1
|
de Groot NG, de Vos‐Rouweler AJM, Heijmans CMC, Louwerse A, Massen JJM, Langermans JAM, Bontrop RE, Bruijnesteijn J. Genetic Conservation and Population Management of Non-Human Primates: Parentage Determination Using Seven Microsatellite-Based Multiplexes. Ecol Evol 2025; 15:e71216. [PMID: 40196407 PMCID: PMC11974450 DOI: 10.1002/ece3.71216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/07/2025] [Accepted: 03/21/2025] [Indexed: 04/09/2025] Open
Abstract
Conservation of non-human primates receives much attention, with nearly 350 of the more than 520 recorded primate species classified as threatened. To conduct effective population management, monitoring genetic diversity within species is of key importance, as it can offer insights into the levels of inbreeding within groups or populations. To examine kinship within the macaque breeding groups housed at the Biomedical Primate Research Centre, located in Rijswijk, The Netherlands, we have developed seven microsatellite-based multiplexes for parentage analysis. These multiplexes comprise a unique set of 23 short tandem repeats (STR) distributed across 15 chromosomes. Extensive validation has been conducted across 2217 Indian rhesus (Macaca mulatta) and 759 long-tailed macaques (M. fascicularis), demonstrating that these STR markers are highly polymorphic and segregate. Most markers exhibit a polymorphic information content (PIC) value above 0.5, illustrating that they are highly informative and valuable in providing us with a reliable parentage determination. Beyond macaques, we manifested that the multiplexes are also suitable for addressing parentage issues in apes and other Old World monkey species. Furthermore, this assay works on DNA isolated from both invasive and non-invasive derived material (e.g., hair follicles and potentially feces). Thus, we present here seven validated multiplexes suitable for parentage analysis in apes and Old World monkey species. These multiplexes support future colony management objectives for various captive populations and, given the applicability of non-invasive techniques, could also be valuable for monitoring free-ranging primate populations.
Collapse
Affiliation(s)
- Natasja G. de Groot
- Comparative Genetics and RefinementBiomedical Primate Research CentreRijswijkGJthe Netherlands
| | | | - Corrine M. C. Heijmans
- Comparative Genetics and RefinementBiomedical Primate Research CentreRijswijkGJthe Netherlands
| | - Annet Louwerse
- Animal Science DepartmentBiomedical Primate Research CentreRijswijkGJthe Netherlands
| | - Jorg J. M. Massen
- Animal Behaviour and Cognition, Department of BiologyUtrecht UniversityUtrechtCHthe Netherlands
| | - Jan A. M. Langermans
- Animal Science DepartmentBiomedical Primate Research CentreRijswijkGJthe Netherlands
- Population Health Sciences, Unit Animals in Science and Society, Faculty of Veterinary MedicineUtrecht UniversityUtrechtCMthe Netherlands
| | - Ronald E. Bontrop
- Comparative Genetics and RefinementBiomedical Primate Research CentreRijswijkGJthe Netherlands
- Theoretical Biology and BioinformaticsUtrecht UniversityUtrechtCHthe Netherlands
| | - Jesse Bruijnesteijn
- Comparative Genetics and RefinementBiomedical Primate Research CentreRijswijkGJthe Netherlands
| |
Collapse
|
2
|
de Groot N, van der Wiel M, Le NG, de Groot NG, Bruijnesteijn J, Bontrop RE. Unraveling the architecture of major histocompatibility complex class II haplotypes in rhesus macaques. Genome Res 2024; 34:1811-1824. [PMID: 39443153 DOI: 10.1101/gr.278968.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/28/2024] [Indexed: 10/25/2024]
Abstract
The regions in the genome that encode components of the immune system are often featured by polymorphism, copy number variation, and segmental duplications. There is a need to thoroughly characterize these complex regions to gain insight into the impact of genomic diversity on health and disease. Here we resolve the organization of complete major histocompatibility complex (MHC) class II regions in rhesus macaques by using a long-read sequencing strategy (Oxford Nanopore Technologies) in concert with adaptive sampling. In particular, the expansion and contraction of the primate DRB-region appear to be a dynamic process that involves the rearrangement of different cassettes of paralogous genes. These chromosomal recombination events are propagated by a conserved pseudogene, DRB6, which features the integration of two retroviral elements. In contrast, the DRA locus appears to be protected from rearrangements, which may be owing to the presence of an adjacently located truncated gene segment, DRB9 With our sequencing strategy, the annotation, evolutionary conservation, and potential function of pseudogenes can be reassessed, an aspect that was neglected by most genome studies in primates. Furthermore, our approach facilitates the characterization and refinement of an animal model essential to study human biology and disease.
