1
|
Wegrzyn K, Oliwa M, Nowacka M, Zabrocka E, Bury K, Purzycki P, Czaplewska P, Pipka J, Giraldo R, Konieczny I. Rep protein accommodates together dsDNA and ssDNA which enables a loop-back mechanism to plasmid DNA replication initiation. Nucleic Acids Res 2023; 51:10551-10567. [PMID: 37713613 PMCID: PMC10602881 DOI: 10.1093/nar/gkad740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
For DNA replication initiation in Bacteria, replication initiation proteins bind to double-stranded DNA (dsDNA) and interact with single-stranded DNA (ssDNA) at the replication origin. The structural-functional relationship of the nucleoprotein complex involving initiator proteins is still elusive and different models are proposed. In this work, based on crosslinking combined with mass spectrometry (MS), the analysis of mutant proteins and crystal structures, we defined amino acid residues essential for the interaction between plasmid Rep proteins, TrfA and RepE, and ssDNA. This interaction and Rep binding to dsDNA could not be provided in trans, and both are important for dsDNA melting at DNA unwinding element (DUE). We solved two crystal structures of RepE: one in a complex with ssDNA DUE, and another with both ssDNA DUE and dsDNA containing RepE-specific binding sites (iterons). The amino acid residues involved in interaction with ssDNA are located in the WH1 domain in stand β1, helices α1 and α2 and in the WH2 domain in loops preceding strands β1' and β2' and in these strands. It is on the opposite side compared to RepE dsDNA-recognition interface. Our data provide evidence for a loop-back mechanism through which the plasmid replication initiator molecule accommodates together dsDNA and ssDNA.
Collapse
Affiliation(s)
- Katarzyna Wegrzyn
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Monika Oliwa
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Marzena Nowacka
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Księcia Trojdena 4, 02-109 Warsaw, Poland
| | - Elżbieta Zabrocka
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Katarzyna Bury
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Piotr Purzycki
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Paulina Czaplewska
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Justyna Pipka
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Rafael Giraldo
- Centro de Investigaciones Biológicas – CSIC, E28040 Madrid, Spain
| | - Igor Konieczny
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| |
Collapse
|
2
|
Thabet MA, Penadés JR, Haag AF. The ClpX protease is essential for inactivating the CI master repressor and completing prophage induction in Staphylococcus aureus. Nat Commun 2023; 14:6599. [PMID: 37852980 PMCID: PMC10584840 DOI: 10.1038/s41467-023-42413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/10/2023] [Indexed: 10/20/2023] Open
Abstract
Bacteriophages (phages) are the most abundant biological entities on Earth, exerting a significant influence on the dissemination of bacterial virulence, pathogenicity, and antimicrobial resistance. Temperate phages integrate into the bacterial chromosome in a dormant state through intricate regulatory mechanisms. These mechanisms repress lytic genes while facilitating the expression of integrase and the CI master repressor. Upon bacterial SOS response activation, the CI repressor undergoes auto-cleavage, producing two fragments with the N-terminal domain (NTD) retaining significant DNA-binding ability. The process of relieving CI NTD repression, essential for prophage induction, remains unknown. Here we show a specific interaction between the ClpX protease and CI NTD repressor fragment of phages Ф11 and 80α in Staphylococcus aureus. This interaction is necessary and sufficient for prophage activation after SOS-mediated CI auto-cleavage, defining the final stage in the prophage induction cascade. Our findings unveil unexpected roles of bacterial protease ClpX in phage biology.
Collapse
Affiliation(s)
- Mohammed A Thabet
- School of Infection & Immunity, University of Glasgow, G12 8TA, Glasgow, UK
- Department of Biology, Faculty of Science, Al-Baha University, Al-Baha city, Al Aqiq, 65779, Kingdom of Saudi Arabia
| | - José R Penadés
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - Andreas F Haag
- School of Infection & Immunity, University of Glasgow, G12 8TA, Glasgow, UK.
- School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TF, UK.
| |
Collapse
|
3
|
Staphylococcus aureus ClpX localizes at the division septum and impacts transcription of genes involved in cell division, T7-secretion, and SaPI5-excision. Sci Rep 2019; 9:16456. [PMID: 31712583 PMCID: PMC6848492 DOI: 10.1038/s41598-019-52823-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/12/2019] [Indexed: 11/25/2022] Open
Abstract
In all living cells, molecular chaperones are essential for facilitating folding and unfolding of proteins. ClpX is a highly conserved ATP-dependent chaperone that besides functioning as a classical chaperone can associate with ClpP to form the ClpXP protease. To investigate the relative impact of the ClpXP protease and the ClpX chaperone in cell physiology of the important pathogenic bacterium Staphylococcus aureus, we assessed the transcriptional changes induced by inactivating only ClpXP, or by completely deleting ClpX. This analysis revealed that ClpX has a profound impact on S. aureus cell physiology that is mediated primarily via ClpXP-dependent pathways. As an example, ClpX impacts expression of virulence genes entirely via ClpXP-dependent mechanisms. Furthermore, ClpX controls a high number of genes and sRNAs via pathways involving both ClpXP protease and ClpX chaperone activities; an interesting example being genes promoting excision and replication of the pathogenicity island SaPI5. Independently of ClpP, ClpX, impacts transcription of only a restricted number of genes involved in peptidoglycan synthesis, cell division, and type seven secretion. Finally, we demonstrate that ClpX localizes in single foci in close proximity to the division septum lending support to the idea that ClpX plays a role in S. aureus cell division.
Collapse
|
4
|
Bury K, Wegrzyn K, Konieczny I. Handcuffing reversal is facilitated by proteases and replication initiator monomers. Nucleic Acids Res 2017; 45:3953-3966. [PMID: 28335002 PMCID: PMC5397158 DOI: 10.1093/nar/gkx166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/03/2017] [Indexed: 01/04/2023] Open
Abstract
Specific nucleoprotein complexes are formed strictly to prevent over-initiation of DNA replication. An example of those is the so-called handcuff complex, in which two plasmid molecules are coupled together with plasmid-encoded replication initiation protein (Rep). In this work, we elucidate the mechanism of the handcuff complex disruption. In vitro tests, including dissociation progress analysis, demonstrate that the dimeric variants of plasmid RK2 replication initiation protein TrfA are involved in assembling the plasmid handcuff complex which, as we found, reveals high stability. Particular proteases, namely Lon and ClpAP, disrupt the handcuff by degrading TrfA, thus affecting plasmid stability. Moreover, our data demonstrate that TrfA monomers are able to dissociate handcuffed plasmid molecules. Those monomers displace TrfA molecules, which are involved in handcuff formation, and through interaction with the uncoupled plasmid replication origins they re-initiate DNA synthesis. We discuss the relevance of both Rep monomers and host proteases for plasmid maintenance under vegetative and stress conditions.
Collapse
Affiliation(s)
- Katarzyna Bury
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-308 Gdansk, Poland
| | - Katarzyna Wegrzyn
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-308 Gdansk, Poland
| | - Igor Konieczny
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-308 Gdansk, Poland
| |
Collapse
|
5
|
Wegrzyn KE, Gross M, Uciechowska U, Konieczny I. Replisome Assembly at Bacterial Chromosomes and Iteron Plasmids. Front Mol Biosci 2016; 3:39. [PMID: 27563644 PMCID: PMC4980987 DOI: 10.3389/fmolb.2016.00039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/25/2016] [Indexed: 11/13/2022] Open
Abstract
The proper initiation and occurrence of DNA synthesis depends on the formation and rearrangements of nucleoprotein complexes within the origin of DNA replication. In this review article, we present the current knowledge on the molecular mechanism of replication complex assembly at the origin of bacterial chromosome and plasmid replicon containing direct repeats (iterons) within the origin sequence. We describe recent findings on chromosomal and plasmid replication initiators, DnaA and Rep proteins, respectively, and their sequence-specific interactions with double- and single-stranded DNA. Also, we discuss the current understanding of the activities of DnaA and Rep proteins required for replisome assembly that is fundamental to the duplication and stability of genetic information in bacterial cells.
Collapse
Affiliation(s)
- Katarzyna E Wegrzyn
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Marta Gross
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Urszula Uciechowska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Igor Konieczny
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| |
Collapse
|
6
|
Yano H, Wegrzyn K, Loftie-Eaton W, Johnson J, Deckert GE, Rogers LM, Konieczny I, Top EM. Evolved plasmid-host interactions reduce plasmid interference cost. Mol Microbiol 2016; 101:743-56. [PMID: 27121483 DOI: 10.1111/mmi.13407] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2016] [Indexed: 01/01/2023]
Abstract
Antibiotic selection drives adaptation of antibiotic resistance plasmids to new bacterial hosts, but the molecular mechanisms are still poorly understood. We previously showed that a broad-host-range plasmid was poorly maintained in Shewanella oneidensis, but rapidly adapted through mutations in the replication initiation gene trfA1. Here we examined if these mutations reduced the fitness cost of TrfA1, and whether this was due to changes in interaction with the host's DNA helicase DnaB. The strains expressing evolved TrfA1 variants showed a higher growth rate than those expressing ancestral TrfA1. The evolved TrfA1 variants showed a lower affinity to the helicase than ancestral TrfA1 and were no longer able to activate the helicase at the oriV without host DnaA. Moreover, persistence of the ancestral plasmid was increased upon overexpression of DnaB. Finally, the evolved TrfA1 variants generated higher plasmid copy numbers than ancestral TrfA1. The findings suggest that ancestral plasmid instability can at least partly be explained by titration of DnaB by TrfA1. Thus under antibiotic selection resistance plasmids can adapt to a novel bacterial host through partial loss of function mutations that simultaneously increase plasmid copy number and decrease unfavorably high affinity to one of the hosts' essential proteins.
