1
|
Yang T, Zou Y, Ng HL, Kumar A, Newton SM, Klebba PE. Specificity and mechanism of TonB-dependent ferric catecholate uptake by Fiu. Front Microbiol 2024; 15:1355253. [PMID: 38601941 PMCID: PMC11005823 DOI: 10.3389/fmicb.2024.1355253] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/23/2024] [Indexed: 04/12/2024] Open
Abstract
We studied the Escherichia coli outer membrane protein Fiu, a presumed transporter of monomeric ferric catecholates, by introducing Cys residues in its surface loops and modifying them with fluorescein maleimide (FM). Fiu-FM bound iron complexes of the tricatecholate siderophore enterobactin (FeEnt) and glucosylated enterobactin (FeGEnt), their dicatecholate degradation product Fe(DHBS)2 (FeEnt*), the monocatecholates dihydroxybenzoic acid (FeDHBA) and dihydroxybenzoyl serine (FeDHBS), and the siderophore antibiotics cefiderocol (FDC) and MB-1. Unlike high-affinity ligand-gated porins (LGPs), Fiu-FM had only micromolar affinity for iron complexes. Its apparent KD values for FeDHBS, FeDHBA, FeEnt*, FeEnt, FeGEnt, FeFDC, and FeMB-1 were 0.1, 0.7, 0.7, 1.0, 0.3, 0.4, and 4 μM, respectively. Despite its broad binding abilities, the transport repertoires of E. coli Fiu, as well as those of Cir and FepA, were less broad. Fiu only transported FeEnt*. Cir transported FeEnt* and FeDHBS (weakly); FepA transported FeEnt, FeEnt*, and FeDHBA. Both Cir and FepA bound FeGEnt, albeit with lower affinity. Related transporters of Acinetobacter baumannii (PiuA, PirA, BauA) had similarly moderate affinity and broad specificity for di- or monomeric ferric catecholates. Both microbiological and radioisotopic experiments showed Fiu's exclusive transport of FeEnt*, rather than ferric monocatecholate compounds. Molecular docking and molecular dynamics simulations predicted three binding sites for FeEnt*in the external vestibule of Fiu, and a fourth site deeper in its interior. Alanine scanning mutagenesis in the outermost sites (1a, 1b, and 2) decreased FeEnt* binding affinity as much as 20-fold and reduced or eliminated FeEnt* uptake. Finally, the molecular dynamics simulations suggested a pathway of FeEnt* movement through Fiu that may generally describe the process of metal transport by TonB-dependent receptors.
Collapse
Affiliation(s)
| | | | | | | | | | - Phillip E. Klebba
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
2
|
Klebba PE, Newton SMC, Six DA, Kumar A, Yang T, Nairn BL, Munger C, Chakravorty S. Iron Acquisition Systems of Gram-negative Bacterial Pathogens Define TonB-Dependent Pathways to Novel Antibiotics. Chem Rev 2021; 121:5193-5239. [PMID: 33724814 PMCID: PMC8687107 DOI: 10.1021/acs.chemrev.0c01005] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Iron is an indispensable metabolic cofactor in both pro- and eukaryotes, which engenders a natural competition for the metal between bacterial pathogens and their human or animal hosts. Bacteria secrete siderophores that extract Fe3+ from tissues, fluids, cells, and proteins; the ligand gated porins of the Gram-negative bacterial outer membrane actively acquire the resulting ferric siderophores, as well as other iron-containing molecules like heme. Conversely, eukaryotic hosts combat bacterial iron scavenging by sequestering Fe3+ in binding proteins and ferritin. The variety of iron uptake systems in Gram-negative bacterial pathogens illustrates a range of chemical and biochemical mechanisms that facilitate microbial pathogenesis. This document attempts to summarize and understand these processes, to guide discovery of immunological or chemical interventions that may thwart infectious disease.
Collapse
Affiliation(s)
- Phillip E Klebba
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Salete M C Newton
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - David A Six
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Ashish Kumar
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Taihao Yang
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Brittany L Nairn
- Department of Biological Sciences, Bethel University, 3900 Bethel Drive, St. Paul, Minnesota 55112, United States
| | - Colton Munger
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Somnath Chakravorty
- Jacobs School of Medicine and Biomedical Sciences, SUNY Buffalo, Buffalo, New York 14203, United States
| |
Collapse
|
3
|
Moynié L, Milenkovic S, Mislin GLA, Gasser V, Malloci G, Baco E, McCaughan RP, Page MGP, Schalk IJ, Ceccarelli M, Naismith JH. The complex of ferric-enterobactin with its transporter from Pseudomonas aeruginosa suggests a two-site model. Nat Commun 2019; 10:3673. [PMID: 31413254 PMCID: PMC6694100 DOI: 10.1038/s41467-019-11508-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/16/2019] [Indexed: 11/17/2022] Open
Abstract
Bacteria use small molecules called siderophores to scavenge iron. Siderophore-Fe3+ complexes are recognised by outer-membrane transporters and imported into the periplasm in a process dependent on the inner-membrane protein TonB. The siderophore enterobactin is secreted by members of the family Enterobacteriaceae, but many other bacteria including Pseudomonas species can use it. Here, we show that the Pseudomonas transporter PfeA recognises enterobactin using extracellular loops distant from the pore. The relevance of this site is supported by in vivo and in vitro analyses. We suggest there is a second binding site deeper inside the structure and propose that correlated changes in hydrogen bonds link binding-induced structural re-arrangements to the structural adjustment of the periplasmic TonB-binding motif.
Collapse
Affiliation(s)
- Lucile Moynié
- Division of Structural Biology, Wellcome Trust Centre of Human Genomics, 7 Roosevelt Drive, Oxford, OX3 7BN, UK
- The Research Complex at Harwell, Harwell Campus, Oxfordshire, OX11 0FA, UK
- The Rosalind Franklin Institute, Didcot, OX11 0FA, UK
| | - Stefan Milenkovic
- Department of Physics, University of Cagliari, Cittadella Universitaria, SP Monserrato-Sestu Km 0.700, Monserrato, 09042, Italy
| | - Gaëtan L A Mislin
- Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67413, Strasbourg, France
- CNRS, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67413, Strasbourg, France
| | - Véronique Gasser
- Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67413, Strasbourg, France
- CNRS, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67413, Strasbourg, France
| | - Giuliano Malloci
- Department of Physics, University of Cagliari, Cittadella Universitaria, SP Monserrato-Sestu Km 0.700, Monserrato, 09042, Italy
| | - Etienne Baco
- Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67413, Strasbourg, France
- CNRS, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67413, Strasbourg, France
| | | | - Malcolm G P Page
- Department of Life Sciences & Chemistry, Campus Ring 1, Bremen, 28759, Germany
| | - Isabelle J Schalk
- Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67413, Strasbourg, France.
- Istituto Officina dei Materiali-CNR, Cittadella Universitaria, Monserrato, 09042, Italy.
| | - Matteo Ceccarelli
- Department of Physics, University of Cagliari, Cittadella Universitaria, SP Monserrato-Sestu Km 0.700, Monserrato, 09042, Italy.
- Istituto Officina dei Materiali-CNR, Cittadella Universitaria, Monserrato, 09042, Italy.
| | - James H Naismith
- Division of Structural Biology, Wellcome Trust Centre of Human Genomics, 7 Roosevelt Drive, Oxford, OX3 7BN, UK.
- The Research Complex at Harwell, Harwell Campus, Oxfordshire, OX11 0FA, UK.
- The Rosalind Franklin Institute, Didcot, OX11 0FA, UK.
| |
Collapse
|
4
|
Smallwood CR, Jordan L, Trinh V, Schuerch DW, Gala A, Hanson M, Hanson M, Shipelskiy Y, Majumdar A, Newton SMC, Klebba PE. Concerted loop motion triggers induced fit of FepA to ferric enterobactin. ACTA ACUST UNITED AC 2015; 144:71-80. [PMID: 24981231 PMCID: PMC4076525 DOI: 10.1085/jgp.201311159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The loops of the bacterial outer membrane iron transporter FepA move at different rates to adsorb and grasp the substrate ferric enterobactin before transporting it into the periplasm. Spectroscopic analyses of fluorophore-labeled Escherichia coli FepA described dynamic actions of its surface loops during binding and transport of ferric enterobactin (FeEnt). When FeEnt bound to fluoresceinated FepA, in living cells or outer membrane fragments, quenching of fluorophore emissions reflected conformational motion of the external vestibular loops. We reacted Cys sulfhydryls in seven surface loops (L2, L3, L4, L5, L7 L8, and L11) with fluorophore maleimides. The target residues had different accessibilities, and the labeled loops themselves showed variable extents of quenching and rates of motion during ligand binding. The vestibular loops closed around FeEnt in about a second, in the order L3 > L11 > L7 > L2 > L5 > L8 > L4. This sequence suggested that the loops bind the metal complex like the fingers of two hands closing on an object, by individually adsorbing to the iron chelate. Fluorescence from L3 followed a biphasic exponential decay as FeEnt bound, but fluorescence from all the other loops followed single exponential decay processes. After binding, the restoration of fluorescence intensity (from any of the labeled loops) mirrored cellular uptake that depleted FeEnt from solution. Fluorescence microscopic images also showed FeEnt transport, and demonstrated that ferric siderophore uptake uniformly occurs throughout outer membrane, including at the poles of the cells, despite the fact that TonB, its inner membrane transport partner, was not detectable at the poles.
