1
|
Su L, Souaibou Y, Hôtel L, Jacob C, Grün P, Shi YN, Chateau A, Pinel S, Bode HB, Aigle B, Weissman KJ. Exploiting the inherent promiscuity of the acyl transferase of the stambomycin polyketide synthase for the mutasynthesis of analogues. Chem Sci 2025; 16:5076-5088. [PMID: 39886430 PMCID: PMC11776934 DOI: 10.1039/d4sc06976e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/07/2025] [Accepted: 01/16/2025] [Indexed: 02/01/2025] Open
Abstract
The polyketide specialized metabolites of bacteria are attractive targets for generating analogues, with the goal of improving their pharmaceutical properties. Here, we aimed to produce C-26 derivatives of the giant anti-cancer stambomycin macrolides using a mutasynthesis approach, as this position has been shown previously to directly impact bioactivity. For this, we leveraged the intrinsically broad specificity of the acyl transferase domain (AT12) of the modular polyketide synthase (PKS), which is responsible for the alkyl branching functionality at this position. Feeding of a panel of synthetic and commercially available dicarboxylic acid 'mutasynthons' to an engineered strain of Streptomyces ambofaciens (Sa) deficient in synthesis of the native α-carboxyacyl-CoA extender units, resulted in six new series of stambomycin derivatives as judged by LC-HRMS and NMR. Notably, the highest product yields were observed for substrates which were only poorly accepted when AT12 was transplanted into a different PKS module, suggesting a critical role for domain context in the overall functioning of PKS proteins. We also demonstrate the superiority of this mutasynthesis approach - both in terms of absolute titers and yields relative to the parental compounds - in comparison to the alternative precursor-directed strategy in which monoacid building blocks are supplied to the wild type strain. We further identify a malonyl-CoA synthetase, MatB_Sa, with specificity distinct from previously described promiscuous enzymes, making it a useful addition to a mutasynthesis toolbox for generating atypical, CoA activated extender units. Finally, we show that two of the obtained (deoxy)-butyl-stambomycins exhibit antibacterial and antiproliferative activities similar to the parental stambomycins, while an unexpected butyl-demethyl congener is less potent. Overall, this works confirms the interest of biosynthetic pathways which combine a dedicated route to extender unit synthesis and a broad specificity AT domain for producing bioactive derivatives of fully-elaborated complex polyketides.
Collapse
Affiliation(s)
- Li Su
- Université de Lorraine, CNRS, IMoPA F-54000 Nancy France
- Université de Lorraine, INRAE, DynAMic F-54000 Nancy France
- Max-Planck-Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions 35043 Marburg Germany
| | - Yaouba Souaibou
- Université de Lorraine, CNRS, IMoPA F-54000 Nancy France
- Université de Lorraine, INRAE, DynAMic F-54000 Nancy France
- IPHC, UMR 7178, CNRS, Université de Strasbourg, Equipe de Chimie Analytique des Molécules Bioactives et Pharmacognosie Illkirch France
| | - Laurence Hôtel
- Université de Lorraine, INRAE, DynAMic F-54000 Nancy France
| | | | - Peter Grün
- Max-Planck-Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions 35043 Marburg Germany
| | - Yan-Ni Shi
- Max-Planck-Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions 35043 Marburg Germany
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt Frankfurt am Main Germany
| | | | - Sophie Pinel
- Université de Lorraine, CNRS, CRAN F-54000 Nancy France
| | - Helge B Bode
- Max-Planck-Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions 35043 Marburg Germany
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt Frankfurt am Main Germany
- Chemical Biology, Department of Chemistry, Philipps University of Marburg 35043 Marburg Germany
- Senckenberg Gesellschaft für Naturforschung 60325 Frankfurt am Main Germany
- Center for Synthetic Microbiology (SYNMIKRO), University of Marburg 35043 Marburg Germany
| | - Bertrand Aigle
- Université de Lorraine, INRAE, DynAMic F-54000 Nancy France
| | | |
Collapse
|
2
|
Buyachuihan L, Reiners S, Zhao Y, Grininger M. The malonyl/acetyl-transferase from murine fatty acid synthase is a promiscuous engineering tool for editing polyketide scaffolds. Commun Chem 2024; 7:187. [PMID: 39181936 PMCID: PMC11344766 DOI: 10.1038/s42004-024-01269-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024] Open
Abstract
Modular polyketide synthases (PKSs) play a vital role in the biosynthesis of complex natural products with pharmaceutically relevant properties. Their modular architecture makes them an attractive target for engineering to produce platform chemicals and drugs. In this study, we demonstrate that the promiscuous malonyl/acetyl-transferase domain (MAT) from murine fatty acid synthase serves as a highly versatile tool for the production of polyketide analogs. We evaluate the relevance of the MAT domain using three modular PKSs; the short trimodular venemycin synthase (VEMS), as well as modules of the PKSs deoxyerythronolide B synthase (DEBS) and pikromycin synthase (PIKS) responsible for the production of the antibiotic precursors erythromycin and pikromycin. To assess the performance of the MAT-swapped PKSs, we analyze the protein quality and run engineered polyketide syntheses in vitro. Our experiments include the chemoenzymatic synthesis of fluorinated macrolactones. Our study showcases MAT-based reprogramming of polyketide biosynthesis as a facile option for the regioselective editing of substituents decorating the polyketide scaffold.
Collapse
Affiliation(s)
- Lynn Buyachuihan
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Simon Reiners
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Yue Zhao
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
3
|
Kudo F, Kishikawa K, Tsuboi K, Kido T, Usui T, Hashimoto J, Shin-Ya K, Miyanaga A, Eguchi T. Acyltransferase Domain Exchange between Two Independent Type I Polyketide Synthases in the Same Producer Strain of Macrolide Antibiotics. Chembiochem 2023; 24:e202200670. [PMID: 36602093 DOI: 10.1002/cbic.202200670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
Streptomyces graminofaciens A-8890 produces two macrolide antibiotics, FD-891 and virustomycin A, both of which show significant biological activity. In this study, we identified the virustomycin A biosynthetic gene cluster, which encodes type I polyketide synthases (PKSs), ethylmalonyl-CoA biosynthetic enzymes, methoxymalony-acyl carrier protein biosynthetic enzymes, and post-PKS modification enzymes. Next, we demonstrated that the acyltransferase domain can be exchanged between the Vsm PKSs and the PKSs involved in FD-891 biosynthesis (Gfs PKSs), without any supply problems of the unique extender units. We exchanged the malonyltransferase domain in the loading module of Gfs PKS with the ethylmalonyltransferase domain and the methoxymalonyltransferase domain of Vsm PKSs. Consequently, the expected two-carbon-elongated analog 26-ethyl-FD-891 was successfully produced with a titer comparable to FD-891 production by the wild type; however, exchange with the methoxymalonyltransferase domain did not produce any FD-891 analogs. Furthermore, 26-ethyl-FD-891 showed potent cytotoxic activity against HeLa cells, like natural FD-891.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo, 152-8551, Japan
| | - Kosuke Kishikawa
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo, 152-8551, Japan
| | - Kazuma Tsuboi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo, 152-8551, Japan
| | - Takafusa Kido
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo, 152-8551, Japan
| | - Takeo Usui
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572, Ibaraki, Japan
| | - Junko Hashimoto
- Japan Biological Informatics Consortium (JBIC), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Kazuo Shin-Ya
- National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo, 152-8551, Japan
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo, 152-8551, Japan
| |
Collapse
|
4
|
Guo S, Sun X, Li R, Zhang T, Hu F, Liu F, Hua Q. Two strategies to improve the supply of PKS extender units for ansamitocin P-3 biosynthesis by CRISPR-Cas9. BIORESOUR BIOPROCESS 2022; 9:90. [PMID: 38647752 PMCID: PMC10991131 DOI: 10.1186/s40643-022-00583-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/15/2022] [Indexed: 11/10/2022] Open
Abstract
Ansamitocin P-3 (AP-3) produced by Actinosynnema pretiosum is a potent antitumor agent. However, lack of efficient genome editing tools greatly hinders the AP-3 overproduction in A. pretiosum. To solve this problem, a tailor-made pCRISPR-Cas9apre system was developed from pCRISPR-Cas9 for increasing the accessibility of A. pretiosum to genetic engineering, by optimizing cas9 for the host codon preference and replacing pSG5 with pIJ101 replicon. Using pCRISPR-Cas9apre, five large-size gene clusters for putative competition pathway were individually deleted with homology-directed repair (HDR) and their effects on AP-3 yield were investigated. Especially, inactivation of T1PKS-15 increased AP-3 production by 27%, which was most likely due to the improved intracellular triacylglycerol (TAG) pool for essential precursor supply of AP-3 biosynthesis. To enhance a "glycolate" extender unit, two combined bidirectional promoters (BDPs) ermEp-kasOp and j23119p-kasOp were knocked into asm12-asm13 spacer in the center region of gene cluster, respectively, by pCRISPR-Cas9apre. It is shown that in the two engineered strains BDP-ek and BDP-jk, the gene transcription levels of asm13-17 were significantly upregulated to improve the methoxymalonyl-acyl carrier protein (MM-ACP) biosynthetic pathway and part of the post-PKS pathway. The AP-3 yields of BDP-ek and BDP-jk were finally increased by 30% and 50% compared to the parent strain L40. Both CRISPR-Cas9-mediated engineering strategies employed in this study contributed to the availability of AP-3 PKS extender units and paved the way for further metabolic engineering of ansamitocin overproduction.