Collapse
Affiliation(s)
- Hirokazu Yano
- Department of Biological Sciences.,Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, 83844, USA.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
| | - Katarznya Wegrzyn
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, 24 Kladki, 80-822, Gdansk, Poland
| | - Wesley Loftie-Eaton
- Department of Biological Sciences.,Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, 83844, USA
| | | | - Gail E Deckert
- Department of Biological Sciences.,Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, 83844, USA
| | - Linda M Rogers
- Department of Biological Sciences.,Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, 83844, USA
| | - Igor Konieczny
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, 24 Kladki, 80-822, Gdansk, Poland
| | - Eva M Top
- Department of Biological Sciences.,Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, 83844, USA
| |
Collapse
|
7
|
Karlowicz A, Wegrzyn K, Dubiel A, Ropelewska M, Konieczny I. Proteolysis in plasmid DNA stable maintenance in bacterial cells. Plasmid 2016; 86:7-13. [PMID: 27252071 DOI: 10.1016/j.plasmid.2016.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 01/12/2023]
Abstract
Plasmids, as extrachromosomal genetic elements, need to work out strategies that promote independent replication and stable maintenance in host bacterial cells. Their maintenance depends on constant formation and dissociation of nucleoprotein complexes formed on plasmid DNA. Plasmid replication initiation proteins (Rep) form specific complexes on direct repeats (iterons) localized within the plasmid replication origin. Formation of these complexes along with a strict control of Rep protein cellular concentration, quaternary structure, and activity, is essential for plasmid maintenance. Another important mechanism for maintenance of low-copy-number plasmids are the toxin-antitoxin (TA) post-segregational killing (psk) systems, which prevent plasmid loss from the bacterial cell population. In this mini review we discuss the importance of nucleoprotein complex processing by energy-dependent host proteases in plasmid DNA replication and plasmid type II toxin-antitoxin psk systems, and draw attention to the elusive role of DNA in this process.
Collapse
Affiliation(s)
- Anna Karlowicz
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Katarzyna Wegrzyn
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Andrzej Dubiel
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Malgorzata Ropelewska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Igor Konieczny
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| |
Collapse
|
8
|
Kardon JR, Yien YY, Huston NC, Branco DS, Hildick-Smith GJ, Rhee KY, Paw BH, Baker TA. Mitochondrial ClpX Activates a Key Enzyme for Heme Biosynthesis and Erythropoiesis. Cell 2016; 161:858-67. [PMID: 25957689 DOI: 10.1016/j.cell.2015.04.017] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 01/15/2015] [Accepted: 03/13/2015] [Indexed: 12/21/2022]
Abstract
The mitochondrion maintains and regulates its proteome with chaperones primarily inherited from its bacterial endosymbiont ancestor. Among these chaperones is the AAA+ unfoldase ClpX, an important regulator of prokaryotic physiology with poorly defined function in the eukaryotic mitochondrion. We observed phenotypic similarity in S. cerevisiae genetic interaction data between mitochondrial ClpX (mtClpX) and genes contributing to heme biosynthesis, an essential mitochondrial function. Metabolomic analysis revealed that 5-aminolevulinic acid (ALA), the first heme precursor, is 5-fold reduced in yeast lacking mtClpX activity and that total heme is reduced by half. mtClpX directly stimulates ALA synthase in vitro by catalyzing incorporation of its cofactor, pyridoxal phosphate. This activity is conserved in mammalian homologs; additionally, mtClpX depletion impairs vertebrate erythropoiesis, which requires massive upregulation of heme biosynthesis to supply hemoglobin. mtClpX, therefore, is a widely conserved stimulator of an essential biosynthetic pathway and uses a previously unrecognized mechanism for AAA+ unfoldases.
Collapse
Affiliation(s)
- Julia R Kardon
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yvette Y Yien
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas C Huston
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Diana S Branco
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gordon J Hildick-Smith
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kyu Y Rhee
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA; Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Barry H Paw
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Hematology-Oncology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Tania A Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
9
|
Abstract
Iteron-containing plasmids are model systems for studying the metabolism of extrachromosomal genetic elements in bacterial cells. Here we describe the current knowledge and understanding of the structure of iteron-containing replicons, the structure of the iteron plasmid encoded replication initiation proteins, and the molecular mechanisms for iteron plasmid DNA replication initiation. We also discuss the current understanding of control mechanisms affecting the plasmid copy number and how host chaperone proteins and proteases can affect plasmid maintenance in bacterial cells.
Collapse
|
10
|
Plasmid replication initiator interactions with origin 13-mers and polymerase subunits contribute to strand-specific replisome assembly. Proc Natl Acad Sci U S A 2015. [PMID: 26195759 DOI: 10.1073/pnas.1504926112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although the molecular basis for replisome activity has been extensively investigated, it is not clear what the exact mechanism for de novo assembly of the replication complex at the replication origin is, or how the directionality of replication is determined. Here, using the plasmid RK2 replicon, we analyze the protein interactions required for Escherichia coli polymerase III (Pol III) holoenzyme association at the replication origin. Our investigations revealed that in E. coli, replisome formation at the plasmid origin involves interactions of the RK2 plasmid replication initiation protein (TrfA) with both the polymerase β- and α-subunits. In the presence of other replication proteins, including DnaA, helicase, primase and the clamp loader, TrfA interaction with the β-clamp contributes to the formation of the β-clamp nucleoprotein complex on origin DNA. By reconstituting in vitro the replication reaction on ssDNA templates, we demonstrate that TrfA interaction with the β-clamp and sequence-specific TrfA interaction with one strand of the plasmid origin DNA unwinding element (DUE) contribute to strand-specific replisome assembly. Wild-type TrfA, but not the TrfA QLSLF mutant (which does not interact with the β-clamp), in the presence of primase, helicase, Pol III core, clamp loader, and β-clamp initiates DNA synthesis on ssDNA template containing 13-mers of the bottom strand, but not the top strand, of DUE. Results presented in this work uncovered requirements for anchoring polymerase at the plasmid replication origin and bring insights of how the directionality of DNA replication is determined.
Collapse
|
11
|
Zabrocka E, Wegrzyn K, Konieczny I. Two replication initiators - one mechanism for replication origin opening? Plasmid 2014; 76:72-8. [PMID: 25454070 DOI: 10.1016/j.plasmid.2014.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/30/2014] [Accepted: 10/10/2014] [Indexed: 11/25/2022]
Abstract
DNA replication initiation has been well-characterized; however, studies in the past few years have shown that there are still important discoveries to be made. Recent publications concerning the bacterial DnaA protein have revealed how this replication initiator, via interaction with specific sequences within the origin region, causes local destabilization of double stranded DNA. Observations made in the context of this bacterial initiator have also been converging with those recently made for plasmid Rep proteins. In this mini review we discuss the relevance of new findings for the RK2 plasmid replication initiator, TrfA, with regard to new data on the structure of complexes formed by the chromosomal replication initiator DnaA. We discuss structure-function relationships of replication initiation proteins.
Collapse
Affiliation(s)
- Elzbieta Zabrocka
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Katarzyna Wegrzyn
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Igor Konieczny
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Kladki 24, 80-822 Gdansk, Poland.
| |
Collapse
|
12
|
Rakowski SA, Filutowicz M. Plasmid R6K replication control. Plasmid 2013; 69:231-42. [PMID: 23474464 DOI: 10.1016/j.plasmid.2013.02.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 02/14/2013] [Accepted: 02/16/2013] [Indexed: 10/27/2022]
Abstract
The focus of this minireview is the replication control of the 39.9-kb plasmid R6K and its derivatives. Historically, this plasmid was thought to have a narrow host range but more recent findings indicate that its derivatives can replicate in a variety of enteric and non-enteric bacterial species (Wild et al., 2004). In the four-plus decades since it was first described, R6K has proven to be an excellent model for studies of plasmid DNA replication. In part this is because of its similarities to other systems in which replication is activated and regulated by Rep protein and iteron-containing DNA. However its apparent idiosynchracies have also added to its significance (e.g., independent and co-dependent replication origins, and Rep dimers that stably bind iterons). Here, we survey the current state of knowledge regarding R6K replication and place individual regulatory elements into a proposed homeostatic model with implications for the biological significance of R6K and its multiple origins of replication.
Collapse
Affiliation(s)
- Sheryl A Rakowski
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | | |
Collapse
|
13
|
The influence of ATP-dependent proteases on a variety of nucleoid-associated processes. J Struct Biol 2012; 179:181-92. [PMID: 22683345 DOI: 10.1016/j.jsb.2012.05.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/24/2012] [Accepted: 05/26/2012] [Indexed: 01/07/2023]
Abstract
ATP-dependent proteases are crucial components of all living cells and are involved in a variety of responses to physiological and environmental changes. Nucleoids are dynamic nucleoprotein complexes present in bacteria and eukaryotic organelles (mitochondria and plastids) and are the place where the majority of cellular responses to stress begin. These structures are actively remodeled in reaction to changing environmental and physiological conditions. The levels of nucleoid protein components (e.g. DNA-stabilizing proteins, transcription factors, replication proteins) therefore have to be continually regulated. ATP-dependent proteases have all the characteristics needed to fulfill this requirement. Some of them bind nucleic acids, but above all, they control and maintain the level of many DNA-binding proteins. In this review we will discuss the roles of the Lon, ClpAP, ClpXP, HslUV and FtsH proteases in the maintenance, stability, transcription and repair of DNA in eubacterial and mitochondrial nucleoids.
