1
|
Cory-Slechta DA, Downs CJ, Sobolewski M. Cumulative risk assessment as the pathway to public health protection for behavioral neurotoxicity. Neurotoxicology 2025; 108:400-411. [PMID: 40349850 DOI: 10.1016/j.neuro.2025.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/09/2025] [Accepted: 04/30/2025] [Indexed: 05/14/2025]
Abstract
The formulation of adverse outcome pathways (AOPs) based on high-throughput in vitro new approach methods linking biochemical/mechanistic data with an apical endpoint considered an adverse outcome (AO), is increasingly proposed to accelerate the process of risk assessment for environmental chemical exposures. While a laudable goal, this approach ignores the extensive evidence demonstrating context-dependence of neurotoxicological consequences, including behavioral toxicity of chemical exposures. Such contextual modifiers can include environmental conditions (poverty, psychosocial stress, behavioral experience/history), physiological conditions (sex, period of exposure, nutritional status, brain region, exposure parameters), and genetic background. Context dependence represents a serious omission for AOP formulation because an environmental context can alter a chemical's molecular targets, or potentially enhance toxicity through interactions with other contextual conditions, thus leading to potential underestimation of neurological risks due to such exposures. The integrative physiological basis of AOs requires cumulative risk assessments that model environmental contexts across scales of biology, i.e., integration and testing in whole-animal models. AOPs contribute to the derivation of cumulative risk considerations regarding factors to incorporate into cumulative risk assessments by defining risk factors with shared biological targets. Epidemiological and animal model studies can provide information to prioritize interactive effects of greatest magnitude. Additionally, a focus on how a single risk factor in different physiological contexts may attribute risk across multiple neurologic conditions, rather than to a single unique condition, would provide broader public health protection. Realistic acknowledgement of context-dependence is requisite to understanding both the etiological basis of neurological diseases and disorders and to human health protection.
Collapse
Affiliation(s)
- Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, United States.
| | - Cynthia J Downs
- Department of Environmental Biology, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, United States.
| |
Collapse
|
2
|
Metzen MG. Encoding and Perception of Electro-communication Signals in Apteronotus leptorhynchus. Front Integr Neurosci 2019; 13:39. [PMID: 31481882 PMCID: PMC6710435 DOI: 10.3389/fnint.2019.00039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/31/2019] [Indexed: 11/13/2022] Open
Abstract
Animal communication plays an essential role in triggering diverse behaviors. It is believed in this regard that signal production by a sender and its perception by a receiver is co-evolving in order to have beneficial effects such as to ensure that conspecifics remain sensitive to these signals. However, in order to give appropriate responses to a communication signal, the receiver has to first detect and interpret it in a meaningful way. The detection of communication signals can be limited under some circumstances, for example when the signal is masked by the background noise in which it occurs (e.g., the cocktail-party problem). Moreover, some signals are very alike despite having different meanings making it hard to discriminate between them. How the central nervous system copes with these tasks and problems is a central question in systems neuroscience. Gymnotiform weakly electric fish pose an interesting system to answer these questions for various reasons: (1) they use a variety of communication signals called “chirps” during different behavioral encounters; (2) the central physiology of the electrosensory system is well known; and (3) most importantly, these fish give reliable behavioral responses to artificial stimuli that resemble natural communication signals, making it possible to uncover the neural mechanisms that lead to the observed behaviors.
Collapse
Affiliation(s)
- Michael G Metzen
- Department of Physiology, McGill University Montreal, Montreal, QC, Canada
| |
Collapse
|
3
|
Motipally SI, Allen KM, Williamson DK, Marsat G. Differences in Sodium Channel Densities in the Apical Dendrites of Pyramidal Cells of the Electrosensory Lateral Line Lobe. Front Neural Circuits 2019; 13:41. [PMID: 31213991 PMCID: PMC6558084 DOI: 10.3389/fncir.2019.00041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/20/2019] [Indexed: 12/22/2022] Open
Abstract
Heterogeneity of neural properties within a given neural class is ubiquitous in the nervous system and permits different sub-classes of neurons to specialize for specific purposes. This principle has been thoroughly investigated in the hindbrain of the weakly electric fish A. leptorhynchus in the primary electrosensory area, the Electrosensory Lateral Line lobe (ELL). The pyramidal cells (PCs) that receive inputs from tuberous electroreceptors are organized in three maps in distinct segments of the ELL. The properties of these cells vary greatly across maps due to differences in connectivity, receptor expression, and ion channel composition. These cells are a seminal example of bursting neurons and their bursting dynamic relies on the presence of voltage-gated Na+ channels in the extensive apical dendrites of the superficial PCs. Other ion channels can affect burst generation and their expression varies across ELL neurons and segments. For example, SK channels cause hyperpolarizing after-potentials decreasing the likelihood of bursting, yet bursting propensity is similar across segments. We question whether the depolarizing mechanism that generates the bursts presents quantitative differences across segments that could counterbalance other differences having the opposite effect. Although their presence and role are established, the distribution and density of the apical dendrites' Na+ channels have not been quantified and compared across ELL maps. Therefore, we test the hypothesis that Na+ channel density varies across segment by quantifying their distribution in the apical dendrites of immunolabeled ELL sections. We found the Na+ channels to be two-fold denser in the lateral segment (LS) than in the centro-medial segment (CMS), the centro-lateral segment (CLS) being intermediate. Our results imply that this differential expression of voltage-gated Na+ channels could counterbalance or interact with other aspects of neuronal physiology that vary across segments (e.g., SK channels). We argue that burst coding of sensory signals, and the way the network regulates bursting, should be influenced by these variations in Na+ channel density.
Collapse
Affiliation(s)
- Sree I Motipally
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Kathryne M Allen
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Daniel K Williamson
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Gary Marsat
- Department of Biology, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
4
|
Allen KM, Marsat G. Neural Processing of Communication Signals: The Extent of Sender-Receiver Matching Varies across Species of Apteronotus. eNeuro 2019; 6:ENEURO.0392-18.2019. [PMID: 30899777 PMCID: PMC6426436 DOI: 10.1523/eneuro.0392-18.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/07/2019] [Accepted: 02/09/2019] [Indexed: 02/02/2023] Open
Abstract
As communication signal properties change, through genetic drift or selective pressure, the sensory systems that receive these signals must also adapt to maintain sensitivity and adaptability in an array of contexts. Shedding light on this process helps us to understand how sensory codes are tailored to specific tasks. In a species of weakly electric fish, Apteronotus albifrons, we examined the unique neurophysiological properties that support the encoding of electrosensory communication signals that the animal encounters in social exchanges. We compare our findings to the known coding properties of the closely related species Apteronotus leptorhynchus to establish how these animals differ in their ability to encode their distinctive communication signals. While there are many similarities between these two species, we found notable differences leading to relatively poor coding of the details of chirp structure occurring on high-frequency background beats. As a result, small differences in chirp properties are poorly resolved by the nervous system. We performed behavioral tests to relate A. albifrons chirp coding strategies to its use of chirps during social encounters. Our results suggest that A. albifrons does not exchange frequent chirps in a nonbreeding condition, particularly when the beat frequency is high. These findings parallel the mediocre chirp coding accuracy in that they both point to a reduced reliance on frequent and rich exchange of information through chirps during these social interactions. Therefore, our study suggests that neural coding strategies in the CNS vary across species in a way that parallels the behavioral use of the sensory signals.
Collapse
Affiliation(s)
- Kathryne M Allen
- Department of Biology, West Virginia University, Morgantown, West Virginia 26505
| | - Gary Marsat
- Department of Biology, West Virginia University, Morgantown, West Virginia 26505
| |
Collapse
|
5
|
Santiago LF, Freire MAM, Picanço-Diniz CW, Franca JG, Pereira A. The Organization and Connections of Second Somatosensory Cortex in the Agouti. Front Neuroanat 2019; 12:118. [PMID: 30692919 PMCID: PMC6339897 DOI: 10.3389/fnana.2018.00118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 12/27/2018] [Indexed: 11/13/2022] Open
Abstract
In order to understand how the mammalian sensory cortex has been structured during evolution, it is necessary to compare data from different species across distinct mammalian lineages. Here, we investigated the organization of the secondary somatosensory area (S2) in the agouti (Dasyprocta aguti), a medium-sized Amazonian rodent, using microelectrode mapping techniques and neurotracer injections. The topographic map obtained from multiunit electrophysiological recordings were correlated with both cytochrome oxidase (CO) histochemistry and with patterns of corticocortical connections in tangential sections. The electrophysiological mapping of the lateral strip of parietal cortex adjacent to the primary somatosensory area (S1) revealed that S2 displays a mirror-reversed topographical representation of S1, but with a smaller cortical magnification factor. The caudal border of S2 is surrounded by sensory fields which also respond to auditory stimulation. BDA injections into the forelimb representation of S2 revealed a dense homotopic ipsilateral projection to S1, supplemented by a less dense projection to the caudolateral cortex located near the rhinal sulcus (parietal rhinal area) and to a frontal region probably associated with the motor cortex. Our findings were similar to those described in other mammalian species, reinforcing the existence of a common plan of organization for S2 in the mammalian parietal cortex.
Collapse
Affiliation(s)
- Lucidia F Santiago
- Laboratory of Investigations in Neurodegeneration and Infection, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Marco Aurelio M Freire
- Laboratory of Experimental Neuroprotection and Neuroregeneration, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Cristovam W Picanço-Diniz
- Laboratory of Investigations in Neurodegeneration and Infection, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - João G Franca
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio Pereira
- Institute of Technology, Federal University of Pará, Belém, Brazil
| |
Collapse
|
6
|
Physiological evidence of sensory integration in the electrosensory lateral line lobe of Gnathonemus petersii. PLoS One 2018; 13:e0194347. [PMID: 29641541 PMCID: PMC5894992 DOI: 10.1371/journal.pone.0194347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/01/2018] [Indexed: 01/04/2023] Open
Abstract
Mormyrid fish rely on reafferent input for active electrolocation. Their electrosensory input consists of phase and amplitude information. These are encoded by differently tuned receptor cells within the Mormyromasts, A- and B-cells, respectively, which are distributed over the animal’s body. These convey their information to two topographically ordered medullary zones in the electrosensory lateral line lobe (ELL). The so-called medial zone receives only amplitude information, while the dorsolateral zone receives amplitude and phase information. Using both sources of information, Mormyrid fish can disambiguate electrical impedances. Where and how this disambiguation takes place is presently unclear. We here investigate phase-sensitivity downstream from the electroreceptors. We provide first evidence of phase-sensitivity in the medial zone of ELL. In this zone I-cells consistently decreased their rate to positive phase-shifts (6 of 20 cells) and increased their rate to negative shifts (11/20), while E-cells of the medial zone (3/9) responded oppositely to I-cells. In the dorsolateral zone the responses of E- and I-cells were opposite to those found in the medial zone. Tracer injections revealed interzonal projections that interconnect the dorsolateral and medial zones in a somatotopic manner. In summary, we show that phase information is processed differently in the dorsolateral and the medial zones. This is the first evidence for a mechanism that enhances the contrast between two parallel sensory channels in Mormyrid fish. This could be beneficial for impedance discrimination that ultimately must rely on a subtractive merging of these two sensory streams.