Collapse
Affiliation(s)
- Chuck R Smallwood
- The Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Lorne Jordan
- The Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | - Vy Trinh
- The Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Daniel W Schuerch
- The Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Amparo Gala
- The Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Mathew Hanson
- The Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | | | - Yan Shipelskiy
- The Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | - Aritri Majumdar
- The Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | - Salete M C Newton
- The Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | - Phillip E Klebba
- The Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| |
Collapse
|
5
|
Molecular, antigenic, and functional characteristics of ferric enterobactin receptor CfrA in Campylobacter jejuni. Infect Immun 2009; 77:5437-48. [PMID: 19737895 DOI: 10.1128/iai.00666-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The ferric enterobactin receptor CfrA not only is responsible for high-affinity iron acquisition in Campylobacter jejuni but also is essential for C. jejuni colonization in animal intestines. In this study, we determined the feasibility of targeting the iron-regulated outer membrane protein CfrA for immune protection against Campylobacter colonization. Alignment of complete CfrA sequences from 15 Campylobacter isolates showed that the levels of amino acid identity for CfrA range from 89% to 98%. Immunoblotting analysis using CfrA-specific antibodies demonstrated that CfrA was dramatically induced under iron-restricted conditions and was widespread and produced in 32 Campylobacter primary strains from various sources and from geographically diverse areas. The immunoblotting survey results were highly correlated with the results of an enterobactin growth promotion assay and a PCR analysis using cfrA-specific primers. Inactivation of the cfrA gene also impaired norepinephrine-mediated growth promotion, suggesting that CfrA is required for C. jejuni to sense intestinal stress hormones during colonization. Complementation of the cfrA mutant with a wild-type cfrA allele in trans fully restored the production and function of CfrA. A growth assay using purified anti-CfrA immunoglobulin G demonstrated that specific CfrA antibodies could block the function of CfrA, which diminished ferric enterobactin-mediated growth promotion under iron-restricted conditions. The inhibitory effect of CfrA antibodies was dose dependent. Immunoblotting analysis also indicated that CfrA was expressed and immunogenic in chickens experimentally infected with C. jejuni. Amino acid substitution mutagenesis demonstrated that R327, a basic amino acid that is highly conserved in CfrA, plays a critical role in ferric enterobactin acquisition in C. jejuni. Together, these findings strongly suggest that CfrA is a promising vaccine candidate for preventing and controlling Campylobacter infection in humans and animal reservoirs.
Collapse
|
6
|
Beasley FC, Vinés ED, Grigg JC, Zheng Q, Liu S, Lajoie GA, Murphy MEP, Heinrichs DE. Characterization of staphyloferrin A biosynthetic and transport mutants in Staphylococcus aureus. Mol Microbiol 2009; 72:947-63. [PMID: 19400778 DOI: 10.1111/j.1365-2958.2009.06698.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Iron is critical for virtually all forms of life. The production of high-affinity iron chelators, siderophores, and the subsequent uptake of iron-siderophore complexes are a common strategy employed by microorganisms to acquire iron. Staphylococcus aureus produces siderophores but genetic information underlying their synthesis and transport is limited. Previous work implicated the sbn operon in siderophore synthesis and the sirABC operon in uptake. Here we characterize a second siderophore biosynthetic locus in S. aureus; the locus consists of four genes (in strain Newman these open reading frames are designated NWMN_2079-2082) which, together, are responsible for the synthesis and export of staphyloferrin A, a polycarboxylate siderophore. While deletion of the NWMN_2079-2082 locus did not affect iron-restricted growth of S. aureus, strains bearing combined sbn and NWMN_2079-2082 locus deletions produced no detectable siderophore and demonstrated severely attenuated iron-restricted growth. Adjacent to NWMN_2079-2082 resides the htsABC operon, encoding an ABC transporter previously implicated in haem acquisition. We provide evidence here that HtsABC, along with the FhuC ATPase, is required for the uptake of staphyloferrin A. The crystal structure of apo-HtsA was determined and identified a large positively charged region in the substrate-binding pocket, in agreement with a role in binding of anionic staphyloferrin A.
Collapse
Affiliation(s)
- Federico C Beasley
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada N6A 5C1
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Expression, purification, and structural characterization of CfrA, a putative iron transporter from Campylobacter jejuni. J Bacteriol 2008; 190:5650-62. [PMID: 18556796 DOI: 10.1128/jb.00298-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene for the Campylobacter ferric receptor (CfrA), a putative iron-siderophore transporter in the enteric food-borne pathogen Campylobacter jejuni, was cloned, and the membrane protein was expressed in Escherichia coli, affinity purified, and then reconstituted into model lipid membranes. Fourier transform infrared spectra recorded from the membrane-reconstituted CfrA are similar to spectra that have been recorded from other iron-siderophore transporters and are highly characteristic of a beta-sheet protein (approximately 44% beta-sheet and approximately 10% alpha-helix). CfrA undergoes relatively extensive peptide hydrogen-deuterium exchange upon exposure to (2)H(2)O and yet is resistant to thermal denaturation at temperatures up to 95 degrees C. The secondary structure, relatively high aqueous solvent exposure, and high thermal stability are all consistent with a transmembrane beta-barrel structure containing a plug domain. Sequence alignments indicate that CfrA contains many of the structural motifs conserved in other iron-siderophore transporters, including the Ton box, PGV, IRG, RP, and LIDG motifs of the plug domain. Surprisingly, a homology model reveals that regions of CfrA that are expected to play a role in enterobactin binding exhibit sequences that differ substantially from the sequences of the corresponding regions that play an essential role in binding/transport by the E. coli enterobactin transporter, FepA. The sequence variations suggest that there are differences in the mechanisms used by CfrA and FepA to interact with bacterial siderophores. It may be possible to exploit these structural differences to develop CfrA-specific therapeutics.