Collapse
Affiliation(s)
- Siyu Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xueyuan Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ruihua Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Tianyao Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Fengxian Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Feng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
5
|
Cossy J. Biocatalyts: Catalysts of the future for organic synthesis and beyond? Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Wang H, Liang J, Yue Q, Li L, Shi Y, Chen G, Li YZ, Bian X, Zhang Y, Zhao G, Ding X. Engineering the acyltransferase domain of epothilone polyketide synthase to alter the substrate specificity. Microb Cell Fact 2021; 20:86. [PMID: 33882930 PMCID: PMC8058987 DOI: 10.1186/s12934-021-01578-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background Polyketide synthases (PKSs) include ketone synthase (KS), acyltransferase (AT) and acyl carrier protein (ACP) domains to catalyse the elongation of polyketide chains. Some PKSs also contain ketoreductase (KR), dehydratase (DH) and enoylreductase (ER) domains as modification domains. Insertion, deletion or substitution of the catalytic domains may lead to the production of novel polyketide derivatives or to the accumulation of desired products. Epothilones are 16-membered macrolides that have been used as anticancer drugs. The substrate promiscuity of the module 4 AT domain of the epothilone PKS (EPOAT4) results in production of epothilone mixtures; substitution of this domain may change the ratios of epothilones. In addition, there are two dormant domains in module 9 of the epothilone PKS. Removing these redundant domains to generate a simpler and more efficient assembly line is a desirable goal. Results The substitution of module 4 drastically diminished the activity of epothilone PKS. However, with careful design of the KS-AT linker and the post-AT linker, replacing EPOAT4 with EPOAT2, EPOAT6, EPOAT7 or EPOAT8 (specifically incorporating methylmalonyl-CoA (MMCoA)) significantly increased the ratio of epothilone D (4) to epothilone C (3) (the highest ratio of 4:3 = 4.6:1), whereas the ratio of 4:3 in the parental strain Schlegelella brevitalea 104-1 was 1.4:1. We also obtained three strains by swapping EPOAT4 with EPOAT3, EPOAT5, or EPOAT9, which specifically incorporate malonyl-CoA (MCoA). These strains produced only epothilone C, and the yield was increased by a factor of 1.8 compared to that of parental strain 104-1. Furthermore, mutations of five residues in the AT domain identified Ser310 as the critical factor for MMCoA recognition in EPOAT4. Then, the mutation of His308 to valine or tyrosine combined with the mutation of Phe310 to serine further altered the product ratios. At the same time, we successfully deleted the inactive module 9 DH and ER domains and fused the ΨKR domain with the KR domain through an ~ 25-residue linker to generate a productive and simplified epothilone PKS. Conclusions These results suggested that the substitution and deletion of catalytic domains effectively produces desirable compounds and that selection of the linkers between domains is crucial for maintaining intact PKS catalytic activity. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01578-3.
Collapse
Affiliation(s)
- Huimin Wang
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Junheng Liang
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Qianwen Yue
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Long Li
- The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yan Shi
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, People's Republic of China
| | - Xiaoying Bian
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, People's Republic of China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, People's Republic of China
| | - Guoping Zhao
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China.,CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, People's Republic of China
| | - Xiaoming Ding
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China.
| |
Collapse
|
7
|
Singhvi N, Singh P, Prakash O, Gupta V, Lal S, Bechthold A, Singh Y, Singh RK, Lal R. Differential mass spectrometry-based proteome analyses unveil major regulatory hubs in rifamycin B production in Amycolatopsis mediterranei. J Proteomics 2021; 239:104168. [PMID: 33662614 DOI: 10.1016/j.jprot.2021.104168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 01/18/2023]
Abstract
Rifamycin B is produced by Amycolatopsis mediterranei S699 as a secondary metabolite. Its semi-synthetic derivatives have been used for curing tuberculosis caused by Mycobacterium tuberculosis. But the emergence of rifampicin-resistant strains required analogs of rifamycin B to be developed by rifamycin biosynthetic gene cluster manipulation. In 2014 genetic engineering of the rifamycin polyketide synthase gene cluster in S699 led to a mutant, A. mediterranei DCO#34, that produced 24-desmethylrifamycin B. Unfortunately, the productivity was strongly reduced to 20 mgL-1 as compared to 50 mgL-1 of rifamycin B. To understand the mechanisms leading to reduced productivity and rifamycin biosynthesis by A. mediterranei S699 during the early and late growth phase we performed a proteome study for wild type strain S699, mutant DCO#34, and the non-producer strain SCO2-2. Proteins identification and relative label-free quantification were performed by nLC-MS/MS. Data are available via ProteomeXchange with identifier PXD016416. Also, in-silico protein-protein interaction approach was used to determine the relationship between different structural and regulatory proteins involved in rifamycin biosynthesis. Our studies revealed RifA, RifK, RifL, Rif-Orf19 as the major regulatory hubs. Relative abundance expression values revealed that genes encoding RifC-RifI and the transporter RifP, down-regulated in DCO#34 and genes encoding RifR, RifZ, other regulatory proteins up-regulated. SIGNIFICANCE: The study is designed mainly to understand the underlying mechanisms of rifamycin biosynthesis in Amycolatopsis mediterranei. This resulted in the identification of regulatory hubs which play a crucial role in regulating secondary metabolism. It elucidates the complex mechanism of secondary metabolite biosynthesis and their conversion and extracellular transportation in temporal correlation with the different growth phases. The study also elucidated the mechanisms leading to reduced production of analog, 24-desmethylrifamycin B by the genetically modified strain DCO#34, derivatives of which have been found effective against rifampicin-resistant strains of Mycobacterium tuberculosis. These results can be useful while carrying out genetic manipulations to improve the strains of Amycolatopsis to produce better analogs/drugs and promote the eradication of TB. Thus, this study is contributing significantly to the growing knowledge in the field of the crucial drug, rifamycin B biosynthesis by an economically important bacterium Amycolatopsis mediterranei.
Collapse
Affiliation(s)
- Nirjara Singhvi
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Priya Singh
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Om Prakash
- National Centre for Microbial Resource-National Centre for Cell Sciences, Pune, Maharashtra 411007, India
| | - Vipin Gupta
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Sukanya Lal
- Department of Zoology, Ramjas College, University of Delhi, Delhi 110007, India
| | - Andreas Bechthold
- Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert-Ludwigs University, 79104 Freiburg, Germany
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Rakesh Kumar Singh
- Translational Science Laboratory, Florida State University, FL 32306, USA
| | - Rup Lal
- Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
8
|
Hwang S, Lee N, Cho S, Palsson B, Cho BK. Repurposing Modular Polyketide Synthases and Non-ribosomal Peptide Synthetases for Novel Chemical Biosynthesis. Front Mol Biosci 2020; 7:87. [PMID: 32500080 PMCID: PMC7242659 DOI: 10.3389/fmolb.2020.00087] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/16/2020] [Indexed: 12/16/2022] Open
Abstract
In nature, various enzymes govern diverse biochemical reactions through their specific three-dimensional structures, which have been harnessed to produce many useful bioactive compounds including clinical agents and commodity chemicals. Polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs) are particularly unique multifunctional enzymes that display modular organization. Individual modules incorporate their own specific substrates and collaborate to assemble complex polyketides or non-ribosomal polypeptides in a linear fashion. Due to the modular properties of PKSs and NRPSs, they have been attractive rational engineering targets for novel chemical production through the predictable modification of each moiety of the complex chemical through engineering of the cognate module. Thus, individual reactions of each module could be separated as a retro-biosynthetic biopart and repurposed to new biosynthetic pathways for the production of biofuels or commodity chemicals. Despite these potentials, repurposing attempts have often failed owing to impaired catalytic activity or the production of unintended products due to incompatible protein–protein interactions between the modules and structural perturbation of the enzyme. Recent advances in the structural, computational, and synthetic tools provide more opportunities for successful repurposing. In this review, we focused on the representative strategies and examples for the repurposing of modular PKSs and NRPSs, along with their advantages and current limitations. Thereafter, synthetic biology tools and perspectives were suggested for potential further advancement, including the rational and large-scale high-throughput approaches. Ultimately, the potential diverse reactions from modular PKSs and NRPSs would be leveraged to expand the reservoir of useful chemicals.