Collapse
Affiliation(s)
- Nanine de Groot
- Department of Comparative Genetics and Refinement, BPRC, 2288 GJ Rijswijk, the Netherlands
| | - Marit van der Wiel
- Department of Comparative Genetics and Refinement, BPRC, 2288 GJ Rijswijk, the Netherlands
| | - Ngoc Giang Le
- Department of Comparative Genetics and Refinement, BPRC, 2288 GJ Rijswijk, the Netherlands
| | - Natasja G de Groot
- Department of Comparative Genetics and Refinement, BPRC, 2288 GJ Rijswijk, the Netherlands
| | - Jesse Bruijnesteijn
- Department of Comparative Genetics and Refinement, BPRC, 2288 GJ Rijswijk, the Netherlands;
| | - Ronald E Bontrop
- Department of Comparative Genetics and Refinement, BPRC, 2288 GJ Rijswijk, the Netherlands
- Department of Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
3
|
Gordeychuk IV, Gancharova OS, Gulyaev SA, Gulyaeva TV, Zhitkevich AS, Avdoshina DV, Moroz AV, Lunin AS, Sotskova SE, Korduban EA, Tukhvatulin AI, Bayurova EO, Ishmukhametov AA. Experimental Use of Common Marmosets (Callithrix jacchus) in Preclinical Trials of Antiviral Vaccines. Acta Naturae 2024; 16:30-39. [PMID: 39188261 PMCID: PMC11345092 DOI: 10.32607/actanaturae.27372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/04/2024] [Indexed: 08/28/2024] Open
Abstract
Common marmoset (Callithrix jacchus, CM) is a New World primate species that is of interest for preclinical trials of immunobiological products. In this study, we describe the approaches to long-term laboratory breeding and maintenance of CMs. We also establish the reference values of the main complete blood count and serum chemistry parameters evaluated during preclinical trials of immunobiological products and describe the histological characteristics of CM lymphoid organs during the development of post-vaccination immune response. We show that CMs bred in laboratory conditions excluding background infectious pathology are a relevant model that allows for a high degree of reliability in characterizing the safety and immunogenicity profile of antiviral vaccines during preclinical trials.
Collapse
Affiliation(s)
- I. V. Gordeychuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, 108819 Russian Federation
- Institute for Translational Medicine and Biotechnology, Sechenov University, Moscow, 117418 Russian Federation
| | - O. S. Gancharova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, 108819 Russian Federation
- Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, 119992 Russian Federation
| | - S. A. Gulyaev
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, 108819 Russian Federation
| | - T. V. Gulyaeva
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, 108819 Russian Federation
| | - A. S. Zhitkevich
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, 108819 Russian Federation
| | - D. V. Avdoshina
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, 108819 Russian Federation
| | - A. V. Moroz
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, 108819 Russian Federation
| | - A. S. Lunin
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, 108819 Russian Federation
| | - S. E. Sotskova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, 108819 Russian Federation
| | - E. A. Korduban
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, 108819 Russian Federation
| | - A. I. Tukhvatulin
- National Research Centre for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, Moscow, 123098 Russin Federation
| | - E. O. Bayurova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, 108819 Russian Federation
| | - A. A. Ishmukhametov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, 108819 Russian Federation
- Institute for Translational Medicine and Biotechnology, Sechenov University, Moscow, 117418 Russian Federation
| |
Collapse
|
4
|
Herron ICT, Laws TR, Nelson M. Marmosets as models of infectious diseases. Front Cell Infect Microbiol 2024; 14:1340017. [PMID: 38465237 PMCID: PMC10921895 DOI: 10.3389/fcimb.2024.1340017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Animal models of infectious disease often serve a crucial purpose in obtaining licensure of therapeutics and medical countermeasures, particularly in situations where human trials are not feasible, i.e., for those diseases that occur infrequently in the human population. The common marmoset (Callithrix jacchus), a Neotropical new-world (platyrrhines) non-human primate, has gained increasing attention as an animal model for a number of diseases given its small size, availability and evolutionary proximity to humans. This review aims to (i) discuss the pros and cons of the common marmoset as an animal model by providing a brief snapshot of how marmosets are currently utilized in biomedical research, (ii) summarize and evaluate relevant aspects of the marmoset immune system to the study of infectious diseases, (iii) provide a historical backdrop, outlining the significance of infectious diseases and the importance of developing reliable animal models to test novel therapeutics, and (iv) provide a summary of infectious diseases for which a marmoset model exists, followed by an in-depth discussion of the marmoset models of two studied bacterial infectious diseases (tularemia and melioidosis) and one viral infectious disease (viral hepatitis C).