Collapse
|
8
|
Tsen SWD. Evidence of a Novel Gene from Aeromonas hydrophilaEncoding a Putative Siderophore Receptor Involved in Bacterial Growth and Survival. Drug Target Insights 2008. [DOI: 10.4137/dti.s634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Shaw-Wei D. Tsen
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD U.S.A
| |
Collapse
|
9
|
Rabsch W, Ma L, Wiley G, Najar FZ, Kaserer W, Schuerch DW, Klebba JE, Roe BA, Laverde Gomez JA, Schallmey M, Newton SMC, Klebba PE. FepA- and TonB-dependent bacteriophage H8: receptor binding and genomic sequence. J Bacteriol 2007; 189:5658-74. [PMID: 17526714 PMCID: PMC1951831 DOI: 10.1128/jb.00437-07] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2007] [Accepted: 05/10/2007] [Indexed: 11/20/2022] Open
Abstract
H8 is derived from a collection of Salmonella enterica serotype Enteritidis bacteriophage. Its morphology and genomic structure closely resemble those of bacteriophage T5 in the family Siphoviridae. H8 infected S. enterica serotypes Enteritidis and Typhimurium and Escherichia coli by initial adsorption to the outer membrane protein FepA. Ferric enterobactin inhibited H8 binding to E. coli FepA (50% inhibition concentration, 98 nM), and other ferric catecholate receptors (Fiu, Cir, and IroN) did not participate in phage adsorption. H8 infection was TonB dependent, but exbB mutations in Salmonella or E. coli did not prevent infection; only exbB tolQ or exbB tolR double mutants were resistant to H8. Experiments with deletion and substitution mutants showed that the receptor-phage interaction first involves residues distributed over the protein's outer surface and then narrows to the same charged (R316) or aromatic (Y260) residues that participate in the binding and transport of ferric enterobactin and colicins B and D. These data rationalize the multifunctionality of FepA: toxic ligands like bacteriocins and phage penetrate the outer membrane by parasitizing residues in FepA that are adapted to the transport of the natural ligand, ferric enterobactin. DNA sequence determinations revealed the complete H8 genome of 104.4 kb. A total of 120 of its 143 predicted open reading frames (ORFS) were homologous to ORFS in T5, at a level of 84% identity and 89% similarity. As in T5, the H8 structural genes clustered on the chromosome according to their function in the phage life cycle. The T5 genome contains a large section of DNA that can be deleted and that is absent in H8: compared to T5, H8 contains a 9,000-bp deletion in the early region of its chromosome, and nine potentially unique gene products. Sequence analyses of the tail proteins of phages in the same family showed that relative to pb5 (Oad) of T5 and Hrs of BF23, the FepA-binding protein (Rbp) of H8 contains unique acidic and aromatic residues. These side chains may promote binding to basic and aromatic residues in FepA that normally function in the adsorption of ferric enterobactin. Furthermore, a predicted H8 tail protein showed extensive identity and similarity to pb2 of T5, suggesting that it also functions in pore formation through the cell envelope. The variable region of this protein contains a potential TonB box, intimating that it participates in the TonB-dependent stage of the phage infection process.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Antiviral Agents/pharmacology
- Bacterial Outer Membrane Proteins/genetics
- Bacterial Outer Membrane Proteins/physiology
- Bacterial Proteins/genetics
- Bacterial Proteins/physiology
- Carrier Proteins/genetics
- Carrier Proteins/physiology
- DNA, Viral/chemistry
- DNA, Viral/genetics
- Enterobactin/pharmacology
- Escherichia coli/virology
- Gene Order
- Genome, Viral/genetics
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Microscopy, Electron, Transmission
- Models, Molecular
- Molecular Sequence Data
- Open Reading Frames
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Receptors, Virus/genetics
- Receptors, Virus/physiology
- Salmonella Phages/genetics
- Salmonella Phages/physiology
- Salmonella enteritidis/virology
- Salmonella typhimurium/virology
- Sequence Analysis, DNA
- Sequence Deletion
- Sequence Homology, Amino Acid
- Siphoviridae/genetics
- Viral Tail Proteins/genetics
- Virion/ultrastructure
- Virus Attachment
Collapse
Affiliation(s)
- Wolfgang Rabsch
- Department of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Norman, OK 73019, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ma L, Kaserer W, Annamalai R, Scott DC, Jin B, Jiang X, Xiao Q, Maymani H, Massis LM, Ferreira LCS, Newton SMC, Klebba PE. Evidence of ball-and-chain transport of ferric enterobactin through FepA. J Biol Chem 2007; 282:397-406. [PMID: 17056600 PMCID: PMC2398697 DOI: 10.1074/jbc.m605333200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli iron transporter, FepA, has a globular N terminus that resides within a transmembrane beta-barrel formed by its C terminus. We engineered 25 cysteine substitution mutations at different locations in FepA and modified their sulfhydryl side chains with fluorescein maleimide in live cells. The reactivity of the Cys residues changed, sometimes dramatically, during the transport of ferric enterobactin, the natural ligand of FepA. Patterns of Cys susceptibility reflected energy- and TonB-dependent motion in the receptor protein. During transport, a residue on the normally buried surface of the N-domain was labeled by fluorescein maleimide in the periplasm, providing evidence that the transport process involves expulsion of the globular domain from the beta-barrel. Porin deficiency much reduced the fluoresceination of this site, confirming the periplasmic labeling route. These data support the previously proposed, but never demonstrated, ball-and-chain theory of membrane transport. Functional complementation between a separately expressed N terminus and C-terminal beta-barrel domain confirmed the feasibility of this mechanism.
Collapse
Affiliation(s)
- Li Ma
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wagner JK, Setayeshgar S, Sharon LA, Reilly JP, Brun YV. A nutrient uptake role for bacterial cell envelope extensions. Proc Natl Acad Sci U S A 2006; 103:11772-7. [PMID: 16861302 PMCID: PMC1544245 DOI: 10.1073/pnas.0602047103] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Indexed: 11/18/2022] Open
Abstract
Bacteria exist in a variety of morphologies, but the relationship between cellular forms and biological functions remains poorly understood. We show that stalks (prosthecae), cylindrical extensions of the Caulobacter crescentus cell envelope, can take up and hydrolyze organic phosphate molecules and contain the high-affinity phosphate-binding protein PstS, but not PstA, a protein that is required for transport of phosphate into the cytoplasm. Therefore, uptake, hydrolysis, and periplasmic binding of a phosphate source can take place in the stalk, but high-affinity import must take place in the cell body. Furthermore, by using analytical modeling, we illustrate the biophysical advantage of the stalk as a morphological adaptation to the diffusion-limited, oligotrophic environments where C. crescentus thrives. This advantage is due to the fact that a stalk is long and thin, a favorable shape for maximizing contact with diffusing nutrients while minimizing increases in both surface area and cell volume.
Collapse
|
12
|
Quatrini R, Jedlicki E, Holmes DS. Genomic insights into the iron uptake mechanisms of the biomining microorganism Acidithiobacillus ferrooxidans. J Ind Microbiol Biotechnol 2005; 32:606-14. [PMID: 15895264 DOI: 10.1007/s10295-005-0233-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Accepted: 04/15/2005] [Indexed: 01/01/2023]
Abstract
Commercial bioleaching of copper and the biooxidation of gold is a cost-effective and environmentally friendly process for metal recovery. A partial genome sequence of the acidophilic, bioleaching bacterium Acidithiobacillus ferrooxidans is available from two public sources. This information has been used to build preliminary models that describe how this microorganism confronts unusually high iron loads in the extremely acidic conditions (pH 2) found in natural environments and in bioleaching operations. A. ferrooxidans contains candidate genes for iron uptake, sensing, storage, and regulation of iron homeostasis. Predicted proteins exhibit significant amino acid similarity with known proteins from neutrophilic organisms, including conservation of functional motifs, permitting their identification by bioinformatics tools and allowing the recognition of common themes in iron transport across distantly related species. However, significant differences in amino acid sequence were detected in pertinent domains that suggest ways in which the periplasmic and outer membrane proteins of A. ferrooxidans maintain structural integrity and relevant protein-protein contacts at low pH. Unexpectedly, the microorganism also contains candidate genes, organized in operon-like structures that potentially encode at least 11 siderophore systems for the uptake of Fe(III), although it does not exhibit genes that could encode the biosynthesis of the siderophores themselves. The presence of multiple Fe(III) uptake systems suggests that A. ferrooxidans can inhabit aerobic environments where iron is scarce and where siderophore producers are present. It may also help to explain why it cannot tolerate high Fe(III) concentrations in bioleaching operations where it is out-competed by Leptospirillum species.
Collapse
Affiliation(s)
- Raquel Quatrini
- Laboratory of Bioinformatics and Genome Biology, University of Andrés Bello and Millennium Institute of Fundamental and Applied Biology, Santiago, Chile
| | | | | |
Collapse
|
13
|
Annamalai R, Jin B, Cao Z, Newton SMC, Klebba PE. Recognition of ferric catecholates by FepA. J Bacteriol 2004; 186:3578-89. [PMID: 15150246 PMCID: PMC415739 DOI: 10.1128/jb.186.11.3578-3589.2004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli FepA transports certain catecholate ferric siderophores, but not others, nor any noncatecholate compounds. Direct binding and competition experiments demonstrated that this selectivity originates during the adsorption stage. The synthetic tricatecholate Fe-TRENCAM bound to FepA with 50- to 100-fold-lower affinity than Fe-enterobactin (FeEnt), despite an identical metal center, and Fe-corynebactin only bound at much higher concentrations. Neither Fe-agrobactin nor ferrichrome bound at all, even at concentrations 10(6)-fold above the Kd. Thus, FepA only adsorbs catecholate iron complexes, and it selects FeEnt among even its close homologs. We used alanine scanning mutagenesis to study the contributions of surface aromatic residues to FeEnt recognition. Although not apparent from crystallography, aromatic residues in L3, L5, L7, L8, and L10 affected FepA's interaction with FeEnt. Among 10 substitutions that eliminated aromatic residues, Kd increased as much as 20-fold (Y481A and Y638A) and Km increased as much as 400-fold (Y478), showing the importance of aromaticity around the pore entrance. Although many mutations equally reduced binding and transport, others caused greater deficiencies in the latter. Y638A and Y478A increased Km 10- and 200-fold more, respectively, than Kd. N-domain loop deletions created the same phenotype: Delta60-67 (in NL1) and Delta98-105 (in NL2) increased Kd 10- to 20-fold but raised Km 500- to 700-fold. W101A (in NL2) had little effect on Kd but increased Km 1,000-fold. These data suggested that the primary role of the N terminus is in ligand uptake. Fluorescence and radioisotopic experiments showed biphasic release of FeEnt from FepA. In spectroscopic determinations, k(off1) was 0.03/s and k(off2) was 0.003/s. However, FepAY272AF329A did not manifest the rapid dissociation phase, corroborating the role of aromatic residues in the initial binding of FeEnt. Thus, the beta-barrel loops contain the principal ligand recognition determinants, and the N-domain loops perform a role in ligand transport.