Collapse
|
14
|
Roles of long and short replication initiation proteins in the fate of IncP-1 plasmids. J Bacteriol 2012; 194:1533-43. [PMID: 22228734 DOI: 10.1128/jb.06395-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Broad-host-range IncP-1 plasmids generally encode two replication initiation proteins, TrfA1 and TrfA2. TrfA2 is produced from an internal translational start site within trfA1. While TrfA1 was previously shown to be essential for replication in Pseudomonas aeruginosa, its role in other bacteria within its broad host range has not been established. To address the role of TrfA1 and TrfA2 in other hosts, efficiency of transformation, plasmid copy number (PCN), and plasmid stability were first compared between a mini-IncP-1β plasmid and its trfA1 frameshift variant in four phylogenetically distant hosts: Escherichia coli, Pseudomonas putida, Sphingobium japonicum, and Cupriavidus necator. TrfA2 was sufficient for replication in these hosts, but the presence of TrfA1 enhanced transformation efficiency and PCN. However, TrfA1 did not contribute to, and even negatively affected, long-term plasmid persistence. When trfA genes were cloned under a constitutive promoter in the chromosomes of the four hosts, strains expressing either both TrfA1 and TrfA2 or TrfA1 alone, again, generally elicited a higher PCN of an IncP1-β replicon than strains expressing TrfA2 alone. When a single species of TrfA was produced at different concentrations in E. coli cells, TrfA1 maintained a 3- to 4-fold higher PCN than TrfA2 at the same TrfA concentrations, indicating that replication mediated by TrfA1 is more efficient than that by TrfA2. These results suggest that the broad-host-range properties of IncP-1 plasmids are essentially conferred by TrfA2 and the intact replication origin alone but that TrfA1 is nonetheless important to efficiently establish plasmid replication upon transfer into a broad range of hosts.
Collapse
|
15
|
Kubik S, Wegrzyn K, Pierechod M, Konieczny I. Opposing effects of DNA on proteolysis of a replication initiator. Nucleic Acids Res 2011; 40:1148-59. [PMID: 21976729 PMCID: PMC3273809 DOI: 10.1093/nar/gkr813] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
DNA replication initiation proteins (Reps) are subjected to degradation by cellular proteases. We investigated how the formation of nucleoprotein complex, involving Rep and a protease, affects Rep degradation. All known Escherichia coli AAA+ cytosolic proteases and the replication initiation protein TrfA of the broad-host-range plasmid RK2 were used. Our results revealed that DNA influences the degradation process and that the observed effects are opposite and protease specific. In the case of ClpXP and ClpYQ proteases, DNA abolishes proteolysis, while in the case of ClpAP and Lon proteases it stimulates the process. ClpX and ClpY cannot interact with DNA-bound TrfA, while the ClpAP and Lon activities are enhanced by the formation of nucleoprotein complexes involving both the protease and TrfA. Lon has to interact with TrfA before contacting DNA, or this interaction can occur with TrfA already bound to DNA. The TrfA degradation by Lon can be carried out only on DNA. The absence of Lon results with higher stability of TrfA in the cell.
Collapse
Affiliation(s)
- Slawomir Kubik
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, Gdansk, Poland
| | | | | | | |
Collapse
|
16
|
Kolatka K, Kubik S, Rajewska M, Konieczny I. Replication and partitioning of the broad-host-range plasmid RK2. Plasmid 2010; 64:119-34. [DOI: 10.1016/j.plasmid.2010.06.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 06/08/2010] [Accepted: 06/21/2010] [Indexed: 11/27/2022]
|
17
|
Pierechod M, Nowak A, Saari A, Purta E, Bujnicki JM, Konieczny I. Conformation of a plasmid replication initiator protein affects its proteolysis by ClpXP system. Protein Sci 2009; 18:637-49. [PMID: 19241373 DOI: 10.1002/pro.68] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteins from the Rep family of DNA replication initiators exist mainly as dimers, but only monomers can initiate DNA replication by interaction with the replication origin (ori). In this study, we investigated both the activation (monomerization) and the degradation of the broad-host-range plasmid RK2 replication initiation protein TrfA, which we found to be a member of a class of DNA replication initiators containing winged helix (WH) domains. Our in vivo and in vitro experiments demonstrated that the ClpX-dependent activation of TrfA leading to replicationally active protein monomers and mutations affecting TrfA dimer formation, result in the inhibition of TrfA protein degradation by the ClpXP proteolytic system. These data revealed that the TrfA monomers and dimers are degraded at substantially different rates. Our data also show that the plasmid replication initiator activity and stability in E. coli cells are affected by ClpXP system only when the protein sustains dimeric form.
Collapse
Affiliation(s)
- Marcin Pierechod
- Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, Gdansk, Poland
| | | | | | | | | | | |
Collapse
|
18
|
Zzaman S, Bastia D. Oligomeric initiator protein-mediated DNA looping negatively regulates plasmid replication in vitro by preventing origin melting. Mol Cell 2006; 20:833-43. [PMID: 16364910 DOI: 10.1016/j.molcel.2005.10.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Revised: 09/28/2005] [Accepted: 10/27/2005] [Indexed: 10/25/2022]
Abstract
Although DNA looping between the initiator binding sites (iterons) of the replication origin (ori) of a plasmid and the iterons located in a cis-acting control sequence called inc has been postulated to promote negative control of plasmid DNA replication, not only was definitive evidence for such looping lacking, but also the detailed molecular mechanism of this control had not been elucidated. Here, we present direct evidence showing that both the monomeric and the dimeric forms of the RepE initiator protein of F factor together promote pairing of incC-oriF sites by DNA looping. By using a reconstituted replication system consisting of 26 purified proteins, we show further that the DNA loop formation negatively regulates plasmid replication by inhibiting the formation of an open complex at the replication origin, thus elucidating a key step of replication control.
Collapse
Affiliation(s)
- Shamsu Zzaman
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, 29425, USA
| | | |
Collapse
|
19
|
Onn I, Milman-Shtepel N, Shlomai J. Redox potential regulates binding of universal minicircle sequence binding protein at the kinetoplast DNA replication origin. EUKARYOTIC CELL 2004; 3:277-87. [PMID: 15075258 PMCID: PMC387648 DOI: 10.1128/ec.3.2.277-287.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Kinetoplast DNA, the mitochondrial DNA of the trypanosomatid Crithidia fasciculata, is a remarkable structure containing 5,000 topologically linked DNA minicircles. Their replication is initiated at two conserved sequences, a dodecamer, known as the universal minicircle sequence (UMS), and a hexamer, which are located at the replication origins of the minicircle L- and H-strands, respectively. A UMS-binding protein (UMSBP), binds specifically the conserved origin sequences in their single stranded conformation. The five CCHC-type zinc knuckle motifs, predicted in UMSBP, fold into zinc-dependent structures capable of binding a single-stranded nucleic acid ligand. Zinc knuckles that are involved in the binding of DNA differ from those mediating protein-protein interactions that lead to the dimerization of UMSBP. Both UMSBP DNA binding and its dimerization are sensitive to redox potential. Oxidation of UMSBP results in the protein dimerization, mediated through its N-terminal domain, with a concomitant inhibition of its DNA-binding activity. UMSBP reduction yields monomers that are active in the binding of DNA through the protein C-terminal region. C. fasciculata trypanothione-dependent tryparedoxin activates the binding of UMSBP to UMS DNA in vitro. The possibility that UMSBP binding at the minicircle replication origin is regulated in vivo by a redox potential-based mechanism is discussed.
Collapse
Affiliation(s)
- Itay Onn
- Department of Parasitology, The Kuvin Center for the Study of Infectious and Tropical Diseases, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | |
Collapse
|
20
|
Zzaman S, Reddy JM, Bastia D. The DnaK-DnaJ-GrpE chaperone system activates inert wild type pi initiator protein of R6K into a form active in replication initiation. J Biol Chem 2004; 279:50886-94. [PMID: 15485812 DOI: 10.1074/jbc.m407531200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The plasmid R6K is an interesting model system for investigating initiation of DNA replication, not only near the primary binding sites of the initiator protein pi but also at a distance, caused by pi -mediated DNA looping. An important milestone in the mechanistic analysis of this replicon was the development of a reconstituted replication system consisting of 22 different highly purified proteins (Abhyankar, M. A., Zzaman, S., and Bastia, D. (2003) J. Biol. Chem. 278, 45476-45484). Although the in vitro reconstituted system promotes ori gamma-specific initiation of replication by a mutant form of the initiator called pi*, the wild type (WT) pi is functionally inert in this system. Here we show that the chaperone DnaK along with its co-chaperone DnaJ and the nucleotide exchange factor GrpE were needed to activate WT pi and caused it to initiate replication in vitro at the correct origin. We show further that the reaction was relatively chaperone-specific and that other chaperones, such as ClpB and ClpX, were incapable of activating WT pi. The molecular mechanism of activation appeared to be a chaperone-catalyzed facilitation of dimeric inert WT pi into iteron-bound monomers. Protein-protein interaction analysis by enzyme-linked immunosorbent assay revealed that, in the absence of ATP, DnaJ directly interacted with pi but its binary interactions with DnaK and GrpE and with ClpB and ClpX were at background levels, suggesting that pi is recruited by protein-protein interaction with DnaJ and then fed into the DnaK chaperone machine to promote initiator activation.
