PMC6311761 DOI: 10.1155/2018/5123147] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/25/2018] [Indexed: 12/13/2022]
Abstract
Reactive species (RS), generally known as reactive oxygen species (ROS) and reactive nitrogen species (RNS), are produced during regular metabolism in the host and are required for many cellular processes such as cytokine transcription, immunomodulation, ion transport, and apoptosis. Intriguingly, both RNS and ROS are commonly triggered by the pathogenic viruses and are famous for their dual roles in the clearance of viruses and pathological implications. Uncontrolled production of reactive species results in oxidative stress and causes damage in proteins, lipids, DNA, and cellular structures. In this review, we describe the production of RS, their detoxification by a cellular antioxidant system, and how these RS damage the proteins, lipids, and DNA. Given the widespread importance of RS in avian viral diseases, oxidative stress pathways are of utmost importance for targeted therapeutics. Therefore, a special focus is provided on avian virus-mediated oxidative stresses. Finally, future research perspectives are discussed on the exploitation of these pathways to treat viral diseases of poultry.
Collapse
|
26
|
Möller MN, Denicola A. Diffusion of nitric oxide and oxygen in lipoproteins and membranes studied by pyrene fluorescence quenching. Free Radic Biol Med 2018; 128:137-143. [PMID: 29673655 DOI: 10.1016/j.freeradbiomed.2018.04.553] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/05/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
Abstract
Oxygen and nitric oxide are small hydrophobic molecules that usually need to diffuse a considerable distance to accomplish their biological functions and necessarily need to traverse several lipid membranes. Different methods have been used to study the diffusion of these molecules in membranes and herein we focus in the quenching of fluorescence of pyrenes inserted in the membrane. The pyrene derivatives have long fluorescence lifetimes (around 200 ns) that make them very sensitive to fluorescence quenching by nitric oxide, oxygen and other paramagnetic species. Results show that the apparent diffusion coefficients in membranes are similar to those in water, indicating that diffusion of these molecules in membranes is not considerably limited by the lipids. This high apparent diffusion in membranes is a consequence of both a favorable partition of these molecules in the hydrophobic interior of membranes and a high diffusion coefficient. Altering the composition of the membrane results in slight changes in diffusion, indicating that in most cases the lipid membranes will not hinder the passage of oxygen or nitric oxide. The diffusion of nitric oxide in the lipid core of low density lipoprotein is also very high, supporting its role as an antioxidant. In contrast to the high permeability of membranes to nitric oxide and oxygen, the permeability to other reactive species such as hydrogen peroxide and peroxynitrous acid is nearly five orders of magnitude lower.
Collapse
Affiliation(s)
- Matías N Möller
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias and Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay.
| | - Ana Denicola
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias and Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
27
|
Attri P, Han J, Choi S, Choi EH, Bogaerts A, Lee W. CAP modifies the structure of a model protein from thermophilic bacteria: mechanisms of CAP-mediated inactivation. Sci Rep 2018; 8:10218. [PMID: 29977069 PMCID: PMC6033864 DOI: 10.1038/s41598-018-28600-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022] Open
Abstract
Cold atmospheric plasma (CAP) has great potential for sterilization in the food industry, by deactivation of thermophilic bacteria, but the underlying mechanisms are largely unknown. Therefore, we investigate here whether CAP is able to denature/modify protein from thermophilic bacteria. We focus on MTH1880 (MTH) from Methanobacterium thermoautotrophicum as model protein, which we treated with dielectric barrier discharge (DBD) plasma operating in air for 10, 15 and 20 mins. We analysed the structural changes of MTH using circular dichroism, fluorescence and NMR spectroscopy, as well as the thermal and chemical denaturation, upon CAP treatment. Additionally, we performed molecular dynamics (MD) simulations to determine the stability, flexibility and solvent accessible surface area (SASA) of both the native and oxidised protein.
Collapse
Affiliation(s)
- Pankaj Attri
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| | - Jeongmin Han
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, 134 Shinchon-Dong, Seodaemoon-Gu, Seoul, 120-749, Korea
| | - Sooho Choi
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, 134 Shinchon-Dong, Seodaemoon-Gu, Seoul, 120-749, Korea
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium.
| | - Weontae Lee
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, 134 Shinchon-Dong, Seodaemoon-Gu, Seoul, 120-749, Korea.