Collapse
Affiliation(s)
- Ian C. T. Herron
- CBR Division, Defence Science and Technology Laboratory (Dstl), Salisbury, United Kingdom
| | | | | |
Collapse
|
5
|
Bayurova E, Zhitkevich A, Avdoshina D, Kupriyanova N, Kolyako Y, Kostyushev D, Gordeychuk I. Common Marmoset Cell Lines and Their Applications in Biomedical Research. Cells 2023; 12:2020. [PMID: 37626830 PMCID: PMC10453182 DOI: 10.3390/cells12162020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Common marmosets (Callithrix jacchus; CMs) are small New World primates widely used in biomedical research. Early stages of such research often include in vitro experiments which require standardized and well-characterized CM cell cultures derived from different tissues. Despite the long history of laboratory work with CMs and high translational potential of such studies, the number of available standardized, well-defined, stable, and validated CM cell lines is still small. While primary cells and immortalized cell lines are mostly used for the studies of infectious diseases, biochemical research, and targeted gene therapy, the main current applications of CM embryonic stem cells and induced pluripotent stem cells are regenerative medicine, stem cell research, generation of transgenic CMs, transplantology, cell therapy, reproductive physiology, oncology, and neurodegenerative diseases. In this review we summarize the data on the main advantages, drawbacks and research applications of CM cell lines published to date including primary cells, immortalized cell lines, lymphoblastoid cell lines, embryonic stem cells, and induced pluripotent stem cells.
Collapse
Affiliation(s)
- Ekaterina Bayurova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (A.Z.); (D.A.); (N.K.); (Y.K.)
| | - Alla Zhitkevich
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (A.Z.); (D.A.); (N.K.); (Y.K.)
| | - Daria Avdoshina
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (A.Z.); (D.A.); (N.K.); (Y.K.)
| | - Natalya Kupriyanova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (A.Z.); (D.A.); (N.K.); (Y.K.)
- Institute for Translational Medicine and Biotechnology, Sechenov University, 117418 Moscow, Russia
| | - Yuliya Kolyako
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (A.Z.); (D.A.); (N.K.); (Y.K.)
- Institute for Translational Medicine and Biotechnology, Sechenov University, 117418 Moscow, Russia
| | - Dmitry Kostyushev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, 119435 Moscow, Russia;
- Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Ilya Gordeychuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; (E.B.); (A.Z.); (D.A.); (N.K.); (Y.K.)
- Institute for Translational Medicine and Biotechnology, Sechenov University, 117418 Moscow, Russia
| |
Collapse
|
6
|
Gordeychuk I, Kyuregyan K, Kondrashova A, Bayurova E, Gulyaev S, Gulyaeva T, Potemkin I, Karlsen A, Isaeva O, Belyakova A, Lyashenko A, Sorokin A, Chumakov A, Morozov I, Isaguliants M, Ishmukhametov A, Mikhailov M. Immunization with recombinant ORF2 p551 protein protects common marmosets (Callithrix jacchus) against homologous and heterologous hepatitis E virus challenge. Vaccine 2022; 40:89-99. [PMID: 34836660 DOI: 10.1016/j.vaccine.2021.11.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/18/2021] [Accepted: 11/14/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Hepatitis E virus (HEV) is a major causative agent of acute hepatitis worldwide, prompting continuous HEV vaccine efforts. Vaccine development is hampered by the lack of convenient animal models susceptible to infection with different HEV genotypes. We produced recombinant open reading frame 2 protein (pORF2; p551) of HEV genotype (GT) 3 and assessed its immunogenicity and protectivity against HEV challenge in common marmosets (Callithrix jacchus, CM). METHODS p551 with consensus sequence corresponding to amino acid residues 110-660 of HEV GT3 pORF2 was expressed in E. coli and purified by affinity chromatography. CMs were immunized intramuscularly with 20 μg of p551 VLPs with alum adjuvant (n = 4) or adjuvant alone (n = 2) at weeks 0, 3, 7 and 19. At week 27, p551-immunized and control animals were challenged with HEV GT1 or GT3 and thereafter longitudinally screened for markers of liver function, anti-HEV IgG and HEV RNA in feces and sera. RESULTS Purified p551 formed VLPs with particle size of 27.71 ± 2.42 nm. Two immunizations with p551 induced anti-HEV IgG mean titer of 1:1810. Immunized CMs challenged with homologous and heterologous HEV genotype did not develop HEV infection during the follow-up. Control CMs infected with both HEV GT1 and GT3 demonstrated signs of HEV infection with virus shedding and elevation of the levels of liver enzymes. High levels of anti-HEV IgG persisted in vaccinated CMs and control CMs that resolved HEV infection, for up to two years post challenge. CONCLUSIONS CMs are shown to be a convenient laboratory animal model susceptible to infection with HEV GT1 and GT3. Immunization with HEV GT3 ORF2/p551 triggers potent anti-HEV antibody response protecting CMs from homologous and heterologous HEV challenge. This advances p551 in VLPs as a prototype vaccine against HEV.
