1
|
Du D, Yang Y, Zhang Y, Wang G, Chen L, Guan X, Rasmussen LJ, Liu D. MRE11A: a novel negative regulator of human DNA mismatch repair. Cell Mol Biol Lett 2024; 29:37. [PMID: 38486171 PMCID: PMC10938699 DOI: 10.1186/s11658-024-00547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND DNA mismatch repair (MMR) is a highly conserved pathway that corrects DNA replication errors, the loss of which is attributed to the development of various types of cancers. Although well characterized, MMR factors remain to be identified. As a 3'-5' exonuclease and endonuclease, meiotic recombination 11 homolog A (MRE11A) is implicated in multiple DNA repair pathways. However, the role of MRE11A in MMR is unclear. METHODS Initially, short-term and long-term survival assays were used to measure the cells' sensitivity to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Meanwhile, the level of apoptosis was also determined by flow cytometry after MNNG treatment. Western blotting and immunofluorescence assays were used to evaluate the DNA damage within one cell cycle after MNNG treatment. Next, a GFP-heteroduplex repair assay and microsatellite stability test were used to measure the MMR activities in cells. To investigate the mechanisms, western blotting, the GFP-heteroduplex repair assay, and chromatin immunoprecipitation were used. RESULTS We show that knockdown of MRE11A increased the sensitivity of HeLa cells to MNNG treatment, as well as the MNNG-induced DNA damage and apoptosis, implying a potential role of MRE11 in MMR. Moreover, we found that MRE11A was largely recruited to chromatin and negatively regulated the DNA damage signals within the first cell cycle after MNNG treatment. We also showed that knockdown of MRE11A increased, while overexpressing MRE11A decreased, MMR activity in HeLa cells, suggesting that MRE11A negatively regulates MMR activity. Furthermore, we show that recruitment of MRE11A to chromatin requires MLH1 and that MRE11A competes with PMS2 for binding to MLH1. This decreases PMS2 levels in whole cells and on chromatin, and consequently comprises MMR activity. CONCLUSIONS Our findings reveal that MRE11A is a negative regulator of human MMR.
Collapse
Affiliation(s)
- Demin Du
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yueyan Yang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuanyuan Zhang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Guanxiong Wang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Liying Chen
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaowei Guan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Dekang Liu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
2
|
Koi M, Leach BH, McGee S, Tseng-Rogenski SS, Burke CA, Carethers JM. Compound heterozygous MSH3 germline variants and associated tumor somatic DNA mismatch repair dysfunction. NPJ Precis Oncol 2024; 8:12. [PMID: 38243056 PMCID: PMC10798947 DOI: 10.1038/s41698-024-00511-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 12/08/2023] [Indexed: 01/21/2024] Open
Abstract
We describe here an individual from a fourth family with germline compound heterozygous MSH3 germline variants and its observed biological consequences. The patient was initially diagnosed with invasive moderately-differentiated adenocarcinoma of the colon at the age of 43. Germline multigene panel testing revealed a pathogenic variant MSH3 c.2436-1 G > A and a variant of (initial) uncertain significance MSH3 c.3265 A > T (p.Lys1089*). Germline genetic testing of family members confirm the variants are in trans with the c.2436-1 G > A variant of paternal and the c.3265 A > T variant of maternal origin. Tumor DNA exhibits low levels of microsatellite instability and elevated microsatellite alterations at selected tetranucleotide repeats (EMAST). Tissue immunohistochemical staining for MSH3 demonstrated variant MSH3 protein is present in the cytoplasm and cell membrane but not in the nucleus of normal and tumor epithelial cells. Furthermore, variant MSH3 is accompanied by loss of nuclear MSH6 and a reduced level of nuclear MSH2 in some tumor cells, suggesting that the variant MSH3 protein may inhibit binding of MSH6 to MSH2.
Collapse
Affiliation(s)
- Minoru Koi
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, and Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Division of Gastroenterology & Hepatology, Department of Medicine, and Moores Cancer Center, University of California at San Diego, San Diego, CA, USA
| | - Brandie H Leach
- Center for Personalized Genetic Healthcare, Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
- Sanford R. Weiss MD Center for Hereditary Colorectal Neoplasia, Cleveland Clinic, Cleveland, OH, USA
| | - Sarah McGee
- Center for Personalized Genetic Healthcare, Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
- Sanford R. Weiss MD Center for Hereditary Colorectal Neoplasia, Cleveland Clinic, Cleveland, OH, USA
| | - Stephanie S Tseng-Rogenski
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, and Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Carol A Burke
- Sanford R. Weiss MD Center for Hereditary Colorectal Neoplasia, Cleveland Clinic, Cleveland, OH, USA
- Department of Gastroenterology, Hepatology and Nutrition, Cleveland Clinic, Cleveland, OH, USA
| | - John M Carethers
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, and Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
- Division of Gastroenterology & Hepatology, Department of Medicine, and Moores Cancer Center, University of California at San Diego, San Diego, CA, USA.
| |
Collapse
|
3
|
Medina-Rivera M, Phelps S, Sridharan M, Becker J, Lamb N, Kumar C, Sutton M, Bielinsky A, Balakrishnan L, Surtees J. Elevated MSH2 MSH3 expression interferes with DNA metabolism in vivo. Nucleic Acids Res 2023; 51:12185-12206. [PMID: 37930834 PMCID: PMC10711559 DOI: 10.1093/nar/gkad934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023] Open
Abstract
The Msh2-Msh3 mismatch repair (MMR) complex in Saccharomyces cerevisiae recognizes and directs repair of insertion/deletion loops (IDLs) up to ∼17 nucleotides. Msh2-Msh3 also recognizes and binds distinct looped and branched DNA structures with varying affinities, thereby contributing to genome stability outside post-replicative MMR through homologous recombination, double-strand break repair (DSBR) and the DNA damage response. In contrast, Msh2-Msh3 promotes genome instability through trinucleotide repeat (TNR) expansions, presumably by binding structures that form from single-stranded (ss) TNR sequences. We previously demonstrated that Msh2-Msh3 binding to 5' ssDNA flap structures interfered with Rad27 (Fen1 in humans)-mediated Okazaki fragment maturation (OFM) in vitro. Here we demonstrate that elevated Msh2-Msh3 levels interfere with DNA replication and base excision repair in vivo. Elevated Msh2-Msh3 also induced a cell cycle arrest that was dependent on RAD9 and ELG1 and led to PCNA modification. These phenotypes also required Msh2-Msh3 ATPase activity and downstream MMR proteins, indicating an active mechanism that is not simply a result of Msh2-Msh3 DNA-binding activity. This study provides new mechanistic details regarding how excess Msh2-Msh3 can disrupt DNA replication and repair and highlights the role of Msh2-Msh3 protein abundance in Msh2-Msh3-mediated genomic instability.
Collapse
Affiliation(s)
- Melisa Medina-Rivera
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, 14203, USA
| | - Samantha Phelps
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, 14203, USA
| | - Madhumita Sridharan
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Jordan Becker
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Natalie A Lamb
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, 14203, USA
| | - Charanya Kumar
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, 14203, USA
| | - Mark D Sutton
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, 14203, USA
| | - Anja Bielinsky
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Lata Balakrishnan
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Jennifer A Surtees
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo NY, 14203, USA
| |
Collapse
|
4
|
Mueller S. Recombination between coronaviruses and synthetic RNAs and biorisk implications motivated by a SARS-CoV-2 FCS origin controversy. Front Bioeng Biotechnol 2023; 11:1209054. [PMID: 37600318 PMCID: PMC10436746 DOI: 10.3389/fbioe.2023.1209054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023] Open
Abstract
The urgent need for improved policy, regulation, and oversight of research with potential pandemic pathogens (PPPs) has been widely acknowledged. A 2022 article in Frontiers in Virology raises questions, reporting on a 100% sequence homology between the SARS-CoV-2 furin cleavage site (FCS) and the negative strand of a 2017 patented sequence. Even though Ambati and collaborators suspect a possible inadvertent or intentional cause leading to the FCS insert, the related underpinnings have not been studied from the perspective of potential biorisk policy gaps. A commentary on their article contests the low coincidence likelihood that was calculated by Ambati et al., arguing that the sequence match could have been a chance occurrence alone. Additionally, it has been suggested that the odds of the recombination event may be low. These considerations seem to have put many speculations related to any implied viral beginnings, notably from a research setting likely outside the Wuhan Institute of Virology, to rest. However, potential implications for future disasters in terms of biosafety and biosecurity have not been addressed. To demonstrate the feasibility of the Ambati et al. postulate, a theoretical framework is developed that substantially extends the research orientations implicated by these authors and the related patent. It is argued that specific experimental conditions, in combination, could significantly increase the implied recombination profile between coronaviruses and synthetic RNAs. Consequently, this article scrutinizes these largely unrecognized vulnerabilities to discuss implications across the spectrum of the biological risk landscape, with special attention to a potential "crime harvest." Focusing on insufficiently understood features of interaction between the natural and man-made world, vulnerabilities related to contaminants, camouflaging, and various misuse potentials fostered by the digitization and computerization of synthetic biology, it highlights novel biorisk gaps not covered by existing PPP policy. Even though this work does not aim to provide proof of the viral origin, it will make the point that, in theory, a convergence of under-appreciated lab experiments and technologies could have led to the SARS-CoV-2 FCS insert, which analogously could be exploited by various threat actors for the clandestine genesis of similar or even worse pathogens.
Collapse
Affiliation(s)
- Siguna Mueller
- Independent Transdisciplinary Researcher, Kaernten, Austria
| |
Collapse
|
5
|
Britton BM, London JA, Martin-Lopez J, Jones ND, Liu J, Lee JB, Fishel R. Exploiting the distinctive properties of the bacterial and human MutS homolog sliding clamps on mismatched DNA. J Biol Chem 2022; 298:102505. [PMID: 36126773 PMCID: PMC9597889 DOI: 10.1016/j.jbc.2022.102505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 12/30/2022] Open
Abstract
MutS homologs (MSHs) are highly conserved core components of DNA mismatch repair. Mismatch recognition provokes ATP-binding by MSH proteins that drives a conformational transition from a short-lived lesion-searching clamp to an extremely stable sliding clamp on the DNA. Here, we have expanded on previous bulk biochemical studies to examine the stability, lifetime, and kinetics of bacterial and human MSH sliding clamps on mismatched DNA using surface plasmon resonance and single-molecule analysis of fluorescently labeled proteins. We found that ATP-bound MSH complexes bound to blocked-end or very long mismatched DNAs were extremely stable over a range of ionic conditions. These observations underpinned the development of a high-throughput Förster resonance energy transfer system that specifically detects the formation of MSH sliding clamps on mismatched DNA. The Förster resonance energy transfer system is capable of distinguishing between HsMSH2-HsMSH3 and HsMSH2-HsMSH6 and appears suitable for chemical inhibitor screens. Taken together, our results provide additional insight into MSH sliding clamps as well as methods to distinguish their functions in mismatch repair.