| |
Collapse
|
28
|
Ercan U, Sen B, Brooks A, Joshi S. Escherichia coli
cellular responses to exposure to atmospheric‐pressure dielectric barrier discharge plasma‐treated N‐acetylcysteine solution. J Appl Microbiol 2018; 125:383-397. [DOI: 10.1111/jam.13777] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/15/2018] [Accepted: 03/27/2018] [Indexed: 12/30/2022]
Affiliation(s)
- U.K. Ercan
- College of Medicine Center for Surgical Infection and Biofilm Drexel University Philadelphia PA USA
| | - B. Sen
- College of Medicine Center for Surgical Infection and Biofilm Drexel University Philadelphia PA USA
| | - A.D. Brooks
- College of Medicine Center for Surgical Infection and Biofilm Drexel University Philadelphia PA USA
| | - S.G. Joshi
- College of Medicine Center for Surgical Infection and Biofilm Drexel University Philadelphia PA USA
- School of Biomedical Engineering, Science and Health Systems Drexel University Philadelphia PA USA
- A.J. Drexel Plasma Institute, Drexel University Philadelphia PA USA
| |
Collapse
|
29
|
Ferrer-Sueta G, Campolo N, Trujillo M, Bartesaghi S, Carballal S, Romero N, Alvarez B, Radi R. Biochemistry of Peroxynitrite and Protein Tyrosine Nitration. Chem Rev 2018; 118:1338-1408. [DOI: 10.1021/acs.chemrev.7b00568] [Citation(s) in RCA: 396] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gerardo Ferrer-Sueta
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Nicolás Campolo
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Silvina Bartesaghi
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Sebastián Carballal
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Natalia Romero
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Beatriz Alvarez
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
30
|
Krylatov AV, Maslov LN, Voronkov NS, Boshchenko AA, Popov SV, Gomez L, Wang H, Jaggi AS, Downey JM. Reactive Oxygen Species as Intracellular Signaling Molecules in the Cardiovascular System. Curr Cardiol Rev 2018; 14:290-300. [PMID: 29962348 PMCID: PMC6300799 DOI: 10.2174/1573403x14666180702152436] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/13/2018] [Accepted: 06/20/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Redox signaling plays an important role in the lives of cells. This signaling not only becomes apparent in pathologies but is also thought to be involved in maintaining physiological homeostasis. Reactive Oxygen Species (ROS) can activate protein kinases: CaMKII, PKG, PKA, ERK, PI3K, Akt, PKC, PDK, JNK, p38. It is unclear whether it is a direct interaction of ROS with these kinases or whether their activation is a consequence of inhibition of phosphatases. ROS have a biphasic effect on the transport of Ca2+ in the cell: on one hand, they activate the sarcoplasmic reticulum Ca2+-ATPase, which can reduce the level of Ca2+ in the cell, and on the other hand, they can inactivate Ca2+-ATPase of the plasma membrane and open the cation channels TRPM2, which promote Ca2+-loading and subsequent apoptosis. ROS inhibit the enzyme PHD2, which leads to the stabilization of HIF-α and the formation of the active transcription factor HIF. CONCLUSION Activation of STAT3 and STAT5, induced by cytokines or growth factors, may include activation of NADPH oxidase and enhancement of ROS production. Normal physiological production of ROS under the action of cytokines activates the JAK/STAT while excessive ROS production leads to their inhibition. ROS cause the activation of the transcription factor NF-κB. Physiological levels of ROS control cell proliferation and angiogenesis. ROS signaling is also involved in beneficial adaptations to survive ischemia and hypoxia, while further increases in ROS can trigger programmed cell death by the mechanism of apoptosis or autophagy. ROS formation in the myocardium can be reduced by moderate exercise.
Collapse
Affiliation(s)
| | - Leonid N. Maslov
- Address correspondence to this author at the Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of
Science, Tomsk, Russia; Tel: 3822 262174; Fax: 3822 555057;
E-mail:
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Ke Z, Thopan P, Fridman G, Miller V, Yu L, Fridman A, Huang Q. Effect of N2/O2 composition on inactivation efficiency of Escherichia coli by discharge plasma at the gas-solution interface. CLINICAL PLASMA MEDICINE 2017. [DOI: 10.1016/j.cpme.2017.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Zhang B, Zhang Z, Ji H, Shi H, Chen S, Yan D, Jiang X, Shi B. Grape seed proanthocyanidin extract alleviates urethral dysfunction in diabetic rats through modulating the NO-cGMP pathway. Exp Ther Med 2017; 15:1053-1061. [PMID: 29403553 DOI: 10.3892/etm.2017.5499] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 09/09/2017] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress is closely associated with the onset of diabetes mellitus (DM). Diabetic urethropathy is one of the most common complications of DM, but few studies have been conducted to investigate the role of oxidative stress in diabetic urethropathy. Grape seed proanthocyanidin extract (GSPE) has been previously reported to reduce oxidative injury. The present study aimed to investigate the role of oxidative stress and the protective effects of GSPE on urethral dysfunction using a streptozotocin-induced DM rat model. Female Wistar rats were divided into a control group (n=36), a DM group (n=36) and a DM + GSPE group (n=36). Urodynamic testing was performed using a PowerLab data acquisition device. The expression of neuronal nitric oxide synthase (nNOS), 3-nitrotyrosine and nuclear factor erythroid 2-related factor 2 (Nrf2) was determined using western blot analysis. The expression of 3-nitrotyrosine was also determined using immunohistochemistry. Nitric oxide (NO), cyclic guanosine monophosphate (cGMP), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) were measured using commercial ELISA kits. A significant increase was observed in the intravesical pressure thresholds for inducing urethral relaxation and the urethral perfusion pressure nadir in DM rats compared with the control group. GSPE was observed to reverse the increase of these parameters compared with the DM group. In addition, GSPE could reverse the downregulation of nNOS, NO and cGMP expression, and the decreased activities of antioxidant enzymes (SOD and GSH-Px). GSPE reversed the upregulation of 3-nitrotyrosine and MDA in DM rats. GSPE also activated Nrf2, which is a key antioxidative transcription factor. The findings of the present study demonstrated that GSPE protects urethra function in DM rats through modulating the NO-cGMP signaling pathway. The protective roles of GSPE may be associated with activation of the Nrf2 defense pathway.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Urology, Binzhou Medical University Hospital, Binzhou, Shandong 256600, P.R. China.,Department of Urology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zhaocun Zhang