Collapse
Affiliation(s)
- Ilya Gordeychuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 127994, Russia.
| | - Karen Kyuregyan
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia; Russian Medical Academy of Continuous Professional Education, Moscow 125993, Russia.
| | - Alla Kondrashova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 127994, Russia
| | - Ekaterina Bayurova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Stanislav Gulyaev
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Tatiana Gulyaeva
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Ilya Potemkin
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia; Russian Medical Academy of Continuous Professional Education, Moscow 125993, Russia.
| | - Anastasia Karlsen
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia; Russian Medical Academy of Continuous Professional Education, Moscow 125993, Russia; N.F. Gamaleya Federal Research Center for Epidemiology & Microbiology, Moscow 123098, Russia
| | - Olga Isaeva
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia; Russian Medical Academy of Continuous Professional Education, Moscow 125993, Russia.
| | - Alla Belyakova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Anna Lyashenko
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Alexey Sorokin
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia
| | - Alexey Chumakov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 127994, Russia
| | - Igor Morozov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Maria Isaguliants
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; N.F. Gamaleya Federal Research Center for Epidemiology & Microbiology, Moscow 123098, Russia; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden.
| | - Aydar Ishmukhametov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 127994, Russia.
| | - Mikhail Mikhailov
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia; Russian Medical Academy of Continuous Professional Education, Moscow 125993, Russia.
| |
Collapse
|
7
|
Buckner JC, Jack KM, Melin AD, Schoof VAM, Gutiérrez-Espeleta GA, Lima MGM, Lynch JW. Major histocompatibility complex class II DR and DQ evolution and variation in wild capuchin monkey species (Cebinae). PLoS One 2021; 16:e0254604. [PMID: 34383779 PMCID: PMC8360539 DOI: 10.1371/journal.pone.0254604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/29/2021] [Indexed: 11/18/2022] Open
Abstract
The major histocompatibility complex (MHC) is an important gene complex contributing to adaptive immunity. Studies of platyrrhine MHC have focused on identifying experimental models of immune system function in the equivalent Human Leukocyte Antigen (HLA). These genes have thus been explored primarily in captive platyrrhine individuals from research colonies. However, investigations of standing MHC variation and evolution in wild populations are essential to understanding its role in immunity, sociality and ecology. Capuchins are a promising model group exhibiting the greatest habitat diversity, widest diet breadth and arguably the most social complexity among platyrrhines, together likely resulting in varied immunological challenges. We use high-throughput sequencing to characterize polymorphism in four Class II DR and DQ exons for the first time in seven capuchin species. We find evidence for at least three copies for DQ genes and at least five for DRB, with possible additional unrecovered diversity. Our data also reveal common genotypes that are inherited across our most widely sampled population, Cebus imitator in Sector Santa Rosa, Costa Rica. Notably, phylogenetic analyses reveal that platyrrhine DQA sequences form a monophyletic group to the exclusion of all Catarrhini sequences examined. This result is inconsistent with the trans-species hypothesis for MHC evolution across infraorders in Primates and provides further evidence for the independent origin of current MHC genetic diversity in Platyrrhini. Identical allele sharing across cebid species, and more rarely genera, however, does underscore the complexity of MHC gene evolution and the need for more comprehensive assessments of allelic diversity and genome structure.