Collapse
|
7
|
Hofmann V, Chacron MJ. Differential receptive field organizations give rise to nearly identical neural correlations across three parallel sensory maps in weakly electric fish. PLoS Comput Biol 2017; 13:e1005716. [PMID: 28863136 PMCID: PMC5599069 DOI: 10.1371/journal.pcbi.1005716] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/14/2017] [Accepted: 08/09/2017] [Indexed: 11/29/2022] Open
Abstract
Understanding how neural populations encode sensory information thereby leading to perception and behavior (i.e., the neural code) remains an important problem in neuroscience. When investigating the neural code, one must take into account the fact that neural activities are not independent but are actually correlated with one another. Such correlations are seen ubiquitously and have a strong impact on neural coding. Here we investigated how differences in the antagonistic center-surround receptive field (RF) organization across three parallel sensory maps influence correlations between the activities of electrosensory pyramidal neurons. Using a model based on known anatomical differences in receptive field center size and overlap, we initially predicted large differences in correlated activity across the maps. However, in vivo electrophysiological recordings showed that, contrary to modeling predictions, electrosensory pyramidal neurons across all three segments displayed nearly identical correlations. To explain this surprising result, we incorporated the effects of RF surround in our model. By systematically varying both the RF surround gain and size relative to that of the RF center, we found that multiple RF structures gave rise to similar levels of correlation. In particular, incorporating known physiological differences in RF structure between the three maps in our model gave rise to similar levels of correlation. Our results show that RF center overlap alone does not determine correlations which has important implications for understanding how RF structure influences correlated neural activity. Growing evidence across nervous systems and species shows that the activities of neighboring neurons are not independent but are correlated with one another, which has important implications for neural coding. Such correlations are generally thought to be due to shared input. However, how this shared input is integrated by neurons in order to give rise to correlated activity is not well understood in general. Here we investigated how receptive field structure determines correlations between the activities of electrosensory pyramidal neurons in weakly electric fish. To do so, we used a combination of mathematical modeling of the known antagonistic center-surround RF structure as well as in vivo electrophysiological recordings. Our results show that the amount of receptive field center overlap alone is not sufficient to explain experimentally observed neural correlations in general. This is because our experimental data shows that pyramidal neurons with very different amounts of receptive field center overlap display almost identical correlations between their activities. Further, our modeling shows that both receptive field center and surround play important roles in determining correlated activity, such that very different combinations of relative RF surround strength and size can generate nearly identical correlations between neural activities. We discuss the implications of our results for sensory processing.
Collapse
Affiliation(s)
- Volker Hofmann
- Department of Physiology, McGill University, McIntyre Medical Building, Montreal, Québec, Canada
| | - Maurice J. Chacron
- Department of Physiology, McGill University, McIntyre Medical Building, Montreal, Québec, Canada
- * E-mail:
| |
Collapse
|
8
|
Optimized Parallel Coding of Second-Order Stimulus Features by Heterogeneous Neural Populations. J Neurosci 2017; 36:9859-72. [PMID: 27656024 DOI: 10.1523/jneurosci.1433-16.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/09/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Efficient processing of sensory input is essential to ensure an organism's survival in its natural environment. Growing evidence suggests that sensory neurons can optimally encode natural stimuli by ensuring that their tuning opposes stimulus statistics, such that the resulting neuronal response contains equal power at all frequencies (i.e., is "white"). Such temporal decorrelation or whitening has been observed across modalities, but the effects of neural heterogeneities on determining tuning and thus responses to natural stimuli have not been investigated. Here, we investigate how heterogeneities in sensory pyramidal neurons organized in three parallel maps representing the body surface determine responses to second-order electrosensory stimulus features in the weakly electric fish Apteronotus leptorhynchus While some sources of heterogeneities such as ON- and OFF-type responses to first-order did not affect responses to second-order electrosensory stimulus features, other sources of heterogeneity within and across the maps strongly determined responses. We found that these cells effectively performed a fractional differentiation operation on their input with exponents ranging from zero (no differentiation) to 0.4 (strong differentiation). Varying adaptation in a simple model explained these heterogeneities and predicted a strong correlation between fractional differentiation and adaptation. Using natural stimuli, we found that only a small fraction of neurons implemented temporal whitening. Rather, a large fraction of neurons did not perform any significant whitening and thus preserved natural input statistics in their responses. We propose that this information is needed to properly decode optimized information sent in parallel through temporally whitened responses based on context. SIGNIFICANCE STATEMENT We demonstrate that heterogeneities in the same sensory neuron type can either have no or significant influence on their responses to second-order stimulus features. While an ON- or OFF-type response to first-order stimulus attributes has no significant influence on responses to second-order stimulus features, we found that only a small fraction of sensory neurons optimally encoded natural stimuli through high-pass filtering, thereby implementing temporal whitening. Surprisingly, a large fraction of sensory neurons performed little if no filtering of stimuli, thereby preserving natural stimulus statistics. We hypothesize that this pathway is necessary to properly decode optimized information contained in temporally whitened responses based on context.
Collapse
|
9
|
Huang CG, Chacron MJ. SK channel subtypes enable parallel optimized coding of behaviorally relevant stimulus attributes: A review. Channels (Austin) 2017; 11:281-304. [PMID: 28277938 DOI: 10.1080/19336950.2017.1299835] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Ion channels play essential roles toward determining how neurons respond to sensory input to mediate perception and behavior. Small conductance calcium-activated potassium (SK) channels are found ubiquitously throughout the brain and have been extensively characterized both molecularly and physiologically in terms of structure and function. It is clear that SK channels are key determinants of neural excitability as they mediate important neuronal response properties such as spike frequency adaptation. However, the functional roles of the different known SK channel subtypes are not well understood. Here we review recent evidence from the electrosensory system of weakly electric fish suggesting that the function of different SK channel subtypes is to optimize the processing of independent but behaviorally relevant stimulus attributes. Indeed, natural sensory stimuli frequently consist of a fast time-varying waveform (i.e., the carrier) whose amplitude (i.e., the envelope) varies slowly and independently. We first review evidence showing how somatic SK2 channels mediate tuning and responses to carrier waveforms. We then review evidence showing how dendritic SK1 channels instead determine tuning and optimize responses to envelope waveforms based on their statistics as found in the organism's natural environment in an independent fashion. The high degree of functional homology between SK channels in electric fish and their mammalian orthologs, as well as the many important parallels between the electrosensory system and the mammalian visual, auditory, and vestibular systems, suggest that these functional roles are conserved across systems and species.
Collapse
Affiliation(s)
- Chengjie G Huang
- a Department of Physiology , McGill University , Montreal , QC , Canada
| | - Maurice J Chacron
- a Department of Physiology , McGill University , Montreal , QC , Canada
| |
Collapse
|
10
|
Martinez D, Metzen MG, Chacron MJ. Electrosensory processing in Apteronotus albifrons: implications for general and specific neural coding strategies across wave-type weakly electric fish species. J Neurophysiol 2016; 116:2909-2921. [PMID: 27683890 PMCID: PMC5224934 DOI: 10.1152/jn.00594.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/26/2016] [Indexed: 11/22/2022] Open
Abstract
Understanding how the brain processes sensory input to generate behavior remains an important problem in neuroscience. Towards this end, it is useful to compare results obtained across multiple species to gain understanding as to the general principles of neural coding. Here we investigated hindbrain pyramidal cell activity in the weakly electric fish Apteronotus albifrons We found strong heterogeneities when looking at baseline activity. Additionally, ON- and OFF-type cells responded to increases and decreases of sinusoidal and noise stimuli, respectively. While both cell types displayed band-pass tuning, OFF-type cells were more broadly tuned than their ON-type counterparts. The observed heterogeneities in baseline activity as well as the greater broadband tuning of OFF-type cells were both similar to those previously reported in other weakly electric fish species, suggesting that they constitute general features of sensory processing. However, we found that peak tuning occurred at frequencies ∼15 Hz in A. albifrons, which is much lower than values reported in the closely related species Apteronotus leptorhynchus and the more distantly related species Eigenmannia virescens In response to stimuli with time-varying amplitude (i.e., envelope), ON- and OFF-type cells displayed similar high-pass tuning curves characteristic of fractional differentiation and possibly indicate optimized coding. These tuning curves were qualitatively similar to those of pyramidal cells in the closely related species A. leptorhynchus In conclusion, comparison between our and previous results reveals general and species-specific neural coding strategies. We hypothesize that differences in coding strategies, when observed, result from different stimulus distributions in the natural/social environment.