Collapse
Affiliation(s)
- Shamsu Zzaman
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
21
|
Giraldo R, Fernández-Tresguerres ME. Twenty years of the pPS10 replicon: insights on the molecular mechanism for the activation of DNA replication in iteron-containing bacterial plasmids. Plasmid 2004; 52:69-83. [PMID: 15336485 DOI: 10.1016/j.plasmid.2004.06.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Indexed: 10/26/2022]
Abstract
This review focuses on the contributions of the Pseudomonas replicon pPS10 to understanding the initiation of DNA replication in iteron-containing plasmids from Gram-negative bacteria. Dimers of the pPS10 initiator protein (RepA) repress repA transcription by binding to the two halves of an inverted repeat operator. RepA monomers are the active initiator species that bind to four directly repeated sequences (iterons). pPS10 initiator was the first Rep protein whose domains were defined (two "winged-helix," WH modules) and their binding sites were identified at each half of the iteron repeat. This was confirmed by the crystal structure of the monomer of a homologous initiator (RepE from F plasmid) bound to iteron DNA. The recently solved structure of the dimeric N-terminal domain (WH1) of pPS10 RepA, when compared to the RepE monomer, shows that upon dimer dissociation an alpha-helix at WH1 C-terminus becomes part of an interdomain beta-sheet. In solution, the iteron sequence, by itself, can induce the same kind of structural transformation in RepA. This seems to alter the package of both WH domains to adapt their DNA reading heads (HTH motifs) to the distinct spacing between half repeats in iterons and operator. Based on biochemical and spectroscopic work, structural and functional similarities were proposed between RepA and archaeal/eukaryal initiators. This was independently confirmed by the crystal structure of the archaeal initiator Cdc6. Characterization of mutants, either in pPS10 or in the Escherichia coli chromosome, has provided some evidence on a WH1-mediated interaction between RepA and the chromosomal initiator DnaA that results in a broadened-host range.
Collapse
Affiliation(s)
- Rafael Giraldo
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas--CSIC, C/Ramiro de Maeztu, 9. 28040 Madrid, Spain.
| | | |
Collapse
|
22
|
Sharma S, Sathyanarayana BK, Bird JG, Hoskins JR, Lee B, Wickner S. Plasmid P1 RepA Is Homologous to the F Plasmid RepE Class of Initiators. J Biol Chem 2004; 279:6027-34. [PMID: 14634015 DOI: 10.1074/jbc.m310917200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA replication of plasmid P1 requires a plasmid-encoded origin DNA-binding protein, RepA. RepA is an inactive dimer and is converted by molecular chaperones into an active monomer that binds RepA binding sites. Although the sequence of RepA is not homologous to that of F plasmid RepE, we found by using fold-recognition programs that RepA shares structural homology with RepE and built a model based on the RepE crystal structure. We constructed mutants in the two predicted DNA binding domains to test the model. As expected, the mutants were defective in P1 DNA binding. The model predicted that RepA binds the first half of the binding site through interactions with the C-terminal DNA binding domain and the second half through interactions with the N-terminal domain. The experiments supported the prediction. The model was further supported by the observation that mutants defective in dimerization map to the predicted subunit interface region, based on the crystal structure of pPS10 RepA, a RepE family member. These results suggest P1 RepA is structurally homologous to plasmid initiators, including those of F, R6K, pSC101, pCU1, pPS10, pFA3, pGSH500, Rts1, RepHI1B, RepFIB, and RSF1010.
Collapse
Affiliation(s)
- Suveena Sharma
- Laboratory of Molecular Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
23
|
Abhyankar MM, Reddy JM, Sharma R, Büllesbach E, Bastia D. Biochemical investigations of control of replication initiation of plasmid R6K. J Biol Chem 2003; 279:6711-9. [PMID: 14665626 DOI: 10.1074/jbc.m312052200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanistic basis of control of replication initiation of plasmid R6K was investigated by addressing the following questions. What are the biochemical attributes of mutations in the pi initiator protein that caused loss of negative control of initiation? Did the primary control involve only initiator protein-ori DNA interaction or did it also involve protein-protein interactions between pi and several host-encoded proteins? Mutations at two different regions of the pi-encoding sequence individually caused some loss of negative control as indicated by a relatively modest increase in copy number. However, combinations of the mutation P42L, which caused loss of DNA looping, with those located in the region between the residues 106 and 113 induced a robust enhancement of copy number. These mutant forms promoted higher levels of replication in vitro in a reconstituted system consisting of 22 purified proteins. The mutant forms of pi were susceptible to pronounced iteron-induced monomerization in comparison with the WT protein. As contrasted with the changes in DNA-protein interaction, we found no detectable differences in protein-protein interaction between wild type pi with DnaA, DnaB helicase, and DnaG primase on one hand and between the high copy mutant forms and the same host proteins on the other. The DnaG-pi interaction reported here is novel. Taken together, the results suggest that both loss of negative control due to iteron-induced monomerization of the initiator and enhanced iteron-initiator interaction appear to be the principal causes of enhanced copy number.
Collapse
Affiliation(s)
- Mayuresh M Abhyankar
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | |
Collapse
|
24
|
Abhyankar MM, Zzaman S, Bastia D. Reconstitution of R6K DNA replication in vitro using 22 purified proteins. J Biol Chem 2003; 278:45476-84. [PMID: 12970346 DOI: 10.1074/jbc.m308516200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have reconstituted a multiprotein system consisting of 22 purified proteins that catalyzed the initiation of replication specifically at ori gamma of R6K, elongation of the forks, and their termination at specific replication terminators. The initiation was strictly dependent on the plasmid-encoded initiator protein pi and on the host-encoded initiator DnaA. The wild type pi was almost inert, whereas a mutant form containing 3 amino acid substitutions that tended to monomerize the protein was effective in initiating replication. The replication in vitro was primed by DnaG primase, whereas in a crude extract system that had not been fractionated, it was dependent on RNA polymerase. The DNA-bending protein IHF was needed for optimal replication and its substitution by HU, unlike in the oriC system, was less effective in promoting optimal replication. In contrast, wild type pi-mediated replication in vivo requires IHF. Using a template that contained ori gamma flanked by two asymmetrically placed Ter sites in the blocking orientation, replication proceeded in the Cairns type mode and generated the expected types of termination products. A majority of the molecules progressed counterclockwise from the ori, in the same direction that has been observed in vivo. Many features of replication in the reconstituted system appeared to mimic those of in vivo replication. The system developed here is an important milestone in continuing biochemical analysis of this interesting replicon.
Collapse
Affiliation(s)
- Mayuresh M Abhyankar
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
25
|
Mitkova AV, Khopde SM, Biswas SB. Mechanism and stoichiometry of interaction of DnaG primase with DnaB helicase of Escherichia coli in RNA primer synthesis. J Biol Chem 2003; 278:52253-61. [PMID: 14557266 DOI: 10.1074/jbc.m308956200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Initiation and synthesis of RNA primers in the lagging strand of the replication fork in Escherichia coli requires the replicative DnaB helicase and the DNA primase, the DnaG gene product. In addition, the physical interaction between these two replication enzymes appears to play a role in the initiation of chromosomal DNA replication. In vitro, DnaB helicase stimulates primase to synthesize primers on single-stranded (ss) oligonucleotide templates. Earlier studies hypothesized that multiple primase molecules interact with each DnaB hexamer and single-stranded DNA. We have examined this hypothesis and determined the exact stoichiometry of primase to DnaB hexamer. We have also demonstrated that ssDNA binding activity of the DnaB helicase is necessary for directing the primase to the initiator trinucleotide and synthesis of 11-20-nucleotide long primers. Although, association of these two enzymes determines the extent and rate of synthesis of the RNA primers in vitro, direct evidence of the formation of primase-DnaB complex has remained elusive in E. coli due to the transient nature of their interaction. Therefore, we stabilized this complex using a chemical cross-linker and carried out a stoichiometric analysis of this complex by gel filtration. This allowed us to demonstrate that the primase-helicase complex of E. coli is comprised of three molecules of primase bound to one DnaB hexamer. Fluorescence anisotropy studies of the interaction of DnaB with primase, labeled with the fluorescent probe Ru(bipy)3, and Scatchard analysis further supported this conclusion. The addition of DnaC protein, leading to the formation of the DnaB-DnaC complex, to the simple priming system resulted in the synthesis of shorter primers. Therefore, interactions of the DnaB-primase complex with other replication factors might be critical for determining the physiological length of the RNA primers in vivo and the overall kinetics of primer synthesis.
Collapse
Affiliation(s)
- Atanaska V Mitkova
- Department of Molecular Biology, School of Osteopathic Medicine, University of Medicine & Dentistry of New Jersey, Stratford, New Jersey 08084, USA
| | | | | |
Collapse
|
26
|
Giraldo R, Fernández-Tornero C, Evans PR, Díaz-Orejas R, Romero A. A conformational switch between transcriptional repression and replication initiation in the RepA dimerization domain. Nat Struct Mol Biol 2003; 10:565-71. [PMID: 12766757 DOI: 10.1038/nsb937] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2003] [Accepted: 05/01/2003] [Indexed: 11/08/2022]
Abstract
Plasmids are natural vectors for gene transfer. In Gram-negative bacteria, plasmid DNA replication is triggered when monomers of an initiator protein (Rep) bind to direct repeats at the origin sequence. Rep dimers, which are inactive as initiators, bind to an inverse repeat operator, repressing transcription of the rep gene. Rep proteins are composed of N-terminal dimerization and C-terminal DNA-binding domains. Activation of Rep is coupled to dimer dissociation, converting the dimerization domain into a second origin-binding module. Although the structure of the monomeric F plasmid initiator (mRepE) has been determined, the molecular nature of Rep activation remains unknown. Here we report the crystal structure of the dimeric N-terminal domain of the pPS10 plasmid initiator (dRepA). dRepA has a winged-helix fold, as does its homologous domain in mRepE. However, dimerization transforms an interdomain loop and beta-strand (monomeric RepE) into an alpha-helix (dimeric RepA). dRepA resemble the C terminus of eukaryotic and archaeal Cdc6, giving clues to the phylogeny of DNA replication initiators.