Collapse
Affiliation(s)
- Rajasekaran Annamalai
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | | | | | | | | |
Collapse
|
14
|
Destoumieux-Garzón D, Thomas X, Santamaria M, Goulard C, Barthélémy M, Boscher B, Bessin Y, Molle G, Pons AM, Letellier L, Peduzzi J, Rebuffat S. Microcin E492 antibacterial activity: evidence for a TonB-dependent inner membrane permeabilization on Escherichia coli. Mol Microbiol 2003; 49:1031-41. [PMID: 12890026 DOI: 10.1046/j.1365-2958.2003.03610.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanism of action of microcin E492 (MccE492) was investigated for the first time in live bacteria. MccE492 was expressed and purified to homogeneity through an optimized large-scale procedure. Highly purified MccE492 showed potent antibacterial activity at minimal inhibitory concentrations in the range of 0.02-1.2 microM. The microcin bactericidal spectrum of activity was found to be restricted to Enterobacteriaceae and specifically directed against Escherichia and Salmonella species. Isogenic bacteria that possessed mutations in membrane proteins, particularly of the TonB-ExbB-ExbD complex, were assayed. The microcin bactericidal activity was shown to be TonB- and energy-dependent, supporting the hypothesis that the mechanism of action is receptor mediated. In addition, MccE492 depolarized and permeabilized the E. coli cytoplasmic membrane. The membrane depolarization was TonB dependent. From this study, we propose that MccE492 is recognized by iron-siderophore receptors, including FepA, which promote its import across the outer membrane via a TonB- and energy-dependent pathway. MccE492 then inserts into the inner membrane, whereupon the potential becomes destabilized by pore formation. Because cytoplasmic membrane permeabilization of MccE492 occurs beneath the threshold of the bactericidal concentration and does not result in cell lysis, the cytoplasmic membrane is not hypothesized to be the sole target of MccE492.
Collapse
Affiliation(s)
- Delphine Destoumieux-Garzón
- Chimie et Biochimie des Substances Naturelles, ESA 8041 CNRS, USM 502 Muséum National d'Histoire Naturelle, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Dhungana S, Heggemann S, Gebhardt P, Möllmann U, Crumbliss AL. Fe(III) coordination properties of a new saccharide-based exocyclic trihydroxamate analogue of ferrichrome. Inorg Chem 2003; 42:42-50. [PMID: 12513076 DOI: 10.1021/ic025647u] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The coordination chemistry of a saccharide-based ferrichrome analogue, 1-O-methyl-2,3,4-tris-O-[4-(N-hydroxy-N-methylcarbamoyl)-n-butyrate]-alpha-d-glucopyranoside (H(3)L), is reported, along with its pK(a) values, Fe(III) and Fe(II) chelation constants, and aqueous-solution speciation as determined by spectrophotometric and potentiometric titration techniques. The use of a saccharide platform to synthesize a hexadentate trihydroxamic acid chelator provides some advantages over other approaches to ferrichrome models, including significant water solubility and hydrogen-bonding capability of the backbone that can potentially provide favorable receptor recognition and biological activity. The pK(a) values for the hydroxamate moieties were found to be similar to those of other trihydroxamates. Proton-dependent Fe(III)-H(3)L and Fe(II)-H(3)L equilibrium constants were determined using a model involving the sequential protonation of the iron(III)- and iron(II)-ligand complexes. These results were used to calculate the formation constants, log beta(110) = 31.86 for Fe(III)L and 12.1 for Fe(II)L(-). The calculated pFe value of 27.1 indicates that H(3)L possesses an Fe(III) affinity comparable to or greater than those of ferrichrome and other ferrichrome analogues and is thermodynamically capable of removing Fe(III) from transferrin. E(1/2) for the Fe(III)L/Fe(II)L(-) couple was determined to be -436 mV from quasi-reversible cyclic voltammograms at pH = 9, and the pH-dependent E(1/2) profile was used to determine the Fe(II)L(-) protonation constants.
Collapse
Affiliation(s)
- Suraj Dhungana
- Department of Chemistry, Duke University, Box 90346 Durham, NC 27708-0346, USA
| | | | | | | | | |
Collapse
|
16
|
Cao Z, Warfel P, Newton SMC, Klebba PE. Spectroscopic observations of ferric enterobactin transport. J Biol Chem 2003; 278:1022-8. [PMID: 12409288 DOI: 10.1074/jbc.m210360200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We characterized the uptake of ferric enterobactin (FeEnt), the native Escherichia coli ferric siderophore, through its cognate outer membrane receptor protein, FepA, using a site-directed fluorescence methodology. The experiments first defined locations in FepA that were accessible to covalent modification with fluorescein maleimide (FM) in vivo; among 10 sites that we tested by substituting single Cys residues, FM labeled W101C, S271C, F329C, and S397C, and all these exist within surface-exposed loops of the outer membrane protein. FeEnt normally adsorbed to the fluoresceinated S271C and S397C mutant FepA proteins in vivo, which we observed as quenching of fluorescence intensity, but the ferric siderophore did not bind to the FM-modified derivatives of W101C or F329C. These in vivo fluorescence determinations showed, for the first time, consistency with radioisotopic measurements of the affinity of the FeEnt-FepA interaction; K(d) was 0.2 nm by both methods. Analysis of the FepA mutants with AlexaFluor(680), a fluorescein derivative with red-shifted absorption and emission spectra that do not overlap the absorbance spectrum of FeEnt, refuted the possibility that the fluorescence quenching resulted from resonance energy transfer. These and other data instead indicated that the quenching originated from changes in the environment of the fluor as a result of loop conformational changes during ligand binding and transport. We used the fluorescence system to monitor FeEnt uptake by live bacteria and determined its dependence on ligand concentration, temperature, pH, and carbon sources and its susceptibility to inhibition by the metabolic poisons. Unlike cyanocobalamin transport through the outer membrane, FeEnt uptake was sensitive to inhibitors of electron transport and phosphorylation, in addition to its sensitivity to proton motive force depletion.
Collapse
Affiliation(s)
- Zhenghua Cao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman 73019, USA
| | | | | | | |
Collapse
|
17
|
Abstract
Using a lysine-specific cleavable cross-linking reagent ethylene glycolbis(sulfosuccimidylsuccinate) (Sulfo-EGS), we studied conformational motion in the surface loops of Escherichia coli FepA during its transport of the siderophore ferric enterobactin. Site-directed mutagenesis determined that Sulfo-EGS reacted with two lysines, K332 and K483, and at least two other unidentified Lys residues in the surface loops of the outer membrane protein. The reagent cross-linked K483 in FepA L7 to either K332 in L5, forming a product that we designated band 1, or to the major outer membrane proteins OmpF, OmpC, and OmpA, forming band 2. Ferric enterobactin binding to FepA did not prevent modification of K483 by Sulfo-EGS but blocked its cross-linking to OmpF/C and OmpA and reduced its coupling to K332. These data show that the loops of FepA undergo conformational changes in vivo, with an approximate magnitude of 15 A, from a ligand-free open state to a ligand-bound closed state. The coupling of FepA L7 to OmpF, OmpC, or OmpA was TonB independent and was unaffected by the uncouplers CCCP (carbonyl cyanide m-chlorophenylhydrazone) and DNP (2,4-dinitrophenol) but completely inhibited by cyanide.
Collapse
Affiliation(s)
- Daniel C Scott
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | | | | |
Collapse
|
18
|
Abstract
To kill Escherichia coli, toxic proteins, called colicins, pass through the permeability barrier created by the outer membrane (OM) of the bacterial cell envelope. We consider a variety of different colicins, including A, B, D, E1, E3, Ia, M and N, that penetrate through the porins OmpF, FepA, BtuB, Cir and FhuA, to subsequently interact with a few targets in the periplasm, including TolA, TolB, TolC and TonB. We review the mechanisms, demonstrated and postulated, by which such toxins enter bacterial cells, from the initial binding stage on the cell surface to the internalization reaction through the OM bilayer. Our discussions endeavor to answer two main questions: what is the origin of colicin-binding affinity and specificity, and after adsorption to OM porins, do colicin polypeptides translocate through porin channels, or enter by another, currently unknown pathway?