Collapse
Affiliation(s)
- Janet C. Buckner
- Museum of Natural Science, Louisiana State University, Baton Rouge, LA, United States of America
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, United States of America
- * E-mail: (JCB); (JWL)
| | - Katharine M. Jack
- Department of Anthropology, Tulane University, New Orleans, LA, United States of America
| | - Amanda D. Melin
- Department of Anthropology & Archaeology and Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Valérie A. M. Schoof
- Bilingual Biology Program, Glendon College, York University, Toronto, ON, Canada
| | | | - Marcela G. M. Lima
- Laboratory of Conservation Biogeography and Macroecology, Federal University of Pará, Belém, PA, Brazil
| | - Jessica W. Lynch
- Institute for Society and Genetics, University of California, Los Angeles, CA, United States of America
- Department of Anthropology, University of California, Los Angeles, CA, United States of America
- * E-mail: (JCB); (JWL)
| |
Collapse
|
8
|
Preclinical Marmoset Model for Targeting Chronic Inflammation as a Strategy to Prevent Alzheimer's Disease. Vaccines (Basel) 2021; 9:vaccines9040388. [PMID: 33920929 PMCID: PMC8071309 DOI: 10.3390/vaccines9040388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 11/17/2022] Open
Abstract
Due to the aging population, modern society is facing an increasing prevalence of neurological diseases such as Alzheimer’s disease (AD). AD is an age-related chronic neurodegenerative disorder for which no satisfying therapy exists. Understanding the mechanisms underlying the onset of AD is necessary to find targets for protective treatment. There is growing awareness of the essential role of the immune system in the early AD pathology. Amyloidopathy, the main feature of early-stage AD, has a deregulating effect on the immune function. This is reciprocal as the immune system also affects amyloidopathy. It seems that the inflammatory reaction shows a heterogeneous pattern depending on the stage of the disease and the variation between individuals, making not only the target but also the timing of treatment important. The lack of relevant translational animal models that faithfully reproduce clinical and pathogenic features of AD is a major cause of the delay in developing new disease-modifying therapies and their optimal timing of administration. This review describes the communication between amyloidopathy and inflammation and the possibility of using nonhuman primates as a relevant animal model for preclinical AD research.
Collapse
|
9
|
A glance at the gut microbiota of five experimental animal species through fecal samples. Sci Rep 2020; 10:16628. [PMID: 33024229 PMCID: PMC7538948 DOI: 10.1038/s41598-020-73985-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Experimental animals including the ferret, marmoset, woodchuck, mini pig, and tree shrew have been used in biomedical research. However, their gut microbiota have not been fully investigated. In this study, the gut microbiota of these five experimental animals were analyzed with 16S rRNA sequencing. The phyla Firmicutes, Bacteroidetes, and Fusobacteria were present in the gut microbiota of all the species. Specific phyla were present in different animals: Proteobacteria in the ferret, Tenericutes in the marmoset, and Spirochaetes in the mini pig. Fusobacterium and unidentified Clostridiales were the dominant genera in the ferret, whereas Libanicoccus, Lactobacillus, Porphyromonas, and Peptoclostridium were specific to marmoset, mini pig, woodchuck, and tree shrew, respectively. A clustering analysis showed that the overall distribution of microbial species in the guts of these species mirrored their mammalian phylogeny, and the microbiota of the marmoset and tree shrew showed the closest bray_curtis distances to that of humans. PICRUSt functional prediction separated the woodchuck from the other species, which may reflect its herbivorous diet. In conclusion, both the evolutionary phylogeny and daily diet affect the gut microbiota of these experimental animals, which should not be neglected for their usage in biomedical research.
Collapse
|
10
|
Utility of Common Marmoset ( Callithrix jacchus) Embryonic Stem Cells in Liver Disease Modeling, Tissue Engineering and Drug Metabolism. Genes (Basel) 2020; 11:genes11070729. [PMID: 32630053 PMCID: PMC7397002 DOI: 10.3390/genes11070729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/21/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
The incidence of liver disease is increasing significantly worldwide and, as a result, there is a pressing need to develop new technologies and applications for end-stage liver diseases. For many of them, orthotopic liver transplantation is the only viable therapeutic option. Stem cells that are capable of differentiating into all liver cell types and could closely mimic human liver disease are extremely valuable for disease modeling, tissue regeneration and repair, and for drug metabolism studies to develop novel therapeutic treatments. Despite the extensive research efforts, positive results from rodent models have not translated meaningfully into realistic preclinical models and therapies. The common marmoset Callithrix jacchus has emerged as a viable non-human primate model to study various human diseases because of its distinct features and close physiologic, genetic and metabolic similarities to humans. C. jacchus embryonic stem cells (cjESC) and recently generated cjESC-derived hepatocyte-like cells (cjESC-HLCs) could fill the gaps in disease modeling, liver regeneration and metabolic studies. They are extremely useful for cell therapy to regenerate and repair damaged liver tissues in vivo as they could efficiently engraft into the liver parenchyma. For in vitro studies, they would be advantageous for drug design and metabolism in developing novel drugs and cell-based therapies. Specifically, they express both phase I and II metabolic enzymes that share similar substrate specificities, inhibition and induction characteristics, and drug metabolism as their human counterparts. In addition, cjESCs and cjESC-HLCs are advantageous for investigations on emerging research areas, including blastocyst complementation to generate entire livers, and bioengineering of discarded livers to regenerate whole livers for transplantation.