Collapse
Affiliation(s)
- Diana Martinez
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Michael G Metzen
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Maurice J Chacron
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Subsecond Sensory Modulation of Serotonin Levels in a Primary Sensory Area and Its Relation to Ongoing Communication Behavior in a Weakly Electric Fish. eNeuro 2016; 3:eN-NWR-0115-16. [PMID: 27844054 PMCID: PMC5093153 DOI: 10.1523/eneuro.0115-16.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 10/14/2016] [Accepted: 10/15/2016] [Indexed: 01/19/2023] Open
Abstract
Serotonergic neurons of the raphe nuclei of vertebrates project to most regions of the brain and are known to significantly affect sensory processing. The subsecond dynamics of sensory modulation of serotonin levels and its relation to behavior, however, remain unknown. We used fast-scan cyclic voltammetry to measure serotonin release in the electrosensory system of weakly electric fish, Apteronotus leptorhynchus. These fish use an electric organ to generate a quasi-sinusoidal electric field for communicating with conspecifics. In response to conspecific signals, they frequently produce signal modulations called chirps. We measured changes in serotonin concentration in the hindbrain electrosensory lobe (ELL) with a resolution of 0.1 s concurrently with chirping behavior evoked by mimics of conspecific electric signals. We show that serotonin release can occur phase locked to stimulus onset as well as spontaneously in the ELL region responsible for processing these signals. Intense auditory stimuli, on the other hand, do not modulate serotonin levels in this region, suggesting modality specificity. We found no significant correlation between serotonin release and chirp production on a trial-by-trial basis. However, on average, in the trials where the fish chirped, there was a reduction in serotonin release in response to stimuli mimicking similar-sized same-sex conspecifics. We hypothesize that the serotonergic system is part of an intricate sensory–motor loop: serotonin release in a sensory area is triggered by sensory input, giving rise to motor output, which can in turn affect serotonin release at the timescale of the ongoing sensory experience and in a context-dependent manner.
Collapse
|
12
|
Huang CG, Zhang ZD, Chacron MJ. Temporal decorrelation by SK channels enables efficient neural coding and perception of natural stimuli. Nat Commun 2016; 7:11353. [PMID: 27088670 PMCID: PMC4837484 DOI: 10.1038/ncomms11353] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 03/17/2016] [Indexed: 11/21/2022] Open
Abstract
It is commonly assumed that neural systems efficiently process natural sensory input. However, the mechanisms by which such efficient processing is achieved, and the consequences for perception and behaviour remain poorly understood. Here we show that small conductance calcium-activated potassium (SK) channels enable efficient neural processing and perception of natural stimuli. Specifically, these channels allow for the high-pass filtering of sensory input, thereby removing temporal correlations or, equivalently, whitening frequency response power. Varying the degree of adaptation through pharmacological manipulation of SK channels reduced efficiency of coding of natural stimuli, which in turn gave rise to predictable changes in behavioural responses that were no longer matched to natural stimulus statistics. Our results thus demonstrate a novel mechanism by which the nervous system can implement efficient processing and perception of natural sensory input that is likely to be shared across systems and species.
Collapse
Affiliation(s)
- Chengjie G. Huang
- Department of Physiology, McGill University, 3655 Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Zhubo D. Zhang
- Department of Physiology, McGill University, 3655 Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Maurice J. Chacron
- Department of Physiology, McGill University, 3655 Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| |
Collapse
|
13
|
Mileva GR, Kozak IJ, Lewis JE. Short-term synaptic plasticity across topographic maps in the electrosensory system. Neuroscience 2016; 318:1-11. [PMID: 26791523 DOI: 10.1016/j.neuroscience.2016.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/16/2015] [Accepted: 01/06/2016] [Indexed: 10/22/2022]
Abstract
The early pathways underlying the active electric sense of the weakly electric fish Apteronotus leptorhynchus involve three parallel processing streams. An array of tuberous electroreceptors distributed over the skin provides inputs to the electrosensory lateral line lobe (ELL), forming the basis for three topographic maps: LS (lateral segment), CLS (centrolateral segment), and CMS (centromedial segment). In addition, each map receives topographically preserved inputs from a direct feedback pathway. How this feedback contributes to the distinct spatiotemporal filtering properties of ELL pyramidal neurons across maps is not clear. We used an in vitro approach to characterize short-term plasticity (STP) in the direct feedback synapses onto pyramidal neurons in each map. Our findings indicated that the dynamics of STP varied across maps in a manner that was consistent with the temporal filtering properties of pyramidal neurons in vivo. Using a modeling approach, we found that the STP of direct feedback synapses in CMS was best described by a simple facilitation-depression model. On the other hand, STP in LS was best described by synaptic facilitation with a use-dependent recovery rate. These results suggest that differential regulation of overlapping STP processes in feedback pathways can contribute to the functional specialization of topographic sensory maps.
Collapse
Affiliation(s)
- G R Mileva
- Department of Biology and Centre for Neural Dynamics, University of Ottawa, Ottawa, Canada.
| | - I J Kozak
- Department of Biology and Centre for Neural Dynamics, University of Ottawa, Ottawa, Canada
| | - J E Lewis
- Department of Biology and Centre for Neural Dynamics, University of Ottawa, Ottawa, Canada
| |
Collapse
|
14
|
Hollmann V, Hofmann V, Engelmann J. Somatotopic map of the active electrosensory sense in the midbrain of the mormyridGnathonemus petersii. J Comp Neurol 2016; 524:2479-91. [DOI: 10.1002/cne.23963] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/04/2016] [Accepted: 01/04/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Vanessa Hollmann
- Department of Biology, Active Sensing and Center of Excellence ‘Cognitive Interaction Technology,’; Bielefeld University; Bielefeld Germany
| | - Volker Hofmann
- Department of Biology, Active Sensing and Center of Excellence ‘Cognitive Interaction Technology,’; Bielefeld University; Bielefeld Germany
| | - Jacob Engelmann
- Department of Biology, Active Sensing and Center of Excellence ‘Cognitive Interaction Technology,’; Bielefeld University; Bielefeld Germany
| |
Collapse
|
15
|
Chowdhury AR, Panda SK. Brain-Map Based Carangiform Swimming Behaviour Modeling and Control in a Robotic Fish Underwater Vehicle. INT J ADV ROBOT SYST 2015. [DOI: 10.5772/60085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Fish swimming demonstrates impressive speeds and exceptional characteristics in the fluid environment. The objective of this paper is to mimic undulatory swimming behaviour and its control of a body caudal fin (BCF) carangiform fish in a robotic counterpart. Based on fish biology kinematics study, a 2-level behavior based distributed control scheme is proposed. The high-level control is modeled by robotic fish swimming behavior. It uses a Lighthill (LH) body wave to generate desired joint trajectory patterns. Generated LH body wave is influenced by intrinsic kinematic parameters Tail-beat frequency (TBF) and Caudal amplitude (CA) which can be modulated to change the trajectory pattern. Parameter information is retrieved from a fish memory (cerebellum) inspired brain map. This map stores operating region information on TBF and CA parameters obtained from yellow fin tuna kinematics study. Based on an environment based error feedback signal, robotic fish map selects the right parameters value showing adaptive behaviour. A finite state machine methodology has been used to model this brain-kinematic-map control. The low-level control is implemented using inverse dynamics based computed torque method (CTM) with dynamic PD compensation. It tracks high-level generated and encoded patterns (trajectory) for fish-tail undulation. Three types of parameter adaptation for the two chosen parameters have been shown to successfully emulate robotic fish swimming behavior. Based on the proposed control strategy joint-position and velocity tracking results are discussed. They are found to be satisfactory with error magnitudes within permissible bounds.
Collapse
Affiliation(s)
- Abhra Roy Chowdhury
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| | - Sanjib Kumar Panda
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| |
Collapse
|
16
|
Walz H, Grewe J, Benda J. Static frequency tuning accounts for changes in neural synchrony evoked by transient communication signals. J Neurophysiol 2014; 112:752-65. [PMID: 24848476 DOI: 10.1152/jn.00576.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although communication signals often vary continuously on the underlying signal parameter, they are perceived as distinct categories. We here report the opposite case where an electrocommunication signal is encoded in four distinct regimes, although the behavior described to date does not show distinct categories. In particular, we studied the encoding of chirps by P-unit afferents in the weakly electric fish Apteronotus leptorhynchus. These fish generate an electric organ discharge that oscillates at a certain individual-specific frequency. The interaction of two fish in communication contexts leads to the emergence of a beating amplitude modulation (AM) at the frequency difference between the two individual signals. This frequency difference represents the social context of the encounter. Chirps are transient increases of the fish's frequency leading to transient changes in the frequency of the AM. We stimulated the cells with the same chirp on different, naturally occurring backgrounds beats. The P-units responded either by synchronization or desynchronization depending on the background. Although the duration of a chirp is often shorter than a full cycle of the AM it elicits, the distinct responses of the P-units to the chirp can be predicted solely from the frequency of the AM based on the static frequency tuning of the cells.
Collapse
Affiliation(s)
- Henriette Walz
- Bernstein Center for Computational Neuroscience Munich, Planegg-Martinsried, Germany; and
| | - Jan Grewe
- Bernstein Center for Computational Neuroscience Munich, Planegg-Martinsried, Germany; and Neuroethology, Institute for Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Benda
- Neuroethology, Institute for Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
17
|
Larson EA, Metzen MG, Chacron MJ. Serotonin modulates electrosensory processing and behavior via 5-HT2-like receptors. Neuroscience 2014; 271:108-18. [PMID: 24780766 DOI: 10.1016/j.neuroscience.2014.04.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/17/2014] [Accepted: 04/21/2014] [Indexed: 11/16/2022]
Abstract
Efficient sensory processing of the environment is a critical function for any organism to survive and is accomplished by having neurons adapt their responses to stimuli based on behavioral context in part through neuromodulators such as serotonin (5-HT). We have recently shown that one critical function of the serotonergic system in weakly electric fish is to enhance sensory pyramidal neuron responses within the electrosensory lateral line lobe (ELL) to stimuli caused by same sex conspecifics, thereby enhancing their perception. This enhancement is accomplished by making pyramidal neurons more excitable through downregulation of potassium channels. However, the nature of the 5-HT receptors that mediate this effect is not known. Here we show that the 5-HT2 receptor antagonist ketanserin (ket) can effectively block the effects of 5-HT on pyramidal neuron excitability in vitro. Indeed, 5-HT application subsequent to ket application did not cause any significant changes in neuron excitability and responses to current injection. We further show that ket applied in vivo can block the effects of 5-HT on behavioral responses. Thus, our results strongly suggest that the previously observed effects of 5-HT on sensory processing within ELL and their consequences for behavior are mediated by 5-HT2 receptors.