Collapse
Affiliation(s)
- Rafael Giraldo
- Department of Molecular Microbiology Centro de Investigaciones Biológicas-CSIC, C/ Velázquez 144, Madrid, 28006, Spain.
| | | | | | | | | |
Collapse
|
27
|
Díaz-López T, Lages-Gonzalo M, Serrano-López A, Alfonso C, Rivas G, Díaz-Orejas R, Giraldo R. Structural changes in RepA, a plasmid replication initiator, upon binding to origin DNA. J Biol Chem 2003; 278:18606-16. [PMID: 12637554 DOI: 10.1074/jbc.m212024200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RepA protein is the DNA replication initiator of the Pseudomonas plasmid pPS10. RepA dimers bind to an inversely repeated operator sequence in repA promoter, thus repressing its own synthesis, whereas monomers bind to four directly repeated sequences (iterons) to initiate DNA replication. We had proposed previously that RepA is composed of two winged-helix (WH) domains, a structural unit also present in eukaryotic and archaeal initiators. To bind to the whole iteron sequence through both domains, RepA should couple monomerization to a conformational change in the N-terminal WH, which includes a leucine zipper-like sequence motif. We show for the first time that, by itself, binding to iteron DNA in vitro dissociates RepA dimers into monomers and alters RepA conformation, suggesting an allosteric effect. Furthermore, we also show that similar changes in RepA are promoted by mutations that substitute two Leu residues of the putative leucine zipper by Ala, destabilizing the hydrophobic core of the first WH. We propose that this mutant (RepA-2L2A) resembles a transient folding intermediate in the pathway leading to active monomers. These findings, together with the known activation of other Rep-type proteins by chaperones, are relevant to understand the molecular basis of plasmid DNA replication initiation.
Collapse
Affiliation(s)
- Teresa Díaz-López
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas (CSIC), C/Velázquez, 144, 28006 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
28
|
Flynn JM, Neher SB, Kim YI, Sauer RT, Baker TA. Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol Cell 2003; 11:671-83. [PMID: 12667450 DOI: 10.1016/s1097-2765(03)00060-1] [Citation(s) in RCA: 452] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
ClpXP is a protease involved in DNA damage repair, stationary-phase gene expression, and ssrA-mediated protein quality control. To date, however, only a handful of ClpXP substrates have been identified. Using a tagged and inactive variant of ClpP, substrates of E. coli ClpXP were trapped in vivo, purified, and identified by mass spectrometry. The more than 50 trapped proteins include transcription factors, metabolic enzymes, and proteins involved in the starvation and oxidative stress responses. Analysis of the sequences of the trapped proteins revealed five recurring motifs: two located at the C terminus of proteins, and three N-terminal motifs. Deletion analysis, fusion proteins, and point mutations established that sequences from each motif class targeted proteins for degradation by ClpXP. These results represent a description of general rules governing substrate recognition by a AAA+ family ATPase and suggest strategies for regulation of protein degradation.
Collapse
Affiliation(s)
- Julia M Flynn
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
29
|
Kim PD, Banack T, Lerman DM, Tracy JC, Camara JE, Crooke E, Oliver D, Firshein W. Identification of a novel membrane-associated gene product that suppresses toxicity of a TrfA peptide from plasmid RK2 and its relationship to the DnaA host initiation protein. J Bacteriol 2003; 185:1817-24. [PMID: 12618445 PMCID: PMC150145 DOI: 10.1128/jb.185.6.1817-1824.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The toxicity of a peptide derived from the amino-terminal portion of 33-kDa TrfA, one of the initiation proteins encoded by the broad-host-range plasmid RK2, was suppressed by a host protein related to DnaA, the initiation protein of Escherichia coli. The newly identified 28.4-kDa protein, termed a DnaA paralog (Dp) because it is similar to a region of DnaA but likely has a different function in initiation of plasmid RK2 replication, interacts physically with the 33-kDa TrfA initiation protein, including the initiation-active monomeric form. The Dp has a cellular distribution similar to that of the 33-kDa TrfA initiation protein, being found primarily in the inner membrane fraction, with lesser amounts detected in the outer membrane fraction and almost none in the soluble fraction of E. coli. Maintenance and inner membrane-associated replication of plasmid RK2 were enhanced in a Dp knockout strain and inhibited in strains containing extra copies of the Dp gene or in membrane extracts to which a tagged form of Dp was added. Recently, the Dp was independently shown to help prevent overinitiation in E. coli and was termed Hda (S. Kato and T. Katayama, EMBO J. 20:4253-4262, 2001).
Collapse
Affiliation(s)
- Peter D Kim
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06459, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Giraldo R. Common domains in the initiators of DNA replication in Bacteria, Archaea and Eukarya: combined structural, functional and phylogenetic perspectives. FEMS Microbiol Rev 2003; 26:533-54. [PMID: 12586394 DOI: 10.1111/j.1574-6976.2003.tb00629.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Although DNA replication is the universal process for the transmission of genetic information in all living organisms, until very recently evidence was lacking for a related structure and function in the proteins (initiators) that trigger replication in the three 'Life Domains' (Bacteria, Archaea and Eukarya). In this article new data concerning the presence of common features in the initiators of chromosomal replication in bacteria, archaea and eukaryotes are reviewed. Initiators are discussed in the light of: (i) The structure and function of their conserved ATPases Associated with various cellular Activities (AAA+) and winged-helix domains. (ii) The nature of the macromolecular assemblies that they constitute at the replication origins. (iii) Their possible phylogenetic relationship, attempting to sketch the essentials of a hypothetical DNA replication initiator in the micro-organism proposed to be the ancestor of all living cells.
Collapse
Affiliation(s)
- Rafael Giraldo
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas (CSIC), C/Velázquez 144, 28006 Madrid, Spain.
| |
Collapse
|
31
|
Konieczny I, Liberek K. Cooperative action of Escherichia coli ClpB protein and DnaK chaperone in the activation of a replication initiation protein. J Biol Chem 2002; 277:18483-8. [PMID: 11889118 DOI: 10.1074/jbc.m107580200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli molecular chaperone protein ClpB is a member of the highly conserved Hsp100/Clp protein family. Previous studies have shown that the ClpB protein is needed for bacterial thermotolerance. Purified ClpB protein has been shown to reactivate chemically and heat-denatured proteins. In this work we demonstrate that the combined action of ClpB and the DnaK, DnaJ, and GrpE chaperones leads to the activation of DNA replication of the broad-host-range plasmid RK2. In contrast, ClpB is not needed for the activation of the oriC-dependent replication of E. coli. Using purified protein components we show that the ClpB/DnaK/DnaJ/GrpE synergistic action activates the plasmid RK2 replication initiation protein TrfA by converting inactive dimers to an active monomer form. In contrast, Hsp78/Ssc1/Mdj1/Mge1, the corresponding protein system from yeast mitochondria, cannot activate the TrfA replication protein. Our results demonstrate for the first time that the ClpB/DnaK/DnaJ/GrpE system is involved in protein monomerization and in the activation of a DNA replication factor.
Collapse
Affiliation(s)
- Igor Konieczny
- Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, 24 Kladki, 80 822 Gdansk, Poland.
| | | |
Collapse
|
32
|
Jiang Y, Pogliano J, Helinski DR, Konieczny I. ParE toxin encoded by the broad-host-range plasmid RK2 is an inhibitor of Escherichia coli gyrase. Mol Microbiol 2002; 44:971-9. [PMID: 12010492 DOI: 10.1046/j.1365-2958.2002.02921.x] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Broad-host-range plasmid RK2 encodes a post-segregational killing system, parDE, which contributes to the stable maintenance of this plasmid in Escherichia coli and many distantly related bacteria. The ParE protein is a toxin that inhibits cell growth, causes cell filamentation and eventually cell death. The ParD protein is a specific ParE antitoxin. In this work, the in vitro activities of these two proteins were examined. The ParE protein was found to inhibit DNA synthesis using an E. coli oriC supercoiled template and a replication-proficient E. coli extract. Moreover, ParE inhibited the early stages of both chromosomal and plasmid DNA replication, as measured by the DnaB helicase- and gyrase-dependent formation of FI*, a highly unwound form of supercoiled DNA. The presence of ParD prevented these inhibitory activities of ParE. We also observed that the addition of ParE to supercoiled DNA plus gyrase alone resulted in the formation of a cleavable gyrase-DNA complex that was converted to a linear DNA form upon addition of sodium dodecyl sulphate (SDS). Adding ParD before or after the addition of ParE prevented the formation of this cleavable complex. These results demonstrate that the target of ParE toxin activity in vitro is E. coli gyrase.