Collapse
Affiliation(s)
- Zhenghua Cao
- Department of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Norman, OK 73019, USA
| | | |
Collapse
|
19
|
Abstract
The process by which the endonuclease domain of colicin E9 is translocated across the outer membrane, the periplasmic space and the cytoplasmic membrane to reach the cytoplasm of E. coli cells, resulting in DNA degradation and cell death, is a unique event in prokaryotic biology. Although considerable information is known about the role of the BtuB outer membrane receptor, as well as the mostly periplasmic Tol proteins that are essential for the translocation process, the precise nature of the interactions between colicin E9 and these proteins remains to be elucidated. In this review, we consider our current understanding of the key events in this process, concentrating on recent findings concerning receptor-binding, translocation and the mechanism of cytotoxicity.
Collapse
Affiliation(s)
- Richard James
- Division of microbiology and infectious diseases, University Hospital, University of Nottingham, NG7 2UH, Nottingham, UK.
| | | | | | | |
Collapse
|
20
|
Masri HP, Cornelissen CN. Specific ligand binding attributable to individual epitopes of gonococcal transferrin binding protein A. Infect Immun 2002; 70:732-40. [PMID: 11796606 PMCID: PMC127705 DOI: 10.1128/iai.70.2.732-740.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2001] [Revised: 10/09/2001] [Accepted: 10/30/2001] [Indexed: 11/20/2022] Open
Abstract
The gonococcal transferrin receptor complex comprises two iron-regulated proteins, TbpA and TbpB. TbpA is essential for transferrin-iron uptake and is a TonB-dependent integral outer membrane protein. TbpB is thought to increase the efficiency of iron uptake from transferrin and is lipid modified and surface exposed. To evaluate the structure-function relationships in one of the components of the receptor, TbpA, we created constructs that fused individual putative loops of TbpA with amino-terminal affinity tags. The recombinant proteins were then overexpressed in Escherichia coli, and the fusions were recovered predominately from inclusion bodies. Inclusion body proteins were solubilized, and the epitope fusions were renatured by slow dialysis. To assess transferrin binding capabilities, the constructs were tested in a solid-phase dot blot assay followed by confirmatory quantitative chemiluminescent enzyme-linked immunosorbent assays. The constructs with only loop 5 and with loops 4 and 5 demonstrated dose-dependent specific ligand binding in spite of being out of the context of the intact receptor. The immunogenicities of individual TbpA-specific epitopes were investigated by generating rabbit polyclonal antisera against the fusion proteins. Most of the fusion proteins were immunogenic under these conditions, and the resulting sera recognized full-length TbpA in immunoblots. These results suggest that individual epitopes of TbpA are both immunogenic and functional with respect to ligand binding capabilities, and the vaccine implications of these findings are discussed.
Collapse
Affiliation(s)
- Heather P Masri
- Department of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298-0678, USA
| | | |
Collapse
|
21
|
Barnard TJ, Watson ME, McIntosh MA. Mutations in the Escherichia coli receptor FepA reveal residues involved in ligand binding and transport. Mol Microbiol 2001; 41:527-36. [PMID: 11532122 DOI: 10.1046/j.1365-2958.2001.02473.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
FepA is the Escherichia coli outer membrane receptor for ferric enterobactin, colicin D and colicin B. The transport processes through FepA are energy-dependent, relying on the periplasmic protein TonB to interact with FepA. Through this interaction, TonB tranduces energy derived from the cytoplasmic membrane across the periplasmic space to FepA. In this study, random mutagenesis strategies were used to define residues of FepA important for its function. Both polymerase chain reaction (PCR)-generated random mutations in the N-terminal 180 amino acids of FepA and spontaneous chromosomal fepA mutations were selected by resistance to colicin B. The PCR mutagenesis strategy targeted the N-terminus because it forms a plug inside the FepA barrel that is expected to be involved in ligand binding, ligand transport, and interaction with TonB. We report the characterization of 15 fepA missense mutations that were localized to three regions of the FepA receptor. The first region was a stretch of eight amino acids referred to as the TonB box. The second region included extracellular loops of both the barrel and the plug. A third region formed a cluster near the barrel wall around positions 75 and 126 of the plug. These mutations provide initial insight into the mechanisms of ligand binding and transport through the FepA receptor.
Collapse
Affiliation(s)
- T J Barnard
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri 65212, USA
| | | | | |
Collapse
|
22
|
Chang C, Mooser A, Plückthun A, Wlodawer A. Crystal structure of the dimeric C-terminal domain of TonB reveals a novel fold. J Biol Chem 2001; 276:27535-40. [PMID: 11328822 DOI: 10.1074/jbc.m102778200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The TonB-dependent complex of Gram-negative bacteria couples the inner membrane proton motive force to the active transport of iron.siderophore and vitamin B(12) across the outer membrane. The structural basis of that process has not been described so far in full detail. The crystal structure of the C-terminal domain of TonB from Escherichia coli has now been solved by multiwavelength anomalous diffraction and refined at 1.55-A resolution, providing the first evidence that this region of TonB (residues 164-239) dimerizes. Moreover, the structure shows a novel architecture that has no structural homologs among any known proteins. The dimer of the C-terminal domain of TonB is cylinder-shaped with a length of 65 A and a diameter of 25 A. Each monomer contains three beta strands and a single alpha helix. The two monomers are intertwined with each other, and all six beta-strands of the dimer make a large antiparallel beta-sheet. We propose a plausible model of binding of TonB to FhuA and FepA, two TonB-dependent outer-membrane receptors.
Collapse
Affiliation(s)
- C Chang
- Macromolecular Crystallography Laboratory, NCI, National Institutes of Health, Frederick, Maryland 21702, USA
| | | | | | | |
Collapse
|
23
|
Scott DC, Cao Z, Qi Z, Bauler M, Igo JD, Newton SM, Klebba PE. Exchangeability of N termini in the ligand-gated porins of Escherichia coli. J Biol Chem 2001; 276:13025-33. [PMID: 11278876 DOI: 10.1074/jbc.m011282200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ferric siderophore transporters of the Gram-negative bacterial outer membrane manifest a unique architecture: Their N termini fold into a globular domain that lodges within, and physically obstructs, a transmembrane porin beta-barrel formed by their C termini. We exchanged and deleted the N termini of two such siderophore receptors, FepA and FhuA, which recognize and transport ferric enterobactin and ferrichrome, respectively. The resultant chimeric proteins and empty beta-barrels avidly bound appropriate ligands, including iron complexes, protein toxins, and viruses. Thus, the ability to recognize and discriminate these molecules fully originates in the transmembrane beta-barrel domain. Both the hybrid and the deletion proteins also transported the ferric siderophore that they bound. The FepA constructs showed less transport activity than wild type receptor protein, but the FhuA constructs functioned with turnover numbers that were equivalent to wild type. The mutant proteins displayed the full range of transport functionalities, despite their aberrant or missing N termini, confirming (Braun, M., Killmann, H., and Braun, V. (1999) Mol. Microbiol. 33, 1037-1049) that the globular domain within the pore is dispensable to the siderophore internalization reaction, and when present, acts without specificity during solute uptake. These and other data suggest a transport process in which siderophore receptors undergo multiple conformational states that ultimately expel the N terminus from the channel concomitant with solute internalization.
Collapse
Affiliation(s)
- D C Scott
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Bölter B, Soll J. Ion channels in the outer membranes of chloroplasts and mitochondria: open doors or regulated gates? EMBO J 2001; 20:935-40. [PMID: 11230117 PMCID: PMC145478 DOI: 10.1093/emboj/20.5.935] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2000] [Accepted: 01/09/2001] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Jürgen Soll
- Botanisches Institut, Universität Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
Corresponding author e-mail:
| |
Collapse
|
25
|
Boulton IC, Yost MK, Anderson JE, Cornelissen CN. Identification of discrete domains within gonococcal transferrin-binding protein A that are necessary for ligand binding and iron uptake functions. Infect Immun 2000; 68:6988-96. [PMID: 11083823 PMCID: PMC97808 DOI: 10.1128/iai.68.12.6988-6996.2000] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The availability of free iron in vivo is strictly limited, in part by the iron-binding protein transferrin. The pathogenic Neisseria spp. can sequester iron from this protein, dependent upon two iron-repressible, transferrin-binding proteins (TbpA and TbpB). TbpA is a TonB-dependent, integral, outer membrane protein that may form a beta-barrel exposing multiple surface loops, some of which are likely to contain ligand-binding motifs. In this study we propose a topological model of gonococcal TbpA and then test some of the hypotheses set forth by the model by individually deleting three putative loops (designated loops 4, 5, and 8). Each mutant TbpA could be expressed without toxicity and was surface exposed as assessed by immunoblotting, transferrin binding, and protease accessibility. Deletion of loop 4 or loop 5 abolished transferrin binding to whole cells in solid- and liquid-phase assays, while deletion of loop 8 decreased the affinity of the receptor for transferrin without affecting the copy number. Strains expressing any of the three mutated TbpAs were incapable of growth on transferrin as a sole iron source. These data implicate putative loops 4 and 5 as critical determinants for receptor function and transferrin-iron uptake by gonococcal TbpA. The phenotype of the DeltaL8TbpA mutant suggests that high-affinity ligand interaction is required for transferrin-iron internalization.