Collapse
Affiliation(s)
- Soonkyu Hwang
- Systems and Synthetic Biology Laboratory, Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Namil Lee
- Systems and Synthetic Biology Laboratory, Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Suhyung Cho
- Systems and Synthetic Biology Laboratory, Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Bernhard Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Byung-Kwan Cho
- Systems and Synthetic Biology Laboratory, Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Intelligent Synthetic Biology Center, Daejeon, South Korea
| |
Collapse
|
9
|
Demachi A, Uchida R, Arima S, Nagamitsu T, Hashimoto J, Komatsu M, Kozone I, Shin-Ya K, Tomoda H, Ikeda H. An Unusual Extender Unit Is Incorporated into the Modular Polyketide Synthase of Scopranones Biosynthesis. Biochemistry 2019; 58:5066-5073. [PMID: 31756295 DOI: 10.1021/acs.biochem.9b00908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Scopranones, produced by Streptomyces sp. BYK-11038, are the novel bone morphogenetic protein inhibitors characterized by atypical two scoop-like moieties and a 3-furanone moiety. Two scoop-like moieties connected to a 3-furanone have not previously been reported in natural products, and their biosynthesis must occur via a unique pathway. Feeding experiments using 13C-labeled precursors indicated that scopranones were synthesized from three acetates and three butyrates in polyketide-type biosynthesis. Genome mining of Streptomyces sp. BYK-11038 revealed that the candidate biosynthetic gene cluster contains 21 open reading frames (ORFs), including three modular polyketide synthases (PKSs; SprA, SprB, and SprC), which were composed of 4 modules with one loading module and 18 additional ORFs (SprD to SprU) spanning a distance of 55 kbp. The characterization of in-frame deletion mutants and feeding experiments with the predicted extender units indicated that two genes, sprP and sprR, encoding discrete 3-oxoacyl-ACP synthases, and a gene, sprO, encoding crotonyl-CoA reductase, were involved in assembling an unusual C8 branched extender unit, 2-(2-ethylbutyl)malonyl-CoA. Additionally, three ORFs, sprM, sprN, and sprT, encoding cytochrome P450s and a monooxygenase, are important tailoring enzymes in post-PKS modification. SprT is an essential enzyme for decarboxylative ring contraction via oxidation, which converts the 2-pyranone to a 3-furanone.
Collapse
Affiliation(s)
- Ayumu Demachi
- Medicinal Research Laboratory, School of Pharmacy and Graduate School of Pharmaceutical Sciences , Kitasato University , 5-9-1 Shirokane , Minato-ku , Tokyo 108-8641 , Japan
| | - Ryuji Uchida
- Faculty of Pharmaceutical Sciences , Tohoku Medical and Pharmaceutical University , 4-4-1 Komatsushima, Aoba-ku , Sendai , Miyagi 981-8558 , Japan
| | - Shiho Arima
- Medicinal Research Laboratory, School of Pharmacy and Graduate School of Pharmaceutical Sciences , Kitasato University , 5-9-1 Shirokane , Minato-ku , Tokyo 108-8641 , Japan
| | - Tohru Nagamitsu
- Medicinal Research Laboratory, School of Pharmacy and Graduate School of Pharmaceutical Sciences , Kitasato University , 5-9-1 Shirokane , Minato-ku , Tokyo 108-8641 , Japan
| | - Junko Hashimoto
- Japan Biological Informatics Consortium , 2-4-7 Aomi, Koto-ku , Tokyo 135-8073 , Japan
| | - Mamoru Komatsu
- Kitasato Institute for Life Sciences , Kitasato University , 1-15-1 Kitasato, Minami-ku , Sagamihara , Kanagawa 252-0373 , Japan
| | - Ikuko Kozone
- Japan Biological Informatics Consortium , 2-4-7 Aomi, Koto-ku , Tokyo 135-8073 , Japan
| | - Kazuo Shin-Ya
- National Institute of Advanced Industrial Science and Technology , 2-4-7 Aomi, Koto-ku , Tokyo 135-0064 , Japan
| | - Hiroshi Tomoda
- Medicinal Research Laboratory, School of Pharmacy and Graduate School of Pharmaceutical Sciences , Kitasato University , 5-9-1 Shirokane , Minato-ku , Tokyo 108-8641 , Japan
| | - Haruo Ikeda
- Kitasato Institute for Life Sciences , Kitasato University , 1-15-1 Kitasato, Minami-ku , Sagamihara , Kanagawa 252-0373 , Japan
| |
Collapse
|
10
|
Musiol-Kroll EM, Wohlleben W. Acyltransferases as Tools for Polyketide Synthase Engineering. Antibiotics (Basel) 2018; 7:antibiotics7030062. [PMID: 30022008 PMCID: PMC6164871 DOI: 10.3390/antibiotics7030062] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022] Open
Abstract
Polyketides belong to the most valuable natural products, including diverse bioactive compounds, such as antibiotics, anticancer drugs, antifungal agents, immunosuppressants and others. Their structures are assembled by polyketide synthases (PKSs). Modular PKSs are composed of modules, which involve sets of domains catalysing the stepwise polyketide biosynthesis. The acyltransferase (AT) domains and their “partners”, the acyl carrier proteins (ACPs), thereby play an essential role. The AT loads the building blocks onto the “substrate acceptor”, the ACP. Thus, the AT dictates which building blocks are incorporated into the polyketide structure. The precursor- and occasionally the ACP-specificity of the ATs differ across the polyketide pathways and therefore, the ATs contribute to the structural diversity within this group of complex natural products. Those features make the AT enzymes one of the most promising tools for manipulation of polyketide assembly lines and generation of new polyketide compounds. However, the AT-based PKS engineering is still not straightforward and thus, rational design of functional PKSs requires detailed understanding of the complex machineries. This review summarizes the attempts of PKS engineering by exploiting the AT attributes for the modification of polyketide structures. The article includes 253 references and covers the most relevant literature published until May 2018.
Collapse
Affiliation(s)
- Ewa Maria Musiol-Kroll
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| | - Wolfgang Wohlleben
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| |
Collapse
|
11
|
Klaus M, Grininger M. Engineering strategies for rational polyketide synthase design. Nat Prod Rep 2018; 35:1070-1081. [DOI: 10.1039/c8np00030a] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this review, we highlight strategies in engineering polyketide synthases (PKSs). We focus on important protein–protein interactions that constitute an intact PKS assembly line.
Collapse
Affiliation(s)
- Maja Klaus
- Institute of Organic Chemistry and Chemical Biology
- Buchmann Institute for Molecular Life Sciences
- Cluster of Excellence for Macromolecular Complexes
- Goethe University Frankfurt
- 60438 Frankfurt am Main
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology
- Buchmann Institute for Molecular Life Sciences
- Cluster of Excellence for Macromolecular Complexes
- Goethe University Frankfurt
- 60438 Frankfurt am Main
| |
Collapse
|
12
|
Park SY, Yang D, Ha SH, Lee SY. Metabolic Engineering of Microorganisms for the Production of Natural Compounds. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/adbi.201700190] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Seon Young Park
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 Republic of Korea
| | - Dongsoo Yang
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 Republic of Korea
| | - Shin Hee Ha
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 Republic of Korea
- BioProcess Engineering Research Center; KAIST; Daejeon 34141 Republic of Korea
- BioInformatics Research Center; KAIST; Daejeon 34141 Republic of Korea
| |
Collapse
|
13
|
Koch A, Hansen DA, Shende VV, Furan LR, Houk KN, Jiménez-Osés G, Sherman DH. A Single Active Site Mutation in the Pikromycin Thioesterase Generates a More Effective Macrocyclization Catalyst. J Am Chem Soc 2017; 139:13456-13465. [PMID: 28836768 PMCID: PMC5617804 DOI: 10.1021/jacs.7b06436] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Indexed: 11/28/2022]
Abstract
Macrolactonization of natural product analogs presents a significant challenge to both biosynthetic assembly and synthetic chemistry. In the preceding paper , we identified a thioesterase (TE) domain catalytic bottleneck processing unnatural substrates in the pikromycin (Pik) system, preventing the formation of epimerized macrolactones. Here, we perform molecular dynamics simulations showing the epimerized hexaketide was accommodated within the Pik TE active site; however, intrinsic conformational preferences of the substrate resulted in predominately unproductive conformations, in agreement with the observed hydrolysis. Accordingly, we engineered the stereoselective Pik TE to yield a variant (TES148C) with improved reaction kinetics and gain-of-function processing of an unnatural, epimerized hexaketide. Quantum mechanical comparison of model TES148C and TEWT reaction coordinate diagrams revealed a change in mechanism from a stepwise addition-elimination (TEWT) to a lower energy concerted acyl substitution (TES148C), accounting for the gain-of-function and improved reaction kinetics. Finally, we introduced the S148C mutation into a polyketide synthase module (PikAIII-TE) to impart increased substrate flexibility, enabling the production of diastereomeric macrolactones.