Collapse
Affiliation(s)
- Brooke M Britton
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - James A London
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Juana Martin-Lopez
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Nathan D Jones
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Jiaquan Liu
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Jong-Bong Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, Korea; Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, Korea
| | - Richard Fishel
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.
| |
Collapse
|
6
|
Ambati BK, Varshney A, Lundstrom K, Palú G, Uhal BD, Uversky VN, Brufsky AM. Corrigendum: MSH3 Homology and Potential Recombination Link to SARS-CoV-2 Furin Cleavage Site. FRONTIERS IN VIROLOGY 2022. [DOI: 10.3389/fviro.2022.884169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Justice JL, Needham JM, Verhalen B, Jiang M, Thompson SR. BK Polyomavirus Requires the Mismatch Repair Pathway for DNA Damage Response Activation. J Virol 2022; 96:e0202821. [PMID: 35389233 PMCID: PMC9044952 DOI: 10.1128/jvi.02028-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/18/2022] [Indexed: 11/20/2022] Open
Abstract
BK polyomavirus (PyV) infects the genitourinary tract of >90% of the adult population. Immunosuppression increases the risk of viral reactivation, making BKPyV a leading cause of graft failure in kidney transplant recipients. Polyomaviruses have a small double-stranded DNA (dsDNA) genome that requires host replication machinery to amplify the viral genome. Specifically, polyomaviruses promote S phase entry and delay S phase exit by activating the DNA damage response (DDR) pathway via an uncharacterized mechanism requiring viral replication. BKPyV infection elevates expression of MutSα, a mismatch repair (MMR) pathway protein complex that senses and repairs DNA mismatches and can activate the DDR. Thus, we investigated the role of the MMR pathway by silencing the MutSα component, Msh6, in BKPyV-infected primary cells. This resulted in severe DNA damage that correlated with weak DNA damage response activation and a failure to arrest the cell cycle to prevent mitotic entry during infection. Furthermore, silencing Msh6 expression resulted in significantly fewer infectious viral particles due to significantly lower levels of VP2, a minor capsid protein important for trafficking during subsequent infections. Since viral assembly occurs in the nucleus, our findings are consistent with a model in which entry into mitosis disrupts viral assembly due to nuclear envelope breakdown, which disperses VP2 throughout the cell, reducing its availability for encapsidation into viral particles. Thus, the MMR pathway may be required to activate the ATR (ATM-Rad3-related) pathway during infection to maintain a favorable environment for both viral replication and assembly. IMPORTANCE Since there are no therapeutics that target BKPyV reactivation in organ transplant patients, it is currently treated by decreasing immunosuppression to allow the natural immune system to fight the viral infection. Antivirals would significantly improve patient outcomes since reducing immunosuppression carries the risk of graft failure. PyVs activate the DDR, for which there are several promising inhibitors. However, a better understanding of how PyVs activate the DDR and what role the DDR plays during infection is needed. Here, we show that a component of the mismatch repair pathway is required for DDR activation during PyV infection. These findings show that the mismatch repair pathway is important for DDR activation during PyV infection and that inhibiting the DDR reduces viral titers by generating less infectious virions that lack the minor capsid protein VP2, which is important for viral trafficking.
Collapse
Affiliation(s)
- Joshua L. Justice
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jason M. Needham
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Brandy Verhalen
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mengxi Jiang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sunnie R. Thompson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
8
|
Cheng L, Hu S, Ma J, Shu Y, Chen Y, Zhang B, Qi Z, Wang Y, Zhang Y, Zhang Y, Cheng P. Long noncoding RNA RP11-241J12.3 targeting pyruvate carboxylase promotes hepatocellular carcinoma aggressiveness by disrupting pyruvate metabolism and the DNA mismatch repair system. MOLECULAR BIOMEDICINE 2022; 3:4. [PMID: 35122182 PMCID: PMC8816999 DOI: 10.1186/s43556-021-00065-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023] Open
Abstract
Accumulating evidence indicates that hepatitis B virus X protein (HBx) plays a key role in HBV-related hepatocellular carcinoma (HCC) aggressiveness; however, the underlying mechanisms are not entirely clear. Long non-coding RNAs (lncRNAs), which participate in the regulation of diverse biological processes, may be critical for the function of HBx. Our research indicated that HBx induced changes in the expression of numerous lncRNAs and implicated the novel lncRNA RP11-241J12.3 in HBx-mediated HCC aggressiveness. Although RP11-241J12.3 expression was downregulated in transient HBx-expressing HCC cells (similar to the early stage of HBV infection), its oncogenic properties remained. The results showed that RP11-241J12.3 not only accelerated DNA synthesis and upregulated the expression of pyruvate carboxylase (PC) and MSH3, which is a key protein in pyruvate metabolism and DNA mismatch repair (MMR), but also promoted tumor growth in vitro and in vivo, thus promoting HCC aggressiveness. More importantly, we revealed that RP11-241J12.3 may interact with PC and identified its location in the cytoplasm close to the nucleus using fluorescence in situ hybridization (FISH). We also observed RP11-241J12.3 expression was upregulated in HCC tissues compared with the paracarcinomatous tissues. Furthermore, RP11-241J12.3 expression levels showed a close relationship with clinical stage and tumor size and that low RP11-241J12.3 expression was significantly correlated with longer HCC patient survival. These results further our understanding of the lncRNAs regulated by HBx in HCC, and provide evidence that dysregulation of RP11-241J12.3 contributes to HCC aggressiveness.
Collapse
Affiliation(s)
- Liuliu Cheng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu, 610041, Sichuan, PR China
| | - Shichuan Hu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu, 610041, Sichuan, PR China
| | - Jinhu Ma
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu, 610041, Sichuan, PR China
| | - Yongheng Shu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu, 610041, Sichuan, PR China
| | - Yanwei Chen
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu, 610041, Sichuan, PR China
| | - Bin Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu, 610041, Sichuan, PR China
| | - Zhongbing Qi
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu, 610041, Sichuan, PR China
| | - Yunmeng Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu, 610041, Sichuan, PR China
| | - Yan Zhang
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Yuwei Zhang
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Ping Cheng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
9
|
Ambati BK, Varshney A, Lundstrom K, Palú G, Uhal BD, Uversky VN, Brufsky AM. MSH3 Homology and Potential Recombination Link to SARS-CoV-2 Furin Cleavage Site. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2022; 2:834808. [PMID: 39176223 PMCID: PMC11340822 DOI: 10.3389/fviro.2022.834808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Among numerous point mutation differences between the SARS-CoV-2 and the bat RaTG13 coronavirus, only the 12-nucleotide furin cleavage site (FCS) exceeds 3 nucleotides. A BLAST search revealed that a 19 nucleotide portion of the SARS.Cov2 genome encompassing the furing cleavage site is a 100% complementary match to a codon-optimized proprietary sequence that is the reverse complement of the human mutS homolog (MSH3). The reverse complement sequence present in SARS-CoV-2 may occur randomly but other possibilities must be considered. Recombination in an intermediate host is an unlikely explanation. Single stranded RNA viruses such as SARS-CoV-2 utilize negative strand RNA templates in infected cells, which might lead through copy choice recombination with a negative sense SARS-CoV-2 RNA to the integration of the MSH3 negative strand, including the FCS, into the viral genome. In any case, the presence of the 19-nucleotide long RNA sequence including the FCS with 100% identity to the reverse complement of the MSH3 mRNA is highly unusual and requires further investigations.
Collapse
Affiliation(s)
- Balamurali K. Ambati
- Knight’s Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, United States
| | | | | | - Giorgio Palú
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Bruce D. Uhal
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida (USF) Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL, United States
| | - Adam M. Brufsky
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
10
|
Genomic and transcriptomic analyses reveal a tandem amplification unit of 11 genes and mutations in mismatch repair genes in methotrexate-resistant HT-29 cells. Exp Mol Med 2021; 53:1344-1355. [PMID: 34521988 PMCID: PMC8492700 DOI: 10.1038/s12276-021-00668-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/04/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
DHFR gene amplification is commonly present in methotrexate (MTX)-resistant colon cancer cells and acute lymphoblastic leukemia. In this study, we proposed an integrative framework to characterize the amplified region by using a combination of single-molecule real-time sequencing, next-generation optical mapping, and chromosome conformation capture (Hi-C). We identified an amplification unit spanning 11 genes, from the DHFR gene to the ATP6AP1L gene position, with high adjusted interaction frequencies on chromosome 5 (~2.2 Mbp) and a twenty-fold tandemly amplified region, and novel inversions at the start and end positions of the amplified region as well as frameshift insertions in most of the MSH and MLH genes were detected. These mutations might stimulate chromosomal breakage and cause the dysregulation of mismatch repair. Characterizing the tandem gene-amplified unit may be critical for identifying the mechanisms that trigger genomic rearrangements. These findings may provide new insight into the mechanisms underlying the amplification process and the evolution of drug resistance. Sequencing a large region of DNA containing many surplus copies of genes linked to drug resistance in colon cancer cells may illuminate how these genomic rearrangements arise. Such regions of gene amplification are highly repetitive, making them impossible to sequence using ordinary methods, and little is known about how they are generated. Using advanced methods, Jeong-Sun Seo at Seoul National University Bundang Hospital in South Korea and co-workers sequenced a region of gene amplification in colon cancer cells. The amplified region was approximately 20 times the length of that in healthy cells and contained many copies of an eleven-gene segment, including a gene implicated in drug resistance. The region also contained mutations in chromosomal repair genes which would disrupt repair pathways. These results illuminate the genetic changes that lead to gene amplification and drug resistance in cancer cells.
Collapse
|
11
|
Wu Q, Huang Y, Gu L, Chang Z, Li GM. OTUB1 stabilizes mismatch repair protein MSH2 by blocking ubiquitination. J Biol Chem 2021; 296:100466. [PMID: 33640455 PMCID: PMC8042173 DOI: 10.1016/j.jbc.2021.100466] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
DNA mismatch repair (MMR) maintains genome stability primarily by correcting replication errors. MMR deficiency can lead to cancer development and bolsters cancer cell resistance to chemotherapy. However, recent studies have shown that checkpoint blockade therapy is effective in MMR-deficient cancers, thus the ability to identify cancer etiology would greatly benefit cancer treatment. MutS homolog 2 (MSH2) is an obligate subunit of mismatch recognition proteins MutSα (MSH2-MSH6) and MutSβ (MSH2-MSH3). Precise regulation of MSH2 is critical, as either over- or underexpression of MSH2 results in an increased mutation frequency. The mechanism by which cells maintain MSH2 proteostasis is unknown. Using functional ubiquitination and deubiquitination assays, we show that the ovarian tumor (OTU) family deubiquitinase ubiquitin aldehyde binding 1 (OTUB1) inhibits MSH2 ubiquitination by blocking the E2 ligase ubiquitin transfer activity. Depleting OTUB1 in cells promotes the ubiquitination and subsequent degradation of MSH2, leading to greater mutation frequency and cellular resistance to genotoxic agents, including the common chemotherapy agents N-methyl-N'-nitro-N-nitrosoguanidine and cisplatin. Taken together, our data identify OTUB1 as an important regulator of MSH2 stability and provide evidence that OTUB1 is a potential biomarker for cancer etiology and therapy.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, China
| | - Yaping Huang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Liya Gu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zhijie Chang
- Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, China.
| | - Guo-Min Li
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
12
|
Mismatch Repair Proteins in Oropharyngeal Squamous Cell Carcinoma: A Retrospective Observational Study. Head Neck Pathol 2021; 15:803-816. [PMID: 33501557 PMCID: PMC8384930 DOI: 10.1007/s12105-021-01286-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/02/2021] [Indexed: 12/24/2022]
Abstract
Cases of oropharyngeal squamous cell carcinoma are on the rise and the disease now ranks as the most common human papillomavirus-related cancer. Although risk factors have been extensively discussed in the literature, the role of the DNA mismatch repair system remains unanswered. To evaluate the impact of the DNA mismatch repair (MMR) protein immunostaining on the tumor progression and prognosis of oropharyngeal squamous cell carcinoma (OPSCC). This retrospective observational study comprised 50 cases of OPSCC. Immunohistochemistry for MSH2, MSH6, PMS2, MLH1, Ki67, p16 and caspase-3 was performed. The expression of these proteins was assessed in surgical resection margins, primary tumor (PT), and lymph node metastasis (LNM) of p16+ and p16- OPSCC. Clinical-pathological involvement in immunostaining was evaluated with Kruskal-Wallis/Dunn or Mann-Whitney test, Wilcoxon test and Spearman's correlation. Overall survival (OS) was analyzed with Log-Rank Mantel-Cox and Cox regression. MSH6 and caspase-3 showed high expression in PT (p16+ and p16 -) and in LNM (p16+ and p16-), and high levels of MSH2 were found in LNM (p16+ and p16 -). An imbalance in MutSα also was observed. PMS2 and caspase-3 expression was associated with poor survival in p16- OPSCC and, in multivariate analysis, MSH2, MSH6 and MLH1 had the poorest prognostic impact in p16+ OPSCC. MMR protein immunostaining is involved in OPSCC progression, dissemination and prognosis. The overexpression of MMR proteins as a response to increased DNA mismatch caused by cell proliferation and MSH2, MSH6 and MLH1 proteins might constitute a prognostic marker in p16+ OPSCC.