Collapse
Affiliation(s)
- Yong Jiang
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093-0322, USA
| | | | | | | |
Collapse
|
33
|
Flynn JM, Levchenko I, Seidel M, Wickner SH, Sauer RT, Baker TA. Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis. Proc Natl Acad Sci U S A 2001; 98:10584-9. [PMID: 11535833 PMCID: PMC58509 DOI: 10.1073/pnas.191375298] [Citation(s) in RCA: 227] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ssrA tag, an 11-aa peptide added to the C terminus of proteins stalled during translation, targets proteins for degradation by ClpXP and ClpAP. Mutational analysis of the ssrA tag reveals independent, but overlapping determinants for its interactions with ClpX, ClpA, and SspB, a specificity-enhancing factor for ClpX. ClpX interacts with residues 9-11 at the C terminus of the tag, whereas ClpA recognizes positions 8-10 in addition to residues 1-2 at the N terminus. SspB interacts with residues 1-4 and 7, N-terminal to the ClpX-binding determinants, but overlapping the ClpA determinants. As a result, SspB and ClpX work together to recognize ssrA-tagged substrates efficiently, whereas SspB inhibits recognition of these substrates by ClpA. Thus, dissection of the recognition signals within the ssrA tag provides insight into how multiple proteins function in concert to modulate proteolysis.
Collapse
Affiliation(s)
- J M Flynn
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
34
|
Burton RE, Siddiqui SM, Kim YI, Baker TA, Sauer RT. Effects of protein stability and structure on substrate processing by the ClpXP unfolding and degradation machine. EMBO J 2001; 20:3092-100. [PMID: 11406586 PMCID: PMC150209 DOI: 10.1093/emboj/20.12.3092] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
ClpXP is an ATP-dependent protease that denatures native proteins and translocates the denatured polypeptide into an interior peptidase chamber for degradation. To address the mechanism of these processes, Arc repressor variants with dramatically different stabilities and unfolding half-lives varying from months to seconds were targeted to ClpXP by addition of the ssrA degradation tag. Remarkably, ClpXP degraded each variant at a very similar rate and hydrolyzed approximately 150 molecules of ATP for each molecule of substrate degraded. The hyperstable substrates did, however, slow the ClpXP ATPase cycle. These results confirm that ClpXP uses an active mechanism to denature its substrates, probably one that applies mechanical force to the native structure. Furthermore, the data suggest that denaturation is inherently inefficient or that significant levels of ATP hydrolysis are required for other reaction steps. ClpXP degraded disulfide-cross-linked dimers efficiently, even when just one subunit contained an ssrA tag. This result indicates that the pore through which denatured proteins enter the proteolytic chamber must be large enough to accommodate simultaneous passage of two or three polypeptide chains.
Collapse
Affiliation(s)
| | | | - Yong-In Kim
- Department of Biology, Massachusetts Institute of Technology and
Howard Hughes Medical Institute, Cambridge, MA 02139, USA Present address: BASF Bioresearch Corporation, 100 Research Drive, Worcester, MA 01605, USA Corresponding author e-mail:
| | - Tania A. Baker
- Department of Biology, Massachusetts Institute of Technology and
Howard Hughes Medical Institute, Cambridge, MA 02139, USA Present address: BASF Bioresearch Corporation, 100 Research Drive, Worcester, MA 01605, USA Corresponding author e-mail:
| | - Robert T. Sauer
- Department of Biology, Massachusetts Institute of Technology and
Howard Hughes Medical Institute, Cambridge, MA 02139, USA Present address: BASF Bioresearch Corporation, 100 Research Drive, Worcester, MA 01605, USA Corresponding author e-mail:
| |
Collapse
|
35
|
Caspi R, Pacek M, Consiglieri G, Helinski DR, Toukdarian A, Konieczny I. A broad host range replicon with different requirements for replication initiation in three bacterial species. EMBO J 2001; 20:3262-71. [PMID: 11406602 PMCID: PMC150194 DOI: 10.1093/emboj/20.12.3262] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Plasmid RK2 is unusual in its ability to replicate stably in a wide range of Gram-negative bacteria. The replication origin (oriV) and a plasmid-encoded initiation protein (TrfA; expressed as 33 and 44 kDa forms) are essential for RK2 replication. To examine initiation events in bacteria unrelated to Escherichia coli, the genes encoding the replicative helicase, DnaB, of Pseudomonas putida and Pseudomonas aeruginosa were isolated and used to construct protein expression vectors. The purified proteins were tested for activity along with E.coli DnaB at RK2 oriV. Each helicase could be recruited and activated at the RK2 origin in the presence of the host-specific DnaA protein and the TrfA protein. Escherichia coli or P.putida DnaB was active with either TrfA-33 or TrfA-44, while P.aeruginosa DnaB required TrfA-44 for activation. Moreover, unlike the E.coli DnaB helicase, both Pseudomonas helicases could be delivered and activated at oriV in the absence of an ATPase accessory protein. Thus, a DnaC-like accessory ATPase is not universally required for loading the essential replicative helicase at a replication origin.
Collapse
Affiliation(s)
- Ron Caspi
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093-0322, USA and Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland Present address: Pangene Corporation, 5500 Stewart Avenue, Fremont, CA 94538, USA Corresponding author e-mail:
| | - Marcin Pacek
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093-0322, USA and Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland Present address: Pangene Corporation, 5500 Stewart Avenue, Fremont, CA 94538, USA Corresponding author e-mail:
| | - Giac Consiglieri
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093-0322, USA and Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland Present address: Pangene Corporation, 5500 Stewart Avenue, Fremont, CA 94538, USA Corresponding author e-mail:
| | - Donald R. Helinski
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093-0322, USA and Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland Present address: Pangene Corporation, 5500 Stewart Avenue, Fremont, CA 94538, USA Corresponding author e-mail:
| | - Aresa Toukdarian
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093-0322, USA and Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland Present address: Pangene Corporation, 5500 Stewart Avenue, Fremont, CA 94538, USA Corresponding author e-mail:
| | - Igor Konieczny
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093-0322, USA and Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland Present address: Pangene Corporation, 5500 Stewart Avenue, Fremont, CA 94538, USA Corresponding author e-mail:
| |
Collapse
|
36
|
Krüger R, Konieczny I, Filutowicz M. Monomer/dimer ratios of replication protein modulate the DNA strand-opening in a replication origin. J Mol Biol 2001; 306:945-55. [PMID: 11237610 DOI: 10.1006/jmbi.2000.4426] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
DNA opening is an essential step in the initiation of replication via the Cairns mode of replication. The opening reaction was investigated in a gamma ori system by using hyperactive variants of plasmid R6K-encoded initiator protein, pi. Reactivity to KMnO4 (indicative of opening) within gamma ori DNA occurred in both strands of a superhelical template upon the combined addition of wt pi, DnaA and integration host factor (IHF), each protein known to specifically bind gamma ori. IHF, examined singly, enhanced reactivity to KMnO4. The IHF-dependent reactive residues, however, are distinct from those dependent on pi (wt and hyperactive variants). Remarkably, the DNA helix opening does not require IHF and/or DnaA when hyperactive variants of pi were used instead of wt protein. We present three lines of evidence consistent with the hypothesis that DNA strand separation is facilitated by pi monomers despite the fact that both monomers and dimers of the protein can bind to iterons (pi binding sites). Taken together, our data suggest that pi elicits its ability to modulate plasmid copy number at the DNA helix-opening step.
Collapse
Affiliation(s)
- R Krüger
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
37
|
Hoskins JR, Kim SY, Wickner S. Substrate recognition by the ClpA chaperone component of ClpAP protease. J Biol Chem 2000; 275:35361-7. [PMID: 10952988 DOI: 10.1074/jbc.m006288200] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ClpA, a member of the Clp/Hsp100 ATPase family, is a molecular chaperone and regulatory component of ClpAP protease. We explored the mechanism of protein recognition by ClpA using a high affinity substrate, RepA, which is activated for DNA binding by ClpA and degraded by ClpAP. By characterizing RepA derivatives with N- or C-terminal deletions, we found that the N-terminal portion of RepA is required for recognition. More precisely, RepA derivatives lacking the N-terminal 5 or 10 amino acids are degraded by ClpAP at a rate similar to full-length RepA, whereas RepA derivatives lacking 15 or 20 amino acids are degraded much more slowly. Thus, ClpA recognizes an N-terminal signal in RepA beginning in the vicinity of amino acids 10-15. Moreover, peptides corresponding to RepA amino acids 4-13 and 1-15 inhibit interactions between ClpA and RepA. We constructed fusions of RepA and green fluorescent protein, a protein not recognized by ClpA, and found that the N-terminal 15 amino acids of RepA are sufficient to target the fusion protein for degradation by ClpAP. However, fusion proteins containing 46 or 70 N-terminal amino acids of RepA are degraded more efficiently in vitro and are noticeably stabilized in vivo in clpADelta and clpPDelta strains compared with wild type.