Collapse
Affiliation(s)
- E A Larson
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - M G Metzen
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - M J Chacron
- Department of Physiology, McGill University, Montreal, QC, Canada; Department of Physics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
18
|
Khosravi-Hashemi N, Chacron MJ. Motion processing across multiple topographic maps in the electrosensory system. Physiol Rep 2014; 2:e00253. [PMID: 24760508 PMCID: PMC4002234 DOI: 10.1002/phy2.253] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Animals can efficiently process sensory stimuli whose attributes vary over orders of magnitude by devoting specific neural pathways to process specific features in parallel. Weakly electric fish offer an attractive model system as electrosensory pyramidal neurons responding to amplitude modulations of their self‐generated electric field are organized into three parallel maps of the body surface. While previous studies have shown that these fish use parallel pathways to process stationary stimuli, whether a similar strategy is used to process motion stimuli remains unknown to this day. We recorded from electrosensory pyramidal neurons in the weakly electric fish Apteronotus leptorhynchus across parallel maps of the body surface (centromedial, centrolateral, and lateral) in response to objects moving at velocities spanning the natural range. Contrary to previous observations made with stationary stimuli, we found that all cells responded in a similar fashion to moving objects. Indeed, all cells showed a stronger directionally nonselective response when the object moved at a larger velocity. In order to explain these results, we built a mathematical model incorporating the known antagonistic center–surround receptive field organization of these neurons. We found that this simple model could quantitatively account for our experimentally observed differences seen across E and I‐type cells across all three maps. Our results thus provide strong evidence against the hypothesis that weakly electric fish use parallel neural pathways to process motion stimuli and we discuss their implications for sensory processing in general.
Collapse
|
19
|
Márquez BT, Krahe R, Chacron MJ. Neuromodulation of early electrosensory processing in gymnotiform weakly electric fish. ACTA ACUST UNITED AC 2014; 216:2442-50. [PMID: 23761469 DOI: 10.1242/jeb.082370] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sensory neurons continually adapt their processing properties in response to changes in the sensory environment or the brain's internal state. Neuromodulators are thought to mediate such adaptation through a variety of receptors and their action has been implicated in processes such as attention, learning and memory, aggression, reproductive behaviour and state-dependent mechanisms. Here, we review recent work on neuromodulation of electrosensory processing by acetylcholine and serotonin in the weakly electric fish Apteronotus leptorhynchus. Specifically, our review focuses on how experimental application of these neuromodulators alters excitability and responses to sensory input of pyramidal cells within the hindbrain electrosensory lateral line lobe. We then discuss current hypotheses on the functional roles of these two neuromodulatory pathways in regulating electrosensory processing at the organismal level and the need for identifying the natural behavioural conditions that activate these pathways.
Collapse
Affiliation(s)
- Brenda Toscano Márquez
- Department of Biology, McGill University, 1205 Docteur Penfield, Montreal, QC, Canada, H3A 1B1
| | | | | |
Collapse
|
20
|
Krahe R, Maler L. Neural maps in the electrosensory system of weakly electric fish. Curr Opin Neurobiol 2013; 24:13-21. [PMID: 24492073 DOI: 10.1016/j.conb.2013.08.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 08/15/2013] [Accepted: 08/15/2013] [Indexed: 10/26/2022]
Abstract
The active electrosense of weakly electric fish is evolutionarily and developmentally related to passive electrosensation and the lateral line system. It shows the most highly differentiated topographic maps of the receptor array of all these senses. It is organized into three maps in the hindbrain that are, in turn, composed of columns, each consisting of six pyramidal cell classes. The cells in each column have different spatiotemporal processing properties yielding a total of 18 topographic representations of the body surface. The differential filtering by the hindbrain maps is used by superimposed maps in the multi-layered midbrain electrosensory region to extract specific stimulus features related to communication and foraging. At levels beyond the midbrain, topographic mapping of the body surface appears to be lost.
Collapse
Affiliation(s)
- Rüdiger Krahe
- Department of Biology, McGill University, 1205 Ave. Docteur Penfield, Montreal, Quebec H3A 1B1, Canada.
| | - Leonard Maler
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
21
|
|
22
|
Hofmann V, Sanguinetti-Scheck JI, Künzel S, Geurten B, Gómez-Sena L, Engelmann J. Sensory flow shaped by active sensing: sensorimotor strategies in electric fish. J Exp Biol 2013; 216:2487-500. [DOI: 10.1242/jeb.082420] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Goal-directed behavior in most cases is composed of a sequential order of elementary motor patterns shaped by sensorimotor contingencies. The sensory information acquired thus is structured in both space and time. Here we review the role of motion during the generation of sensory flow focusing on how animals actively shape information by behavioral strategies. We use the well-studied examples of vision in insects and echolocation in bats to describe commonalities of sensory-related behavioral strategies across sensory systems, and evaluate what is currently known about comparable active sensing strategies in electroreception of electric fish. In this sensory system the sensors are dispersed across the animal's body and the carrier source emitting energy used for sensing, the electric organ, is moved while the animal moves. Thus ego-motions strongly influence sensory dynamics. We present, for the first time, data of electric flow during natural probing behavior in Gnathonemus petersii (Mormyridae), which provide evidence for this influence. These data reveal a complex interdependency between the physical input to the receptors and the animal's movements, posture and objects in its environment. Although research on spatiotemporal dynamics in electrolocation is still in its infancy, the emerging field of dynamical sensory systems analysis in electric fish is a promising approach to the study of the link between movement and acquisition of sensory information.
Collapse
Affiliation(s)
- Volker Hofmann
- Bielefeld University, Faculty of Biology/CITEC, AG Active Sensing, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Juan I. Sanguinetti-Scheck
- Universidad de la Republica, Facultad de Ciencias, Laboratorio de Neurociencias, Igua 4225, Montevideo, Uruguay
| | - Silke Künzel
- Bielefeld University, Faculty of Biology/CITEC, AG Active Sensing, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Bart Geurten
- Göttingen University, Abt. Zelluläre Neurobiologie, Schwann-Schleiden Forschungszentrum, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | - Leonel Gómez-Sena
- Universidad de la Republica, Facultad de Ciencias, Laboratorio de Neurociencias, Igua 4225, Montevideo, Uruguay
| | - Jacob Engelmann
- Bielefeld University, Faculty of Biology/CITEC, AG Active Sensing, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
23
|
Harvey-Girard E, Giassi ACC, Ellis W, Maler L. Organization of the gymnotiform fish pallium in relation to learning and memory: IV. Expression of conserved transcription factors and implications for the evolution of dorsal telencephalon. J Comp Neurol 2013; 520:3395-413. [PMID: 22430363 DOI: 10.1002/cne.23107] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have cloned the apteronotid homologs of FoxP2, Otx1, and FoxO3. There was, in the case of all three genes, good similarity between the apteronotid and human amino acid sequences: FoxP2, 78%; Otx1, 54%; FoxO3, 71%. The functional domains of these genes were conserved to a far greater extent, on average: FoxP2, 89%; Otx1, 76%; FoxO3, 82%. This led us to hypothesize that the cellular functions of these genes might also be conserved. We used in situ hybridization to examine the distribution of the mRNA transcripts of these genes in the apteronotid telencephalon. We confined our analysis to the pallial regions previously associated with learning about social signals, whose circuitry has been closely examined in the other articles of this series. We found that AptFoxP2 and AptOtx1 transcripts were expressed predominantly in the dorsocentral division of the pallium (DC); the dorsolateral division of the pallium (DL) contained only weakly labeled neurons. In both cases, the distribution of labeled neurons was very heterogeneous, and unlabeled neurons could be found adjacent to strongly labeled ones. In contrast, we found that most neurons in DL strongly expressed AptFoxO3 mRNA, although there was only weak expression in a small number of cells within DC. We briefly discuss the relevance of our results regarding the functional roles of AptFoxP2/AptOtx1-expressing neurons in DC for communication vs. foraging behavior. We extensively discuss the implications of our results for possible homologies between DL and DC and medial and dorsal pallium of tetrapods, respectively.
Collapse
Affiliation(s)
- Erik Harvey-Girard
- Department of Cell and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| | | | | | | |
Collapse
|
24
|
Rössler W, Brill MF. Parallel processing in the honeybee olfactory pathway: structure, function, and evolution. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:981-96. [PMID: 23609840 PMCID: PMC3824823 DOI: 10.1007/s00359-013-0821-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/10/2013] [Accepted: 04/11/2013] [Indexed: 12/21/2022]
Abstract
Animals face highly complex and dynamic olfactory stimuli in their natural environments, which require fast and reliable olfactory processing. Parallel processing is a common principle of sensory systems supporting this task, for example in visual and auditory systems, but its role in olfaction remained unclear. Studies in the honeybee focused on a dual olfactory pathway. Two sets of projection neurons connect glomeruli in two antennal-lobe hemilobes via lateral and medial tracts in opposite sequence with the mushroom bodies and lateral horn. Comparative studies suggest that this dual-tract circuit represents a unique adaptation in Hymenoptera. Imaging studies indicate that glomeruli in both hemilobes receive redundant sensory input. Recent simultaneous multi-unit recordings from projection neurons of both tracts revealed widely overlapping response profiles strongly indicating parallel olfactory processing. Whereas lateral-tract neurons respond fast with broad (generalistic) profiles, medial-tract neurons are odorant specific and respond slower. In analogy to “what-” and “where” subsystems in visual pathways, this suggests two parallel olfactory subsystems providing “what-” (quality) and “when” (temporal) information. Temporal response properties may support across-tract coincidence coding in higher centers. Parallel olfactory processing likely enhances perception of complex odorant mixtures to decode the diverse and dynamic olfactory world of a social insect.
Collapse
Affiliation(s)
- Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany,
| | | |
Collapse
|
25
|
Abstract
In their natural environment, animals face complex and highly dynamic olfactory input. Thus vertebrates as well as invertebrates require fast and reliable processing of olfactory information. Parallel processing has been shown to improve processing speed and power in other sensory systems and is characterized by extraction of different stimulus parameters along parallel sensory information streams. Honeybees possess an elaborate olfactory system with unique neuronal architecture: a dual olfactory pathway comprising a medial projection-neuron (PN) antennal lobe (AL) protocerebral output tract (m-APT) and a lateral PN AL output tract (l-APT) connecting the olfactory lobes with higher-order brain centers. We asked whether this neuronal architecture serves parallel processing and employed a novel technique for simultaneous multiunit recordings from both tracts. The results revealed response profiles from a high number of PNs of both tracts to floral, pheromonal, and biologically relevant odor mixtures tested over multiple trials. PNs from both tracts responded to all tested odors, but with different characteristics indicating parallel processing of similar odors. Both PN tracts were activated by widely overlapping response profiles, which is a requirement for parallel processing. The l-APT PNs had broad response profiles suggesting generalized coding properties, whereas the responses of m-APT PNs were comparatively weaker and less frequent, indicating higher odor specificity. Comparison of response latencies within and across tracts revealed odor-dependent latencies. We suggest that parallel processing via the honeybee dual olfactory pathway provides enhanced odor processing capabilities serving sophisticated odor perception and olfactory demands associated with a complex olfactory world of this social insect.