Collapse
|
13
|
Young SJ, Sebald M, Shah Punatar R, Larin M, Masino L, Rodrigo-Brenni MC, Liang CC, West SC. MutSβ Stimulates Holliday Junction Resolution by the SMX Complex. Cell Rep 2020; 33:108289. [PMID: 33086055 DOI: 10.1016/j.celrep.2020.108289] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/02/2020] [Accepted: 09/29/2020] [Indexed: 12/20/2022] Open
Abstract
MutSα and MutSβ play important roles in DNA mismatch repair and are linked to inheritable cancers and degenerative disorders. Here, we show that MSH2 and MSH3, the two components of MutSβ, bind SLX4 protein, a scaffold for the assembly of the SLX1-SLX4-MUS81-EME1-XPF-ERCC1 (SMX) trinuclease complex. SMX promotes the resolution of Holliday junctions (HJs), which are intermediates in homologous recombinational repair. We find that MutSβ binds HJs and stimulates their resolution by SLX1-SLX4 or SMX in reactions dependent upon direct interactions between MutSβ and SLX4. In contrast, MutSα does not stimulate HJ resolution. MSH3-depleted cells exhibit reduced sister chromatid exchanges and elevated levels of homologous recombination ultrafine bridges (HR-UFBs) at mitosis, consistent with defects in the processing of recombination intermediates. These results demonstrate a role for MutSβ in addition to its established role in the pathogenic expansion of CAG/CTG trinucleotide repeats, which is causative of myotonic dystrophy and Huntington's disease.
Collapse
Affiliation(s)
- Sarah J Young
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Marie Sebald
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Meghan Larin
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Laura Masino
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Chih-Chao Liang
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Stephen C West
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
14
|
Fraune C, Burandt E, Simon R, Hube-Magg C, Makrypidi-Fraune G, Kluth M, Büscheck F, Höflmayer D, Blessin NC, Mandelkow T, Li W, Perez D, Izbicki JR, Wilczak W, Sauter G, Schrader J, Neipp M, Mofid H, Daniels T, Isbert C, Clauditz TS, Steurer S. MMR Deficiency is Homogeneous in Pancreatic Carcinoma and Associated with High Density of Cd8-Positive Lymphocytes. Ann Surg Oncol 2020; 27:3997-4006. [PMID: 32108923 PMCID: PMC7471097 DOI: 10.1245/s10434-020-08209-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Microsatellite instability (MSI) has emerged as a predictive biomarker for immune checkpoint inhibitor therapy. Cancer heterogeneity represents a potential obstacle for the analysis of predicitive biomarkers. MSI has been reported in pancreatic cancer, but data on the possible extent of intratumoral heterogeneity are lacking. METHODS To study MSI heterogeneity in pancreatic cancer, a tissue microarray (TMA) comprising 597 tumors was screened by immunohistochemistry with antibodies for the mismatch repair (MMR) proteins MLH1, PMS2, MSH2, and MSH6. RESULTS In six suspicious cases, large section immunohistochemistry and microsatellite analysis (Bethesda panel) resulted in the identification of 4 (0.8%) validated MSI cases out of 480 interpretable pancreatic ductal adenocarcinomas. MSI was absent in 55 adenocarcinomas of the ampulla of Vater and 7 acinar cell carcinomas. MMR deficiency always involved MSH6 loss, in three cases with additional loss of MSH2 expression. Three cancers were MSI-high and one case with isolated MSH6 loss was MSS in PCR analysis. The analysis of 44 cancer-containing tumor blocks revealed that the loss of MMR protein expression was always homogeneous in affected tumors. Automated digital image analysis of CD8 immunostaining demonstrated markedly higher CD8 + tumor infiltrating lymphocytes in tumors with (mean = 685, median = 626) than without (mean = 227; median = 124) MMR deficiency (p < 0.0001), suggesting a role of MSI for immune response. CONCLUSIONS Our data suggest that MSI occurs early in a small subset of ductal adenocarcinomas of the pancreas and that immunohistochemical MMR analysis on limited biopsy or cytology material may be sufficient to estimate MMR status of the entire cancer mass.
Collapse
Affiliation(s)
- Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Niclas Ch Blessin
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Mandelkow
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wenchao Li
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Perez
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob R Izbicki
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jörg Schrader
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Medical Department - Gastroenterology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Neipp
- General, Vascular and Visceral Surgery Clinic, Itzehoe Medical Center, Itzehoe, Germany
| | - Hamid Mofid
- General, Visceral Thoracic and Vascular Surgery Clinic, Regio Clinic Pinneberg, Pinneberg, Germany
| | - Thies Daniels
- General, Visceral and Tumor Sugery Clinic, Albertinen Hospital, Hamburg, Germany
| | - Christoph Isbert
- Department of General, Gastrointestinal and Colorectal Surgery, Amalie Sieveking Hospital, Hamburg, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
15
|
Raeker MO, Carethers JM. Immunological Features with DNA Microsatellite Alterations in Patients with Colorectal Cancer. JOURNAL OF CANCER IMMUNOLOGY 2020; 2:116-127. [PMID: 33000102 DOI: 10.33696/cancerimmunol.2.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Competent human DNA mismatch repair (MMR) corrects DNA polymerase mistakes made during cell replication to maintain complete DNA fidelity in daughter cells; faulty DNA MMR occurs in the setting of inflammation and neoplasia, creating base substitutions (e.g. point mutations) and frameshift mutations at DNA microsatellite sequences in progeny cells. Frameshift mutations at DNA microsatellite sequences are a detected biomarker termed microsatellite instability (MSI) for human disease, as this marker can prognosticate and determine therapeutic approaches for patients with cancer. There are two types of MSI: MSI-High (MSI-H), defined by frameshifts at mono- and di-nucleotide microsatellite sequences, and elevated microsatellite alterations at selected tetranucleotide repeats or EMAST, defined by frameshifts in di- and tetranucleotide microsatellite sequences but not mononucleotide sequences. Patients with colorectal cancers (CRCs) manifesting MSI-H demonstrate improved survival over patients without an MSI-H tumor, driven by the generation of immunogenic neoantigens caused by novel truncated proteins from genes whose sequences contain coding microsatellites; these patients' tumors contain hundreds of somatic mutations, and show responsiveness to treatment with immune checkpoint inhibitors. Patients with CRCs manifesting EMAST demonstrate poor survival over patients without an EMAST tumor, and may be driven by a more dominant defect in double strand break repair attributed to the MMR protein MSH3 over its frameshift correcting function; these patients' tumors often have a component of inflammation (and are also termed inflammation-associated microsatellite alterations) and show less somatic mutations and lack coding mononucleotide frameshift mutations that seem to generate the neoantigens seen in the majority of MSI-H tumors. Overall, both types of MSI are biomarkers that can prognosticate patients with CRC, can be tested for simultaneously in marker panels, and informs the approach to specific therapy including immunotherapy for their cancers.
Collapse
Affiliation(s)
- Maide O Raeker
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - John M Carethers
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.,Department of Human Genetics and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
16
|
DNA Mismatch Repair Gene Variants in Sporadic Solid Cancers. Int J Mol Sci 2020; 21:ijms21155561. [PMID: 32756484 PMCID: PMC7432688 DOI: 10.3390/ijms21155561] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/18/2022] Open
Abstract
The phenotypic effects of single nucleotide polymorphisms (SNPs) in the development of sporadic solid cancers are still scarce. The aim of this review was to summarise and analyse published data on the associations between SNPs in mismatch repair genes and various cancers. The mismatch repair system plays a unique role in the control of the genetic integrity and it is often inactivated (germline and somatic mutations and hypermethylation) in cancer patients. Here, we focused on germline variants in mismatch repair genes and found the outcomes rather controversial: some SNPs are sometimes ascribed as protective, while other studies reported their pathological effects. Regarding the complexity of cancer as one disease, we attempted to ascertain if particular polymorphisms exert the effect in the same direction in the development and treatment of different malignancies, although it is still not straightforward to conclude whether polymorphisms always play a clear positive role or a negative one. Most recent and robust genome-wide studies suggest that risk of cancer is modulated by variants in mismatch repair genes, for example in colorectal cancer. Our study shows that rs1800734 in MLH1 or rs2303428 in MSH2 may influence the development of different malignancies. The lack of functional studies on many DNA mismatch repair SNPs as well as their interactions are not explored yet. Notably, the concerted action of more variants in one individual may be protective or harmful. Further, complex interactions of DNA mismatch repair variations with both the environment and microenvironment in the cancer pathogenesis will deserve further attention.
Collapse
|
17
|
MSH2 Overexpression Due to an Unclassified Variant in 3'-Untranslated Region in a Patient with Colon Cancer. Biomedicines 2020; 8:biomedicines8060167. [PMID: 32575404 PMCID: PMC7345785 DOI: 10.3390/biomedicines8060167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Background: The loss or low expression of DNA mismatch repair (MMR) genes can result in genomic instability and tumorigenesis. One such gene, MSH2, is mutated or rearranged in Lynch syndrome (LS), which is characterized by a high risk of tumor development, including colorectal cancer. However, many variants identified in this gene are often defined as variants of uncertain significance (VUS). In this study, we selected a variant in the 3′ untranslated region (UTR) of MSH2 (c*226A > G), identified in three affected members of a LS family and already reported in the literature as a VUS. Methods: The effect of this variant on the activity of the MMR complex was examined using a set of functional assays to evaluate MSH2 expression. Results: We found MSH2 was overexpressed compared to healthy controls, as determined by RTqPCR and Western blot analyses of total RNA and proteins, respectively, extracted from peripheral blood samples. These results were confirmed by luciferase reporter gene assays. Conclusions: We therefore speculated that, in addition to canonical inactivation via a gene mutation, MMR activity may also be modulated by changes in MMR gene expression.
Collapse
|
18
|
Miller CJ, Kim GY, Zhao X, Usdin K. All three mammalian MutL complexes are required for repeat expansion in a mouse cell model of the Fragile X-related disorders. PLoS Genet 2020; 16:e1008902. [PMID: 32589669 PMCID: PMC7347238 DOI: 10.1371/journal.pgen.1008902] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/09/2020] [Accepted: 06/01/2020] [Indexed: 01/06/2023] Open
Abstract
Expansion of a CGG-repeat tract in the 5' untranslated region of the FMR1 gene causes the fragile X-related disorders (FXDs; aka the FMR1 disorders). The expansion mechanism is likely shared by the 35+ other diseases resulting from expansion of a disease-specific microsatellite, but many steps in this process are unknown. We have shown previously that expansion is dependent upon functional mismatch repair proteins, including an absolute requirement for MutLγ, one of the three MutL heterodimeric complexes found in mammalian cells. We demonstrate here that both MutLα and MutLβ, the two other MutL complexes present in mammalian cells, are also required for most, if not all, expansions in a mouse embryonic stem cell model of the FXDs. A role for MutLα and MutLβ is consistent with human GWA studies implicating these complexes as modifiers of expansion risk in other Repeat Expansion Diseases. The requirement for all three complexes suggests a novel model in which these complexes co-operate to generate expansions. It also suggests that the PMS1 subunit of MutLβ may be a reasonable therapeutic target in those diseases in which somatic expansion is an important disease modifier.