Collapse
Affiliation(s)
- J R Hoskins
- Laboratory of Molecular Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
38
|
Hoskins JR, Singh SK, Maurizi MR, Wickner S. Protein binding and unfolding by the chaperone ClpA and degradation by the protease ClpAP. Proc Natl Acad Sci U S A 2000; 97:8892-7. [PMID: 10922051 PMCID: PMC16792 DOI: 10.1073/pnas.97.16.8892] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ClpA, a bacterial member of the Clp/Hsp100 chaperone family, is an ATP-dependent molecular chaperone and the regulatory component of the ATP-dependent ClpAP protease. To study the mechanism of binding and unfolding of proteins by ClpA and translocation to ClpP, we used as a model substrate a fusion protein that joined the ClpA recognition signal from RepA to green fluorescent protein (GFP). ClpAP degrades the fusion protein in vivo and in vitro. The substrate binds specifically to ClpA in a reaction requiring ATP binding but not hydrolysis. Binding alone is not sufficient to destabilize the native structure of the GFP portion of the fusion protein. Upon ATP hydrolysis the GFP fusion protein is unfolded, and the unfolded intermediate can be sequestered by ClpA if a nonhydrolyzable analog is added to displace ATP. ATP is required for release. We found that although ClpA is unable to recognize native proteins lacking recognition signals, including GFP and rhodanese, it interacts with those same proteins when they are unfolded. Unfolded GFP is held in a nonnative conformation while associated with ClpA and its release requires ATP hydrolysis. Degradation of unfolded untagged proteins by ClpAP requires ATP even though the initial ATP-dependent unfolding reaction is bypassed. These results suggest that there are two ATP-requiring steps: an initial protein unfolding step followed by translocation of the unfolded protein to ClpP or in some cases release from the complex.
Collapse
Affiliation(s)
- J R Hoskins
- Laboratory of Molecular Biology and Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
39
|
Nakano MM, Zhu Y, Liu J, Reyes DY, Yoshikawa H, Zuber P. Mutations conferring amino acid residue substitutions in the carboxy-terminal domain of RNA polymerase alpha can suppress clpX and clpP with respect to developmentally regulated transcription in Bacillus subtilis. Mol Microbiol 2000; 37:869-84. [PMID: 10972808 DOI: 10.1046/j.1365-2958.2000.02052.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Bacillus subtilis clpX and clpP genes are the sites of pleiotropic mutations that adversely affect growth on a variety of media and impair developmental processes such as sporulation and competence development. ClpX is necessary for the post-exponential induction of genes that require the sigmaH form of RNA polymerase for transcription. Both ClpX and ClpP are required for the activation of sigmaA-dependent transcription of the srf operon that encodes surfactin synthetase and the regulatory peptide ComS, required for the development of genetic competence. Transcription of srf is activated by the two-component regulatory system ComPA in response to the peptide pheromone, ComX, which mediates cell density-dependent control. A clpX mutant, although able to produce ComX, is unable to respond to the pheromone. A mutant allele of comP, encoding a product whose activity is independent of ComX, is not able to suppress clpX with respect to srf expression, suggesting that ClpXP acts at the level of ComA-dependent activation of srf transcription initiation. Suppressor mutations of clpX (cxs-1 and cxs-2) were isolated in screens for pseudorevertants exhibiting high levels of srf expression and sigmaH-dependent transcription respectively. One mutation, cxs-1, suppressed a clpP null mutation with respect to srf transcription, but did not overcome the block conferred by clpP on competence development and sporulation. Both cxs-1 and cxs-2 mutations map to the region of the rpoA gene encoding the RNA polymerase alpha C-terminal domain (alphaCTD). The reconstruction of the cxs-1 and cxs-2 alleles of rpoA confirmed that these mutations confer the suppressor phenotype. These findings provide further support for the hypothesis that ClpX and ClpP might be intimately associated with transcription initiation in B. subtilis.
Collapse
Affiliation(s)
- M M Nakano
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Beaverton 97006, USA
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Replication origins of a family of bacterial plasmids have multiple sites, called iterons, for binding a plasmid-specific replication initiator protein. The iteron-initiator interactions are essential for plasmid replication as well as for inhibition of plasmid over-replication. The inhibition increases with plasmid copy number and eventually shuts plasmid replication off completely. The mechanism of inhibition appears to be handcuffing, the coupling of origins via iteron-bound initiators that block origin function. The probability of a trans-reaction such as handcuffing is expected to increase with plasmid copy number and diminish with increases in cell volume, explaining how the copy number can be maintained in a growing cell. Control is also exerted at the level of initiator synthesis and activation by chaperones. We propose that increases in active initiators promote initiation by overcoming handcuffing, but handcuffing dominates when the copy number reaches a threshold. Handcuffing should be ultrasensitive to copy number, as the negative control by iterons can be stringent (switch-like).
Collapse
Affiliation(s)
- D K Chattoraj
- Laboratory of Biochemistry, NCI, NIH, Bethesda, MD 20892-4255, USA.
| |
Collapse
|
41
|
Seong IS, Oh JY, Lee JW, Tanaka K, Chung CH. The HslU ATPase acts as a molecular chaperone in prevention of aggregation of SulA, an inhibitor of cell division in Escherichia coli. FEBS Lett 2000; 477:224-9. [PMID: 10908725 DOI: 10.1016/s0014-5793(00)01808-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
HslVU is an ATP-dependent protease consisting of two multimeric components: the HslU ATPase and the HslV peptidase. SulA, which is an inhibitor of cell division and has high tendency of aggregation, is degraded by HslVU protease. Here we show that HslU plays a role not only as a regulatory component for the HslV-mediated proteolysis but also as a molecular chaperone. Purified HslU prevented aggregation of SulA in a concentration-dependent fashion. This chaperone activity required oligomerization of HslU subunits, which could be achieved by ATP-binding or in the presence of high HslU protein concentrations. hsl mutation reduced the SulA-mediated inhibition of cell growth and this effect could be reversed upon overproduction of HslU, suggesting that HslU promotes the ability of SulA to block cell growth through its chaperone function. Thus, HslU appears to have two antagonistic functions: one as a chaperone for promotion of the ability of SulA in cell growth inhibition by preventing SulA aggregation and the other as the regulatory component for elimination of SulA by supporting the HslV-mediated degradation.
Collapse
Affiliation(s)
- I S Seong
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-742, South Korea
| | | | | | | | | |
Collapse
|
42
|
Schumann W. Function and regulation of temperature-inducible bacterial proteins on the cellular metabolism. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2000; 67:1-33. [PMID: 10857220 DOI: 10.1007/3-540-47865-5_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Temperature is an important environmental factor which, when altered, requires adaptive responses from bacterial cells. While a sudden increase in the growth temperature induces a heat shock response, a decrease results in a cold shock response. Both responses involve a transient increase in a set of genes called heat and cold shock genes, respectively, and the transient enhanced synthesis of their proteins allows the stressed cells to adapt to the new situation. A sudden increase in the growth temperature results in the unfolding of proteins, and hydrophobic amino acid residues normally buried within the interior of the proteins become exposed on their surface. Via these hydrophobic residues which often form hydrophobic surfaces proteins can interact and form aggregates which may become life-threatening. Here, molecular chaperones bind to these exposed hydrophobic surfaces to prevent the formation of protein aggregates. Some chaperones, the foldases, allow refolding of these denatured proteins into their native conformation, while ATP-dependent proteases degrade these non-native proteins which fail to fold. Most chaperones and energy-dependent proteases are heat shock proteins, and their genes are either regulated by alternate sigma factors or by repressors. The cold shock response evokes two major threats to the cells, namely a drastic reduction in membrane fluidity and a transient complete stop of translation at least in E. coli. Membrane fluidity is restored by increasing the amount of unsaturated fatty acids and translation resumes after adaptation of the ribosomes to cold. Neither an alternative sigma factor nor a repressor seems to be involved in the regulation of the cold shock genes in E. coli, the only species studied so far in this respect.
Collapse
Affiliation(s)
- W Schumann
- Institute of Genetics, University of Bayreuth, Germany.
| |
Collapse
|
43
|
Abstract
Studies on the involvement of chaperone proteins in DNA replication have been limited to a few replication systems, belonging primarily to the prokaryotic world. The insights gained from these studies have substantially contributed to our understanding of the eukaryotic DNA replication process as well. The finding that molecular chaperones can activate some initiation proteins before DNA synthesis has led to the more general suggestion that molecular chaperones can influence the DNA-binding activity of many proteins, including transcriptional factors involved in cell regulatory systems. The DnaK/DnaJ/GrpE molecular chaperone system became a paradigm of our understanding of fundamental processes, such as protein folding, translocation, selective proteolysis and autoregulation of the heat-shock response. Studies on the Clp ATPase family of molecular chaperones will help to define the nature of signals involved in chaperone-dependent proteins' refolding and the degradation of misfolded proteins.
Collapse
Affiliation(s)
- I Konieczny
- Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, Kladki, Poland
| | | |
Collapse
|
44
|
Pak M, Hoskins JR, Singh SK, Maurizi MR, Wickner S. Concurrent chaperone and protease activities of ClpAP and the requirement for the N-terminal ClpA ATP binding site for chaperone activity. J Biol Chem 1999; 274:19316-22. [PMID: 10383442 DOI: 10.1074/jbc.274.27.19316] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ClpA, a member of the Clp/Hsp100 family of ATPases, is both an ATP-dependent molecular chaperone and the regulatory component of ClpAP protease. We demonstrate that chaperone and protease activities occur concurrently in ClpAP complexes during a single round of RepA binding to ClpAP and ATP-dependent release. This result was substantiated with a ClpA mutant, ClpA(K220V), carrying an amino acid substitution in the N-terminal ATP binding site. ClpA(K220V) is unable to activate RepA, but the presence of ClpP or chemically inactivated ClpP restores its ability to activate RepA. The presence of ClpP simultaneously facilitates degradation of RepA. ClpP must remain bound to ClpA(K220V) for these effects, indicating that both chaperone and proteolytic activities of the mutant complex occur concurrently. ClpA(K220V) itself is able to form stable complexes with RepA in the presence of a poorly hydrolyzed ATP analog, adenosine 5'-O-(thiotriphosphate), and to release RepA upon exchange of adenosine 5'-O-(thiotriphosphate) with ATP. However, the released RepA is inactive in DNA binding, indicating that the N-terminal ATP binding site is essential for the chaperone activity of ClpA. Taken together, these results suggest that substrates bound to the complex of the proteolytic and ATPase components can be partitioned between release/reactivation and translocation/degradation.