Collapse
Affiliation(s)
- I C Boulton
- Department of Microbiology and Immunology, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | |
Collapse
|
26
|
Penfold CN, Garinot-Schneider C, Hemmings AM, Moore GR, Kleanthous C, James R. A 76-residue polypeptide of colicin E9 confers receptor specificity and inhibits the growth of vitamin B12-dependent Escherichia coli 113/3 cells. Mol Microbiol 2000; 38:639-49. [PMID: 11069686 DOI: 10.1046/j.1365-2958.2000.02160.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanism by which E colicins recognize and then bind to BtuB receptors in the outer membrane of Escherichia coli cells is a poorly understood first step in the process that results in cell killing. Using N- and C-terminal deletions of the N-terminal 448 residues of colicin E9, we demonstrated that the smallest polypeptide encoded by one of these constructs that retained receptor-binding activity consisted of residues 343-418. The results of the in vivo receptor-binding assay were supported by an alternative competition assay that we developed using a fusion protein consisting of residues 1-497 of colicin E9 fused to the green fluorescent protein as a fluorescent probe of binding to BtuB in E. coli cells. Using this improved assay, we demonstrated competitive inhibition of the binding of the fluorescent fusion protein by the minimal receptor-binding domain of colicin E9 and by vitamin B12. Mutations located in the minimum R domain that abolished or reduced the biological activity of colicin E9 similarly affected the competitive binding of the mutant colicin protein to BtuB. The sequence of the 76-residue R domain in colicin E9 is identical to that found in colicin E3, an RNase type E colicin. Comparative sequence analysis of colicin E3 and cloacin DF13, which is also an RNase-type colicin but uses the IutA receptor to bind to E. coli cells, revealed significant sequence homology throughout the two proteins, with the exception of a region of 92 residues that included the minimum R domain. We constructed two chimeras between cloacin DF13 and colicin E9 in which (i) the DNase domain of colicin E9 was fused onto the T+R domains of cloacin DF13; and (ii) the R domain and DNase domain of colicin E9 were fused onto the T domain of cloacin DF13. The killing activities of these two chimeric colicins against indicator strains expressing BtuB or IutA receptors support the conclusion that the 76 residues of colicin E9 confer receptor specificity. The minimum receptor-binding domain polypeptide inhibited the growth of the vitamin B12-dependent E. coli 113/3 mutant cells, demonstrating that vitamin B12 and colicin E9 binding is mutually exclusive.
Collapse
Affiliation(s)
- C N Penfold
- Colicin Research Group, Schools of Biological and Chemical Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | | | | | | | | | |
Collapse
|
27
|
Lazdunski C, Bouveret E, Rigal A, Journet L, Lloubès R, Bénédetti H. Colicin import into Escherichia coli cells requires the proximity of the inner and outer membranes and other factors. Int J Med Microbiol 2000; 290:337-44. [PMID: 11111908 DOI: 10.1016/s1438-4221(00)80037-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Affiliation(s)
- C Lazdunski
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Biologie Structurale et Microbiologie, CNRS, Marseille, France.
| | | | | | | | | | | |
Collapse
|
28
|
Cao Z, Qi Z, Sprencel C, Newton SM, Klebba PE. Aromatic components of two ferric enterobactin binding sites in Escherichia coli FepA. Mol Microbiol 2000; 37:1306-17. [PMID: 10998164 DOI: 10.1046/j.1365-2958.2000.02093.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ferric enterobactin is a catecholate siderophore that binds with high affinity (Kd approximately 10-10 M) to the Escherichia coli outer membrane protein FepA. We studied the involvement of aromatic amino acids in its uptake by determining the binding affinities, kinetics and transport properties of site-directed mutants. We replaced seven aromatic residues (Y260, Y272, Y285, Y289, W297, Y309 and F329) in the central part of FepA primary structure with alanine, individually and in double combinations, and determined the ability of the mutant proteins to interact with ferric enterobactin and the protein toxins colicins B and D. All the constructs showed normal expression and localization. Among single mutants, Y260A and F329A were most detrimental, reducing the affinity between FepA and ferric enterobactin 100- and 10-fold respectively. Double substitutions involving Y260, Y272 and F329 impaired (100- to 2500-fold) adsorption of the iron chelate more strongly. For Y260A and Y272A, the drop in adsorption affinity caused commensurate decreases in transport efficiency, suggesting that the target residues primarily act in ligand binding. F329A, like R316A, showed greater impairment of transport than binding, intimating mechanistic involvement during ligand internalization. Furthermore, immunochemical studies localized F329 in the FepA ligand binding site. The mutagenesis results suggested the existence of dual ligand binding sites in the FepA vestibule, and measurements of the rate of ferric enterobactin adsorption to fluoresceinated FepA mutant proteins confirmed this conclusion. The initial, outermost site contains aromatic residues and probably functions through hydrophobic interactions, whereas the secondary site exists deeper in the vestibule, contains both charged and aromatic residues and probably acts through hydrophobic and electrostatic bonds.
Collapse
Affiliation(s)
- Z Cao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | | | | | | | | |
Collapse
|
29
|
Cohen SM, Raymond KN. Catecholate/salicylate heteropodands: demonstration of a catecholate to salicylate coordination change. Inorg Chem 2000; 39:3624-31. [PMID: 11196825 DOI: 10.1021/ic990608c] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While iron release from enterobactin-mediated iron transport occurs primarily via an esterase that destroys the siderophore, other catechol siderophores that are not susceptible to hydrolysis act as bacterial growth factors. Elucidating the structures of protonated ferric enterobactin may reveal the pathway by which synthetic analogues fulfill bacterial iron requirements. In order to more completely model this potential delivery pathway for ferric iron, as well as to understand the pH dependent structural dynamics of ferric enterobactin, two ligands, (2-hydroxybenzoyl-2-aminoethyl)-bis(2,3-dihydroxybenzoyl-2-aminoethyl)amine (TRENCAMSAM) and (2-hydroxy-3-methoxybenzoyl-2-aminoethyl)-bis(2,3-dihydroxybenzoyl-2- aminoethyl)amine (TRENCAM(3M)SAM), have been synthesized as models for monoprotonated enterobactin. The coordination chemistry of these ligands with Fe3+ and Al3+ has been investigated. Fe[TRENCAMSAM]2- crystallizes in the triclinic space group P1: Z = 1, a = 11.3307(6) A, b = 12.5479(7) A, c = 15.5153(8) A, alpha = 94.513(1) degree, beta = 105.867(1) degree, gamma = 94.332(1) degree. The structure is a two-metal two-ligand dimer supported by mu-oxo bridges from two catecholate moieties. Al[TRENCAMSAM]2- crystallizes in the triclinic space group P1: Z = 2, a = 9.1404(2) A, b = 13.3570(1) A, c = 15.5950(1) A, alpha = 95.711(1) degree, beta = 104.760(1) degree, gamma = 92.603(1) degree. The complex is a monomer with a five-coordinate, square-pyramidal aluminum cation. Al[TRENCAM(3M)SAM]2- crystallizes in the monoclinic space group C2/m: Z = 8, a = 34.244(2) A, b = 11.6206(6) A, c = 21.9890(12) A, beta = 101.478(1) degree. The complex is also a monomer, but with a highly distorted five-coordinate, square-pyramidal aluminum cation coordination sphere. At high pH these complexes do not display a salicylate mode of binding; however, at low pH Al[TRENCAMSAM]2- converts to protonated Al[H3TRENCAMSAM]+, which is a six-coordinate, tris-salicylate complex. Al[H3TRENCAMSAM]+ crystallizes in the triclinic space group P1: Z = 2, a = 11.5475(4) A, b = 12.1681(4) A, c = 12.5094(4) A, alpha = 109.142(1) degree, beta = 104.327(1) degree, gamma = 103.636(1) degree. This is the first catecholamide enterobactin analogue that has been structurally characterized in both a catecholate and salicylate mode of coordination.