Collapse
Affiliation(s)
- Carson J. Miller
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Geum-Yi Kim
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xiaonan Zhao
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
19
|
Rath A, Mishra A, Ferreira VD, Hu C, Omerza G, Kelly K, Hesse A, Reddi HV, Grady JP, Heinen CD. Functional interrogation of Lynch syndrome-associated MSH2 missense variants via CRISPR-Cas9 gene editing in human embryonic stem cells. Hum Mutat 2019; 40:2044-2056. [PMID: 31237724 DOI: 10.1002/humu.23848] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 05/08/2019] [Accepted: 06/19/2019] [Indexed: 12/18/2022]
Abstract
Lynch syndrome (LS) predisposes patients to cancer and is caused by germline mutations in the DNA mismatch repair (MMR) genes. Identifying the deleterious mutation, such as a frameshift or nonsense mutation, is important for confirming an LS diagnosis. However, discovery of a missense variant is often inconclusive. The effects of these variants of uncertain significance (VUS) on disease pathogenesis are unclear, though understanding their impact on protein function can help determine their significance. Laboratory functional studies performed to date have been limited by their artificial nature. We report here an in-cellulo functional assay in which we engineered site-specific MSH2 VUS using clustered regularly interspaced short palindromic repeats-Cas9 gene editing in human embryonic stem cells. This approach introduces the variant into the endogenous MSH2 loci, while simultaneously eliminating the wild-type gene. We characterized the impact of the variants on cellular MMR functions including DNA damage response signaling and the repair of DNA microsatellites. We classified the MMR functional capability of eight of 10 VUS providing valuable information for determining their likelihood of being bona fide pathogenic LS variants. This human cell-based assay system for functional testing of MMR gene VUS will facilitate the identification of high-risk LS patients.
Collapse
Affiliation(s)
- Abhijit Rath
- Center for Molecular Oncology and Institute for Systems Genomics, UConn Health, Farmington, Connecticut
| | - Akriti Mishra
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| | | | - Chaoran Hu
- Department of Statistics, University of Connecticut, Storrs, Connecticut.,Connecticut Institute for Clinical and Translational Science, UConn Health, Farmington, Connecticut
| | - Gregory Omerza
- Clinical Genomics Laboratory, The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Kevin Kelly
- Clinical Genomics Laboratory, The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Andrew Hesse
- Clinical Genomics Laboratory, The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Honey V Reddi
- Clinical Genomics Laboratory, The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - James P Grady
- Connecticut Institute for Clinical and Translational Science, UConn Health, Farmington, Connecticut
| | - Christopher D Heinen
- Center for Molecular Oncology and Institute for Systems Genomics, UConn Health, Farmington, Connecticut
| |
Collapse
|
20
|
Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 2019; 569:503-508. [PMID: 31068700 DOI: 10.1038/s41586-019-1186-3] [Citation(s) in RCA: 2083] [Impact Index Per Article: 347.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 04/09/2019] [Indexed: 12/21/2022]
Abstract
Large panels of comprehensively characterized human cancer models, including the Cancer Cell Line Encyclopedia (CCLE), have provided a rigorous framework with which to study genetic variants, candidate targets, and small-molecule and biological therapeutics and to identify new marker-driven cancer dependencies. To improve our understanding of the molecular features that contribute to cancer phenotypes, including drug responses, here we have expanded the characterizations of cancer cell lines to include genetic, RNA splicing, DNA methylation, histone H3 modification, microRNA expression and reverse-phase protein array data for 1,072 cell lines from individuals of various lineages and ethnicities. Integration of these data with functional characterizations such as drug-sensitivity, short hairpin RNA knockdown and CRISPR-Cas9 knockout data reveals potential targets for cancer drugs and associated biomarkers. Together, this dataset and an accompanying public data portal provide a resource for the acceleration of cancer research using model cancer cell lines.
Collapse
|
21
|
Abstract
DNA mismatch repair (MMR) is an evolutionally conserved genome maintenance pathway and is well known for its role in maintaining replication fidelity by correcting biosynthetic errors generated during DNA replication. However, recent studies have shown that MMR preferentially protects actively transcribed genes from mutation during both DNA replication and transcription. This review describes the recent discoveries in this area. Potential mechanisms by which MMR safeguards actively transcribed genes are also discussed.
Collapse
Affiliation(s)
- Yaping Huang
- Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, 100084, China
| | - Guo-Min Li
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
22
|
MutLγ promotes repeat expansion in a Fragile X mouse model while EXO1 is protective. PLoS Genet 2018; 14:e1007719. [PMID: 30312299 PMCID: PMC6200270 DOI: 10.1371/journal.pgen.1007719] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 10/24/2018] [Accepted: 09/26/2018] [Indexed: 12/19/2022] Open
Abstract
The Fragile X-related disorders (FXDs) are Repeat Expansion Diseases resulting from an expansion of a CGG-repeat tract at the 5’ end of the FMR1 gene. The mechanism responsible for this unusual mutation is not fully understood. We have previously shown that mismatch repair (MMR) complexes, MSH2/MSH3 (MutSβ) and MSH2/MSH6 (MutSα), together with Polβ, a DNA polymerase important for base excision repair (BER), are important for expansions in a mouse model of these disorders. Here we show that MLH1/MLH3 (MutLγ), a protein complex that can act downstream of MutSβ in MMR, is also required for all germ line and somatic expansions. However, exonuclease I (EXO1), which acts downstream of MutL proteins in MMR, is not required. In fact, a null mutation in Exo1 results in more extensive germ line and somatic expansions than is seen in Exo1+/+ animals. Furthermore, mice homozygous for a point mutation (D173A) in Exo1 that eliminates its nuclease activity but retains its native conformation, shows a level of expansion that is intermediate between Exo1+/+and Exo1-/- animals. Thus, our data suggests that expansion of the FX repeat in this mouse model occurs via a MutLγ-dependent, EXO1-independent pathway, with EXO1 protecting against expansion both in a nuclease-dependent and a nuclease-independent manner. Our data thus have implications for the expansion mechanism and add to our understanding of the genetic factors that may be modifiers of expansion risk in humans. The Fragile X-related disorders arise from expansion of a tandem repeat or microsatellite consisting of CGG-repeat units. The expansion mutation is not well understood, but our previous data suggests that MutSα and MutSβ, mismatch repair (MMR) proteins that normally protect the genome against microsatellite instability, are actually responsible for these mutations in a knockin mouse model of these disorders. In this manuscript we describe the role in expansion of two proteins that act downstream of the MutS proteins in MMR, MutLγ and EXO1. Our data suggests that expansion occurs via a MutLγ-dependent, EXO1-independent pathway, with EXO1 playing both a nuclease-dependent and a nuclease-independent role in preventing expansions.
Collapse
|
23
|
Nucleosomes around a mismatched base pair are excluded via an Msh2-dependent reaction with the aid of SNF2 family ATPase Smarcad1. Genes Dev 2018; 32:806-821. [PMID: 29899141 PMCID: PMC6049510 DOI: 10.1101/gad.310995.117] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/27/2018] [Indexed: 01/01/2023]
Abstract
Here, Terui et al. studied the mechanisms underlying chromatin remodeling that occurs during MMR. They show that the eukaryotic MMR system has an ability to exclude local nucleosomes and identify Smarcad1/Fun30 as an accessory factor for the MMR reaction. Post-replicative correction of replication errors by the mismatch repair (MMR) system is critical for suppression of mutations. Although the MMR system may need to handle nucleosomes at the site of chromatin replication, how MMR occurs in the chromatin environment remains unclear. Here, we show that nucleosomes are excluded from a >1-kb region surrounding a mismatched base pair in Xenopus egg extracts. The exclusion was dependent on the Msh2–Msh6 mismatch recognition complex but not the Mlh1-containing MutL homologs and counteracts both the HIRA- and CAF-1 (chromatin assembly factor 1)-mediated chromatin assembly pathways. We further found that the Smarcad1 chromatin remodeling ATPase is recruited to mismatch-carrying DNA in an Msh2-dependent but Mlh1-independent manner to assist nucleosome exclusion and that Smarcad1 facilitates the repair of mismatches when nucleosomes are preassembled on DNA. In budding yeast, deletion of FUN30, the homolog of Smarcad1, showed a synergistic increase of spontaneous mutations in combination with MSH6 or MSH3 deletion but no significant increase with MSH2 deletion. Genetic analyses also suggested that the function of Fun30 in MMR is to counteract CAF-1. Our study uncovers that the eukaryotic MMR system has an ability to exclude local nucleosomes and identifies Smarcad1/Fun30 as an accessory factor for the MMR reaction.
Collapse
|
24
|
Chakraborty U, Dinh TA, Alani E. Genomic Instability Promoted by Overexpression of Mismatch Repair Factors in Yeast: A Model for Understanding Cancer Progression. Genetics 2018; 209:439-456. [PMID: 29654124 PMCID: PMC5972419 DOI: 10.1534/genetics.118.300923] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/12/2018] [Indexed: 02/04/2023] Open
Abstract
Mismatch repair (MMR) proteins act in spellchecker roles to excise misincorporation errors that occur during DNA replication. Curiously, large-scale analyses of a variety of cancers showed that increased expression of MMR proteins often correlated with tumor aggressiveness, metastasis, and early recurrence. To better understand these observations, we used The Cancer Genome Atlas and Gene Expression across Normal and Tumor tissue databases to analyze MMR protein expression in cancers. We found that the MMR genes MSH2 and MSH6 are overexpressed more frequently than MSH3, and that MSH2 and MSH6 are often cooverexpressed as a result of copy number amplifications of these genes. These observations encouraged us to test the effects of upregulating MMR protein levels in baker's yeast, where we can sensitively monitor genome instability phenotypes associated with cancer initiation and progression. Msh6 overexpression (two- to fourfold) almost completely disrupted mechanisms that prevent recombination between divergent DNA sequences by interacting with the DNA polymerase processivity clamp PCNA and by sequestering the Sgs1 helicase. Importantly, cooverexpression of Msh2 and Msh6 (∼eightfold) conferred, in a PCNA interaction-dependent manner, several genome instability phenotypes including increased mutation rate, increased sensitivity to the DNA replication inhibitor HU and the DNA-damaging agents MMS and 4-nitroquinoline N-oxide, and elevated loss-of-heterozygosity. Msh2 and Msh6 cooverexpression also altered the cell cycle distribution of exponentially growing cells, resulting in an increased fraction of unbudded cells, consistent with a larger percentage of cells in G1. These novel observations suggested that overexpression of MSH factors affected the integrity of the DNA replication fork, causing genome instability phenotypes that could be important for promoting cancer progression.
Collapse
Affiliation(s)
- Ujani Chakraborty
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Timothy A Dinh
- Curriculum in Genetics and Molecular Biology, Biological and Biomedical Sciences Program, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| |
Collapse
|
25
|
Evensen NA, Madhusoodhan PP, Meyer J, Saliba J, Chowdhury A, Araten DJ, Nersting J, Bhatla T, Vincent TL, Teachey D, Hunger SP, Yang J, Schmiegelow K, Carroll WL. MSH6 haploinsufficiency at relapse contributes to the development of thiopurine resistance in pediatric B-lymphoblastic leukemia. Haematologica 2018; 103:830-839. [PMID: 29449434 PMCID: PMC5927991 DOI: 10.3324/haematol.2017.176362] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 07/02/2018] [Indexed: 01/10/2023] Open
Abstract
Survival of children with relapsed acute lymphoblastic leukemia is poor, and understanding mechanisms underlying resistance is essential to developing new therapy. Relapse-specific heterozygous deletions in MSH6, a crucial part of DNA mismatch repair, are frequently detected. Our aim was to determine whether MSH6 deletion results in a hypermutator phenotype associated with generation of secondary mutations involved in drug resistance, or if it leads to a failure to initiate apoptosis directly in response to chemotherapeutic agents. We knocked down MSH6 in mismatch repair proficient cell lines (697 and UOCB1) and showed significant increases in IC50s to 6-thioguanine and 6-mercaptopurine (697: 26- and 9-fold; UOCB1: 5- and 8-fold) in vitro, as well as increased resistance to 6-mercaptopurine treatment in vivo. No shift in IC50 was observed in deficient cells (Reh and RS4;11). 697 MSH6 knockdown resulted in increased DNA thioguanine nucleotide levels compared to non-targeted cells (3070 vs. 1722 fmol/μg DNA) with no difference observed in mismatch repair deficient cells. Loss of MSH6 did not give rise to microsatellite instability in cell lines or clinical samples, nor did it significantly increase mutation rate, but rather resulted in a defect in cell cycle arrest upon thiopurine exposure. MSH6 knockdown cells showed minimal activation of checkpoint regulator CHK1, γH2AX (DNA damage marker) and p53 levels upon treatment with thiopurines, consistent with intrinsic chemoresistance due to failure to recognize thioguanine nucleotide mismatching and initiate mismatch repair. Aberrant MSH6 adds to the list of alterations/mutations associated with acquired resistance to purine analogs emphasizing the importance of thiopurine therapy.