- Department of Urology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hong Ji
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, Shandong 256600, P.R. China
| | - Hui Shi
- Department of Bone and Joint Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256600, P.R. China
| | - Shouzhen Chen
- Department of Urology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Dongliang Yan
- Department of Urology, Binzhou Medical University Hospital, Binzhou, Shandong 256600, P.R. China
| | - Xuewen Jiang
- Department of Urology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Benkang Shi
- Department of Urology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
33
|
Gao T, Gu S, Mu C, Zhang M, Yang J, Liu P, Li G. Electrochemical assay of lipid kinase activity facilitated by liposomes. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.08.190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Yan D, Sherman JH, Keidar M. Cold atmospheric plasma, a novel promising anti-cancer treatment modality. Oncotarget 2017; 8:15977-15995. [PMID: 27845910 PMCID: PMC5362540 DOI: 10.18632/oncotarget.13304] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/29/2016] [Indexed: 01/01/2023] Open
Abstract
Over the past decade, cold atmospheric plasma (CAP), a near room temperature ionized gas has shown its promising application in cancer therapy. Two CAP devices, namely dielectric barrier discharge and plasma jet, show significantly anti-cancer capacity over dozens of cancer cell lines in vitro and several subcutaneous xenograft tumors in vivo. In contrast to conventional anti-cancer approaches and drugs, CAP is a selective anti-cancer treatment modality. Thus far establishing the chemical and molecular mechanism of the anti-cancer capacity of CAP is far from complete. In this review, we provide a comprehensive introduction of the basics of CAP, state of the art research in this field, the primary challenges, and future directions to cancer biologists.
Collapse
Affiliation(s)
- Dayun Yan
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, USA
| | - Jonathan H Sherman
- Department of Neurological Surgery, The George Washington University,Washington, DC, USA
| | - Michael Keidar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, USA
| |
Collapse
|
35
|
Liu Y, Ai K, Ji X, Askhatova D, Du R, Lu L, Shi J. Comprehensive Insights into the Multi-Antioxidative Mechanisms of Melanin Nanoparticles and Their Application To Protect Brain from Injury in Ischemic Stroke. J Am Chem Soc 2017; 139:856-862. [PMID: 27997170 PMCID: PMC5752099 DOI: 10.1021/jacs.6b11013] [Citation(s) in RCA: 372] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nanotechnology-mediated antioxidative therapy is emerging as a novel strategy for treating a myriad of important diseases through scavenging excessive reactive oxygen and nitrogen species (RONS), a mechanism critical in disease development and progression. However, similar to antioxidative enzymes, currently studied nanoantioxidants have demonstrated scavenging activity to specific RONS, and sufficient antioxidative effects against multiple RONS generated in diseases remain elusive. Here we propose to develop bioinspired melanin nanoparticles (MeNPs) for more potent and safer antioxidative therapy. While melanin is known to function as a potential radical scavenger, its antioxidative mechanisms are far from clear, and its applications for the treatment of RONS-associated diseases have yet to be well-explored. In this study, we provide for the first time exhaustive characterization of the activities of MeNPs against multiple RONS including O2•-, H2O2, •OH, •NO, and ONOO-, the main toxic RONS generated in diseases. The potential of MeNPs for antioxidative therapy has also been evaluated in vitro and in a rat model of ischemic stroke. In addition to the broad defense against these RONS, MeNPs can also attenuate the RONS-triggered inflammatory responses through suppressing the expression of inflammatory mediators and cytokines. In vivo results further demonstrate that these unique multi-antioxidative, anti-inflammatory, and biocompatible features of MeNPs contribute to their effective protection of ischemic brains with negligible side effects.
Collapse
Affiliation(s)
- Yanlan Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kelong Ai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiaoyuan Ji
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Diana Askhatova
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rose Du
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lehui Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
36
|
|
37
|
Li J, Li W, Su J, Liu W, Altura BT, Altura BM. Peroxynitrite Induces Apoptosis in Rat Aortic Smooth Muscle Cells: Possible Relation to Vascular Diseases. Exp Biol Med (Maywood) 2016; 229:264-9. [PMID: 14988519 DOI: 10.1177/153537020422900307] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
An emerging body of evidence is accumulating to suggest that in vivo formation of free radicals in the vasculature, such as peroxynitrite (ONOO–), and programmed cell death (i.e., apoptosis) play important roles in vascular diseases such as atherosclerosis, hypertension, and restenosis. The present study was designed to determine whether primary rat aortic smooth muscle cells (SMCs) undergo apoptosis following treatment with ONOO–. Direct exposure of primary rat aortic SMCs to ONOO– induced apoptosis in a concentration-dependent manner, as confirmed by means of quantitative fluorescence staining and TUNEL assays. ONOO–-induced apoptosis in rat aortic SMCs appears to involve activation of Ca2+-dependent endonucleases. Although the precise mechanisms by which peroxynitrite induces apoptosis in rat aortic SMCs need to be further investigated, the present, preliminary findings could be used to suggest that ONOO– formation in the vasculature may play roles in the processes of vascular diseases, such as atherosclerosis, hypertension, and restenosis, via adverse actions on blood vessels.