Collapse
|
26
|
Walz H, Hupé GJ, Benda J, Lewis JE. The neuroethology of electrocommunication: how signal background influences sensory encoding and behaviour in Apteronotus leptorhynchus. ACTA ACUST UNITED AC 2012; 107:13-25. [PMID: 22981958 DOI: 10.1016/j.jphysparis.2012.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 07/05/2012] [Accepted: 07/19/2012] [Indexed: 10/27/2022]
Abstract
Weakly-electric fish are a well-established model system for neuroethological studies on communication and aggression. Sensory encoding of their electric communication signals, as well as behavioural responses to these signals, have been investigated in great detail under laboratory conditions. In the wave-type brown ghost knifefish, Apteronotus leptorhynchus, transient increases in the frequency of the generated electric field, called chirps, are particularly well-studied, since they can be readily evoked by stimulating a fish with artificial signals mimicking conspecifics. When two fish interact, both their quasi-sinusoidal electric fields (called electric organ discharge, EOD) superimpose, resulting in a beat, an amplitude modulation at the frequency difference between the two EODs. Although chirps themselves are highly stereotyped signals, the shape of the amplitude modulation resulting from a chirp superimposed on a beat background depends on a number of parameters, such as the beat frequency, modulation depth, and beat phase at which the chirp is emitted. Here we review the influence of these beat parameters on chirp encoding in the three primary stages of the electrosensory pathway: electroreceptor afferents, the hindbrain electrosensory lateral line lobe, and midbrain torus semicircularis. We then examine the role of these parameters, which represent specific features of various social contexts, on the behavioural responses of A. leptorhynchus. Some aspects of the behaviour may be explained by the coding properties of early sensory neurons to chirp stimuli. However, the complexity and diversity of behavioural responses to chirps in the context of different background parameters cannot be explained solely on the basis of the sensory responses and thus suggest that critical roles are played by higher processing stages.
Collapse
Affiliation(s)
- Henriette Walz
- Bernstein Center for Computational Neuroscience Munich, 82152 Martinsried, Germany
| | - Ginette J Hupé
- Department of Biology and Centre for Neural Dynamics, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| | - Jan Benda
- Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany.
| | - John E Lewis
- Department of Biology and Centre for Neural Dynamics, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| |
Collapse
|
27
|
Akerberg OA, Chacron MJ. In vivo conditions influence the coding of stimulus features by bursts of action potentials. J Comput Neurosci 2011; 31:369-83. [PMID: 21271354 PMCID: PMC4529322 DOI: 10.1007/s10827-011-0313-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Revised: 12/11/2010] [Accepted: 01/13/2011] [Indexed: 10/18/2022]
Abstract
The functional role of burst firing (i.e. the firing of packets of action potentials followed by quiescence) in sensory processing is still under debate. Should bursts be considered as unitary events that signal the presence of a particular feature in the sensory environment or is information about stimulus attributes contained within their temporal structure? We compared the coding of stimulus attributes by bursts in vivo and in vitro of electrosensory pyramidal neurons in weakly electric fish by computing correlations between burst and stimulus attributes. Our results show that, while these correlations were strong in magnitude and significant in vitro, they were actually much weaker in magnitude if at all significant in vivo. We used a mathematical model of pyramidal neuron activity in vivo and showed that such a model could reproduce the correlations seen in vitro, thereby suggesting that differences in burst coding were not due to differences in bursting seen in vivo and in vitro. We next tested whether variability in the baseline (i.e. without stimulation) activity of ELL pyramidal neurons could account for these differences. To do so, we injected noise into our model whose intensity was calibrated to mimic baseline activity variability as quantified by the coefficient of variation. We found that this noise caused significant decreases in the magnitude of correlations between burst and stimulus attributes and could account for differences between in vitro and in vivo conditions. We then tested this prediction experimentally by directly injecting noise in vitro through the recording electrode. Our results show that this caused a lowering in magnitude of the correlations between burst and stimulus attributes in vitro and gave rise to values that were quantitatively similar to those seen under in vivo conditions. While it is expected that noise in the form of baseline activity variability will lower correlations between burst and stimulus attributes, our results show that such variability can account for differences seen in vivo. Thus, the high variability seen under in vivo conditions has profound consequences on the coding of information by bursts in ELL pyramidal neurons. In particular, our results support the viewpoint that bursts serve as a detector of particular stimulus features but do not carry detailed information about such features in their structure.
Collapse
|
28
|
Dunlap KD, Silva AC, Chung M. Environmental complexity, seasonality and brain cell proliferation in a weakly electric fish, Brachyhypopomus gauderio. ACTA ACUST UNITED AC 2011; 214:794-805. [PMID: 21307066 DOI: 10.1242/jeb.051037] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Environmental complexity and season both influence brain cell proliferation in adult vertebrates, but their relative importance and interaction have not been directly assessed. We examined brain cell proliferation during both the breeding and non-breeding seasons in adult male electric fish, Brachyhypopomus gauderio, exposed to three environments that differed in complexity: (1) a complex natural habitat in northern Uruguay, (2) an enriched captive environment where fish were housed socially and (3) a simple laboratory setting where fish were isolated. We injected fish with BrdU 2.5 h before sacrifice to label newborn cells. We examined the hindbrain and midbrain and quantified the density of BrdU+ cells in whole transverse sections, proliferative zones and two brain nuclei in the electrocommunication circuitry (the pacemaker nucleus and the electrosensory lateral line lobe). Season had the largest effect on cell proliferation, with fish during the breeding season having three to seven times more BrdU+ cells than those during the non-breeding season. Although the effect was smaller, fish from a natural environment had greater rates of cell proliferation than fish in social or isolated captive environments. For most brain regions, fish in social and isolated captive environments had equivalent levels of cell proliferation. However, for brain regions in the electrocommunication circuitry, group-housed fish had more cell proliferation than isolated fish, but only during the breeding season (season × environment interaction). The regionally and seasonally specific effect of social environment on cell proliferation suggests that addition of new cells to these nuclei may contribute to seasonal changes in electrocommunication behavior.
Collapse
Affiliation(s)
- Kent D Dunlap
- Department of Biology, Trinity College, Hartford, CT 06106, USA.
| | | | | |
Collapse
|
29
|
Deemyad T, Maler L, Chacron MJ. Inhibition of SK and M channel-mediated currents by 5-HT enables parallel processing by bursts and isolated spikes. J Neurophysiol 2011; 105:1276-94. [PMID: 21209357 PMCID: PMC4850069 DOI: 10.1152/jn.00792.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although serotonergic innervation of sensory brain areas is ubiquitous, its effects on sensory information processing remain poorly understood. We investigated these effects in pyramidal neurons within the electrosensory lateral line lobe (ELL) of weakly electric fish. Surprisingly, we found that 5-HT is present at different levels across the different ELL maps; the presence of 5-HT fibers was highest in the map that processes intraspecies communication signals. Electrophysiological recordings revealed that 5-HT increased excitability and burst firing through a decreased medium afterhyperpolarization resulting from reduced small-conductance calcium-activated (SK) currents as well as currents mediated by an M-type potassium channel. We next investigated how 5-HT alters responses to sensory input. 5-HT application decreased the rheobase current, increased the gain, and decreased first spike latency. Moreover, it reduced discriminability between different stimuli, as quantified by the mutual information rate. We hypothesized that 5-HT shifts pyramidal neurons into a burst-firing mode where bursts, when considered as events, can detect the presence of particular stimulus features. We verified this hypothesis using signal detection theory. Our results indeed show that serotonin-induced bursts of action potentials, when considered as events, could detect specific stimulus features that were distinct from those detected by isolated spikes. Moreover, we show the novel result that isolated spikes transmit more information after 5-HT application. Our results suggest a novel function for 5-HT in that it enables differential processing by action potential patterns in response to current injection.
Collapse
Affiliation(s)
- Tara Deemyad
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
30
|
Marsat G, Maler L. Neural heterogeneity and efficient population codes for communication signals. J Neurophysiol 2010; 104:2543-55. [PMID: 20631220 DOI: 10.1152/jn.00256.2010] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Efficient sensory coding implies that populations of neurons should represent information-rich aspects of a signal with little redundancy. Recent studies have shown that neural heterogeneity in higher brain areas enhances the efficiency of encoding by reducing redundancy across the population. Here, we study how neural heterogeneity in the early stages of sensory processing influences the efficiency of population codes. Through the analysis of in vivo recordings, we contrast the encoding of two types of communication signals of electric fishes in the most peripheral sensory area of the CNS, the electrosensory lateral line lobe (ELL). We show that communication signals used during courtship (big chirps) and during aggressive encounters (small chirps) are encoded by different populations of ELL pyramidal cells, namely I-cells and E-cells, respectively. Most importantly, we show that the encoding strategy differs for the two signals and we argue that these differences allow these cell types to encode specifically information-rich features of the signals. Small chirps are detected, and their timing is accurately signaled through stereotyped spike bursts, whereas the shape of big chirps is accurately represented by variable increases in firing rate. Furthermore, we show that the heterogeneity across I-cells enhances the efficiency of the population code and thus permits the accurate discrimination of different quality courtship signals. Our study shows the importance of neural heterogeneity early in a sensory system and that it initiates the sparsification of sensory representation thereby contributing to the efficiency of the neural code.