Collapse
Affiliation(s)
- S M Cohen
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
30
|
Cornelissen CN, Anderson JE, Boulton IC, Sparling PF. Antigenic and sequence diversity in gonococcal transferrin-binding protein A. Infect Immun 2000; 68:4725-35. [PMID: 10899879 PMCID: PMC98422 DOI: 10.1128/iai.68.8.4725-4735.2000] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae is a gram-negative pathogen that is capable of satisfying its iron requirement with human iron-binding proteins such as transferrin and lactoferrin. Transferrin-iron utilization involves specific binding of human transferrin at the cell surface to what is believed to be a complex of two iron-regulated, transferrin-binding proteins, TbpA and TbpB. The genes encoding these proteins have been cloned and sequenced from a number of pathogenic, gram-negative bacteria. In the current study, we sequenced four additional tbpA genes from other N. gonorrhoeae strains to begin to assess the sequence diversity among gonococci. We compared these sequences to those from other pathogenic bacteria to identify conserved regions that might be important for the structure and function of these receptors. We generated polyclonal mouse sera against synthetic peptides deduced from the TbpA sequence from gonococcal strain FA19. Most of these synthetic peptides were predicted to correspond to surface-exposed regions of TbpA. We found that, while most reacted with denatured TbpA in Western blots, only one antipeptide serum reacted with native TbpA in the context of intact gonococci, consistent with surface exposure of the peptide to which this serum was raised. In addition, we evaluated a panel of gonococcal strains for antigenic diversity using these antipeptide sera.
Collapse
Affiliation(s)
- C N Cornelissen
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA.
| | | | | | | |
Collapse
|
31
|
Newton SM, Igo JD, Scott DC, Klebba PE. Effect of loop deletions on the binding and transport of ferric enterobactin by FepA. Mol Microbiol 1999; 32:1153-65. [PMID: 10383757 DOI: 10.1046/j.1365-2958.1999.01424.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The siderophore ferric enterobactin enters Escherichia coli through the outer membrane (OM) porin FepA, which contains an aqueous transmembrane channel that is normally occluded by other parts of the protein. After binding the siderophore at a site within the surface loops, FepA undergoes conformational changes that promote ligand internalization. We assessed the participation of different loops in ligand recognition and uptake by creating and analysing a series of deletions. We genetically engineered 26 mutations that removed 9-75 amino acids from nine loops and two buried regions of the OM protein. The mutations had various effects on the uptake reaction, which we discerned by comparing the substrate concentrations of half-maximal binding (Kd) and uptake (Km): every loop deletion affected siderophore transport kinetics, decreasing or eliminating binding affinity and transport efficiency. We classified the mutations in three groups on the basis of their slight, strong or complete inhibition of the rate of ferric enterobactin transport across the OM. Finally, characterization of the FepA mutants revealed that prior experiments underestimated the affinity of FepA for ferric enterobactin: the interaction between the protein and the ferric siderophore is so avid (Kd < 0.2 nM) that FepA tolerated the large reductions in affinity that some loop deletions caused without loss of uptake functionality. That is, like other porins, many of the loops of FepA are superficially dispensable: ferric enterobactin transport occurred without them, at levels that allowed bacterial growth.
Collapse
Affiliation(s)
- S M Newton
- Department of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Norman, OK 73019, USA
| | | | | | | |
Collapse
|
32
|
Carson SD, Klebba PE, Newton SM, Sparling PF. Ferric enterobactin binding and utilization by Neisseria gonorrhoeae. J Bacteriol 1999; 181:2895-901. [PMID: 10217784 PMCID: PMC93735 DOI: 10.1128/jb.181.9.2895-2901.1999] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FetA, formerly designated FrpB, an iron-regulated, 76-kDa neisserial outer membrane protein, shows sequence homology to the TonB-dependent family of receptors that transport iron into gram-negative bacteria. Although FetA is commonly expressed by most neisserial strains and is a potential vaccine candidate for both Neisseria gonorrhoeae and Neisseria meningitidis, its function in cell physiology was previously undefined. We now report that FetA functions as an enterobactin receptor. N. gonorrhoeae FA1090 utilized ferric enterobactin as the sole iron source when supplied with ferric enterobactin at approximately 10 microM, but growth stimulation was abolished when an omega (Omega) cassette was inserted within fetA or when tonB was insertionally interrupted. FA1090 FetA specifically bound 59Fe-enterobactin, with a Kd of approximately 5 microM. Monoclonal antibodies raised against the Escherichia coli enterobactin receptor, FepA, recognized FetA in Western blots, and amino acid sequence comparisons revealed that residues previously implicated in ferric enterobactin binding by FepA were partially conserved in FetA. An open reading frame downstream of fetA, designated fetB, predicted a protein with sequence similarity to the family of periplasmic binding proteins necessary for transporting siderophores through the periplasmic space of gram-negative bacteria. An Omega insertion within fetB abolished ferric enterobactin utilization without causing a loss of ferric enterobactin binding. These data show that FetA is a functional homolog of FepA that binds ferric enterobactin and may be part of a system responsible for transporting the siderophore into the cell.
Collapse
Affiliation(s)
- S D Carson
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
33
|
Thulasiraman P, Newton SM, Xu J, Raymond KN, Mai C, Hall A, Montague MA, Klebba PE. Selectivity of ferric enterobactin binding and cooperativity of transport in gram-negative bacteria. J Bacteriol 1998; 180:6689-96. [PMID: 9852016 PMCID: PMC107775 DOI: 10.1128/jb.180.24.6689-6696.1998] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ligand-gated outer membrane porin FepA serves Escherichia coli as the receptor for the siderophore ferric enterobactin. We characterized the ability of seven analogs of enterobactin to supply iron via FepA by quantitatively measuring the binding and transport of their 59Fe complexes. The experiments refuted the idea that chirality of the iron complex affects its recognition by FepA and demonstrated the necessity of an unsubstituted catecholate coordination center for binding to the outer membrane protein. Among the compounds we tested, only ferric enantioenterobactin, the synthetic, left-handed isomer of natural enterobactin, and ferric TRENCAM, which substitutes a tertiary amine for the macrocyclic lactone ring of ferric enterobactin but maintains an unsubstituted catecholate iron complex, were recognized by FepA (Kd approximately 20 nM). Ferric complexes of other analogs (TRENCAM-3,2-HOPO; TREN-Me-3,2-HOPO; MeMEEtTAM; MeME-Me-3,2-HOPO; K3MECAMS; agrobactin A) with alterations to the chelating groups and different net charge on the iron center neither adsorbed to nor transported through FepA. We also compared the binding and uptake of ferric enterobactin by homologs of FepA from Bordetella bronchisepticus, Pseudomonas aeruginosa, and Salmonella typhimurium in the native organisms and as plasmid-mediated clones expressed in E. coli. All the transport proteins bound ferric enterobactin with high affinity (Kd </= 100 nM) and transported it at comparable rates (>/=50 pmol/min/10(9) cells) in their own particular membrane environments. However, the FepA and IroN proteins of S. typhimurium failed to efficiently function in E. coli. For E. coli, S. typhimurium, and P. aeruginosa, the rate of ferric enterobactin uptake was a sigmoidal function of its concentration, indicating a cooperative transport reaction involving multiple interacting binding sites on FepA.
Collapse
Affiliation(s)
- P Thulasiraman
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Kilburn L, Poole K, Meyer JM, Neshat S. Insertion mutagenesis of the ferric pyoverdine receptor FpvA of Pseudomonas aeruginosa: identification of permissive sites and a region important for ligand binding. J Bacteriol 1998; 180:6753-6. [PMID: 9852025 PMCID: PMC107784 DOI: 10.1128/jb.180.24.6753-6756.1998] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Insertion of an 18-amino-acid-encoding sequence within the fpvA gene identified permissive sites at residues Y350, A402, R451, R521, and R558, consistent with these residues occurring in extramembranous loop regions of the protein. Insertions at R451, R521, and R558 did not adversely affect receptor function, although insertions at Y350 and A402 compromised ferric pyoverdine binding and uptake. The latter region likely contributes to or interacts with the ligand-binding site.
Collapse
Affiliation(s)
- L Kilburn
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | |
Collapse
|
35
|
Diederichs K, Freigang J, Umhau S, Zeth K, Breed J. Prediction by a neural network of outer membrane beta-strand protein topology. Protein Sci 1998; 7:2413-20. [PMID: 9828008 PMCID: PMC2143870 DOI: 10.1002/pro.5560071119] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
An artificial neural network (NN) was trained to predict the topology of bacterial outer membrane (OM) beta-strand proteins. Specifically, the NN predicts the z-coordinate of Calpha atoms in a coordinate frame with the outer membrane in the xy-plane, such that low z-values indicate periplasmic turns, medium z-values indicate transmembrane beta-strands, and high z-values indicate extracellular loops. To obtain a training set, seven OM proteins (porins) with structures known to high resolution were aligned with their pores along the z-axis. The relationship between Calpha z-values and topology was thereby established. To predict the topology of other OM proteins, all seven porins were used for the training set. Z-values (topologies) were predicted for two porins with hitherto unknown structure and for OM proteins not belonging to the porin family, all with insignificant sequence homology to the training set. The results of topology prediction compare favorably with experimental topology data.