Collapse
Affiliation(s)
- Nikki A Evensen
- Departments of Pediatrics and Pathology, Perlmutter Cancer Center, NYU-Langone Medical Center, New York, NY, USA
| | - P Pallavi Madhusoodhan
- Departments of Pediatrics and Pathology, Perlmutter Cancer Center, NYU-Langone Medical Center, New York, NY, USA
| | - Julia Meyer
- Huntsman Cancer Institute, University of Utah Medical Center, Salt Lake City, USA
| | - Jason Saliba
- Departments of Pediatrics and Pathology, Perlmutter Cancer Center, NYU-Langone Medical Center, New York, NY, USA
| | - Ashfiyah Chowdhury
- Departments of Pediatrics and Pathology, Perlmutter Cancer Center, NYU-Langone Medical Center, New York, NY, USA
| | - David J Araten
- Department of Medicine, Perlmutter Cancer Center, NYU-Langone Medical Center, New York NY, USA
| | - Jacob Nersting
- Department of Pediatrics and Adolescent Medicine, The University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Teena Bhatla
- Departments of Pediatrics and Pathology, Perlmutter Cancer Center, NYU-Langone Medical Center, New York, NY, USA
| | - Tiffaney L Vincent
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia and The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA, USA
| | - David Teachey
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia and The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen P Hunger
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia and The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA, USA
| | - Jun Yang
- St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, The University Hospital Rigshospitalet, Copenhagen, Denmark
| | - William L Carroll
- Departments of Pediatrics and Pathology, Perlmutter Cancer Center, NYU-Langone Medical Center, New York, NY, USA
| |
Collapse
|
26
|
Gupta D, Lin B, Cowan A, Heinen CD. ATR-Chk1 activation mitigates replication stress caused by mismatch repair-dependent processing of DNA damage. Proc Natl Acad Sci U S A 2018; 115:1523-1528. [PMID: 29378956 PMCID: PMC5816205 DOI: 10.1073/pnas.1720355115] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The mismatch repair pathway (MMR) is essential for removing DNA polymerase errors, thereby maintaining genomic stability. Loss of MMR function increases mutation frequency and is associated with tumorigenesis. However, how MMR is executed at active DNA replication forks is unclear. This has important implications for understanding how MMR repairs O6-methylguanine/thymidine (MeG/T) mismatches created upon exposure to DNA alkylating agents. If MeG/T lesion recognition by MMR initiates mismatch excision, the reinsertion of a mismatched thymidine during resynthesis could initiate futile repair cycles. One consequence of futile repair cycles might be a disruption of overall DNA replication in the affected cell. Herein, we show that in MMR-proficient HeLa cancer cells, treatment with a DNA alkylating agent slows S phase progression, yet cells still progress into the next cell cycle. In the first S phase following treatment, they activate ataxia telangiectasia and Rad3-related (ATR)-Checkpoint Kinase 1 (Chk1) signaling, which limits DNA damage, while inhibition of ATR kinase activity accelerates DNA damage accumulation and sensitivity to the DNA alkylating agent. We also observed that exposure of human embryonic stem cells to alkylation damage severely compromised DNA replication in a MMR-dependent manner. These cells fail to activate the ATR-Chk1 signaling axis, which may limit their ability to handle replication stress. Accordingly, they accumulate double-strand breaks and undergo immediate apoptosis. Our findings implicate the MMR-directed response to alkylation damage as a replication stress inducer, suggesting that repeated MMR processing of mismatches may occur that can disrupt S phase progression.
Collapse
Affiliation(s)
- Dipika Gupta
- Neag Comprehensive Cancer Center, UConn Health, Farmington, CT 06030-3101
- Center for Molecular Oncology, UConn Health, Farmington, CT 06030-3101
| | - Bo Lin
- Neag Comprehensive Cancer Center, UConn Health, Farmington, CT 06030-3101
- Center for Molecular Oncology, UConn Health, Farmington, CT 06030-3101
| | - Ann Cowan
- R. D. Berlin Center for Cell Analysis and Modeling, UConn Health, Farmington, CT 06030
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030
| | - Christopher D Heinen
- Neag Comprehensive Cancer Center, UConn Health, Farmington, CT 06030-3101;
- Center for Molecular Oncology, UConn Health, Farmington, CT 06030-3101
| |
Collapse
|
27
|
Guo J, Chen L, Li GM. DNA mismatch repair in trinucleotide repeat instability. SCIENCE CHINA. LIFE SCIENCES 2017; 60:1087-1092. [PMID: 29075942 DOI: 10.1007/s11427-017-9186-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 09/30/2017] [Indexed: 11/29/2022]
Abstract
Trinucleotide repeat expansions cause over 30 severe neuromuscular and neurodegenerative disorders, including Huntington's disease, myotonic dystrophy type 1, and fragile X syndrome. Although previous studies have substantially advanced the understanding of the disease biology, many key features remain unknown. DNA mismatch repair (MMR) plays a critical role in genome maintenance by removing DNA mismatches generated during DNA replication. However, MMR components, particularly mismatch recognition protein MutSβ and its interacting factors MutLα and MutLγ, have been implicated in trinucleotide repeat instability. In this review, we will discuss the roles of these key MMR proteins in promoting trinucleotide repeat instability.
Collapse
Affiliation(s)
- Jinzhen Guo
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Luping Chen
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Guo-Min Li
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
28
|
Restrepo P, Movassagh M, Alomran N, Miller C, Li M, Trenkov C, Manchev Y, Bahl S, Warnken S, Spurr L, Apanasovich T, Crandall K, Edwards N, Horvath A. Overexpressed somatic alleles are enriched in functional elements in Breast Cancer. Sci Rep 2017; 7:8287. [PMID: 28811643 PMCID: PMC5557904 DOI: 10.1038/s41598-017-08416-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/10/2017] [Indexed: 12/31/2022] Open
Abstract
Asymmetric allele content in the transcriptome can be indicative of functional and selective features of the underlying genetic variants. Yet, imbalanced alleles, especially from diploid genome regions, are poorly explored in cancer. Here we systematically quantify and integrate the variant allele fraction from corresponding RNA and DNA sequence data from patients with breast cancer acquired through The Cancer Genome Atlas (TCGA). We test for correlation between allele prevalence and functionality in known cancer-implicated genes from the Cancer Gene Census (CGC). We document significant allele-preferential expression of functional variants in CGC genes and across the entire dataset. Notably, we find frequent allele-specific overexpression of variants in tumor-suppressor genes. We also report a list of over-expressed variants from non-CGC genes. Overall, our analysis presents an integrated set of features of somatic allele expression and points to the vast information content of the asymmetric alleles in the cancer transcriptome.
Collapse
Affiliation(s)
- Paula Restrepo
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20037, USA.,McCormick Genomics and Proteomics Center, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20037, USA
| | - Mercedeh Movassagh
- University of Massachusetts Medical School, Program in Bioinformatics and Integrative Biology, Worcester, MA, 01605, USA
| | - Nawaf Alomran
- McCormick Genomics and Proteomics Center, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20037, USA.,Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, School of Medicine, Washington, DC, 20057, USA
| | - Christian Miller
- McCormick Genomics and Proteomics Center, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20037, USA
| | - Muzi Li
- McCormick Genomics and Proteomics Center, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20037, USA.,Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, School of Medicine, Washington, DC, 20057, USA
| | - Chris Trenkov
- McCormick Genomics and Proteomics Center, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20037, USA
| | - Yulian Manchev
- McCormick Genomics and Proteomics Center, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20037, USA
| | - Sonali Bahl
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20037, USA
| | - Stephanie Warnken
- Computational Biology Institute, The George Washington University, Washington, DC, 20037, USA
| | - Liam Spurr
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20037, USA.,McCormick Genomics and Proteomics Center, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20037, USA
| | - Tatiyana Apanasovich
- Department of Statistics, The George Washington University, Washington, DC, 20037, USA
| | - Keith Crandall
- Computational Biology Institute, The George Washington University, Washington, DC, 20037, USA
| | - Nathan Edwards
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, School of Medicine, Washington, DC, 20057, USA
| | - Anelia Horvath
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20037, USA. .,McCormick Genomics and Proteomics Center, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20037, USA. .,Department of Statistics, The George Washington University, Washington, DC, 20037, USA. .,Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20037, USA.
| |
Collapse
|
29
|
NEK1 kinase domain structure and its dynamic protein interactome after exposure to Cisplatin. Sci Rep 2017; 7:5445. [PMID: 28710492 PMCID: PMC5511132 DOI: 10.1038/s41598-017-05325-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/02/2017] [Indexed: 11/11/2022] Open
Abstract
NEK family kinases are serine/threonine kinases that have been functionally implicated in the regulation of the disjunction of the centrosome, the assembly of the mitotic spindle, the function of the primary cilium and the DNA damage response. NEK1 shows pleiotropic functions and has been found to be mutated in cancer cells, ciliopathies such as the polycystic kidney disease, as well as in the genetic diseases short-rib thoracic dysplasia, Mohr-syndrome and amyotrophic lateral sclerosis. NEK1 is essential for the ionizing radiation DNA damage response and priming of the ATR kinase and of Rad54 through phosphorylation. Here we report on the structure of the kinase domain of human NEK1 in its apo- and ATP-mimetic inhibitor bound forms. The inhibitor bound structure may allow the design of NEK specific chemo-sensitizing agents to act in conjunction with chemo- or radiation therapy of cancer cells. Furthermore, we characterized the dynamic protein interactome of NEK1 after DNA damage challenge with cisplatin. Our data suggest that NEK1 and its interaction partners trigger the DNA damage pathways responsible for correcting DNA crosslinks.
Collapse
|
30
|
Schizosaccharomyces pombe MutSα and MutLα Maintain Stability of Tetra-Nucleotide Repeats and Msh3 of Hepta-Nucleotide Repeats. G3-GENES GENOMES GENETICS 2017; 7:1463-1473. [PMID: 28341698 PMCID: PMC5427490 DOI: 10.1534/g3.117.040816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Defective mismatch repair (MMR) in humans is associated with colon cancer and instability of microsatellites, that is, DNA sequences with one or several nucleotides repeated. Key factors of eukaryotic MMR are the heterodimers MutSα (Msh2-Msh6), which recognizes base-base mismatches and unpaired nucleotides in DNA, and MutLα (Mlh1-Pms1), which facilitates downstream steps. In addition, MutSβ (Msh2-Msh3) recognizes DNA loops of various sizes, although our previous data and the data presented here suggest that Msh3 of Schizosaccharomyces pombe does not play a role in MMR. To test microsatellite stability in S. pombe and hence DNA loop repair, we have inserted tetra-, penta-, and hepta-nucleotide repeats in the ade6 gene and determined their Ade+ reversion rates and spectra in wild type and various mutants. Our data indicate that loops with four unpaired nucleotides in the nascent and the template strand are the upper limit of MutSα- and MutLα-mediated MMR in S. pombe Stability of hepta-nucleotide repeats requires Msh3 and Exo1 in MMR-independent processes as well as the DNA repair proteins Rad50, Rad51, and Rad2FEN1 Most strikingly, mutation rates in the double mutants msh3 exo1 and msh3 rad51 were decreased when compared to respective single mutants, indicating that Msh3 prevents error prone processes carried out by Exo1 and Rad51. We conclude that Msh3 has no obvious function in MMR in S. pombe, but contributes to DNA repeat stability in MMR-independent processes.