Collapse
Affiliation(s)
- Gary Marsat
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | | |
Collapse
|
31
|
ÁVILA-ÅKERBERG O, KRAHE R, CHACRON MJ. Neural heterogeneities and stimulus properties affect burst coding in vivo. Neuroscience 2010; 168:300-13. [PMID: 20298764 PMCID: PMC4529318 DOI: 10.1016/j.neuroscience.2010.03.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 03/03/2010] [Accepted: 03/07/2010] [Indexed: 11/20/2022]
Abstract
Many neurons tend to fire clusters of action potentials called bursts followed by quiescence in response to sensory input. While the mechanisms that underlie burst firing are generally well understood in vitro, the functional role of these bursts in generating behavioral responses to sensory input in vivo are less clear. Pyramidal cells within the electrosensory lateral line lobe (ELL) of weakly electric fish offer an attractive model system for studying the coding properties of burst firing, because the anatomy and physiology of the electrosensory circuitry are well understood, and the burst mechanism of ELL pyramidal cells has been thoroughly characterized in vitro. We investigated the coding properties of bursts generated by these cells in vivo in response to mimics of behaviorally relevant sensory input. We found that heterogeneities within the pyramidal cell population had quantitative but not qualitative effects on burst coding for the low frequency components of broadband time varying input. Moreover, spatially localized stimuli mimicking, for example, prey tended to elicit more bursts than spatially global stimuli mimicking conspecific-related stimuli. We also found small but significant correlations between burst attributes such as the number of spikes per burst or the interspike interval during the burst and stimulus attributes such as stimulus amplitude or slope. These correlations were much weaker in magnitude than those observed in vitro. More surprisingly, our results show that correlations between burst and stimulus attributes actually decreased in magnitude when we used low frequency stimuli that are expected to promote burst firing. We propose that this discrepancy is attributable to differences between ELL pyramidal cell burst firing under in vivo and in vitro conditions.
Collapse
Affiliation(s)
| | - R. KRAHE
- Department of Biology, McGill University, Montreal, QC, Canada
| | - M. J. CHACRON
- Department of Physics, McGill University, Montreal, QC, Canada
- Department of Physiology, McGill University, Montreal, QC, Canada
| |
Collapse
|
32
|
Maler L. Receptive field organization across multiple electrosensory maps. II. Computational analysis of the effects of receptive field size on prey localization. J Comp Neurol 2009; 516:394-422. [DOI: 10.1002/cne.22120] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Marsat G, Proville RD, Maler L. Transient signals trigger synchronous bursts in an identified population of neurons. J Neurophysiol 2009; 102:714-23. [PMID: 19474165 DOI: 10.1152/jn.91366.2008] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is an important task in neuroscience to find general principles that relate neural codes to the structure of the signals they encode. The structure of sensory signals can be described in many ways, but one important categorization distinguishes continuous from transient signals. We used the communication signals of the weakly electric fish to reveal how transient signals (chirps) can be easily distinguished from the continuous signal they disrupt. These communication signals-low-frequency sinusoids interrupted by high-frequency transients-were presented to pyramidal cells of the electrosensory lateral line lobe (ELL) during in vivo recordings. We show that a specific population of electrosensory neurons encodes the occurrence of the transient signal by synchronously producing a burst of spikes, whereas bursting was neither common nor synchronous in response to the continuous signal. We also confirmed that burst can be triggered by low-frequency modulations typical of prey signals. However, these bursts are more common in a different segment of the ELL and during spatially localized stimulation. These localized stimuli will elicit synchronized bursting only in a restricted number of cells the receptive fields of which overlap the spatial extent of the stimulus. Therefore the number of cells simultaneously producing a burst and the ELL segment responding most strongly may carry the information required to disambiguate chirps from prey signals. Finally we show that the burst response to chirps is due to a biophysical mechanism previously characterized by in vitro studies of electrosensory neurons. We conclude that bursting and synchrony across cells are important mechanisms used by sensory neurons to carry the information about behaviorally relevant but transient signals.
Collapse
Affiliation(s)
- Gary Marsat
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | |
Collapse
|
34
|
Middleton JW, Longtin A, Benda J, Maler L. Postsynaptic receptive field size and spike threshold determine encoding of high-frequency information via sensitivity to synchronous presynaptic activity. J Neurophysiol 2008; 101:1160-70. [PMID: 19091925 DOI: 10.1152/jn.90814.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Parallel sensory streams carrying distinct information about various stimulus properties have been observed in several sensory systems, including the visual system. What remains unclear is why some of these streams differ in the size of their receptive fields (RFs). In the electrosensory system, neurons with large RFs have short-latency responses and are tuned to high-frequency inputs. Conversely, neurons with small RFs are low-frequency tuned and exhibit longer-latency responses. What principle underlies this organization? We show experimentally that synchronous electroreceptor afferent (P-unit) spike trains selectively encode high-frequency stimulus information from broadband signals. This finding relies on a comparison of stimulus-spike output coherence using output trains obtained by either summing pairs of recorded afferent spike trains or selecting synchronous spike trains based on coincidence within a small time window. We propose a physiologically realistic decoding mechanism, based on postsynaptic RF size and postsynaptic output rate normalization that tunes target pyramidal cells in different electrosensory maps to low- or high-frequency signal components. By driving realistic neuron models with experimentally obtained P-unit spike trains, we show that a small RF is matched with a postsynaptic integration regime leading to responses over a broad range of frequencies, and a large RF with a fluctuation-driven regime that requires synchronous presynaptic input and therefore selectively encodes higher frequencies, confirming recent experimental data. Thus our work reveals that the frequency content of a broadband stimulus extracted by pyramidal cells, from P-unit afferents, depends on the amount of feedforward convergence they receive.
Collapse
Affiliation(s)
- Jason W Middleton
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | | | |
Collapse
|
35
|
Mehaffey WH, Fernandez FR, Doiron B, Turner RW. Regulation of somatic firing dynamics by backpropagating dendritic spikes. ACTA ACUST UNITED AC 2008; 102:181-94. [PMID: 18984047 DOI: 10.1016/j.jphysparis.2008.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Pyramidal cells of the apteronotid ELL have been shown to display a characteristic mechanism of burst discharge, which has been shown to play an important role in sensory coding. This form of bursting depends on a reciprocal dendro-somatic interaction, in which discharge of a somatic spike causes a dendritic spike, which in turn contributes a dendro-somatic current flow to create a depolarizing afterpotential (DAP) in the soma. We review here our recent work showing how the timing of this DAP influences the somatic firing dynamics, and how the degree of inactivation of dendritic Na(+) currents can cause an increased delay between somatic and dendritic spikes. This ultimately allows the DAP to become more effective at increasing the excitability of the somatic spike generating mechanism. Further, this delay between dendritic and somatic spiking can be regulated by strongly hyperpolarizing GABA(B) mediated dendritic inhibition, allowing the burst dynamics to fall under synaptic regulation. In contrast, a weaker, shunting inhibition due to GABA(A) mediated dendritic inhibition can regulate the dendritic spike waveform to decrease the dendro-somatic current flow and the resulting DAP. We therefore show that the qualitative behaviour of an individual cell can depend on the degree of synaptic input, and the exact timing of events across the spatial extent of the neuron. Thus, our results serve to illustrate the complex dynamics that can be observed in cells with significant dendritic arborisation, a nearly ubiquitous adaptation amongst principal neurons.
Collapse
Affiliation(s)
- W Hamish Mehaffey
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
36
|
Receptive field properties of neurons in the electrosensory lateral line lobe of the weakly electric fish, Gnathonemus petersii. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2008; 194:1063-75. [PMID: 18855000 DOI: 10.1007/s00359-008-0377-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 09/09/2008] [Accepted: 09/23/2008] [Indexed: 10/21/2022]
Abstract
The receptive field of a sensory neuron is known as that region in sensory space where a stimulus will alter the response of the neuron. We determined the spatial dimensions and the shape of receptive fields of electrosensitive neurons in the medial zone of the electrosensory lateral line lobe of the African weakly electric fish, Gnathonemus petersii, by using single cell recordings. The medial zone receives input from sensory cells which encode the stimulus amplitude. We analysed the receptive fields of 71 neurons. The size and shape of the receptive fields were determined as a function of spike rate and first spike latency and showed differences for the two analysis methods used. Spatial diameters ranged from 2 to 36 mm (spike rate) and from 2.45 to 14.12 mm (first spike latency). Some of the receptive fields were simple consisting only of one uniform centre, whereas most receptive fields showed a complex and antagonistic centre-surround organisation. Several units had a very complex structure with multiple centres and surrounding-areas. While receptive field size did not correlate with peripheral receptor location, the complexity of the receptive fields increased from rostral to caudal along the fish's body.
Collapse
|
37
|
Krahe R, Bastian J, Chacron MJ. Temporal processing across multiple topographic maps in the electrosensory system. J Neurophysiol 2008; 100:852-67. [PMID: 18509073 PMCID: PMC2525725 DOI: 10.1152/jn.90300.2008] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2008] [Accepted: 05/21/2008] [Indexed: 11/22/2022] Open
Abstract
Multiple topographic representations of sensory space are common in the nervous system and presumably allow organisms to separately process particular features of incoming sensory stimuli that vary widely in their attributes. We compared the response properties of sensory neurons within three maps of the body surface that are arranged strictly in parallel to two classes of stimuli that mimic prey and conspecifics, respectively. We used information-theoretic approaches and measures of phase locking to quantify neuronal responses. Our results show that frequency tuning in one of the three maps does not depend on stimulus class. This map acts as a low-pass filter under both conditions. A previously described stimulus-class-dependent switch in frequency tuning is shown to occur in the other two maps. Only a fraction of the information encoded by all neurons could be recovered through a linear decoder. Particularly striking were low-pass neurons the information of which in the high-frequency range could not be decoded linearly. We then explored whether intrinsic cellular mechanisms could partially account for the differences in frequency tuning across maps. Injection of a Ca2+ chelator had no effect in the map with low-pass characteristics. However, injection of the same Ca2+ chelator in the other two maps switched the tuning of neurons from band-pass/high-pass to low-pass. These results show that Ca2+-dependent processes play an important part in determining the functional roles of different sensory maps and thus shed light on the evolution of this important feature of the vertebrate brain.