Collapse
MESH Headings
- Animals
- Aorta/drug effects
- Apoptosis/drug effects
- Calcium/metabolism
- Cell Survival/drug effects
- Cells, Cultured
- Dose-Response Relationship, Drug
- Endonucleases/drug effects
- Endonucleases/metabolism
- In Situ Nick-End Labeling
- Male
- Microscopy, Fluorescence
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Peroxynitrous Acid/pharmacology
- Rats
- Rats, Wistar
Collapse
Affiliation(s)
- Jianfeng Li
- Department of Physiology, State University of New York, Downstate Medical Center, Brooklyn, New York 11203, USA
| | | | | | | | | | | |
Collapse
|
38
|
Rastad JL, Green WR. Myeloid-derived suppressor cells in murine AIDS inhibit B-cell responses in part via soluble mediators including reactive oxygen and nitrogen species, and TGF-β. Virology 2016; 499:9-22. [PMID: 27632561 DOI: 10.1016/j.virol.2016.08.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/28/2016] [Accepted: 08/29/2016] [Indexed: 12/17/2022]
Abstract
Monocytic myeloid-derived suppressor cells (M-MDSCs) were increased during LP-BM5 retroviral infection, and were capable of suppressing not only T-cell, but also B-cell responses. In addition to previously demonstrating iNOS- and VISTA-dependent M-MDSC mechanisms, in this paper, we detail how M-MDSCs utilized soluble mediators, including the reactive oxygen and nitrogen species superoxide, peroxynitrite, and nitric oxide, and TGF-β, to suppress B cells in a predominantly contact-independent manner. Suppression was independent of cysteine-depletion and hydrogen peroxide production. When two major mechanisms of suppression (iNOS and VISTA) were eliminated in double knockout mice, M-MDSCs from LP-BM5-infected mice were able to compensate using other, soluble mechanisms in order to maintain suppression of B cells. The IL-10 producing regulatory B-cell compartment was among the targets of M-MDSC-mediated suppression.
Collapse
Affiliation(s)
- Jessica L Rastad
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, United States
| | - William R Green
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, United States; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, United States.
| |
Collapse
|
39
|
Maiti AK, Islam MT, Satou R, Majid DSA. Enhancement in cellular Na+K+ATPase activity by low doses of peroxynitrite in mouse renal tissue and in cultured HK2 cells. Physiol Rep 2016; 4:4/7/e12766. [PMID: 27081160 PMCID: PMC4831332 DOI: 10.14814/phy2.12766] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/21/2016] [Indexed: 11/25/2022] Open
Abstract
In the normal condition, endogenous formation of peroxynitrite (ONOOˉ) from the interaction of nitric oxide and superoxide has been suggested to play a renoprotective role. However, the exact mechanism associated with renoprotection by this radical compound is not yet clearly defined. Although ONOOˉ usually inhibits renal tubular Na+K+ATPase (NKA) activity at high concentrations (micromolar to millimolar range [μM–mM], achieved in pathophysiological conditions), the effects at lower concentrations (nanomolar range [nM], relevant in normal condition) remain unknown. To examine the direct effect of ONOOˉ on NKA activity, preparations of cellular membrane fraction from mouse renal tissue and from cultured HK2 cells (human proximal tubular epithelial cell lines) were incubated for 10 and 30 min each with different concentrations of ONOOˉ (10 nmol/L–200 μmol/L). NKA activity in these samples (n = 5 in each case) was measured via a colorimetric assay capable of detecting inorganic phosphate. At high concentrations (1–200 μmol/L), ONOOˉ caused dose‐dependent inhibition of NKA activity (−3.0 ± 0.6% and −36.4 ± 1.4%). However, NKA activity remained unchanged at 100 and 500 nmol/L ONOOˉ concentration, but interestingly, at lower concentrations (10 and 50 nmol/L), ONOOˉ caused small but significant increases in the NKA activity (3.3 ± 1.1% and 3.1 ± 0.6%). Pretreatment with a ONOOˉ scavenger, mercaptoethylguanidine (MEG; 200 μmol/L), prevented these biphasic responses to ONOOˉ. This dose‐dependent biphasic action of ONOO− on NKA activity may implicate that this radical compound helps to maintain sodium homeostasis either by enhancing tubular sodium reabsorption under normal conditions or by inhibiting it during oxidative stress conditions.