Collapse
Affiliation(s)
- Aaron
A. Koch
- Life
Sciences Institute, Cancer Biology Graduate Program, Department of Medicinal Chemistry, Program in Chemical
Biology, Department of Chemistry, and Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Douglas A. Hansen
- Life
Sciences Institute, Cancer Biology Graduate Program, Department of Medicinal Chemistry, Program in Chemical
Biology, Department of Chemistry, and Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Vikram V. Shende
- Life
Sciences Institute, Cancer Biology Graduate Program, Department of Medicinal Chemistry, Program in Chemical
Biology, Department of Chemistry, and Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lawrence R. Furan
- Life
Sciences Institute, Cancer Biology Graduate Program, Department of Medicinal Chemistry, Program in Chemical
Biology, Department of Chemistry, and Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - K. N. Houk
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Gonzalo Jiménez-Osés
- Departamento
de Química, Centro de Investigación en Síntesis
Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - David H. Sherman
- Life
Sciences Institute, Cancer Biology Graduate Program, Department of Medicinal Chemistry, Program in Chemical
Biology, Department of Chemistry, and Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
14
|
Coronafacoyl Phytotoxin Biosynthesis and Evolution in the Common Scab Pathogen Streptomyces scabiei. Appl Environ Microbiol 2017; 83:AEM.01169-17. [PMID: 28754703 DOI: 10.1128/aem.01169-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/19/2017] [Indexed: 01/08/2023] Open
Abstract
Coronafacoyl phytotoxins are an important family of plant toxins that are produced by several different phytopathogenic bacteria, including the gammaproteobacterium Pseudomonas syringae and the actinobacterium Streptomyces scabiei (formerly Streptomyces scabies). The phytotoxins consist of coronafacic acid (CFA) linked via an amide bond to different amino acids or amino acid derivatives. Previous work suggested that S. scabiei and P. syringae use distinct biosynthetic pathways for producing CFA, which is subsequently linked to its amino acid partner to form the complete phytotoxin. Here, we provide further evidence that the S. scabiei CFA biosynthetic pathway is novel by characterizing the role of CYP107AK1, a predicted cytochrome P450 that has no homologue in P. syringae Deletion of the CYP107AK1 gene abolished production of coronafacoyl-isoleucine (CFA-Ile), the primary coronafacoyl phytotoxin produced by S. scabiei Structural elucidation of accumulated biosynthetic intermediates in the ΔCYP107AK1 mutant indicated that CYP107AK1 is required for introducing the oxygen atom that ultimately forms the carbonyl group in the CFA backbone. The CYP107AK1 gene along with two additional genes involved in CFA-Ile biosynthesis in S. scabiei were found to be associated with putative CFA biosynthetic genes in other actinobacteria but not in other organisms. Analysis of the overall genetic content and organization of known and putative CFA biosynthetic gene clusters, together with phylogenetic analysis of the core biosynthetic genes, indicates that horizontal gene transfer has played an important role in the dissemination of the gene cluster and that rearrangement, insertion, and/or deletion events have likely contributed to the divergent biosynthetic evolution of coronafacoyl phytotoxins in bacteria.IMPORTANCE The ability of plants to defend themselves against invading pathogens relies on complex signaling pathways that are controlled by key phytohormones such as jasmonic acid (JA). Some phytopathogenic bacteria have evolved the ability to manipulate JA signaling in order to overcome host defenses by producing coronatine (COR), which functions as a potent JA mimic. COR and COR-like molecules, collectively referred to as coronafacoyl phytotoxins, are produced by several different plant-pathogenic bacteria, and this study provides supporting evidence that different biosynthetic pathways are utilized by different bacteria for production of these phytotoxins. In addition, our study provides a greater understanding of how coronafacoyl phytotoxin biosynthesis may have evolved in phylogenetically distinct bacteria, and we demonstrate that production of these compounds may be more widespread than previously recognized and that their role for the producing organism may not be limited to host-pathogen interactions.
Collapse
|
15
|
Barajas JF, Blake-Hedges JM, Bailey CB, Curran S, Keasling JD. Engineered polyketides: Synergy between protein and host level engineering. Synth Syst Biotechnol 2017; 2:147-166. [PMID: 29318196 PMCID: PMC5655351 DOI: 10.1016/j.synbio.2017.08.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/26/2017] [Accepted: 08/26/2017] [Indexed: 01/01/2023] Open
Abstract
Metabolic engineering efforts toward rewiring metabolism of cells to produce new compounds often require the utilization of non-native enzymatic machinery that is capable of producing a broad range of chemical functionalities. Polyketides encompass one of the largest classes of chemically diverse natural products. With thousands of known polyketides, modular polyketide synthases (PKSs) share a particularly attractive biosynthetic logic for generating chemical diversity. The engineering of modular PKSs could open access to the deliberate production of both existing and novel compounds. In this review, we discuss PKS engineering efforts applied at both the protein and cellular level for the generation of a diverse range of chemical structures, and we examine future applications of PKSs in the production of medicines, fuels and other industrially relevant chemicals.
Collapse
Key Words
- ACP, Acyl carrier protein
- AT, Acyltransferase
- CoL, CoA-Ligase
- Commodity chemical
- DE, Dimerization element
- DEBS, 6-deoxyerythronolide B synthase
- DH, Dehydratase
- ER, Enoylreductase
- FAS, Fatty acid synthases
- KR, Ketoreductase
- KS, Ketosynthase
- LM, Loading module
- LTTR, LysR-type transcriptional regulator
- Metabolic engineering
- Natural products
- PCC, Propionyl-CoA carboxylase
- PDB, Precursor directed biosynthesis
- PK, Polyketide
- PKS, Polyketide synthase
- Polyketide
- Polyketide synthase
- R, Reductase domain
- SARP, Streptomyces antibiotic regulatory protein
- SNAC, N-acetylcysteamine
- Synthetic biology
- TE, Thioesterase
- TKL, Triketide lactone
Collapse
Affiliation(s)
| | | | - Constance B. Bailey
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Samuel Curran
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Comparative Biochemistry Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jay. D. Keasling
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- QB3 Institute, University of California, Berkeley, Emeryville, CA 94608, USA
- Department of Chemical & Biomolecular Engineering, Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University Denmark, DK2970 Horsholm, Denmark
| |
Collapse
|
16
|
Koryakina I, Kasey C, McArthur JB, Lowell AN, Chemler JA, Li S, Hansen DA, Sherman DH, Williams GJ. Inversion of Extender Unit Selectivity in the Erythromycin Polyketide Synthase by Acyltransferase Domain Engineering. ACS Chem Biol 2017; 12:114-123. [PMID: 28103677 DOI: 10.1021/acschembio.6b00732] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Acyltransferase (AT) domains of polyketide synthases (PKSs) select extender units for incorporation into polyketides and dictate large portions of the structures of clinically relevant natural products. Accordingly, there is significant interest in engineering the substrate specificity of PKS ATs in order to site-selectively manipulate polyketide structure. However, previous attempts to engineer ATs have yielded mutant PKSs with relaxed extender unit specificity, rather than an inversion of selectivity from one substrate to another. Here, by directly screening the extender unit selectivity of mutants from active site saturation libraries of an AT from the prototypical PKS, 6-deoxyerythronolide B synthase, a set of single amino acid substitutions was discovered that dramatically impact the selectivity of the PKS with only modest reductions of product yields. One particular substitution (Tyr189Arg) inverted the selectivity of the wild-type PKS from its natural substrate toward a non-natural alkynyl-modified extender unit while maintaining more than twice the activity of the wild-type PKS with its natural substrate. The strategy and mutations described herein form a platform for combinatorial biosynthesis of site-selectively modified polyketide analogues that are modified with non-natural and non-native chemical functionality.
Collapse
Affiliation(s)
- Irina Koryakina
- Department
of Chemistry, NC State University, Raleigh, North Carolina 27695-8204, United States
| | - Christian Kasey
- Department
of Chemistry, NC State University, Raleigh, North Carolina 27695-8204, United States
| | | | - Andrew N. Lowell
- Life
Sciences Institute, Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joseph A. Chemler
- Life
Sciences Institute, Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shasha Li
- Life
Sciences Institute, Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Douglas A. Hansen
- Life
Sciences Institute, Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - David H. Sherman
- Life
Sciences Institute, Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Gavin J. Williams
- Department
of Chemistry, NC State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
17
|
Yuzawa S, Deng K, Wang G, Baidoo EEK, Northen TR, Adams PD, Katz L, Keasling JD. Comprehensive in Vitro Analysis of Acyltransferase Domain Exchanges in Modular Polyketide Synthases and Its Application for Short-Chain Ketone Production. ACS Synth Biol 2017; 6:139-147. [PMID: 27548700 DOI: 10.1021/acssynbio.6b00176] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Type I modular polyketide synthases (PKSs) are polymerases that utilize acyl-CoAs as substrates. Each polyketide elongation reaction is catalyzed by a set of protein domains called a module. Each module usually contains an acyltransferase (AT) domain, which determines the specific acyl-CoA incorporated into each condensation reaction. Although a successful exchange of individual AT domains can lead to the biosynthesis of a large variety of novel compounds, hybrid PKS modules often show significantly decreased activities. Using monomodular PKSs as models, we have systematically analyzed the segments of AT domains and associated linkers in AT exchanges in vitro and have identified the boundaries within a module that can be used to exchange AT domains while maintaining protein stability and enzyme activity. Importantly, the optimized domain boundary is highly conserved, which facilitates AT domain replacements in most type I PKS modules. To further demonstrate the utility of the optimized AT domain boundary, we have constructed hybrid PKSs to produce industrially important short-chain ketones. Our in vitro and in vivo analysis demonstrated production of predicted ketones without significant loss of activities of the hybrid enzymes. These results greatly enhance the mechanistic understanding of PKS modules and prove the benefit of using engineered PKSs as a synthetic biology tool for chemical production.