Collapse
Affiliation(s)
- Rüdiger Krahe
- Department of Biology, McGill University, 1205 Ave. Docteur Penfield, Montreal, QC H3A 1B1, Canada.
| | | | | |
Collapse
|
38
|
Mehaffey WH, Ellis LD, Krahe R, Dunn RJ, Chacron MJ. Ionic and neuromodulatory regulation of burst discharge controls frequency tuning. JOURNAL OF PHYSIOLOGY, PARIS 2008; 102:195-208. [PMID: 18992813 PMCID: PMC4529324 DOI: 10.1016/j.jphysparis.2008.10.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Sensory neurons encode natural stimuli by changes in firing rate or by generating specific firing patterns, such as bursts. Many neural computations rely on the fact that neurons can be tuned to specific stimulus frequencies. It is thus important to understand the mechanisms underlying frequency tuning. In the electrosensory system of the weakly electric fish, Apteronotus leptorhynchus, the primary processing of behaviourally relevant sensory signals occurs in pyramidal neurons of the electrosensory lateral line lobe (ELL). These cells encode low frequency prey stimuli with bursts of spikes and high frequency communication signals with single spikes. We describe here how bursting in pyramidal neurons can be regulated by intrinsic conductances in a cell subtype specific fashion across the sensory maps found within the ELL, thereby regulating their frequency tuning. Further, the neuromodulatory regulation of such conductances within individual cells and the consequences to frequency tuning are highlighted. Such alterations in the tuning of the pyramidal neurons may allow weakly electric fish to preferentially select for certain stimuli under various behaviourally relevant circumstances.
Collapse
Affiliation(s)
- W. Hamish Mehaffey
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Lee D. Ellis
- Center for Research in Neuroscience, McGill University, Montreal, QC, Canada H3G 1A4
| | - Rüdiger Krahe
- Department of Biology, McGill University, Montreal, QC, Canada H3A 1B1
| | - Robert J. Dunn
- Center for Research in Neuroscience, McGill University, Montreal, QC, Canada H3G 1A4
| | - Maurice J. Chacron
- Department of Physiology and Physics, Center for Non-linear Dynamics, McGill University, McIntyre Medical Sciences Building, 3655 Promenade Sir William Osler, Montréal, Québec, Canada H3G 1Y6
| |
Collapse
|
39
|
Mehaffey WH, Maler L, Turner RW. Intrinsic frequency tuning in ELL pyramidal cells varies across electrosensory maps. J Neurophysiol 2008; 99:2641-55. [PMID: 18367702 DOI: 10.1152/jn.00028.2008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The tuning of neuronal responsiveness to specific stimulus frequencies is an important computation across many sensory modalities. The weakly electric fish Apteronotus leptorhynchus detects amplitude modulations of a self-generated quasi-sinusoidal electric organ discharge to sense its environment. These fish have to parse a complicated electrosensory environment with a wide range of possible frequency content. One solution has been to create multiple representations of the sensory input across distinct maps in the electrosensory lateral line lobe (ELL) that participate in distinct behavioral functions. E- and I-type pyramidal cells in the ELL that process sensory input further exhibit a preferred range of stimulus frequencies in relation to the different behaviors and sensory maps. We tested the hypothesis that variations in the intrinsic spiking mechanism of E- and I-type pyramidal cells contribute to map-specific frequency tuning. We find that E-cells exhibit a systematic change in their intrinsic spike characteristics and frequency tuning across sensory maps, whereas I-cells are constant in both spike characteristics and frequency tuning. As frequency tuning becomes more high-pass in E-cells, the refractory variables of spike half-width and afterhyperpolarization magnitude increase, spike threshold increases, adaptation becomes faster, and the gain of the spiking response decreases. These findings indicate that frequency tuning across sensory maps in the ELL is supported by differences in the intrinsic spike characteristics of pyramidal cells, revealing a link between cellular biophysical properties and signal processing in sensory maps with defined behavioral roles.
Collapse
Affiliation(s)
- W Hamish Mehaffey
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada
| | | | | |
Collapse
|
40
|
Abstract
Maps of sensory receptor epithelia and computed features of the sensory environment are common elements of auditory, visual, and somatic sensory representations from the periphery to the cerebral cortex. Maps enhance the understanding of normal neural organization and its modification by pathology and experience. They underlie the derivation of the computational principles that govern sensory processing and the generation of perception. Despite their intuitive explanatory power, the functions of and rules for organizing maps and their plasticity are not well understood. Some puzzles of auditory cortical map organization are that few complete receptor maps are available and that even fewer computational maps are known beyond primary cortical areas. Neuroanatomical evidence suggests equally organized connectional patterns throughout the cortical hierarchy that might underlie map stability. Here, we consider the implications of auditory cortical map organization and its plasticity and evaluate the complementary role of maps in representation and computation from an auditory perspective.
Collapse
Affiliation(s)
- Christoph E Schreiner
- Coleman Memorial Laboratory, W.M. Keck Center for Integrative Neuroscience, and Department of Otolaryngology-Head and Neck Surgery, University of California-San Francisco, San Francisco, CA 94143-0732, USA.
| | | |
Collapse
|
41
|
Ellis LD, Mehaffey WH, Harvey-Girard E, Turner RW, Maler L, Dunn RJ. SK channels provide a novel mechanism for the control of frequency tuning in electrosensory neurons. J Neurosci 2007; 27:9491-502. [PMID: 17728462 PMCID: PMC6673139 DOI: 10.1523/jneurosci.1106-07.2007] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
One important characteristic of sensory input is frequency, with sensory neurons often tuned to narrow stimulus frequency ranges. Although vital for many neural computations, the cellular basis of such frequency tuning remains mostly unknown. In the electrosensory system of Apteronotus leptorhynchus, the primary processing of important environmental and communication signals occurs in pyramidal neurons of the electrosensory lateral line lobe. Spike trains transmitted by these cells can encode low-frequency prey stimuli with bursts of spikes and high-frequency communication signals with single spikes. Here, we demonstrate that the selective expression of SK2 channels in a subset of pyramidal neurons reduces their response to low-frequency stimuli by opposing their burst responses. Apamin block of the SK2 current in this subset of cells induced bursting and increased their response to low-frequency inputs. SK channel expression thus provides an intrinsic mechanism that predisposes a neuron to respond to higher frequencies and thus specific, behaviorally relevant stimuli.
Collapse
Affiliation(s)
- Lee D. Ellis
- Center for Research in Neuroscience and Departments of Biology and Neurology, McGill University, Montreal, Quebec, Canada H3G 1A4
| | - W. Hamish Mehaffey
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 4N1, and
| | - Erik Harvey-Girard
- Department of Cell and Molecular Medicine and Center for Neural Dynamics, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Ray W. Turner
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 4N1, and
| | - Leonard Maler
- Department of Cell and Molecular Medicine and Center for Neural Dynamics, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Robert J. Dunn
- Center for Research in Neuroscience and Departments of Biology and Neurology, McGill University, Montreal, Quebec, Canada H3G 1A4
| |
Collapse
|
42
|
Babineau D, Lewis JE, Longtin A. Spatial acuity and prey detection in weakly electric fish. PLoS Comput Biol 2007; 3:e38. [PMID: 17335346 PMCID: PMC1808493 DOI: 10.1371/journal.pcbi.0030038] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Accepted: 01/04/2007] [Indexed: 11/18/2022] Open
Abstract
It is well-known that weakly electric fish can exhibit extreme temporal acuity at the behavioral level, discriminating time intervals in the submicrosecond range. However, relatively little is known about the spatial acuity of the electrosense. Here we use a recently developed model of the electric field generated by Apteronotus leptorhynchus to study spatial acuity and small signal extraction. We show that the quality of sensory information available on the lateral body surface is highest for objects close to the fish's midbody, suggesting that spatial acuity should be highest at this location. Overall, however, this information is relatively blurry and the electrosense exhibits relatively poor acuity. Despite this apparent limitation, weakly electric fish are able to extract the minute signals generated by small prey, even in the presence of large background signals. In fact, we show that the fish's poor spatial acuity may actually enhance prey detection under some conditions. This occurs because the electric image produced by a spatially dense background is relatively "blurred" or spatially uniform. Hence, the small spatially localized prey signal "pops out" when fish motion is simulated. This shows explicitly how the back-and-forth swimming, characteristic of these fish, can be used to generate motion cues that, as in other animals, assist in the extraction of sensory information when signal-to-noise ratios are low. Our study also reveals the importance of the structure of complex electrosensory backgrounds. Whereas large-object spacing is favorable for discriminating the individual elements of a scene, small spacing can increase the fish's ability to resolve a single target object against this background.
Collapse
Affiliation(s)
- David Babineau
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
| | - John E Lewis
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- Center for Neural Dynamics, University of Ottawa, Ottawa, Ontario, Canada
| | - André Longtin
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
- Center for Neural Dynamics, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
43
|
Abstract
The electrosensory system is used for both spatial navigation tasks and communication. An electric organ generates a sinusoidal electric field and cutaneous electroreceptors respond to this field. Objects such as prey or rocks cause a local low-frequency modulation of the electric field; this cue is used by electric fish for navigation and prey capture. The interference of the electric fields of conspecifics produces beats, often with high frequencies, that are also sensed by the electroreceptors; furthermore, these electric fish can transiently modulate their electric discharge as a communication signal. Thus these fish must therefore detect a variety of low-intensity signals that differ greatly in their spatial extent, frequency, and duration. Behavioral studies suggest that they are highly adapted to these tasks. Experimental and theoretical analyses of the neural circuitry for the electrosense has demonstrated many commonalities with the more common senses, e.g., topographic mapping and receptive fields with On or Off centers and surround inhibition. The integration of computational and experimental analyses has demonstrated novel mechanisms that appear to optimize weak signal detection in the electrosense including: noise shaping by correlations within single spike trains, induction of oscillations by delayed feedback inhibition, the requirement for maps with differing receptive field sizes tuned for different stimulus parameters, and the role of non-plastic feedback for adaptive cancellation of redundant signals. It is likely that these mechanisms will also be operative in other sensory systems.