Collapse
Affiliation(s)
- Arpan K Maiti
- Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Mohammed T Islam
- Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Ryousuke Satou
- Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Dewan S A Majid
- Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
40
|
Regulators of mitochondrial complex I activity: A review of literature and evaluation in postmortem prefrontal cortex from patients with bipolar disorder. Psychiatry Res 2016; 236:148-157. [PMID: 26723136 DOI: 10.1016/j.psychres.2015.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 12/28/2022]
Abstract
Phenomenologically, bipolar disorder (BD) is characterized by biphasic increases and decreases in energy. As this is a state-related phenomenon, identifying regulators responsible for this phasic dysregulation has the potential to uncover key elements in the pathophysiology of BD. Given the evidence suggesting mitochondrial complex I dysfunction in BD, we aimed to identify the main regulators of complex I in BD by reviewing the literature and using the published microarray data to examine their gene expression profiles. We also validated protein expression levels of the main complex I regulators by immunohistochemistry. Upon reviewing the literature, we found PARK-7, STAT-3, SIRT-3 and IMP-2 play an important role in regulating complex I activity. Published microarray studies however revealed no significant direction of regulation of STAT-3, SIRT-3, and IMP-2, but a trend towards downregulation of PARK-7 was observed in BD. Immunocontent of DJ-1 (PARK-7-encoded protein) were not elevated in post mortem prefrontal cortex from patients with BD. We also found a trend towards upregulation of DJ-1 expression with age. Our results suggest that DJ-1 is not significantly altered in BD subjects, however further studies are needed to examine DJ-1 expression levels in a cohort of older patients with BD.
Collapse
|
41
|
Capogrosso RF, Cozzoli A, Mantuano P, Camerino GM, Massari AM, Sblendorio VT, De Bellis M, Tamma R, Giustino A, Nico B, Montagnani M, De Luca A. Assessment of resveratrol, apocynin and taurine on mechanical-metabolic uncoupling and oxidative stress in a mouse model of duchenne muscular dystrophy: A comparison with the gold standard, α-methyl prednisolone. Pharmacol Res 2016; 106:101-113. [PMID: 26930420 DOI: 10.1016/j.phrs.2016.02.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 02/15/2016] [Accepted: 02/15/2016] [Indexed: 02/02/2023]
Abstract
Antioxidants have a great potential as adjuvant therapeutics in patients with Duchenne muscular dystrophy, although systematic comparisons at pre-clinical level are limited. The present study is a head-to-head assessment, in the exercised mdx mouse model of DMD, of natural compounds, resveratrol and apocynin, and of the amino acid taurine, in comparison with the gold standard α-methyl prednisolone (PDN). The rationale was to target the overproduction of reactive oxygen species (ROS) via disease-related pathways that are worsened by mechanical-metabolic impairment such as inflammation and over-activity of NADPH oxidase (NOX) (taurine and apocynin, respectively) or the failing ROS detoxification mechanisms via sirtuin-1 (SIRT1)-peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) (resveratrol). Resveratrol (100mg/kg i.p. 5days/week), apocynin (38mg/kg/day per os), taurine (1g/kg/day per os), and PDN (1mg/kg i.p., 5days/week) were administered for 4-5 weeks to mdx mice in parallel with a standard protocol of treadmill exercise and the outcome was evaluated with a multidisciplinary approach in vivo and ex vivo on pathology-related end-points and biomarkers of oxidative stress. Resveratrol≥taurine>apocynin enhanced in vivo mouse force similarly to PDN. All the compounds reduced the production of superoxide anion, assessed by dihydroethidium staining, with apocynin being as effective as PDN, and ameliorated electrophysiological biomarkers of oxidative stress. Resveratrol also significantly reduced plasma levels of creatine kinase and lactate dehydrogenase. Force of isolated muscles was little ameliorated. However, the three compounds improved histopathology of gastrocnemius muscle more than PDN. Taurine>apocynin>PDN significantly decreased activated NF-kB positive myofibers. Thus, compounds targeting NOX-ROS or SIRT1/PGC-1α pathways differently modulate clinically relevant DMD-related endpoints according to their mechanism of action. With the caution needed in translational research, the results show that the parallel assessment can help the identification of best adjuvant therapies.
Collapse
Affiliation(s)
- Roberta Francesca Capogrosso
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari "Aldo Moro", Bari, Italy; Department of Chemical, Toxicological and Pharmacological Drug Studies, Catholic University "Our Lady of Good Counsel", Tirana, Albania
| | - Anna Cozzoli
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Paola Mantuano
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Giulia Maria Camerino
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Ada Maria Massari
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Valeriana Teresa Sblendorio
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Michela De Bellis
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Arcangela Giustino
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari "Aldo Moro" Bari, Italy
| | - Beatrice Nico
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Monica Montagnani
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari "Aldo Moro" Bari, Italy
| | - Annamaria De Luca
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari "Aldo Moro", Bari, Italy.