Collapse
Affiliation(s)
| | - Kai Deng
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Sandia National Laboratories, Livermore, California 94551, United States
| | - George Wang
- Joint BioEnergy Institute, Emeryville, California 94608, United States
| | | | - Trent R. Northen
- Joint BioEnergy Institute, Emeryville, California 94608, United States
| | - Paul D. Adams
- Joint BioEnergy Institute, Emeryville, California 94608, United States
| | - Leonard Katz
- Synthetic Biology Research Center, Emeryville, California 94608, United States
| | - Jay D. Keasling
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Synthetic Biology Research Center, Emeryville, California 94608, United States
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé, DK2970-Hørsholm, Denmark
| |
Collapse
|
18
|
Lin Z, Chen D, Liu W. Biosynthesis-based artificial evolution of microbial natural products. Sci China Chem 2016. [DOI: 10.1007/s11426-016-0062-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Lu C, Zhang X, Jiang M, Bai L. Enhanced salinomycin production by adjusting the supply of polyketide extender units in Streptomyces albus. Metab Eng 2016; 35:129-137. [PMID: 26969249 DOI: 10.1016/j.ymben.2016.02.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 01/28/2016] [Accepted: 02/23/2016] [Indexed: 11/19/2022]
Abstract
The anticoccidial salinomycin is a polyketide produced by Streptomyces albus and requires malonyl-CoAs, methylmalonyl-CoAs, and ethylmalonyl-CoAs for the backbone assembly. Genome sequencing of S. albus DSM 41398 revealed a high percentage of genes involved in lipid metabolism, supporting the high salinomycin yield in oil-rich media. Seven PKS/PKS-NRPS gene clusters in the genome were found to be actively transcribed and had been individually deleted, which resulted in significantly improved salinomycin production. However, a combined deletion of PKS-NRPS-2 and PKS-6 showed no further improvement. Whereas the concentrations of malonyl-CoA and methylmalonyl-CoA were increased, the concentration of ethylmalonyl-CoA remained low in the mutants. An endogenous crotonyl-CoA reductase gene (ccr) was overexpressed in the ΔPKS-NRPS-2/ΔPKS-6 mutant, resulting in improved production. Combination of cluster deletions and over-expression of ccr gene led to an overall titer improvement of salinomycin from 0.60 to 6.60g/L. This engineering strategy can be implemented for various natural polyketides production.
Collapse
Affiliation(s)
- Chenyang Lu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaojie Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ming Jiang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
20
|
Weissman KJ. Genetic engineering of modular PKSs: from combinatorial biosynthesis to synthetic biology. Nat Prod Rep 2016; 33:203-30. [DOI: 10.1039/c5np00109a] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This reviews covers on-going efforts at engineering the gigantic modular polyketide synthases (PKSs), highlighting both notable successes and failures.
Collapse
Affiliation(s)
- Kira J. Weissman
- UMR 7365
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA)
- CNRS-Université de Lorraine
- Biopôle de l'Université de Lorraine
- 54505 Vandœuvre-lès-Nancy Cedex
| |
Collapse
|
21
|
Abstract
Polyketides are a structurally and functionally diverse family of bioactive natural products that have found widespread application as pharmaceuticals, agrochemicals, and veterinary medicines. In bacteria complex polyketides are biosynthesized by giant multifunctional megaenzymes, termed modular polyketide synthases (PKSs), which construct their products in a highly coordinated assembly line-like fashion from a pool of simple precursor substrates. Not only is the multifaceted enzymology of PKSs a fascinating target for study, but it also presents considerable opportunities for the reengineering of these systems affording access to functionally optimized unnatural natural products. Here we provide an introductory primer to modular polyketide synthase structure and function, and highlight recent advances in the characterization and exploitation of these systems.
Collapse
Affiliation(s)
- Marisa Till
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol, BS8 1TD, UK
- BrisSynBio Synthetic Biology Research Centre, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Paul R Race
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol, BS8 1TD, UK
- BrisSynBio Synthetic Biology Research Centre, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
22
|
Jiang H, Wang YY, Guo YY, Shen JJ, Zhang XS, Luo HD, Ren NN, Jiang XH, Li YQ. An acyltransferase domain of FK506 polyketide synthase recognizing both an acyl carrier protein and coenzyme A as acyl donors to transfer allylmalonyl and ethylmalonyl units. FEBS J 2015; 282:2527-39. [PMID: 25865045 DOI: 10.1111/febs.13296] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 11/30/2022]
Abstract
UNLABELLED Acyltransferase (AT) domains of polyketide synthases (PKSs) usually use coenzyme A (CoA) as an acyl donor to transfer common acyl units to acyl carrier protein (ACP) domains, initiating incorporation of acyl units into polyketides. Two clinical immunosuppressive agents, FK506 and FK520, are biosynthesized by the same PKSs in several Streptomyces strains. In this study, characterization of AT4FkbB (the AT domain of the fourth module of FK506 PKS) in transacylation reactions showed that AT4FkbB recognizes both an ACP domain (ACPT csA) and CoA as acyl donors for transfer of a unique allylmalonyl (AM) unit to an acyl acceptor ACP domain (ACP4FkbB), resulting in FK506 production. In addition, AT4FkbB uses CoA as an acyl donor to transfer an unusual ethylmalonyl (EM) unit to ACP4FkbB, resulting in FK520 production, and transfers AM units to non-native ACP acceptors. Characterization of AT4FkbB in self-acylation reactions suggests that AT4FkbB controls acyl unit specificity in transacylation reactions but not in self-acylation reactions. Generally, AT domains of PKSs only recognize one acyl donor; however, we report here that AT4FkbB recognizes two acyl donors for the transfer of different acyl units. DATABASE Nucleotide sequence data have been submitted to the GenBank database under accession numbers KJ000382 and KJ000383.
Collapse
Affiliation(s)
- Hui Jiang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Microbial Biochemistry and Metabolism Engineering of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yue-Yue Wang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuan-Yang Guo
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie-Jie Shen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao-Sheng Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hong-Dou Luo
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ni-Ni Ren
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xin-Hang Jiang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yong-Quan Li
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Microbial Biochemistry and Metabolism Engineering of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
23
|
Nigam A, Almabruk KH, Saxena A, Yang J, Mukherjee U, Kaur H, Kohli P, Kumari R, Singh P, Zakharov LN, Singh Y, Mahmud T, Lal R. Modification of rifamycin polyketide backbone leads to improved drug activity against rifampicin-resistant Mycobacterium tuberculosis. J Biol Chem 2015; 289:21142-52. [PMID: 24923585 DOI: 10.1074/jbc.m114.572636] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rifamycin B, a product of Amycolatopsis mediterranei S699, is the precursor of clinically used antibiotics that are effective against tuberculosis, leprosy, and AIDS-related mycobacterial infections. However, prolonged usage of these antibiotics has resulted in the emergence of rifamycin-resistant strains of Mycobacterium tuberculosis. As part of our effort to generate better analogs of rifamycin, we substituted the acyltransferase domain of module 6 of rifamycin polyketide synthase with that of module 2 of rapamycin polyketide synthase. The resulting mutants (rifAT6::rapAT2) of A. mediterranei S699 produced new rifamycin analogs, 24-desmethylrifamycin B and 24-desmethylrifamycin SV, which contained modification in the polyketide backbone. 24-Desmethylrifamycin B was then converted to 24-desmethylrifamycin S, whose structure was confirmed by MS, NMR, and X-ray crystallography. Subsequently, 24-desmethylrifamycin S was converted to 24-desmethylrifampicin, which showed excellent antibacterial activity against several rifampicin-resistant M. tuberculosis strains.
Collapse
|
24
|
Koryakina I, McArthur JB, Draelos MM, Williams GJ. Promiscuity of a modular polyketide synthase towards natural and non-natural extender units. Org Biomol Chem 2014; 11:4449-58. [PMID: 23681002 DOI: 10.1039/c3ob40633d] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Combinatorial biosynthesis approaches that involve modular type I polyketide synthases (PKSs) are proven strategies for the synthesis of polyketides. In general however, such strategies are usually limited in scope and utility due to the restricted substrate specificity of polyketide biosynthetic machinery. Herein, a panel of chemo-enzymatically synthesized acyl-CoA's was used to probe the promiscuity of a polyketide synthase. Promiscuity determinants were dissected, revealing that the KS is remarkably tolerant to a diverse array of extender units, while the AT likely discriminates between extender units that are native to the producing organism. Our data provides a clear blueprint for future enzyme engineering efforts, and sets the stage for harnessing extender unit promiscuity by employing various in vivo polyketide diversification strategies.