Collapse
|
31
|
Huang SC, Huang SF, Chen YT, Chang Y, Chiu YT, Chang IC, Wu HDI, Chen JS. Overexpression of MutL homolog 1 and MutS homolog 2 proteins have reversed prognostic implications for stage I-II colon cancer patients. Biomed J 2017; 40:39-48. [PMID: 28411881 PMCID: PMC6138591 DOI: 10.1016/j.bj.2017.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 07/12/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The outcome of colon cancer patients without lymph node metastasis is heterogeneous. Searching for new prognostic markers is warranted. METHODS One hundred twenty stage I-II colon cancer patients who received complete surgical excision during 1995-2004 were selected for this biomarker study. Immunohistochemical method was used to assess p53, epidermal growth factor receptor, MLH1, and MSH2 status. KRAS mutation was examined by direct sequencing. RESULTS Thirty three patients (27.5%) developed metachronous metastasis during follow up. By multivariate analysis, only female gender (p = 0.03), high serum carcinoembryonic antigen (CEA) level (≧5 ng/ml) (p = 0.04), and MLH1 overexpression (p = 0.003) were associated with the metastasis group. The 5-year-survival rate were also significantly lower for female gender (71.7% versus 88.9%, p = 0.025), high CEA level (64.9% versus 92.4%, p < 0.001), and MLH1 overexpression (77.5% versus 94.4%, p = 0.039). In contrast, MSH2 overexpression was associated with better survival, 95.1% versus 75.5% (p = 0.024). CONCLUSIONS The reversed prognostic implications in the overexpression of MLH1 and MSH2 for stage I-II colon cancer patients is a novel finding and worthy of further confirmation.
Collapse
Affiliation(s)
- Shih-Chiang Huang
- Department of Pathology, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Shiu-Feng Huang
- Department of Pathology, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan; Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan; Department of Pathology, Chung-Shan Medical University Hospital, Taichung, Taiwan.
| | - Ya-Ting Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Yu Chang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Yu-Ting Chiu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Il-Chi Chang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Hong-Dar Isaac Wu
- Department of Applied Mathematics and Institute of Statistics, National Chung-Hsing University, Taichung, Taiwan
| | - Jinn-Shiun Chen
- Division of Colon and -Rectum Surgery, Department of General Surgery, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
32
|
Novel Implications in Molecular Diagnosis of Lynch Syndrome. Gastroenterol Res Pract 2017; 2017:2595098. [PMID: 28250766 PMCID: PMC5303590 DOI: 10.1155/2017/2595098] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/05/2017] [Indexed: 02/07/2023] Open
Abstract
About 10% of total colorectal cancers are associated with known Mendelian inheritance, as Familial Adenomatous Polyposis (FAP) and Lynch syndrome (LS). In these cancer types the clinical manifestations of disease are due to mutations in high-risk alleles, with a penetrance at least of 70%. The LS is associated with germline mutations in the DNA mismatch repair (MMR) genes. However, the mutation detection analysis of these genes does not always provide informative results for genetic counseling of LS patients. Very often, the molecular analysis reveals the presence of variants of unknown significance (VUSs) whose interpretation is not easy and requires the combination of different analytical strategies to get a proper assessment of their pathogenicity. In some cases, these VUSs may make a more substantial overall contribution to cancer risk than the well-assessed severe Mendelian variants. Moreover, it could also be possible that the simultaneous presence of these genetic variants in several MMR genes that behave as low risk alleles might contribute in a cooperative manner to increase the risk of hereditary cancer. In this paper, through a review of the recent literature, we have speculated a novel inheritance model in the Lynch syndrome; this could pave the way toward new diagnostic perspectives.
Collapse
|
33
|
Kel AE, Stegmaier P, Valeev T, Koschmann J, Poroikov V, Kel-Margoulis OV, Wingender E. Multi-omics "upstream analysis" of regulatory genomic regions helps identifying targets against methotrexate resistance of colon cancer. EUPA OPEN PROTEOMICS 2016; 13:1-13. [PMID: 29900117 PMCID: PMC5988513 DOI: 10.1016/j.euprot.2016.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 09/05/2016] [Accepted: 09/08/2016] [Indexed: 11/25/2022]
Abstract
Upstream analysis strategy for multi-omics data is proposed. Drug targets are predicted by search for TFBS and analysis of signaling network. Methotrexate resistance data include transcriptomics, proteomics and epigenomics. Predicted targets are: TGFalpha, IGFBP7, alpha9-integrin. Predicted drugs are: zardaverine, divalproex and human metabolite nicotinamide N-oxide.
We present an “upstream analysis” strategy for causal analysis of multiple “-omics” data. It analyzes promoters using the TRANSFAC database, combines it with an analysis of the upstream signal transduction pathways and identifies master regulators as potential drug targets for a pathological process. We applied this approach to a complex multi-omics data set that contains transcriptomics, proteomics and epigenomics data. We identified the following potential drug targets against induced resistance of cancer cells towards chemotherapy by methotrexate (MTX): TGFalpha, IGFBP7, alpha9-integrin, and the following chemical compounds: zardaverine and divalproex as well as human metabolites such as nicotinamide N-oxide.
Collapse
Affiliation(s)
- Alexander E Kel
- Institute of Chemical Biology and Fundamental Medicine, SBRAS, Novosibirsk, Russia.,Biosoft.ru, Ltd, Novosibirsk, Russia.,geneXplain GmbH, D-38302 Wolfenbüttel, Germany
| | | | - Tagir Valeev
- Biosoft.ru, Ltd, Novosibirsk, Russia.,A.P. Ershov Institute of Informatics Systems, SB RAS, Novosibirsk, Russia
| | | | | | | | - Edgar Wingender
- geneXplain GmbH, D-38302 Wolfenbüttel, Germany.,Institute of Bioinformatics, University Medical Center Göttingen, D-37077 Göttingen, Germany
| |
Collapse
|
34
|
Chakraborty U, Alani E. Understanding how mismatch repair proteins participate in the repair/anti-recombination decision. FEMS Yeast Res 2016; 16:fow071. [PMID: 27573382 PMCID: PMC5976031 DOI: 10.1093/femsyr/fow071] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/24/2016] [Accepted: 08/24/2016] [Indexed: 01/06/2023] Open
Abstract
Mismatch repair (MMR) systems correct DNA mismatches that result from DNA polymerase misincorporation errors. Mismatches also appear in heteroduplex DNA intermediates formed during recombination between nearly identical sequences, and can be corrected by MMR or removed through an unwinding mechanism, known as anti-recombination or heteroduplex rejection. We review studies, primarily in baker's yeast, which support how specific factors can regulate the MMR/anti-recombination decision. Based on recent advances, we present models for how DNA structure, relative amounts of key repair proteins, the timely localization of repair proteins to DNA substrates and epigenetic marks can modulate this critical decision.
Collapse
Affiliation(s)
- Ujani Chakraborty
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA
| |
Collapse
|
35
|
Adam R, Spier I, Zhao B, Kloth M, Marquez J, Hinrichsen I, Kirfel J, Tafazzoli A, Horpaopan S, Uhlhaas S, Stienen D, Friedrichs N, Altmüller J, Laner A, Holzapfel S, Peters S, Kayser K, Thiele H, Holinski-Feder E, Marra G, Kristiansen G, Nöthen MM, Büttner R, Möslein G, Betz RC, Brieger A, Lifton RP, Aretz S. Exome Sequencing Identifies Biallelic MSH3 Germline Mutations as a Recessive Subtype of Colorectal Adenomatous Polyposis. Am J Hum Genet 2016; 99:337-51. [PMID: 27476653 DOI: 10.1016/j.ajhg.2016.06.015] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/14/2016] [Indexed: 12/20/2022] Open
Abstract
In ∼30% of families affected by colorectal adenomatous polyposis, no germline mutations have been identified in the previously implicated genes APC, MUTYH, POLE, POLD1, and NTHL1, although a hereditary etiology is likely. To uncover further genes with high-penetrance causative mutations, we performed exome sequencing of leukocyte DNA from 102 unrelated individuals with unexplained adenomatous polyposis. We identified two unrelated individuals with differing compound-heterozygous loss-of-function (LoF) germline mutations in the mismatch-repair gene MSH3. The impact of the MSH3 mutations (c.1148delA, c.2319-1G>A, c.2760delC, and c.3001-2A>C) was indicated at the RNA and protein levels. Analysis of the diseased individuals' tumor tissue demonstrated high microsatellite instability of di- and tetranucleotides (EMAST), and immunohistochemical staining illustrated a complete loss of nuclear MSH3 in normal and tumor tissue, confirming the LoF effect and causal relevance of the mutations. The pedigrees, genotypes, and frequency of MSH3 mutations in the general population are consistent with an autosomal-recessive mode of inheritance. Both index persons have an affected sibling carrying the same mutations. The tumor spectrum in these four persons comprised colorectal and duodenal adenomas, colorectal cancer, gastric cancer, and an early-onset astrocytoma. Additionally, we detected one unrelated individual with biallelic PMS2 germline mutations, representing constitutional mismatch-repair deficiency. Potentially causative variants in 14 more candidate genes identified in 26 other individuals require further workup. In the present study, we identified biallelic germline MSH3 mutations in individuals with a suspected hereditary tumor syndrome. Our data suggest that MSH3 mutations represent an additional recessive subtype of colorectal adenomatous polyposis.
Collapse
Affiliation(s)
- Ronja Adam
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany; Center for Hereditary Tumor Syndromes, University of Bonn, 53127 Bonn, Germany
| | - Isabel Spier
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany; Center for Hereditary Tumor Syndromes, University of Bonn, 53127 Bonn, Germany
| | - Bixiao Zhao
- Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520-8005, USA
| | - Michael Kloth
- Institute of Pathology, University of Cologne, 50937 Cologne, Germany
| | - Jonathan Marquez
- Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520-8005, USA
| | - Inga Hinrichsen
- Medical Clinic 1, Biomedical Research Laboratory, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Jutta Kirfel
- Institute of Pathology, University of Bonn, 53127 Bonn, Germany
| | - Aylar Tafazzoli
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany; Department of Genomics, Life & Brain Center, University of Bonn, 53127 Bonn, Germany
| | - Sukanya Horpaopan
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany; Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Chiang Mai 50200, Thailand
| | - Siegfried Uhlhaas
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany
| | - Dietlinde Stienen
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany
| | | | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, 50937 Cologne, Germany; Institute of Human Genetics, University of Cologne, 50937 Cologne, Germany
| | - Andreas Laner
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-University, 80336 Munich, Germany; Medical Genetics Center, 80335 Munich, Germany
| | - Stefanie Holzapfel
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany; Center for Hereditary Tumor Syndromes, University of Bonn, 53127 Bonn, Germany
| | - Sophia Peters
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany
| | - Katrin Kayser
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany
| | - Holger Thiele
- Cologne Center for Genomics, University of Cologne, 50937 Cologne, Germany
| | - Elke Holinski-Feder
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-University, 80336 Munich, Germany; Medical Genetics Center, 80335 Munich, Germany
| | - Giancarlo Marra
- Institute of Molecular Cancer Research, University of Zurich, CH-8057 Zurich, Switzerland
| | | | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany; Department of Genomics, Life & Brain Center, University of Bonn, 53127 Bonn, Germany
| | - Reinhard Büttner
- Institute of Pathology, University of Cologne, 50937 Cologne, Germany
| | - Gabriela Möslein
- HELIOS Klinikum Wuppertal, University of Witten/Herdecke, 42283 Wuppertal, Germany
| | - Regina C Betz
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany; Department of Genomics, Life & Brain Center, University of Bonn, 53127 Bonn, Germany
| | - Angela Brieger
- Medical Clinic 1, Biomedical Research Laboratory, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Richard P Lifton
- Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520-8005, USA
| | - Stefan Aretz
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany; Center for Hereditary Tumor Syndromes, University of Bonn, 53127 Bonn, Germany.