| |
Collapse
|
42
|
Eroglu E, Gottschalk B, Charoensin S, Blass S, Bischof H, Rost R, Madreiter-Sokolowski CT, Pelzmann B, Bernhart E, Sattler W, Hallström S, Malinski T, Waldeck-Weiermair M, Graier WF, Malli R. Development of novel FP-based probes for live-cell imaging of nitric oxide dynamics. Nat Commun 2016; 7:10623. [PMID: 26842907 PMCID: PMC4743004 DOI: 10.1038/ncomms10623] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/05/2016] [Indexed: 12/22/2022] Open
Abstract
Nitric oxide () is a free radical with a wide range of biological effects, but practically impossible to visualize in single cells. Here we report the development of novel multicoloured fluorescent quenching-based probes by fusing a bacteria-derived -binding domain close to distinct fluorescent protein variants. These genetically encoded probes, referred to as geNOps, provide a selective, specific and real-time read-out of cellular dynamics and, hence, open a new era of bioimaging. The combination of geNOps with a Ca(2+) sensor allowed us to visualize and Ca(2+) signals simultaneously in single endothelial cells. Moreover, targeting of the probes was used to detect signals within mitochondria. The geNOps are useful new tools to further investigate and understand the complex patterns of signalling on the single (sub)cellular level.
Collapse
Affiliation(s)
- Emrah Eroglu
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| | - Benjamin Gottschalk
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| | - Suphachai Charoensin
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| | - Sandra Blass
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| | - Helmut Bischof
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| | - Rene Rost
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| | - Corina T Madreiter-Sokolowski
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| | - Brigitte Pelzmann
- Institute of Biophysics, Center of Physiological Medicine, Medical University of Graz, Harrachgasse 21/IV, 8010 Graz, Austria
| | - Eva Bernhart
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| | - Seth Hallström
- Institute of Physiological Chemistry, Center of Physiological Medicine, Medical University of Graz, Harrachgasse 21/II, 8010 Graz, Austria
| | - Tadeusz Malinski
- Nanomedical Research Laboratory, Department of Chemistry and Biochemistry, Ohio University, 350 West State Street, Athens, Ohio 45701, USA
| | - Markus Waldeck-Weiermair
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| | - Wolfgang F Graier
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| | - Roland Malli
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| |
Collapse
|
43
|
Chemical Changes in Nonthermal Plasma-Treated N-Acetylcysteine (NAC) Solution and Their Contribution to Bacterial Inactivation. Sci Rep 2016; 6:20365. [PMID: 26832829 PMCID: PMC4735827 DOI: 10.1038/srep20365] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 12/31/2015] [Indexed: 12/28/2022] Open
Abstract
In continuation of our previous reports on the broad-spectrum antimicrobial activity
of atmospheric non-thermal dielectric barrier discharge (DBD) plasma treated
N-Acetylcysteine (NAC) solution against planktonic and biofilm forms of different
multidrug resistant microorganisms, we present here the chemical changes that
mediate inactivation of Escherichia coli. In this study, the mechanism and
products of the chemical reactions in plasma-treated NAC solution are shown.
UV-visible spectrometry, FT-IR, NMR, and colorimetric assays were utilized for
chemical characterization of plasma treated NAC solution. The characterization
results were correlated with the antimicrobial assays using determined chemical
species in solution in order to confirm the major species that are responsible for
antimicrobial inactivation. Our results have revealed that plasma treatment of NAC
solution creates predominantly reactive nitrogen species versus reactive oxygen
species, and the generated peroxynitrite is responsible for significant bacterial
inactivation.
Collapse
|
44
|
Sadowska-Bartosz I, Gajewska A, Skolimowski J, Szewczyk R, Bartosz G. Nitroxides protect against peroxynitrite-induced nitration and oxidation. Free Radic Biol Med 2015; 89:1165-75. [PMID: 26546694 DOI: 10.1016/j.freeradbiomed.2015.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/02/2015] [Accepted: 11/02/2015] [Indexed: 12/20/2022]
Abstract
Nitroxides are promising compounds for prevention of undesired protein modifications. The aim of this study was to compare the efficiency of 11 nitroxides, derivatives of 2,2,6,6-tetramethylpiperidine-1-oxide (TEMPO) and 2,2,5,5-tetramethylpirrolidine-1-oxyl (PROXYL) in prevention of nitration and oxidation of model compounds and human serum albumin (HSA). Most nitroxides were very efficient in preventing loss of fluorescein fluorescence induced by peroxynitrite (PN) (IC50 in the nanomolar range) and preventing HSA nitration. The loss of fluorescein fluorescence was demonstrated to be due to nitration. Nitroxides were more effective in prevention nitration than oxidation reactions. They showed a concentration window for preventing dihydrorhodamine (DHR) 123 oxidation but exerted a prooxidant effect at both high and low concentrations. No prooxidant effect of nitroxides was seen in prevention of DHR123 oxidation induced by SIN-1. In all essays hydrophobic nitroxides (especially 4-nonylamido-TEMPO and 3-carbamolyl-dehydroPROXYL) showed the lowest efficiency. An exception was the prevention of thiol group oxidation by PN and SIN-1 where hydrophobic nitroxides were the most effective, apparently due to binding to the protein. Nitroxides showed low toxicity to MCF-7 cells. Most nitroxides, except for the most hydrophobic ones, protected cells from the cytotoxic action of SIN-1 and SIN-1-induced protein nitration. These results point to potential usefulness of nitroxides for prevention of PN-induced oxidation and, especially, nitration.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Department of Biochemistry and Cell Biology, Faculty of Biology and Agriculture, University of Rzeszów, Rzeszów, Poland.