Collapse
Affiliation(s)
- Irina Koryakina
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | | | | | | |
Collapse
|
25
|
Beld J, Sonnenschein EC, Vickery CR, Noel JP, Burkart MD. The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life. Nat Prod Rep 2014; 31:61-108. [PMID: 24292120 PMCID: PMC3918677 DOI: 10.1039/c3np70054b] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: up to 2013. Although holo-acyl carrier protein synthase, AcpS, a phosphopantetheinyl transferase (PPTase), was characterized in the 1960s, it was not until the publication of the landmark paper by Lambalot et al. in 1996 that PPTases garnered wide-spread attention being classified as a distinct enzyme superfamily. In the past two decades an increasing number of papers have been published on PPTases ranging from identification, characterization, structure determination, mutagenesis, inhibition, and engineering in synthetic biology. In this review, we comprehensively discuss all current knowledge on this class of enzymes that post-translationally install a 4'-phosphopantetheine arm on various carrier proteins.
Collapse
Affiliation(s)
- Joris Beld
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA.
| | | | | | | | | |
Collapse
|
26
|
Lowry B, Robbins T, Weng CH, O'Brien RV, Cane DE, Khosla C. In vitro reconstitution and analysis of the 6-deoxyerythronolide B synthase. J Am Chem Soc 2013; 135:16809-12. [PMID: 24161212 DOI: 10.1021/ja409048k] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Notwithstanding an extensive literature on assembly line polyketide synthases such as the 6-deoxyerythronolide B synthase (DEBS), a complete naturally occurring synthase has never been reconstituted in vitro from purified protein components. Here, we describe the fully reconstituted DEBS and quantitatively characterize some of the properties of the assembled system that have never been explored previously. The maximum turnover rate of the complete hexamodular system is 1.1 min(-1), comparable to the turnover rate of a truncated trimodular derivative (2.5 min(-1)) but slower than that of a bimodular derivative (21 min(-1)). In the presence of similar concentrations of methylmalonyl- and ethylmalonyl-CoA substrates, DEBS synthesizes multiple regiospecifically modified analogues, one of which we have analyzed in detail. Our studies lay the foundation for biochemically interrogating and rationally engineering polyketide assembly lines in an unprecedented manner.
Collapse
Affiliation(s)
- Brian Lowry
- Department of Chemical Engineering, ‡Department of Chemistry, §School of Medicine, and ⊥Medical Science Training Program, Stanford University , Stanford, California 94305, United States
| | | | | | | | | | | |
Collapse
|
27
|
Lechner A, Wilson MC, Ban YH, Hwang JY, Yoon YJ, Moore BS. Designed biosynthesis of 36-methyl-FK506 by polyketide precursor pathway engineering. ACS Synth Biol 2013; 2:379-83. [PMID: 23654255 DOI: 10.1021/sb3001062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The polyketide synthase (PKS) biosynthetic code has recently expanded to include a newly recognized group of extender unit substrates derived from α,β-unsaturated acyl-CoA molecules that deliver diverse side chain chemistry to polyketide backbones. Herein we report the identification of a three-gene operon responsible for the biosynthesis of the PKS building block isobutyrylmalonyl-CoA associated with the macrolide ansalactam A from the marine bacterium Streptomyces sp. CNH189. Using a synthetic biology approach, we engineered the production of unnatural 36-methyl-FK506 in Streptomyces sp. KCTC 11604BP by incorporating the branched extender unit into FK506 biosynthesis in place of its natural C-21 allyl side chain, which has been shown to be critical for FK506's potent immunosuppressant and neurite outgrowth activities.
Collapse
Affiliation(s)
| | | | - Yeon Hee Ban
- Department of Chemistry and Nano
Science, Ewha Womans University, Seoul
120-750, Republic of Korea
| | - Jae-yeon Hwang
- Department of Chemistry and Nano
Science, Ewha Womans University, Seoul
120-750, Republic of Korea
| | - Yeo Joon Yoon
- Department of Chemistry and Nano
Science, Ewha Womans University, Seoul
120-750, Republic of Korea
| | | |
Collapse
|
28
|
Abstract
Antibiotic discovery has a storied history. From the discovery of penicillin by Sir Alexander Fleming to the relentless quest for antibiotics by Selman Waksman, the stories have become like folklore used to inspire future generations of scientists. However, recent discovery pipelines have run dry at a time when multidrug-resistant pathogens are on the rise. Nature has proven to be a valuable reservoir of antimicrobial agents, which are primarily produced by modularized biochemical pathways. Such modularization is well suited to remodeling by an interdisciplinary approach that spans science and engineering. Herein, we discuss the biological engineering of small molecules, peptides, and non-traditional antimicrobials and provide an overview of the growing applicability of synthetic biology to antimicrobials discovery.
Collapse
Affiliation(s)
- Bijan Zakeri
- Synthetic Biology Group, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Electrical Engineering & Computer Science and Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- MIT Synthetic Biology Center, 500 Technology Square, Cambridge MA 02139, USA
| | - Timothy K. Lu
- Synthetic Biology Group, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Electrical Engineering & Computer Science and Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- MIT Synthetic Biology Center, 500 Technology Square, Cambridge MA 02139, USA
| |
Collapse
|
29
|
Dunn BJ, Khosla C. Engineering the acyltransferase substrate specificity of assembly line polyketide synthases. J R Soc Interface 2013; 10:20130297. [PMID: 23720536 DOI: 10.1098/rsif.2013.0297] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Polyketide natural products act as a broad range of therapeutics, including antibiotics, immunosuppressants and anti-cancer agents. This therapeutic diversity stems from the structural diversity of these small molecules, many of which are produced in an assembly line manner by modular polyketide synthases. The acyltransferase (AT) domains of these megasynthases are responsible for selection and incorporation of simple monomeric building blocks, and are thus responsible for a large amount of the resulting polyketide structural diversity. The substrate specificity of these domains is often targeted for engineering in the generation of novel, therapeutically active natural products. This review outlines recent developments that can be used in the successful engineering of these domains, including AT sequence and structural data, mechanistic insights and the production of a diverse pool of extender units. It also provides an overview of previous AT domain engineering attempts, and concludes with proposed engineering approaches that take advantage of current knowledge. These approaches may lead to successful production of biologically active 'unnatural' natural products.
Collapse
Affiliation(s)
- Briana J Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
30
|
Schada von Borzyskowski L, Rosenthal RG, Erb TJ. Evolutionary history and biotechnological future of carboxylases. J Biotechnol 2013; 168:243-51. [PMID: 23702164 DOI: 10.1016/j.jbiotec.2013.05.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/08/2013] [Accepted: 05/13/2013] [Indexed: 10/26/2022]
Abstract
Carbon dioxide (CO2) is a potent greenhouse gas whose presence in the atmosphere is a critical factor for global warming. At the same time atmospheric CO2 is also a cheap and readily available carbon source that can in principle be used to synthesize value-added products. However, as uncatalyzed chemical CO2-fixation reactions usually require quite harsh conditions to functionalize the CO2 molecule, not many processes have been developed that make use of CO2. In contrast to synthetical chemistry, Nature provides a multitude of different carboxylating enzymes whose carboxylating principle(s) might be exploited in biotechnology. This review focuses on the biochemical features of carboxylases, highlights possible evolutionary scenarios for the emergence of their reactivity, and discusses current, as well as potential future applications of carboxylases in organic synthesis, biotechnology and synthetic biology.
Collapse
|
31
|
Klopries S, Sundermann U, Schulz F. Quantification of N-acetylcysteamine activated methylmalonate incorporation into polyketide biosynthesis. Beilstein J Org Chem 2013; 9:664-74. [PMID: 23616811 PMCID: PMC3628877 DOI: 10.3762/bjoc.9.75] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 03/11/2013] [Indexed: 11/23/2022] Open
Abstract
Polyketides are biosynthesized through consecutive decarboxylative Claisen condensations between a carboxylic acid and differently substituted malonic acid thioesters, both tethered to the giant polyketide synthase enzymes. Individual malonic acid derivatives are typically required to be activated as coenzyme A-thioesters prior to their enzyme-catalyzed transfer onto the polyketide synthase. Control over the selection of malonic acid building blocks promises great potential for the experimental alteration of polyketide structure and bioactivity. One requirement for this endeavor is the supplementation of the bacterial polyketide fermentation system with tailored synthetic thioester-activated malonates. The membrane permeable N-acetylcysteamine has been proposed as a coenzyme A-mimic for this purpose. Here, the incorporation efficiency into different polyketides of N-acetylcysteamine activated methylmalonate is studied and quantified, showing a surprisingly high and transferable activity of these polyketide synthase substrate analogues in vivo.