Collapse
|
11
|
Heijmans CMC, de Groot NG, Bontrop RE. Comparative genetics of the major histocompatibility complex in humans and nonhuman primates. Int J Immunogenet 2020; 47:243-260. [PMID: 32358905 DOI: 10.1111/iji.12490] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/01/2020] [Accepted: 04/12/2020] [Indexed: 12/13/2022]
Abstract
The major histocompatibility complex (MHC) is one of the most gene-dense regions of the mammalian genome. Multiple genes within the human MHC (HLA) show extensive polymorphism, and currently, more than 26,000 alleles divided over 39 different genes are known. Nonhuman primate (NHP) species are grouped into great and lesser apes and Old and New World monkeys, and their MHC is studied mostly because of their important role as animal models in preclinical research or in connection with conservation biology purposes. The evolutionary equivalents of many of the HLA genes are present in NHP species, and these genes may also show abundant levels of polymorphism. This review is intended to provide a comprehensive comparison relating to the organization and polymorphism of human and NHP MHC regions.
Collapse
Affiliation(s)
- Corrine M C Heijmans
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Natasja G de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Ronald E Bontrop
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, The Netherlands.,Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
12
|
Barsakis K, Babrzadeh F, Chi A, Mallempati K, Pickle W, Mindrinos M, Fernández-Viña MA. Complete nucleotide sequence characterization of DRB5 alleles reveals a homogeneous allele group that is distinct from other DRB genes. Hum Immunol 2019; 80:437-448. [PMID: 30954494 PMCID: PMC6622178 DOI: 10.1016/j.humimm.2019.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/23/2019] [Accepted: 04/01/2019] [Indexed: 01/28/2023]
Abstract
Next Generation Sequencing allows for testing and typing of entire genes of the HLA region. A better and comprehensive sequence assessment can be achieved by the inclusion of full gene sequences of all the common alleles at a given locus. The common alleles of DRB5 are under-characterized with the full exon-intron sequence of two alleles available. In the present study the DRB5 genes from 18 subjects alleles were cloned and sequenced; haplotype analysis showed that 17 of them had a single copy of DRB5 and one consanguineous subject was homozygous at all HLA loci. Methodological approaches including robust and efficient long-range PCR amplification, molecular cloning, nucleotide sequencing and de novo sequence assembly were combined to characterize DRB5 alleles. DRB5 sequences covering from 5'UTR to the end of intron 5 were obtained for DRB5*01:01, 01:02 and 02:02; partial coverage including a segment spanning exon 2 to exon 6 was obtained for DRB5*01:03, 01:08N and 02:03. Phylogenetic analysis of the generated sequences showed that the DRB5 alleles group together and have distinctive differences with other DRB loci. Novel intron variants of DRB5*01:01:01, 01:02 and 02:02 were identified. The newly characterized DRB5 intron variants of each DRB5 allele were found in subjects harboring distinct associations with alleles of DRB1, B and/or ethnicity. The new information provided by this study provides reference sequences for HLA typing methodologies. Extending sequence coverage may lead to identify the disease susceptibility factors of DRB5 containing haplotypes while the unexpected intron variations may shed light on understanding of the evolution of the DRB region.