| | - Agnieszka Gajewska
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Janusz Skolimowski
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Łódź, Poland
| | - Rafał Szewczyk
- Department of Industrial Microbiology and Biotechnology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Grzegorz Bartosz
- Department of Biochemistry and Cell Biology, Faculty of Biology and Agriculture, University of Rzeszów, Rzeszów, Poland; Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| |
Collapse
|
45
|
Li L, Zhao D, Li J. Alteration of apoptotic protease activating factor 1 expression and possible role in ONOO(-)-induced apoptosis in human cerebral vascular smooth muscle cells. Int J Clin Exp Med 2015; 8:19739-19745. [PMID: 26770639 PMCID: PMC4694539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/28/2015] [Indexed: 06/05/2023]
Abstract
The study was to investigate the change of apoptotic protease activating factor 1 (Apaf1) expression in the human cerebral vascular smooth muscle cells (HCVSMCs) in response to peroxynitrite (ONOO(-)). HCVSMCs were cultured in vitro and ONOO(-) of different concentrations was directly added to the culture medium. The total proteins were extracted and the alteration of Apaf1 expression was examined by the means of Western-blot. Apaf-1 siRNA (h) was put into another plate of HCVSMCs for transfection. The transfected cells were also incubated in different concentrations of ONOO(-). The change of Apaf1 protein expression after siRNA transfection was examined by the means of Western-blot. The morphological changes were observed by acridine orange staining to determine whether cells experienced apoptosis in response to ONOO(-) before and after siRNA. The Flow cytometry analysis was used to examine the change of cells apoptotic rates in response to ONOO(-) before and after siRNA. Obviously, there was up-regulated Apaf1 expression at protein level in the course of HCVSMCs apoptosis induced by ONOO(-). When Apaf1 expression was suppressed, the apoptotic sum of HCVSMCs didn't change. This study demonstrates that Apaf1 gene is involved in ONOO(-)-induced apoptosis in HCVSMCs. Whether HCVSMCs treated by ONOO(-) undergo apoptosis depends on Apaf1 level.
Collapse
Affiliation(s)
- Lin Li
- Binzhou Medical UniversityYantai, Shandong, P. R. China
- Cancer Research Center, Shandong UniversityJinan, Shandong, P. R. China
| | - Dongmei Zhao
- Binzhou Medical UniversityYantai, Shandong, P. R. China
| | - Jianfeng Li
- Department of Otolaryngology-Head and Neck Surgery, Provincial Hospital Affiliated to Shandong UniversityJinan, Shandong, P. R. China
| |
Collapse
|
46
|
Antioxidant Potential and Toxicity Study of the Cerium Oxide Nanoparticles Synthesized by Microwave-Mediated Synthesis. Appl Biochem Biotechnol 2015; 177:148-61. [PMID: 26137877 DOI: 10.1007/s12010-015-1734-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 06/23/2015] [Indexed: 01/13/2023]
Abstract
Monodispersed cerium oxide nanoparticle has been synthesized by microwave-mediated hydrothermal as well as microwave-mediated solvothermal synthesis. X-ray diffraction (XRD) data shows that the synthesized particles are single phase. SEM and TEM analysis suggest that particle synthesized by microwave-mediated solvothermal method are less agglomerated. In vitro toxicology study of the synthesized nanoceria particles has shown good free radical scavenging activity for NO and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical assayed except superoxide radical within a concentration range of 25 to 75 ng ml(-1). Nanoceria particle also showed inhibition of Fe-ascorbate-induced lipid peroxidation (LPx) in chick liver mitochondrial fractions. Solvothermally synthesized nanoceria showed better protection against Fe-ascorbate-induced LPx than the hydrothermal one while the hydrothermally synthesized nanoceria showed better DPPH and NO scavenging activity. The ceria nanoparticles also prevented Fe-ascorbate-H2O2-induced carbonylation of bovine serum albumin in a dose-dependent manner. At higher concentration, i.e., 100 ng ml(-1), the synthesized nanoparticles showed a reverse trend in all the parameters measured indicating its toxicity at higher doses.