Collapse
Affiliation(s)
- Stephan Klopries
- Fakultät für Chemie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44221 Dortmund, Germany
| | | | | |
Collapse
|
32
|
Abdel-Rahman IAM, Beuerle T, Ernst L, Abdel-Baky AM, Desoky EEDK, Ahmed AS, Beerhues L. In vitro formation of the anthranoid scaffold by cell-free extracts from yeast-extract-treated Cassia bicapsularis cell cultures. PHYTOCHEMISTRY 2013; 88:15-24. [PMID: 23395285 DOI: 10.1016/j.phytochem.2013.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 12/27/2012] [Accepted: 01/08/2013] [Indexed: 05/06/2023]
Abstract
The anthranoid skeleton is believed to be formed by octaketide synthase (OKS), a member of the type III polyketide synthase (PKS) superfamily. Recombinant OKSs catalyze stepwise condensation of eight acetyl units to form a linear octaketide intermediate which, however, is incorrectly folded and cyclized to give the shunt products SEK4 and SEK4b. Here we report in vitro formation of the anthranoid scaffold by cell-free extracts from yeast-extract-treated Cassia bicapsularis cell cultures. Unlike field- and in vitro-grown shoots which accumulate anthraquinones, cell cultures mainly contained tetrahydroanthracenes, formation of which was increased 2.5-fold by the addition of yeast extract. The elicitor-stimulated accumulation of tetrahydroanthracenes was preceded by an approx. 35-fold increase in OKS activity. Incubation of cell-free extracts from yeast-extract-treated cell cultures with acetyl-CoA and [2-(14)C]malonyl-CoA led to formation of torosachrysone (tetrahydroanthracene) and emodin anthrone, beside two yet unidentified products. No product formation occurred in the absence of acetyl-CoA as starter substrate. To confirm the identities of the enzymatic products, cell-free extracts were incubated with acetyl-CoA and [U-(13)C(3)]malonyl-CoA and (13)C incorporation was analyzed by ESI-MS/MS. Detection of anthranoid biosynthesis in cell-free extracts indicates in vitro cooperation of OKS with a yet unidentified factor or enzyme for octaketide cyclization.
Collapse
Affiliation(s)
- Iman A M Abdel-Rahman
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstrasse 1, 38106 Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Dunn BJ, Cane DE, Khosla C. Mechanism and specificity of an acyltransferase domain from a modular polyketide synthase. Biochemistry 2013; 52:1839-41. [PMID: 23452124 PMCID: PMC3612939 DOI: 10.1021/bi400185v] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acyltransferase (AT) domains of modular polyketide synthases exercise tight control over the choice of α-carboxyacyl-CoA substrates, but the mechanistic basis for this specificity is unknown. We show that whereas the specificity for the electrophilic malonyl or methylmalonyl component is primarily expressed in the first half-reaction (formation of the acyl-enzyme intermediate), the second half-reaction shows comparable specificity for the acyl carrier protein that carries the nucleophilic pantetheine arm. We also show that currently used approaches for engineering AT domain specificity work mainly by degrading specificity for the natural substrate rather than by enhancing specificity for alternative substrates.
Collapse
Affiliation(s)
- Briana J. Dunn
- Department of Chemical Engineering, Stanford University, Stanford, California 94305
| | - David E. Cane
- Department of Chemistry, Box H, Brown University, Providence, Rhode Island 02912
| | - Chaitan Khosla
- Department of Chemical Engineering, Stanford University, Stanford, California 94305
- Department of Chemistry and Biochemistry, Stanford University, Stanford, California 94305
| |
Collapse
|
34
|
Sundermann U, Bravo-Rodriguez K, Klopries S, Kushnir S, Gomez H, Sanchez-Garcia E, Schulz F. Enzyme-directed mutasynthesis: a combined experimental and theoretical approach to substrate recognition of a polyketide synthase. ACS Chem Biol 2013. [PMID: 23181268 DOI: 10.1021/cb300505w] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Acyltransferase domains control the extender unit recognition in Polyketide Synthases (PKS) and thereby the side-chain diversity of the resulting natural products. The enzyme engineering strategy presented here allows the alteration of the acyltransferase substrate profile to enable an engineered biosynthesis of natural product derivatives through the incorporation of a synthetic malonic acid thioester. Experimental sequence-function correlations combined with computational modeling revealed the origins of substrate recognition in these PKS domains and enabled a targeted mutagenesis. We show how a single point mutation was able to direct the incorporation of a malonic acid building block with a non-native functional group into erythromycin. This approach, introduced here as enzyme-directed mutasynthesis, opens a new field of possibilities beyond the state of the art for the combination of organic chemistry and biosynthesis toward natural product analogues.
Collapse
Affiliation(s)
- Uschi Sundermann
- Fakultät für Chemie,
Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44221 Dortmund, Germany
- Max-Planck-Institut für molekulare Physiologie, Abteilung für
Chemische Biologie, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Kenny Bravo-Rodriguez
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1,
45470 Mülheim an der Ruhr, Germany
| | - Stephan Klopries
- Fakultät für Chemie,
Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44221 Dortmund, Germany
| | - Susanna Kushnir
- Fakultät für Chemie,
Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44221 Dortmund, Germany
| | - Hansel Gomez
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1,
45470 Mülheim an der Ruhr, Germany
- Institut de Biotecnologia i
de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Bellaterra), Spain
| | - Elsa Sanchez-Garcia
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1,
45470 Mülheim an der Ruhr, Germany
| | - Frank Schulz
- Fakultät für Chemie,
Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44221 Dortmund, Germany
- Max-Planck-Institut für molekulare Physiologie, Abteilung für
Chemische Biologie, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| |
Collapse
|
35
|
Cobb RE, Luo Y, Freestone T, Zhao H. Drug Discovery and Development via Synthetic Biology. Synth Biol (Oxf) 2013. [DOI: 10.1016/b978-0-12-394430-6.00010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
36
|
Bonnett SA, Rath CM, Shareef AR, Joels JR, Chemler JA, Håkansson K, Reynolds K, Sherman DH. Acyl-CoA subunit selectivity in the pikromycin polyketide synthase PikAIV: steady-state kinetics and active-site occupancy analysis by FTICR-MS. ACTA ACUST UNITED AC 2012; 18:1075-81. [PMID: 21944746 DOI: 10.1016/j.chembiol.2011.07.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 06/23/2011] [Accepted: 07/04/2011] [Indexed: 10/17/2022]
Abstract
Polyketide natural products generated by type I modular polyketide synthases (PKSs) are vital components in our drug repertoire. To reprogram these biosynthetic assembly lines, we must first understand the steps that occur within the modular "black boxes." Herein, key steps of acyl-CoA extender unit selection are explored by in vitro biochemical analysis of the PikAIV PKS model system. Two complementary approaches are employed: a fluorescent-probe assay for steady-state kinetic analysis, and Fourier Transform Ion Cyclotron Resonance-mass spectrometry (FTICR-MS) to monitor active-site occupancy. Findings from five enzyme variants and four model substrates have enabled a model to be proposed involving catalysis based upon acyl-CoA substrate loading followed by differential rates of hydrolysis. These efforts suggest a strategy for future pathway engineering efforts using unnatural extender units with slow rates of hydrolytic off-loading from the acyltransferase domain.
Collapse
Affiliation(s)
- Shilah A Bonnett
- Department of Chemistry, Portland State University, Portland, OR 97201, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Wilson MC, Moore BS. Beyond ethylmalonyl-CoA: the functional role of crotonyl-CoA carboxylase/reductase homologs in expanding polyketide diversity. Nat Prod Rep 2011; 29:72-86. [PMID: 22124767 DOI: 10.1039/c1np00082a] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covers the emerging biosynthetic role of crotonyl-CoA carboxylase/reductase (CCR) homologs in extending the structural and functional diversity of polyketide natural products. CCRs catalyze the reductive carboxylation of α,β-unsaturated acyl-CoA substrates to produce a variety of substituted malonyl-CoA derivatives employed as polyketide synthase extender units. Here we discuss the history of CCRs in both primary and secondary metabolism, the mechanism by which they function, examples of new polyketide diversity from pathway specific CCRs, and the role of CCRs in facilitating the bioengineering novel polyketides.
Collapse
Affiliation(s)
- Micheal C Wilson
- Scripps Institution of Oceanography, University of California at San Diego, La Jolla, USA
| | | |
Collapse
|
38
|
Yurkovich ME, Tyrakis PA, Hong H, Sun Y, Samborskyy M, Kamiya K, Leadlay PF. A Late-Stage Intermediate in Salinomycin Biosynthesis Is Revealed by Specific Mutation in the Biosynthetic Gene Cluster. Chembiochem 2011; 13:66-71. [DOI: 10.1002/cbic.201100590] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Indexed: 12/24/2022]
|
39
|
Abstract
Carboxylases are among the most important enzymes in the biosphere, because they catalyze a key reaction in the global carbon cycle: the fixation of inorganic carbon (CO₂). This minireview discusses the physiological roles of carboxylases in different microbial pathways that range from autotrophy, carbon assimilation, and anaplerosis to biosynthetic and redox-balancing functions. In addition, the current and possible future uses of carboxylation reactions in synthetic biology are discussed. Such uses include the possible transformation of the greenhouse gas carbon dioxide into value-added compounds and the production of novel antibiotics.