Collapse
Affiliation(s)
- M Pak
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
45
|
Smith CK, Baker TA, Sauer RT. Lon and Clp family proteases and chaperones share homologous substrate-recognition domains. Proc Natl Acad Sci U S A 1999; 96:6678-82. [PMID: 10359771 PMCID: PMC21974 DOI: 10.1073/pnas.96.12.6678] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lon protease and members of the Clp family of molecular chaperones and protease regulatory subunits contain homologous regions with properties expected for substrate-binding domains. Fragments corresponding to these sequences are stably and independently folded for Lon, ClpA, and ClpY. The corresponding regions from ClpB and ClpX are unstable. All five fragments exhibit distinct patterns of binding to three proteins that are protease substrates in vivo: the heat shock transcription factor sigma32, the SOS mutagenesis protein UmuD, and Arc repressor bearing the SsrA degradation tag. Recognition of UmuD is mediated through peptide sequences within a 24-residue N-terminal region whereas recognition of both sigma32 and SsrA-tagged Arc requires sequences at the C terminus. These results indicate that the Lon and Clp proteases use the same mechanism of substrate discrimination and suggest that these related ATP-dependent bacterial proteases scrutinize accessible or disordered regions of potential substrates for the presence of specific targeting sequences.
Collapse
Affiliation(s)
- C K Smith
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
46
|
Gonciarz-Swiatek M, Wawrzynow A, Um SJ, Learn BA, McMacken R, Kelley WL, Georgopoulos C, Sliekers O, Zylicz M. Recognition, targeting, and hydrolysis of the lambda O replication protein by the ClpP/ClpX protease. J Biol Chem 1999; 274:13999-4005. [PMID: 10318812 DOI: 10.1074/jbc.274.20.13999] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has previously been established that sequences at the C termini of polypeptide substrates are critical for efficient hydrolysis by the ClpP/ClpX ATP-dependent protease. We report for the bacteriophage lambda O replication protein, however, that N-terminal sequences play the most critical role in facilitating proteolysis by ClpP/ClpX. The N-terminal portion of lambda O is degraded at a rate comparable with that of wild type O protein, whereas the C-terminal domain of O is hydrolyzed at least 10-fold more slowly. Consistent with these results, deletion of the first 18 amino acids of lambda O blocks degradation of the N-terminal domain, whereas proteolysis of the O C-terminal domain is only slightly diminished as a result of deletion of the C-terminal 15 amino acids. We demonstrate that ClpX retains its capacity to bind to the N-terminal domain following removal of the first 18 amino acids of O. However, ClpX cannot efficiently promote the ATP-dependent binding of this truncated O polypeptide to ClpP, the catalytic subunit of the ClpP/ClpX protease. Based on our results with lambda O protein, we suggest that two distinct structural elements may be required in substrate polypeptides to enable efficient hydrolysis by the ClpP/ClpX protease: (i) a ClpX-binding site, which may be located remotely from substrate termini, and (ii) a proper N- or C-terminal sequence, whose exposure on the substrate surface may be induced by the binding of ClpX.
Collapse
Affiliation(s)
- M Gonciarz-Swiatek
- Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, 80-822 Gdansk, Kladki 24, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Copy-number regulation of the broad-host-range plasmid RK2 is dependent on the plasmid-encoded initiator protein, TrfA, and the RK2 origin of replication. The handcuffing model for copy-number control proposes that TrfA-bound oris reversibly couple to prevent the further initiation of plasmid replication when the copy number in vivo is at or above the replicon-specific copy number. TrfA mutants have been isolated which allow for oriV replication at elevated copy numbers. To better understand the mechanism of 'handcuffing', the copy-up TrfA(G254D/S267L) mutant was characterized further. In the present study we show by size exclusion chromatography and native gel electrophoresis that unlike wt TrfA which is largely dimeric, purified His6-TrfA(G254D/S267L) is primarily monomeric. In vivo, TrfA33(G254D/S267L) supports replication of an RK2 ori plasmid in trans at a greatly elevated copy number, while in cis the plasmid exhibits runaway replication. However, expression of either of two previously isolated DNA-binding defective TrfA mutants, TrfA33(P151S) or TrfA33(S257F), in a cell transformed with a mini-RK2 replicon encoding TrfA33(G254D/S267L) results in suppression of the runaway phenotype. His6-TrfA(P151S) and His6-TrfA(S257F) purify as dimers, and when expressed in vivo are incapable of supporting RK2 plasmid replication. In contrast, combination of the trfA(P151S) or trfA(S257F) mutation with the trfA(G254D/S267L) mutations results in the expression of mutant TrfA proteins which are mainly monomers and which can no longer restore copy control to replication directed by TrfA33(G254D/S267L) in vivo. On the basis of these findings a handcuffing model is proposed, whereby oriV-bound TrfA monomers are coupled by dimeric TrfA molecules.
Collapse
Affiliation(s)
- A E Toukdarian
- Center for Molecular Genetics and Department of Biology, University of California, San Diego, La Jolla, CA 92093-0322, USA
| | | |
Collapse
|
48
|
Banecki B, Kaguni JM, Marszalek J. Role of adenine nucleotides, molecular chaperones and chaperonins in stabilization of DnaA initiator protein of Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1442:39-48. [PMID: 9767098 DOI: 10.1016/s0167-4781(98)00118-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DnaA protein of Escherichia coli is a sequence-specific DNA binding protein required for the initiation of DNA replication from the chromosomal origin, oriC, and of several E. coli plasmids. At a moderate ionic strength, purified DnaA protein has a strong tendency to aggregate; the self-aggregate form is inactive in DNA replication. Binding of ATP or ADP to DnaA protein protected it from aggregation to maintain its replication activity. AMP or cyclic AMP had no protective effect. The molecular chaperone DnaK protected DnaA protein from aggregation with or without ATP. DnaJ and GrpE were not stimulatory. Chaperonins GroEL and GroES were also able to prevent aggregation but only in the presence of ATP. The studies presented here show that for DnaA protein to be active in the initiation of DNA replication, it must be prevented from forming a self-aggregate by the binding of adenine nucleotides, and/or by the action of molecular chaperones.
Collapse
Affiliation(s)
- B Banecki
- Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | | | | |
Collapse
|
49
|
Hoskins JR, Pak M, Maurizi MR, Wickner S. The role of the ClpA chaperone in proteolysis by ClpAP. Proc Natl Acad Sci U S A 1998; 95:12135-40. [PMID: 9770452 PMCID: PMC22797 DOI: 10.1073/pnas.95.21.12135] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ClpA, a member of the Clp/Hsp100 family of ATPases, is a molecular chaperone and, in combination with a proteolytic component ClpP, participates in ATP-dependent proteolysis. We investigated the role of ClpA in protein degradation by ClpAP by dissociating the reaction into several discrete steps. In the assembly step, ClpA-ClpP-substrate complexes assemble either by ClpA-substrate complexes interacting with ClpP or by ClpA-ClpP complexes interacting with substrate; ClpP in the absence of ClpA is unable to bind substrates. Assembly requires ATP binding but not hydrolysis. We discovered that ClpA translocates substrates from their binding sites on ClpA to ClpP. The translocation step specifically requires ATP; nonhydrolyzable ATP analogs are ineffective. Only proteins that are degraded by ClpAP are translocated. Characterization of the degradation step showed that substrates can be degraded in a single round of ClpA-ClpP-substrate binding followed by ATP hydrolysis. The products generated are indistinguishable from steady-state products. Taken together, our results suggest that ClpA, through its interaction with both the substrate and ClpP, acts as a gatekeeper, actively translocating specific substrates into the proteolytic chamber of ClpP where degradation occurs. As multicomponent ATP-dependent proteases are widespread in nature and share structural similarities, these findings may provide a general mechanism for regulation of substrate import into the proteolytic chamber.
Collapse
Affiliation(s)
- J R Hoskins
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
50
|
Abstract
Proteolytic inactivation of key regulatory proteins is essential in eukaryotic cell-cycle control. We have identified a protease in the eubacterium Caulobacter crescentus that is indispensable for viability and cell-cycle progression, indicating that proteolysis is also involved in controlling the bacterial cell cycle. Mutants of Caulobacter that lack the ATP-dependent serine protease ClpXP are arrested in the cell cycle before the initiation of chromosome replication and are blocked in the cell division process. ClpXP is composed of two types of polypeptides, the ClpX ATPase and the ClpP peptidase. Site-directed mutagenesis of the catalytically active serine residue of ClpP confirmed that the proteolytic activity of ClpXP is essential. Analysis of mutants lacking ClpX or ClpP revealed that both proteins are required in vivo for the cell-cycle-dependent degradation of the regulatory protein CtrA. CtrA is a member of the response regulator family of two-component signal transduction systems and controls multiple cell-cycle processes in Caulobacter. In particular, CtrA negatively controls DNA replication and our findings suggest that specific degradation of the CtrA protein by the ClpXP protease contributes to G1-to-S transition in this organism.
Collapse
Affiliation(s)
- U Jenal
- Division of Molecular Microbiology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland.
| | | |
Collapse
|