Collapse
|
47
|
Aoyama K, Nakaki T. Glutathione in Cellular Redox Homeostasis: Association with the Excitatory Amino Acid Carrier 1 (EAAC1). Molecules 2015; 20:8742-58. [PMID: 26007177 PMCID: PMC6272787 DOI: 10.3390/molecules20058742] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/11/2015] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) are by-products of the cellular metabolism of oxygen consumption, produced mainly in the mitochondria. ROS are known to be highly reactive ions or free radicals containing oxygen that impair redox homeostasis and cellular functions, leading to cell death. Under physiological conditions, a variety of antioxidant systems scavenge ROS to maintain the intracellular redox homeostasis and normal cellular functions. This review focuses on the antioxidant system’s roles in maintaining redox homeostasis. Especially, glutathione (GSH) is the most important thiol-containing molecule, as it functions as a redox buffer, antioxidant, and enzyme cofactor against oxidative stress. In the brain, dysfunction of GSH synthesis leading to GSH depletion exacerbates oxidative stress, which is linked to a pathogenesis of aging-related neurodegenerative diseases. Excitatory amino acid carrier 1 (EAAC1) plays a pivotal role in neuronal GSH synthesis. The regulatory mechanism of EAAC1 is also discussed.
Collapse
Affiliation(s)
| | - Toshio Nakaki
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-3-3964-3793; Fax: +81-3-3964-0602
| |
Collapse
|
48
|
Houée-Lévin C, Bobrowski K, Horakova L, Karademir B, Schöneich C, Davies MJ, Spickett CM. Exploring oxidative modifications of tyrosine: An update on mechanisms of formation, advances in analysis and biological consequences. Free Radic Res 2015; 49:347-73. [DOI: 10.3109/10715762.2015.1007968] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
Myeloperoxidase scavenges peroxynitrite: A novel anti-inflammatory action of the heme enzyme. Arch Biochem Biophys 2015; 571:1-9. [PMID: 25731855 PMCID: PMC4388333 DOI: 10.1016/j.abb.2015.02.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/20/2015] [Accepted: 02/21/2015] [Indexed: 02/07/2023]
Abstract
Ferric myeloperoxidase accelerates the decomposition of peroxynitrite. Compound I of myeloperoxidase does not promote this removal of peroxynitrite. Peroxynitrite removal is enhanced by substances reacting well with myeloperoxidase Compound II. In the presence of H2O2, peroxynitrite diminishes the chlorinating activity of myeloperoxidase.
Peroxynitrite, a potent pro-inflammatory and cytotoxic species, interacts with a variety of heme containing proteins. We addressed the question whether (i) the interaction of myeloperoxidase (MPO, an enzyme generating hypochlorous acid from hydrogen peroxide and chloride ions) with peroxynitrite affects the clearance of peroxynitrite, and (ii) if peroxynitrite could modulate the chlorinating activity of MPO. Our results show that this interaction promotes the decomposition of the highly reactive pro-inflammatory oxidant, whereby MPO Compound II (but not Compound I) is formed. The efficiency of MPO to remove peroxynitrite was enhanced by l-tyrosine, nitrite and (−)-epicatechin, substances known to reduce Compound II with high reaction rate. Next, peroxynitrite (added as reagent) diminished the chlorinating activity of MPO in the presence of hydrogen peroxide. Alternatively, SIN-1, a peroxynitrite donor, reduced hypochlorous acid formation by MPO, as measured by aminophenyl fluorescein oxidation (time kinetics) and taurine chloramine formation (end point measurement). At inflammatory loci, scavenging of peroxynitrite by MPO may overcome the uncontrolled peroxynitrite decomposition and formation of reactive species, which lead to cell/tissue damage.
Collapse
|
50
|
Hajieva P, Bayatti N, Granold M, Behl C, Moosmann B. Membrane protein oxidation determines neuronal degeneration. J Neurochem 2015; 133:352-67. [PMID: 25393523 DOI: 10.1111/jnc.12987] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 10/10/2014] [Accepted: 10/24/2014] [Indexed: 02/05/2023]
Abstract
Oxidative stress is an early hallmark in neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. However, the critical biochemical effector mechanisms of oxidative neurotoxicity have remained surprisingly elusive. In screening various peroxides and potential substrates of oxidation for their effect on neuronal survival, we observed that intramembrane compounds were significantly more active than aqueous or amphiphilic compounds. To better understand this result, we synthesized a series of competitive and site-specific membrane protein oxidation inhibitors termed aminoacyllipids, whose structures were designed on the basis of amino acids frequently found at the protein-lipid interface of synaptic membrane proteins. Investigating the aminoacyllipids in primary neuronal culture, we found that the targeted protection of transmembrane tyrosine and tryptophan residues was sufficient to prevent neurotoxicity evoked by hydroperoxides, kainic acid, glutathione-depleting drugs, and certain amyloidogenic peptides, but ineffective against non-oxidative inducers of apoptosis such as sphingosine or Akt kinase inhibitors. Thus, the oxidative component of different neurotoxins appears to converge on neuronal membrane proteins, irrespective of the primary mechanism of cellular oxidant generation. Our results indicate the existence of a one-electron redox cycle based on membrane protein aromatic surface amino acids, whose disturbance or overload leads to excessive membrane protein oxidation and neuronal death. Membrane proteins have rarely been investigated as potential victims of oxidative stress in the context of neurodegeneration. This study provides evidence that excessive one-electron oxidation of membrane proteins from within the lipid bilayer, depicted in the graphic, is a functionally decisive step toward neuronal cell death in response to different toxins.
Collapse
Affiliation(s)
- Parvana Hajieva
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | |
Collapse
|