| |
Collapse
|
36
|
A MutSβ-Dependent Contribution of MutSα to Repeat Expansions in Fragile X Premutation Mice? PLoS Genet 2016; 12:e1006190. [PMID: 27427765 PMCID: PMC4948851 DOI: 10.1371/journal.pgen.1006190] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 06/22/2016] [Indexed: 12/11/2022] Open
Abstract
The fragile X-related disorders result from expansion of a CGG/CCG microsatellite in the 5’ UTR of the FMR1 gene. We have previously demonstrated that the MSH2/MSH3 complex, MutSβ, that is important for mismatch repair, is essential for almost all expansions in a mouse model of these disorders. Here we show that the MSH2/MSH6 complex, MutSα also contributes to the production of both germ line and somatic expansions as evidenced by the reduction in the number of expansions observed in Msh6-/- mice. This effect is not mediated via an indirect effect of the loss of MSH6 on the level of MSH3. However, since MutSβ is required for 98% of germ line expansions and almost all somatic ones, MutSα is apparently not able to efficiently substitute for MutSβ in the expansion process. Using purified human proteins we demonstrate that MutSα, like MutSβ, binds to substrates with loop-outs of the repeats and increases the thermal stability of the structures that they form. We also show that MutSα facilitates binding of MutSβ to these loop-outs. These data suggest possible models for the contribution of MutSα to repeat expansion. In addition, we show that unlike MutSβ, MutSα may also act to protect against repeat contractions in the Fmr1 gene. The repeat expansion diseases are a group of human genetic disorders that are caused by expansion of a specific microsatellite in a single affected gene. How this expansion occurs is unknown, but previous work in various models for different diseases in the group, including the fragile X-related disorders (FXDs), has implicated the mismatch repair complex MutSβ in the process. With the exception of somatic expansion in Friedreich ataxia, MutSα has not been reported to contribute to generation of expansions in other disease models. Here we show that MutSα does in fact play a role in both germ line and somatic expansions in a mouse model of the FXDs since the expansion frequency is significantly reduced in Msh6-/- mice. However, since we have previously shown that loss of MutSβ eliminates almost all expansions, MutSα is apparently not able to fully substitute for MutSβ in the expansion process. We also show here that MutSα increases the stability of the structures formed by the fragile X repeats that are thought to be the substrates for expansion and promotes binding of MutSβ to the repeats. This, together with our genetic data, suggests possible models for how MutSα and MutSβ, could co-operate to generate repeat expansions in the FXDs.
Collapse
|
37
|
Guo J, Gu L, Leffak M, Li GM. MutSβ promotes trinucleotide repeat expansion by recruiting DNA polymerase β to nascent (CAG)n or (CTG)n hairpins for error-prone DNA synthesis. Cell Res 2016; 26:775-86. [PMID: 27255792 PMCID: PMC5129881 DOI: 10.1038/cr.2016.66] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/15/2016] [Accepted: 05/17/2016] [Indexed: 12/12/2022] Open
Abstract
Expansion of (CAG)•(CTG) repeats causes a number of familial neurodegenerative disorders. Although the underlying mechanism remains largely unknown, components involved in DNA mismatch repair, particularly mismatch recognition protein MutSβ (a MSH2-MSH3 heterodimer), are implicated in (CAG)•(CTG) repeat expansion. In addition to recognizing small insertion-deletion loop-outs, MutSβ also specifically binds DNA hairpin imperfect heteroduplexes formed within (CAG)n•(CTG)n sequences. However, whether or not and how MutSβ binding triggers expansion of (CAG)•(CTG) repeats remain unknown. We show here that purified recombinant MutSβ physically interacts with DNA polymerase β (Polβ) and stimulates Polβ-catalyzed (CAG)n or (CTG)n hairpin retention. Consistent with these in vitro observations, MutSβ and Polβ interact with each other in vivo, and colocalize at (CAG)•(CTG) repeats during DNA replication. Our data support a model for error-prone processing of (CAG)n or (CTG)n hairpins by MutSβ and Polβ during DNA replication and/or repair: MutSβ recognizes (CAG)n or (CTG)n hairpins formed in the nascent DNA strand, and recruits Polβ to the complex, which then utilizes the hairpin as a primer for extension, leading to (CAG)•(CTG) repeat expansion. This study provides a novel mechanism for trinucleotide repeat expansion in both dividing and non-dividing cells.
Collapse
Affiliation(s)
- Jinzhen Guo
- Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing 100084, China.,Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, 1450 Biggy Street, Los Angeles, CA 90033, USA
| | - Liya Gu
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, 1450 Biggy Street, Los Angeles, CA 90033, USA
| | - Michael Leffak
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Guo-Min Li
- Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing 100084, China.,Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, 1450 Biggy Street, Los Angeles, CA 90033, USA
| |
Collapse
|
38
|
Viterbo D, Michoud G, Mosbach V, Dujon B, Richard GF. Replication stalling and heteroduplex formation within CAG/CTG trinucleotide repeats by mismatch repair. DNA Repair (Amst) 2016; 42:94-106. [DOI: 10.1016/j.dnarep.2016.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/01/2016] [Accepted: 03/11/2016] [Indexed: 10/22/2022]
|
39
|
Schmidt TT, Hombauer H. Visualization of mismatch repair complexes using fluorescence microscopy. DNA Repair (Amst) 2016; 38:58-67. [DOI: 10.1016/j.dnarep.2015.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/30/2015] [Accepted: 11/30/2015] [Indexed: 11/15/2022]
|
40
|
A Delicate Balance Between Repair and Replication Factors Regulates Recombination Between Divergent DNA Sequences in Saccharomyces cerevisiae. Genetics 2015; 202:525-40. [PMID: 26680658 DOI: 10.1534/genetics.115.184093] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/07/2015] [Indexed: 11/18/2022] Open
Abstract
Single-strand annealing (SSA) is an important homologous recombination mechanism that repairs DNA double strand breaks (DSBs) occurring between closely spaced repeat sequences. During SSA, the DSB is acted upon by exonucleases to reveal complementary sequences that anneal and are then repaired through tail clipping, DNA synthesis, and ligation steps. In baker's yeast, the Msh DNA mismatch recognition complex and the Sgs1 helicase act to suppress SSA between divergent sequences by binding to mismatches present in heteroduplex DNA intermediates and triggering a DNA unwinding mechanism known as heteroduplex rejection. Using baker's yeast as a model, we have identified new factors and regulatory steps in heteroduplex rejection during SSA. First we showed that Top3-Rmi1, a topoisomerase complex that interacts with Sgs1, is required for heteroduplex rejection. Second, we found that the replication processivity clamp proliferating cell nuclear antigen (PCNA) is dispensable for heteroduplex rejection, but is important for repairing mismatches formed during SSA. Third, we showed that modest overexpression of Msh6 results in a significant increase in heteroduplex rejection; this increase is due to a compromise in Msh2-Msh3 function required for the clipping of 3' tails. Thus 3' tail clipping during SSA is a critical regulatory step in the repair vs. rejection decision; rejection is favored before the 3' tails are clipped. Unexpectedly, Msh6 overexpression, through interactions with PCNA, disrupted heteroduplex rejection between divergent sequences in another recombination substrate. These observations illustrate the delicate balance that exists between repair and replication factors to optimize genome stability.
Collapse
|
41
|
Regulation of mismatch repair by histone code and posttranslational modifications in eukaryotic cells. DNA Repair (Amst) 2015; 38:68-74. [PMID: 26719139 DOI: 10.1016/j.dnarep.2015.11.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 09/09/2015] [Accepted: 11/30/2015] [Indexed: 12/15/2022]
Abstract
DNA mismatch repair (MMR) protects genome integrity by correcting DNA replication-associated mispairs, modulating DNA damage-induced cell cycle checkpoints and regulating homeologous recombination. Loss of MMR function leads to cancer development. This review describes progress in understanding how MMR is carried out in the context of chromatin and how chromatin organization/compaction, epigenetic mechanisms and posttranslational modifications of MMR proteins influence and regulate MMR in eukaryotic cells.
Collapse
|
42
|
Large expansion of CTG•CAG repeats is exacerbated by MutSβ in human cells. Sci Rep 2015; 5:11020. [PMID: 26047474 PMCID: PMC4457148 DOI: 10.1038/srep11020] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/12/2015] [Indexed: 11/08/2022] Open
Abstract
Trinucleotide repeat expansion disorders (TRED) are caused by genomic expansions of trinucleotide repeats, such as CTG and CAG. These expanded repeats are unstable in germline and somatic cells, with potential consequences for disease severity. Previous studies have demonstrated the involvement of DNA repair proteins in repeat instability, although the key factors affecting large repeat expansion and contraction are unclear. Here we investigated these factors in a human cell model harboring 800 CTG•CAG repeats by individually knocking down various DNA repair proteins using short interfering RNA. Knockdown of MSH2 and MSH3, which form the MutSβ heterodimer and function in mismatch repair, suppressed large repeat expansions, whereas knockdown of MSH6, which forms the MutSα heterodimer with MSH2, promoted large expansions exceeding 200 repeats by compensatory increases in MSH3 and the MutSβ complex. Knockdown of topoisomerase 1 (TOP1) and TDP1, which are involved in single-strand break repair, enhanced large repeat contractions. Furthermore, knockdown of senataxin, an RNA/DNA helicase which affects DNA:RNA hybrid formation and transcription-coupled nucleotide excision repair, exacerbated repeat instability in both directions. These results indicate that DNA repair factors, such as MutSβ play important roles in large repeat expansion and contraction, and can be an excellent therapeutic target for TRED.
Collapse
|
43
|
NPM-ALK mediates phosphorylation of MSH2 at tyrosine 238, creating a functional deficiency in MSH2 and the loss of mismatch repair. Blood Cancer J 2015; 5:e311. [PMID: 25978431 PMCID: PMC4476014 DOI: 10.1038/bcj.2015.35] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 03/16/2015] [Accepted: 04/07/2015] [Indexed: 12/22/2022] Open
Abstract
The vast majority of anaplastic lymphoma kinase-positive anaplastic large cell lymphoma (ALK+ALCL) tumors express the characteristic oncogenic fusion protein NPM-ALK, which mediates tumorigenesis by exerting its constitutive tyrosine kinase activity on various substrates. We recently identified MSH2, a protein central to DNA mismatch repair (MMR), as a novel binding partner and phosphorylation substrate of NPM-ALK. Here, using liquid chromatography–mass spectrometry, we report for the first time that MSH2 is phosphorylated by NPM-ALK at a specific residue, tyrosine 238. Using GP293 cells transfected with NPM-ALK, we confirmed that the MSH2Y238F mutant is not tyrosine phosphorylated. Furthermore, transfection of MSH2Y238F into these cells substantially decreased the tyrosine phosphorylation of endogenous MSH2. Importantly, gene transfection of MSH2Y238F abrogated the binding of NPM-ALK with endogenous MSH2, re-established the dimerization of MSH2:MSH6 and restored the sensitivity to DNA mismatch-inducing drugs, indicative of MMR return. Parallel findings were observed in two ALK+ALCL cell lines, Karpas 299 and SUP-M2. In addition, we found that enforced expression of MSH2Y238F into ALK+ALCL cells alone was sufficient to induce spontaneous apoptosis. In conclusion, our findings have identified NPM-ALK-induced phosphorylation of MSH2 at Y238 as a crucial event in suppressing MMR. Our studies have provided novel insights into the mechanism by which oncogenic tyrosine kinases disrupt MMR.