Collapse
|
40
|
Goranovic D, Kosec G, Mrak P, Fujs S, Horvat J, Kuscer E, Kopitar G, Petkovic H. Origin of the allyl group in FK506 biosynthesis. J Biol Chem 2010; 285:14292-300. [PMID: 20194504 DOI: 10.1074/jbc.m109.059600] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FK506 (tacrolimus) is a secondary metabolite with a potent immunosuppressive activity, currently registered for use as immunosuppressant after organ transplantation. FK506 and FK520 are biogenetically related natural products that are synthesized by combined polyketide synthase/nonribosomal peptide synthetase systems. The entire gene cluster for biosynthesis of FK520 from Streptomyces hygroscopicus var. ascomyceticus has been cloned and sequenced. On the other hand, the FK506 gene cluster from Streptomyces sp. MA6548 (ATCC55098) was sequenced only partially, and it was reasonable to expect that additional genes would be required for the provision of substrate supply. Here we report the identification of a previously unknown region of the FK506 gene cluster from Streptomyces tsukubaensis NRRL 18488 containing genes encoding the provision of unusual building blocks for FK506 biosynthesis as well as a regulatory gene. Among others, we identified a group of genes encoding biosynthesis of the extender unit that forms the allyl group at carbon 21 of FK506. Interestingly, we have identified a small independent diketide synthase system involved in the biosynthesis of the allyl group. Inactivation of one of these genes, encoding an unusual ketosynthase domain, resulted in an FK506 nonproducing strain, and the production was restored when a synthetic analog of the allylmalonyl-CoA extender unit was added to the cultivation medium. Based on our results, we propose a biosynthetic pathway for the provision of an unusual five-carbon extender unit, which is carried out by a novel diketide synthase complex.
Collapse
Affiliation(s)
- Dusan Goranovic
- Acies Bio d.o.o., Tehnoloski Park 21, SI-1000 Ljubljana, Slovenia
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Genetic engineering of macrolide biosynthesis: past advances, current state, and future prospects. Appl Microbiol Biotechnol 2009; 85:1227-39. [PMID: 19902203 DOI: 10.1007/s00253-009-2326-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 10/21/2009] [Accepted: 10/22/2009] [Indexed: 10/20/2022]
Abstract
Polyketides comprise one of the major families of natural products. They are found in a wide variety of bacteria, fungi, and plants and include a large number of medically important compounds. Polyketides are biosynthesized by polyketide synthases (PKSs). One of the major groups of polyketides are the macrolides, the activities of which are derived from the presence of a macrolactone ring to which one or more 6-deoxysugars are attached. The core macrocyclic ring is biosynthesized from acyl-CoA precursors by PKS. Genetic manipulation of PKS-encoding genes can result in predictable changes in the structure of the macrolactone component, many of which are not easily achieved through standard chemical derivatization or total synthesis. Furthermore, many of the changes, including post-PKS modifications such as glycosylation and oxidation, can be combined for further structural diversification. This review highlights the current state of novel macrolide production with a focus on the genetic engineering of PKS and post-PKS tailoring genes. Such engineering of the metabolic pathways for macrolide biosynthesis provides attractive alternatives for the production of diverse non-natural compounds. Other issues of importance, including the engineering of precursor pathways and heterologous expression of macrolide biosynthetic genes, are also considered.
Collapse
|
42
|
|
43
|
|
44
|
Hudlicky T, Reed JW. Applications of biotransformations and biocatalysis to complexity generation in organic synthesis. Chem Soc Rev 2009; 38:3117-32. [DOI: 10.1039/b901172m] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Abstract
This review covers the biosynthesis of extender units that are utilized for the assembly of polyketides by polyketide synthases. The metabolic origins of each of the currently known polyketide synthase extender units are covered.
Collapse
Affiliation(s)
- Yolande A. Chan
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, WI 53706, USA
| | - Angela M. Podevels
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Brian M. Kevany
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael G. Thomas
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, WI 53706, USA
| |
Collapse
|
46
|
|
47
|
Abstract
Polyketide natural products are among the most important microbial metabolites in human medicine and are widely used to treat both acute and degenerative diseases. The need to develop new drugs has prompted the idea of using heterologous systems for the expression of polyketide biosynthetic pathways. The basic idea behind this approach is to use heterologous bacterial systems with better growth and genetic characteristics that could support better production of a certain compound than the original host or that could allow the generation of novel analogues through combinatorial biosynthesis. Moreover, these hosts could be used to express "cryptic" secondary metabolic pathways or serve as surrogate hosts in metagenomics experiments in order to find potential new bioactive compounds. In this chapter we discuss recent advances in the heterologous production of polyketides in bacteria and describe some methodological improvements of the systems.
Collapse
Affiliation(s)
- Eduardo Rodriguez
- Instituto de Biología Molecular y Celular de Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | | |
Collapse
|
48
|
Chen AY, Cane DE, Khosla C. Structure-based dissociation of a type I polyketide synthase module. CHEMISTRY & BIOLOGY 2007; 14:784-92. [PMID: 17656315 PMCID: PMC1978548 DOI: 10.1016/j.chembiol.2007.05.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 05/23/2007] [Accepted: 05/31/2007] [Indexed: 11/25/2022]
Abstract
Individual modules of modular polyketide synthases (PKSs) such as 6-deoxyerythronolide B synthase (DEBS) consist of conserved, covalently linked domains separated by unconserved intervening linker sequences. To better understand the protein-protein and enzyme-substrate interactions in modular catalysis, we have exploited recent structural insights to prepare stand-alone domains of selected DEBS modules. When combined in vitro, ketosynthase (KS), acyl transferase (AT), and acyl carrier protein (ACP) domains of DEBS module 3 catalyzed methylmalonyl transfer and diketide substrate elongation. When added to a minimal PKS, ketoreductase domains from DEBS modules 1, 2, and 6 showed specificity for the beta-ketoacylthioester substrate, but not for either the ACP domain carrying the polyketide substrate or the KS domain that synthesized the substrate. With insights into catalytic efficiency and specificity of PKS modules, our results provide guidelines for constructing optimal hybrid PKS systems.
Collapse
Affiliation(s)
- Alice Y. Chen
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| | - David E. Cane
- Department of Chemistry, Brown University, Providence RI 02912-9108
| | - Chaitan Khosla
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Department of Biochemistry, Stanford University, Stanford, CA 94305
| |
Collapse
|
49
|
Abstract
6-Deoxyerythronolide B, the macrocyclic aglycone of the antibiotic erythromycin, is synthesized by a polyketide synthase (PKS) that has emerged as the prototypical modular megasynthase. A variety of molecular biological, protein chemical, and biosynthetic experiments over the past two decades have yielded insights into its mechanistic features. More recently, high-resolution structural images of portions of the 6-deoxyerythronolide B synthase have provided a platform for interpreting this wealth of biochemical data, while at the same time presenting a fundamentally new basis for the design of more detailed investigations into this remarkable enzyme. For example, the critical roles of domain-domain interactions and nonconserved linkers, as well as large interdomain movements in the structure and function of modular PKSs, have been highlighted. In turn, these insights point the way forward for more sophisticated and efficient biosynthetic engineering of complex polyketide natural products.
Collapse
Affiliation(s)
- Chaitan Khosla
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA.
| | | | | | | | | |
Collapse
|
50
|
Harvey BM, Mironenko T, Sun Y, Hong H, Deng Z, Leadlay PF, Weissman KJ, Haydock SF. Insights into polyether biosynthesis from analysis of the nigericin biosynthetic gene cluster in Streptomyces sp. DSM4137. CHEMISTRY & BIOLOGY 2007; 14:703-14. [PMID: 17584617 DOI: 10.1016/j.chembiol.2007.05.011] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 04/05/2007] [Accepted: 05/04/2007] [Indexed: 11/18/2022]
Abstract
Nigericin was among the first polyether ionophores to be discovered, but its biosynthesis remains obscure. The biosynthetic gene cluster for nigericin has been serendipitously cloned from Streptomyces sp. DSM4137, and deletion of this gene cluster abolished the production of both nigericin and the closely related metabolite abierixin. Detailed comparison of the nigericin biosynthetic genes with their counterparts in the biosynthetic clusters for other polyketides has prompted a significant revision of the proposed common pathway for polyether biosynthesis. In particular, we present evidence that in nigericin, nanchangmycin, and monensin, an unusual ketosynthase-like protein, KSX, transfers the initially formed linear polyketide chain to a discrete acyl carrier protein, ACPX, for oxidative cyclization. Consistent with this, deletion of either monACPX or monKSX from the monensin gene cluster effectively abolished monensin A biosynthesis.
Collapse
Affiliation(s)
- Barbara M Harvey
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | | | | | | | | | | | | | | |
Collapse
|