Collapse
Affiliation(s)
- Leonard Maler
- Department of Cell and Molecular Medicine and Center for Neural Dynamics, University of Ottawa, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
44
|
Deng Q, Rashid AJ, Fernandez FR, Turner RW, Maler L, Dunn RJ. A C-terminal domain directs Kv3.3 channels to dendrites. J Neurosci 2006; 25:11531-41. [PMID: 16354911 PMCID: PMC6726014 DOI: 10.1523/jneurosci.3672-05.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Pyramidal neurons of the electrosensory lateral line lobe (ELL) of Apteronotus leptorhynchus express Kv3-type voltage-gated potassium channels that give rise to high-threshold currents at the somatic and dendritic levels. Two members of the Kv3 channel family, AptKv3.1 and AptKv3.3, are coexpressed in these neurons. AptKv3.3 channels are expressed at uniformly high levels in each of four ELL segments, whereas AptKv3.1 channels appear to be expressed in a graded manner with higher levels of expression in segments that process high-frequency electrosensory signals. Immunohistochemical and recombinant channel expression studies show a differential distribution of these two channels in the dendrites of ELL pyramidal neurons. AptKv3.1 is concentrated in somas and proximal dendrites, whereas AptKv3.3 is distributed throughout the full extent of the large dendritic tree. Recombinant channel expression of AptKv3 channels through in vivo viral injections allowed directed retargeting of AptKv3 subtypes over the somadendritic axis, revealing that the sequence responsible for targeting channels to distal dendrites lies within the C-terminal domain of the AptKv3.3 protein. The targeting domain includes a consensus sequence predicted to bind to a PDZ (postsynaptic density-95/Discs large/zona occludens-1)-type protein-protein interaction motif. These findings reveal that different functional roles for Kv3 potassium channels at the somatic and dendritic level of a sensory neuron are attained through specific targeting that selectively distributes Kv3.3 channels to the dendritic compartment.
Collapse
Affiliation(s)
- Qingwei Deng
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University Health Research Institute, Montreal, Quebec, H3G 1A4, Canada
| | | | | | | | | | | |
Collapse
|
45
|
Fortune ES, Rose GJ, Kawasaki M. Encoding and processing biologically relevant temporal information in electrosensory systems. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2006; 192:625-35. [PMID: 16450118 DOI: 10.1007/s00359-006-0102-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2005] [Revised: 10/28/2005] [Accepted: 12/26/2005] [Indexed: 10/25/2022]
Abstract
Wave-type weakly electric fish are specialists in time-domain processing: behaviors in these animals are often tightly correlated with the temporal structure of electrosensory signals. Behavioral responses in these fish can be dependent on differences in the temporal structure of electrosensory signals alone. This feature has facilitated the study of temporal codes and processing in central nervous system circuits of these animals. The temporal encoding and mechanisms used to transform temporal codes in the brain have been identified and characterized in several species, including South American gymnotid species and in the African mormyrid genus Gymnarchus. These distantly related groups use similar strategies for neural computations of information on the order of microseconds, milliseconds, and seconds. Here, we describe a suite of mechanisms for behaviorally relevant computations of temporal information that have been elucidated in these systems. These results show the critical role that behavioral experiments continue to have in the study of the neural control of behavior and its evolution.
Collapse
Affiliation(s)
- E S Fortune
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
| | | | | |
Collapse
|
46
|
Gahtan E, Tanger P, Baier H. Visual prey capture in larval zebrafish is controlled by identified reticulospinal neurons downstream of the tectum. J Neurosci 2005; 25:9294-303. [PMID: 16207889 PMCID: PMC6725764 DOI: 10.1523/jneurosci.2678-05.2005] [Citation(s) in RCA: 254] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many vertebrates are efficient hunters and recognize their prey by innate neural mechanisms. During prey capture, the internal representation of the prey's location must be constantly updated and made available to premotor neurons that convey the information to spinal motor circuits. We studied the neural substrate of this specialized visuomotor system using high-speed video recordings of larval zebrafish and laser ablations of candidate brain structures. Seven-day-old zebrafish oriented toward, chased, and consumed paramecia with high accuracy. Lesions of the retinotectal neuropil primarily abolished orienting movements toward the prey. Wild-type fish tested in darkness, as well as blind mutants, were impaired similarly to tectum-ablated animals, suggesting that prey capture is mainly visually mediated. To trace the pathway further, we examined the role of two pairs of identified reticulospinal neurons, MeLc and MeLr, located in the nucleus of the medial longitudinal fasciculus of the tegmentum. These two neurons extend dendrites into the ipsilateral tectum and project axons into the spinal cord. Ablating MeLc and MeLr bilaterally impaired prey capture but spared several other behaviors. Ablating different sets of reticulospinal neurons did not impair prey capture, suggesting a selective function of MeLr and MeLc in this behavior. Ablating MeLc and MeLr neurons unilaterally in conjunction with the contralateral tectum also mostly abolished prey capture, but ablating them together with the ipsilateral tectum had a much smaller effect. These results suggest that MeLc and MeLr function in series with the tectum, as part of a circuit that coordinates prey capture movements.
Collapse
Affiliation(s)
- Ethan Gahtan
- Department of Psychology, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | | | | |
Collapse
|
47
|
Ramcharitar JU, Tan EW, Fortune ES. Effects of global electrosensory signals on motion processing in the midbrain of Eigenmannia. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2005; 191:865-72. [PMID: 16001182 DOI: 10.1007/s00359-005-0008-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 04/12/2005] [Accepted: 04/13/2005] [Indexed: 11/26/2022]
Abstract
Wave-type weakly electric fish such as Eigenmannia produce continuous sinusoidal electric fields. When conspecifics are in close proximity, interaction of these electric fields can produce deficits in electrosensory function. We examined a neural correlate of such jamming at the level of the midbrain. Previous results indicate that neurons in the dorsal layers of the torus semicircularis can (1) respond to jamming signals, (2) respond to moving electrosensory stimuli, and (3) receive convergent information from the four sensory maps of the electrosensory lateral line lobe (ELL). In this study we recorded the intracellular responses of both tuberous and ampullary neurons to moving objects. Robust Gaussian-shaped or sinusoidal responses with half-height durations between 55 ms and 581 ms were seen in both modalities. The addition of ongoing global signals with temporal-frequencies of 5 Hz attenuated the responses to the moving object by 5 dB or more. In contrast, the responses to the moving object were not attenuated by the addition of signals with temporal frequencies of 20 Hz or greater. This occurred in both the ampullary and tuberous systems, despite the fact that the ampullary afferents to the torus originate in a single ELL map whereas the tuberous afferents emerge from three maps.
Collapse
Affiliation(s)
- John U Ramcharitar
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
48
|
Chacron MJ, Maler L, Bastian J. Electroreceptor neuron dynamics shape information transmission. Nat Neurosci 2005; 8:673-8. [PMID: 15806098 PMCID: PMC5283878 DOI: 10.1038/nn1433] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Accepted: 03/18/2005] [Indexed: 11/08/2022]
Abstract
The gymnotiform weakly electric fish Apteronotus leptorhynchus can capture prey using electrosensory cues that are dominated by low temporal frequencies. However, conventional tuning curves predict poor electroreceptor afferent responses to low-frequency stimuli. We compared conventional tuning curves with information tuning curves and found that the latter predicted substantially improved responses to these behaviorally relevant stimuli. Analysis of receptor afferent baseline activity showed that negative correlations reduced low-frequency noise levels, thereby increasing information transmission. Multiunit recordings from receptor afferents showed that this increased information transmission could persist at the population level. Finally, we verified that this increased low-frequency information is preserved in the spike trains of central neurons that receive receptor afferent input. Our results demonstrate that conventional tuning curves can be misleading when certain noise reduction strategies are used by the nervous system.
Collapse
Affiliation(s)
- Maurice J Chacron
- Department of Zoology, University of Oklahoma, 730 Van Vleet Oval, Norman, Oklahoma 73019, USA.
| | | | | |
Collapse
|
49
|
McNamara AM, Denizot JP, Hopkins CD. Comparative Anatomy of the Electrosensory Lateral Line Lobe of Mormyrids: The Mystery of the Missing Map in the Genus Stomatorhinus (Family: Mormyridae). BRAIN, BEHAVIOR AND EVOLUTION 2005; 65:188-201. [PMID: 15703473 DOI: 10.1159/000083880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Accepted: 06/23/2004] [Indexed: 11/19/2022]
Abstract
Fish in the family Mormyridae produce weak electric organ discharges that are used in orientation and communication. The peripheral and central anatomy of the electrosensory system has been well studied in the species Gnathonemus petersii, but comparative studies in other species are scarce. Here we report on one genus of mormyrid that displays a remarkable change in the electrosensory lateral line lobe (ELL), the hypertrophied rhombencephalic structure that receives primary electroreceptor input. Although all other mormyrids studied have three distinct zones on each side of the ELL, fish of the genus Stomatorhinus exhibit only two. Therefore, the two-zone ELL is a unique derived characteristic shared by Stomatorhinus. We examined the cutaneous electroreceptors that project to the ELL in Stomatorhinus. All three types of electroreceptors previously described for G. petersii were present, but there was a significant change in one type, the mormyromast. Both mormyromast sensory cell types (A- and B-cells) are present, but the B-cell is not innervated in Stomatorhinus. We conclude that, although all cutaneous sensory cells are present, the missing B-cell afferents account for the loss of the dorsolateral zone of the ELL, and therefore the loss of an entire sensory map. Because mormyromasts are involved in electrolocation behavior, this anatomical difference is probably related to differences in electrolocation abilities. Stomatorhinus could prove to be an excellent system for linking evolutionary changes in behavior with modifications in their neural substrates.
Collapse
Affiliation(s)
- Ann Marie McNamara
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
50
|
Gahtan E, Baier H. Of lasers, mutants, and see-through brains: functional neuroanatomy in zebrafish. ACTA ACUST UNITED AC 2004; 59:147-61. [PMID: 15007833 DOI: 10.1002/neu.20000] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Behavioral functions are carried out by localized circuits in the brain. Although this modular principle is clearly established, the boundaries of modules, and sometimes even their existence, are still debated. Zebrafish might offer distinct advantages in localizing behaviors to discrete brain regions because of the ability to visualize, record from, and lesion precisely identified populations of neurons in the brain. In addition, genetic screens in zebrafish enable the isolation of mutations that disrupt neural pathways and/or behaviors, as an alternative lesioning technique with complementary strengths to laser ablations. For example, the Mauthner cell, a large identified neuron in the hindbrain, has been postulated to be both necessary and sufficient for the execution of escapes. We discuss in this review how experiments, using laser ablations, calcium imaging, and mutants have eroded this notion. Even in a simple behavior, such as escape, many parallel pathways appear to be involved with no single one being absolutely necessary. Lesion studies and the analysis of behavioral mutants are now also beginning to elucidate the functional architecture of the zebrafish visual system. Although still in an embryonic stage, the neuroanatomy of behaviors in zebrafish has a bright future.
Collapse
Affiliation(s)
- Ethan Gahtan
- UCSF Department of Physiology, Program in Neuroscience, 513 Parnassus Avenue, Room S-762, San Francisco, California 94143-0444, USA
| | | |
Collapse
|