Collapse
|
44
|
Reyes GX, Schmidt TT, Kolodner RD, Hombauer H. New insights into the mechanism of DNA mismatch repair. Chromosoma 2015; 124:443-62. [PMID: 25862369 DOI: 10.1007/s00412-015-0514-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/23/2015] [Accepted: 03/23/2015] [Indexed: 12/20/2022]
Abstract
The genome of all organisms is constantly being challenged by endogenous and exogenous sources of DNA damage. Errors like base:base mismatches or small insertions and deletions, primarily introduced by DNA polymerases during DNA replication are repaired by an evolutionary conserved DNA mismatch repair (MMR) system. The MMR system, together with the DNA replication machinery, promote repair by an excision and resynthesis mechanism during or after DNA replication, increasing replication fidelity by up-to-three orders of magnitude. Consequently, inactivation of MMR genes results in elevated mutation rates that can lead to increased cancer susceptibility in humans. In this review, we summarize our current understanding of MMR with a focus on the different MMR protein complexes, their function and structure. We also discuss how recent findings have provided new insights in the spatio-temporal regulation and mechanism of MMR.
Collapse
Affiliation(s)
- Gloria X Reyes
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Tobias T Schmidt
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Richard D Kolodner
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, Moores-UCSD Cancer Center and Institute of Genomic Medicine, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093-0669, USA
| | - Hans Hombauer
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.
| |
Collapse
|
45
|
Wu J, Starr S. Low-fidelity compensatory backup alternative DNA repair pathways may unify current carcinogenesis theories. Future Oncol 2015; 10:1239-53. [PMID: 24947263 DOI: 10.2217/fon.13.272] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The somatic mutation carcinogenesis theory has dominated for decades. The alternative theory, tissue organization field theory, argues that the development of cancer is determined by the surrounding microenvironment. However, neither theory can explain all features of cancer. As cancers share the features of uncontrolled proliferation and genomic instability, they are likely to have the same pathogenesis. It has been found that various DNA repair pathways within a cell crosstalk with one another, forming a DNA repair network. When one DNA repair pathways is defective, the others may work as compensatory backups. The latter pathways are explored for synthetic lethal anticancer therapy. In this article, we extend the concept of compensatory alternative DNA repair to unify the theories. We propose that the microenvironmental stress can activate low-fidelity compensatory alternative DNA repair, causing mutations. If the mutation occurs to a DNA repair gene, this secondarily mutated gene can lead to even more mutated genes, including those related to other DNA repair pathways, eventually destabilizing the genome. Therefore, the low-fidelity compensatory alternative DNA repair may mediate microenvironment-dependent carcinogenesis. The proposal seems consistent with the view of evolution: the environmental stress causes mutations to adapt to the changing environment.
Collapse
Affiliation(s)
- Jiaxi Wu
- Central Laboratories, Xuhui Central Hospital, Shanghai Clinical Research Center, Chinese Academy of Sciences, 966 Middle Huaihai Road, Shanghai 200031, China
| | | |
Collapse
|
46
|
Abstract
DNA mismatch repair is a conserved antimutagenic pathway that maintains genomic stability through rectification of DNA replication errors and attenuation of chromosomal rearrangements. Paradoxically, mutagenic action of mismatch repair has been implicated as a cause of triplet repeat expansions that cause neurological diseases such as Huntington disease and myotonic dystrophy. This mutagenic process requires the mismatch recognition factor MutSβ and the MutLα (and/or possibly MutLγ) endonuclease, and is thought to be triggered by the transient formation of unusual DNA structures within the expanded triplet repeat element. This review summarizes the current knowledge of DNA mismatch repair involvement in triplet repeat expansion, which encompasses in vitro biochemical findings, cellular studies, and various in vivo transgenic animal model experiments. We present current mechanistic hypotheses regarding mismatch repair protein function in mediating triplet repeat expansions and discuss potential therapeutic approaches targeting the mismatch repair pathway.
Collapse
Affiliation(s)
- Ravi R Iyer
- Teva Branded Pharmaceutical Products R&D, Inc., West Chester, Pennsylvania 19380;
| | | | | | | |
Collapse
|
47
|
Romanova NV, Crouse GF. Different roles of eukaryotic MutS and MutL complexes in repair of small insertion and deletion loops in yeast. PLoS Genet 2013; 9:e1003920. [PMID: 24204320 PMCID: PMC3814323 DOI: 10.1371/journal.pgen.1003920] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 09/11/2013] [Indexed: 11/18/2022] Open
Abstract
DNA mismatch repair greatly increases genome fidelity by recognizing and removing replication errors. In order to understand how this fidelity is maintained, it is important to uncover the relative specificities of the different components of mismatch repair. There are two major mispair recognition complexes in eukaryotes that are homologues of bacterial MutS proteins, MutSα and MutSβ, with MutSα recognizing base-base mismatches and small loop mispairs and MutSβ recognizing larger loop mispairs. Upon recognition of a mispair, the MutS complexes then interact with homologues of the bacterial MutL protein. Loops formed on the primer strand during replication lead to insertion mutations, whereas loops on the template strand lead to deletions. We show here in yeast, using oligonucleotide transformation, that MutSα has a strong bias toward repair of insertion loops, while MutSβ has an even stronger bias toward repair of deletion loops. Our results suggest that this bias in repair is due to the different interactions of the MutS complexes with the MutL complexes. Two mutants of MutLα, pms1-G882E and pms1-H888R, repair deletion mispairs but not insertion mispairs. Moreover, we find that a different MutL complex, MutLγ, is extremely important, but not sufficient, for deletion repair in the presence of either MutLα mutation. MutSβ is present in many eukaryotic organisms, but not in prokaryotes. We suggest that the biased repair of deletion mispairs may reflect a critical eukaryotic function of MutSβ in mismatch repair.
Collapse
Affiliation(s)
- Nina V. Romanova
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Gray F. Crouse
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
48
|
Du J, Campau E, Soragni E, Jespersen C, Gottesfeld JM. Length-dependent CTG·CAG triplet-repeat expansion in myotonic dystrophy patient-derived induced pluripotent stem cells. Hum Mol Genet 2013; 22:5276-87. [PMID: 23933738 DOI: 10.1093/hmg/ddt386] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is an inherited dominant muscular dystrophy caused by expanded CTG·CAG triplet repeats in the 3' untranslated region of the DMPK1 gene, which produces a toxic gain-of-function CUG RNA. It has been shown that the severity of disease symptoms, age of onset and progression are related to the length of the triplet repeats. However, the mechanism(s) of CTG·CAG triplet-repeat instability is not fully understood. Herein, induced pluripotent stem cells (iPSCs) were generated from DM1 and Huntington's disease patient fibroblasts. We isolated 41 iPSC clones from DM1 fibroblasts, all showing different CTG·CAG repeat lengths, thus demonstrating somatic instability within the initial fibroblast population. During propagation of the iPSCs, the repeats expanded in a manner analogous to the expansion seen in somatic cells from DM1 patients. The correlation between repeat length and expansion rate identified the interval between 57 and 126 repeats as being an important length threshold where expansion rates dramatically increased. Moreover, longer repeats showed faster triplet-repeat expansion. However, the overall tendency of triplet repeats to expand ceased on differentiation into differentiated embryoid body or neurospheres. The mismatch repair components MSH2, MSH3 and MSH6 were highly expressed in iPSCs compared with fibroblasts, and only occupied the DMPK1 gene harboring longer CTG·CAG triplet repeats. In addition, shRNA silencing of MSH2 impeded CTG·CAG triplet-repeat expansion. The information gained from these studies provides new insight into a general mechanism of triplet-repeat expansion in iPSCs.
Collapse
Affiliation(s)
- Jintang Du
- Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
49
|
Li F, Mao G, Tong D, Huang J, Gu L, Yang W, Li GM. The histone mark H3K36me3 regulates human DNA mismatch repair through its interaction with MutSα. Cell 2013; 153:590-600. [PMID: 23622243 DOI: 10.1016/j.cell.2013.03.025] [Citation(s) in RCA: 448] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 02/13/2013] [Accepted: 03/18/2013] [Indexed: 12/23/2022]
Abstract
DNA mismatch repair (MMR) ensures replication fidelity by correcting mismatches generated during DNA replication. Although human MMR has been reconstituted in vitro, how MMR occurs in vivo is unknown. Here, we show that an epigenetic histone mark, H3K36me3, is required in vivo to recruit the mismatch recognition protein hMutSα (hMSH2-hMSH6) onto chromatin through direct interactions with the hMSH6 PWWP domain. The abundance of H3K36me3 in G1 and early S phases ensures that hMutSα is enriched on chromatin before mispairs are introduced during DNA replication. Cells lacking the H3K36 trimethyltransferase SETD2 display microsatellite instability (MSI) and an elevated spontaneous mutation frequency, characteristic of MMR-deficient cells. This work reveals that a histone mark regulates MMR in human cells and explains the long-standing puzzle of MSI-positive cancer cells that lack detectable mutations in known MMR genes.
Collapse
Affiliation(s)
- Feng Li
- Graduate Center for Toxicology, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Tentori L, Muzi A, Dorio AS, Dolci S, Campolo F, Vernole P, Lacal PM, Praz F, Graziani G. MSH3 expression does not influence the sensitivity of colon cancer HCT116 cell line to oxaliplatin and poly(ADP-ribose) polymerase (PARP) inhibitor as monotherapy or in combination. Cancer Chemother Pharmacol 2013; 72:117-25. [PMID: 23636450 DOI: 10.1007/s00280-013-2175-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 04/19/2013] [Indexed: 12/21/2022]
Abstract
PURPOSE Defective expression of the mismatch repair protein MSH3 is frequently detected in colon cancer, and down-regulation of its expression was found to decrease sensitivity to platinum compounds or poly(ADP-ribose) polymerase inhibitors (PARPi) monotherapy. We have investigated whether MSH3 transfection in MSH3-deficient colon cancer cells confers resistance to oxaliplatin or PARPi and whether their combination restores chemosensitivity. METHODS MSH3-deficient/MLH1-proficient colon cancer HCT116(MLH1) cells were transfected with the MSH3 cDNA cloned into the pcDNA3.1(-) vector. MSH3/MLH1-deficient HCT116, carrying MLH1 and MSH3 mutations on chromosome 3 and 5, respectively, and HCT116 in which wild-type MLH1 (HCT116+3), MSH3 (HCT116+5) or both genes (HCT116+3+5) were introduced by chromosome transfer were also tested. Sensitivity to oxaliplatin and to PARPi was evaluated by analysis of clonogenic survival, cell proliferation, apoptosis and cell cycle. RESULTS MSH3 transfection in HCT116 cells did not confer resistance to oxaliplatin or PARPi monotherapy. MSH3-proficient HCT116+5 or HCT116+3+5 cells, which were more resistant to oxaliplatin and PARPi in comparison with their MSH3-deficient counterparts, expressed higher levels of the nucleotide excision repair ERCC1 and XPF proteins, involved in the resistance to platinum compounds, and lower PARP-1 levels. In all cases, PARPi increased sensitivity to oxaliplatin. CONCLUSIONS Restoring of MSH3 expression by cDNA transfection, rather than by chromosome transfer, did not affect colon cancer sensitivity to oxaliplatin or PARPi monotherapy; PARP-1 levels seemed to be more crucial for the outcome of PARPi monotherapy.
Collapse
Affiliation(s)
- Lucio Tentori
- Department of System Medicine, University of Rome, Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|