Collapse
Affiliation(s)
- Konstantinos Barsakis
- Stanford Blood Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA; Department of Biology, University of Crete, Heraklion, Crete 71003, Greece
| | - Farbod Babrzadeh
- Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Anjo Chi
- Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Kalyan Mallempati
- Stanford Blood Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - William Pickle
- Stanford Blood Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Michael Mindrinos
- Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | | |
Collapse
|
13
|
't Hart BA. Experimental autoimmune encephalomyelitis in the common marmoset: a translationally relevant model for the cause and course of multiple sclerosis. Primate Biol 2019; 6:17-58. [PMID: 32110715 PMCID: PMC7041540 DOI: 10.5194/pb-6-17-2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
Aging Western societies are facing an increasing prevalence of chronic
autoimmune-mediated inflammatory disorders (AIMIDs) for which treatments that are safe and effective are scarce. One of the
main reasons for this situation is the lack of animal models, which accurately replicate
clinical and pathological aspects of the human diseases. One important AIMID is the
neuroinflammatory disease multiple sclerosis (MS), for which the mouse experimental
autoimmune encephalomyelitis (EAE) model has been frequently used in preclinical
research. Despite some successes, there is a long list of experimental treatments that
have failed to reproduce promising effects observed in murine EAE models when they were
tested in the clinic. This frustrating situation indicates a wide validity gap between
mouse EAE and MS. This monography describes the development of an EAE model in nonhuman
primates, which may help to bridge the gap.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, the Netherlands.,Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, the Netherlands
| |
Collapse
|
14
|
Positive selection in coding regions and motif duplication in regulatory regions of bottlenose dolphin MHC class II genes. PLoS One 2018; 13:e0203450. [PMID: 30252841 PMCID: PMC6155461 DOI: 10.1371/journal.pone.0203450] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 08/21/2018] [Indexed: 11/23/2022] Open
Abstract
The vertebrate immune response is mediated through highly adaptive, quickly evolving cell surface receptors, the major histocompatibility complex (MHC). MHC molecules bind and present a diverse array of pathogenic molecules and trigger a cascade of defenses. Use of MHC variation as a marker for population health has also evolved quickly following advances in sequencing methods. We applied a combination of traditional and next generation sequencing methodology to characterize coding (peptide binding region) and regulatory (proximal promoter) sequence variation in MHC Class II DQA and DQB genes between estuarine and coastal populations of the bottlenose dolphin, Tursiops truncatus, an apex predator whose health status is indicative of anthropogenic impacts on the ecosystem. The coding regions had 10 alleles each at DQA and DQB; the promoters had 6 and 7 alleles at DQA and DQB, respectively with variation within key regulatory motifs. Positive selection was observed for the coding regions of both genes while both coding and promoter regions exhibited geographic differences in allele composition that likely indicates diversifying selection across habitats. Most notable was the discovery of a complete duplication of a 14-bp T-box motif in the DQA promoter. Four class II promoter regions (DQA, DQB, DRA, DRB) were characterized in species from four cetacean families (Delphinidae, Monodontidae, Lipotidae, and Physeteridae) and revealed substantial promoter structural diversity across this order. Peptide binding regions may not be the only source of adaptive potential within cetacean MHC for responding to pathogenic threats. These findings are the first analysis of cetacean MHC regulatory motifs, which may divulge unique immunogenetic strategies among cetaceans and reveal how MHC transcriptional control continues to evolve. The combined MHC regulatory and coding data provide new genetic context for distinct vulnerability profiles between coastal and estuarine populations, which are key concerns for health and risk management.
Collapse
|
15
|
Kametani Y, Yamada Y, Takabayashi S, Kato H, Ishiwata K, Watanabe N, Sasaki E, Habu S. The response of common marmoset immunity against cedar pollen extract. Biosci Trends 2018; 12:94-101. [PMID: 29332927 DOI: 10.5582/bst.2017.01219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The in vivo model of pollinosis has been established using rodents, but the model cannot completely mimic human pollinosis. We used Callithrix jacchus, the common marmoset (CM), to establish a pollinosis animal model using intranasal weekly administration of cedar pollen extract with cholera toxin adjuvant. Some of the treated CMs exhibited the symptoms of snitching, excess nasal mucus and/or sneezing, but the period was very short, and the symptoms disappeared after several weeks. The CD4+CD25+ cell ratio in the peripheral blood increased in CMs quickly after the nasal administration of cedar pollen extract, but the timing was not parallel with the symptoms. IL-10 mRNA was enhanced in the peripheral blood mononuclear cells (PBMCs), suggesting CM-induced tolerance for cedar pollen administration. Similarly, Foxp3 mRNA was also detected in the PBMC. Additive sensitization of these CMs with Ascaris egg administration did not enhance chronic inflammation of type 1 allergy to induce the symptoms. These results suggest that the environmental immune cells develop transient allergic symptoms and subsequent immune-tolerance in the intranasally sensitized CMs.