Collapse
|
36
|
Lazdunski CJ, Bouveret E, Rigal A, Journet L, Lloubès R, Bénédetti H. Colicin import into Escherichia coli cells. J Bacteriol 1998; 180:4993-5002. [PMID: 9748429 PMCID: PMC107532 DOI: 10.1128/jb.180.19.4993-5002.1998] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- C J Lazdunski
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Biologie Structurale et Microbiologie, CNRS, 13402 Marseille Cedex 20, France.
| | | | | | | | | | | |
Collapse
|
37
|
Cohen SM, Meyer M, Raymond KN. Enterobactin Protonation and Iron Release: Hexadentate Tris-Salicylate Ligands as Models for Triprotonated Ferric Enterobactin1. J Am Chem Soc 1998. [DOI: 10.1021/ja973442s] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Seth M. Cohen
- Contribution from the Department of Chemistry, University of California, Berkeley, California 94720
| | - Michel Meyer
- Contribution from the Department of Chemistry, University of California, Berkeley, California 94720
| | - Kenneth N. Raymond
- Contribution from the Department of Chemistry, University of California, Berkeley, California 94720
| |
Collapse
|
38
|
Moeck GS, Coulton JW. TonB-dependent iron acquisition: mechanisms of siderophore-mediated active transport. Mol Microbiol 1998; 28:675-81. [PMID: 9643536 DOI: 10.1046/j.1365-2958.1998.00817.x] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cells growing in aerobic environments have developed intricate strategies to overcome the scarcity of iron, an essential nutrient. In gram-negative bacteria, high-affinity iron acquisition requires outer membrane-localized proteins that bind iron chelates at the cell surface and promote their uptake. Transport of bound chelates across the outer membrane depends upon TonB-ExbB-ExbD, a cytoplasmic membrane-localized complex that transduces energy from the proton motive force to high-affinity receptors in the outer membrane. Upon ligand binding to iron chelate receptors, conformational changes are induced, some of which are detected in the periplasm. These structural alterations signal the ligand-loaded status of the receptor and, therefore, the requirement for TonB-dependent energy transduction. Thus, TonB interacts preferentially and directly with ligand-loaded receptors. Such a mechanism ensures the productive use of cellular energy to drive active transport at the outer membrane.
Collapse
Affiliation(s)
- G S Moeck
- Department of Microbiology and Immunology, McGill University, Montreal, Canada.
| | | |
Collapse
|
39
|
Klebba PE, Newton SM. Mechanisms of solute transport through outer membrane porins: burning down the house. Curr Opin Microbiol 1998; 1:238-47. [PMID: 10066479 DOI: 10.1016/s1369-5274(98)80017-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Porins mediate the uptake of nutrients across the outer membrane of Gram-negative bacteria. For general porins like OmpF, electrophysicoloigcal experiments now establish that the charged residues within their channels primarily modulate pore selectivity, rather than voltage-gated switching between open and closed states. Recent studies on the maltoporin, LamB, solidify the importance of its 'greasy slide' aromatic residues during sugar transport, and suggest the involvement of L9, in the exterior vestibule, as the initial maltodextrin binding site. The application of biophysical methodologies to the TonB-dependent porin, FepA, ostensibly reveal the opening and closing of its channel during ligand uptake, a phenomenon that was predicted but not previously demonstrated.
Collapse
Affiliation(s)
- P E Klebba
- Department of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Norman, Oklahoma 73019, USA
| | | |
Collapse
|
40
|
Bös C, Lorenzen D, Braun V. Specific in vivo labeling of cell surface-exposed protein loops: reactive cysteines in the predicted gating loop mark a ferrichrome binding site and a ligand-induced conformational change of the Escherichia coli FhuA protein. J Bacteriol 1998; 180:605-13. [PMID: 9457864 PMCID: PMC106928 DOI: 10.1128/jb.180.3.605-613.1998] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The FhuA protein of Escherichia coli K-12 transports ferrichrome, the antibiotic albomycin, colicin M, and microcin 25 across the outer membrane and serves as a receptor for the phages T1, T5, phi80, and UC-1. FhuA is activated by the electrochemical potential of the cytoplasmic membrane, which probably opens a channel in FhuA. It is thought that the proteins TonB, ExbB, and ExbD function as a coupling device between the cytoplasmic membrane and the outer membrane. Excision of 34 residues from FhuA, tentatively designated the gating loop, converts FhuA into a permanently open channel. FhuA contains two disulfide bridges, one in the gating loop and one close to the C-terminal end. Reduction of the disulfide bridges results in a low in vivo reaction of the cysteines in the gating loop and no reaction of the C-terminal cysteines with biotin-maleimide, as determined by streptavidin-beta-galactosidase bound to biotin. In this study we show that a cysteine residue introduced into the gating loop by replacement of Asp-336 displayed a rather high reactivity and was used to monitor structural changes in FhuA upon binding of ferrichrome. Flow cytometric analysis revealed fluorescence quenching by ferrichrome and albomycin of fluorescein-maleimide bound to FhuA. Ferrichrome did not inhibit Cys-336 labeling. In contrast, labeling of Cys-347, obtained by replacing Val-347 in the gating loop, was inhibited by ferrichrome, but ferrichrome quenching was negligible. It is concluded that binding of ferrichrome causes a conformational change of the gating loop and that Cys-347 is part of or close to the ferrichrome binding site. Fluorescence quenching was independent of the TonB activity. The newly introduced cysteines and the replacement of the existing cysteines by serine did not alter sensitivity of cells to the FhuA ligands tested (T5, phi80, T1, colicin M, and albomycin) and fully supported growth on ferrichrome as the sole iron source. Since cells of E. coli K-12 display no reactivity to thiol reagents, newly introduced cysteines can be used to determine surface-exposed regions of outer membrane proteins and to monitor conformational changes during their function.
Collapse
Affiliation(s)
- C Bös
- Mikrobiologie II, Universität Tübingen, Germany
| | | | | |
Collapse
|
41
|
Payne MA, Igo JD, Cao Z, Foster SB, Newton SM, Klebba PE. Biphasic binding kinetics between FepA and its ligands. J Biol Chem 1997; 272:21950-5. [PMID: 9268330 DOI: 10.1074/jbc.272.35.21950] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Escherichia coli FepA protein is an energy- and TonB-dependent, ligand-binding porin that functions as a receptor for the siderophore ferric enterobactin and colicins B and D. We characterized the kinetic and thermodynamic parameters associated with the initial, energy-independent steps in ligand binding to FepA. In vivo experiments produced Kd values of 24, 185, and 560 nM for ferric enterobactin, colicin B, and colicin D, respectively. The siderophore and colicin B bound to FepA with a 1:1 stoichiometry, but colicin D bound to a maximum level that was 3-fold lower. Preincubation with ferric enterobactin prevented colicin B binding, and preincubation with colicin B prevented ferric enterobactin binding. Colicin B release from FepA was unexpectedly slow in vivo, about 10-fold slower than ferric enterobactin release. This slow dissociation of the colicin B.FepA complex facilitated the affinity purification of FepA and FepA mutants with colicin B-Sepharose. Analysis of a fluorescent FepA derivative showed that ferric enterobactin and colicin B adsorbed with biphasic kinetics, suggesting that both ligands bind in at least two distinct steps, an initial rapid stage and a subsequent slower step, that presumably establishes a transport-competent complex.
Collapse
Affiliation(s)
- M A Payne
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | | | | | | | | | | |
Collapse
|
42
|
Jiang X, Payne MA, Cao Z, Foster SB, Feix JB, Newton SM, Klebba PE. Ligand-specific opening of a gated-porin channel in the outer membrane of living bacteria. Science 1997; 276:1261-4. [PMID: 9157886 DOI: 10.1126/science.276.5316.1261] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ligand-gated membrane channels selectively facilitate the entry of iron into prokaryotic cells. The essential role of iron in metabolism makes its acquisition a determinant of bacterial pathogenesis and a target for therapeutic strategies. In Gram-negative bacteria, TonB-dependent outer membrane proteins form energized, gated pores that bind iron chelates (siderophores) and internalize them. The time-resolved operation of the Escherichia coli ferric enterobactin receptor FepA was observed in vivo with electron spin resonance spectroscopy by monitoring the mobility of covalently bound nitroxide spin labels. A ligand-binding surface loop of FepA, which normally closes its transmembrane channel, exhibited energy-dependent structural changes during iron and toxin (colicin) transport. These changes were not merely associated with ligand binding, but occurred during ligand uptake through the outer membrane bilayer. The results demonstrate by a physical method that gated-porin channels open and close during membrane transport in vivo.
Collapse
Affiliation(s)
- X Jiang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | | | | | | | | | | | | |
Collapse
|