Collapse
Affiliation(s)
- Yoshie Kametani
- Department of Molecular Life Science, Tokai University School of Medicine
| | - Yuko Yamada
- Department of Molecular Life Science, Tokai University School of Medicine
| | - Shuji Takabayashi
- Department of Molecular Life Science, Tokai University School of Medicine.,Central Institute for Experimental Animals
| | | | - Kenji Ishiwata
- Department of Tropical Medicine, Jikei University School of Medicine
| | - Naohiro Watanabe
- Department of Tropical Medicine, Jikei University School of Medicine
| | | | - Sonoko Habu
- Department of Immunology, Juntendo University School of Medicine
| |
Collapse
|
16
|
Kametani Y, Shiina T, Suzuki R, Sasaki E, Habu S. Comparative immunity of antigen recognition, differentiation, and other functional molecules: similarities and differences among common marmosets, humans, and mice. Exp Anim 2018; 67:301-312. [PMID: 29415910 PMCID: PMC6083031 DOI: 10.1538/expanim.17-0150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The common marmoset (CM; Callithrix jacchus) is a small New World monkey
with a high rate of pregnancy and is maintained in closed colonies as an experimental
animal species. Although CMs are used for immunological research, such as studies of
autoimmune disease and infectious disease, their immunological characteristics are less
defined than those of other nonhuman primates. We and others have analyzed antigen
recognition-related molecules, the development of hematopoietic stem cells (HSCs), and the
molecules involved in the immune response. CMs systemically express Caja-G, a major
histocompatibility complex class I molecule, and the ortholog of HLA-G, a suppressive
nonclassical HLA class I molecule. HSCs express CD117, while CD34 is not essential for
multipotency. CD117+ cells developed into all hematopoietic cell lineages, but compared
with human HSCs, B cells did not extensively develop when HSCs were transplanted into an
immunodeficient mouse. Although autoimmune models have been successfully established,
sensitization of CMs with some bacteria induced a low protective immunity. In CMs, B cells
were observed in the periphery, but IgG levels were very low compared with those in humans
and mice. This evidence suggests that CM immunity is partially suppressed systemically.
Such immune regulation might benefit pregnancy in CMs, which normally deliver dizygotic
twins, the placentae of which are fused and the immune cells of which are mixed. In this
review, we describe the CM immune system and discuss the possibility of using CMs as a
model of human immunity.
Collapse
Affiliation(s)
- Yoshie Kametani
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara-shi, Kanagawa 259-1193, Japan
| | - Takashi Shiina
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara-shi, Kanagawa 259-1193, Japan
| | - Ryuji Suzuki
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, 18-1 Sakuradai, Minami-ku, Sagamihara-shi, Kanagawa 252-0392, Japan
| | - Erika Sasaki
- Central Institute for Experimental Animals,3-25-12 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-0821, Japan
| | - Sonoko Habu
- Department of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
17
|
Gordeychuk IV, Tukhvatulin AI, Petkov SP, Abakumov MA, Gulyaev SA, Tukhvatulina NM, Gulyaeva TV, Mikhaylov MI, Logunov DY, Isaguliants MG. Assessment of the Parameters of Adaptive Cell-Mediated Immunity in Naïve Common Marmosets (Callithrix jacchus). Acta Naturae 2018; 10:63-69. [PMID: 30713763 PMCID: PMC6351028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
Common marmosets are small New World primates that have been increasingly used in biomedical research. This report presents efficient protocols for assessment of the parameters of adaptive cell-mediated immunity in common marmosets, including the major subpopulations of lymphocytes and main markers of T- and B-cell maturation and activation using flow cytometry with a multicolor panel of fluorescently labelled antibodies. Blood samples from eight common marmosets were stained with fluorescently labeled monoclonal antibodies against their population markers (CD45, CD3, CD20, CD4, CD8) and lymphocyte maturation and activation markers (CD69, CD62L, CD45RO, CD107a and CD27) and analyzed by flow cytometry. Within the CD45+ population, 22.7±5.5% cells were CD3- CD20+ and 67.6±6.3% were CD3+CD20-. The CD3+ subpopulation included 55.7±5.5% CD3+CD4+CD8- and 34.3±3.7% CD3+CD4-CD8+ cells. Activation and maturation markers were expressed in the following lymphocyte proportions: CD62L on 54.0±10.7% of CD3+CD4+ cells and 74.4±12.1% of CD3+CD8+ cells; CD69 on 2.7±1.2% of CD3+CD4+ cells and 1.2±0.5% of CD3+CD8+ cells; CD45RO on 1.6±0.6% of CD3+CD4+ cells and 1.8±0.7% of CD3+CD8+ cells; CD107a on 0.7±0.5% of CD3+CD4+ cells and 0.5±0.3% of CD3+CD8+ cells; CD27 on 94.6±2.1% of CD3+ cells and 8.9±3.9% CD20+ cells. Female and male subjects differed in the percentage of CD3+CD4+CD45RO+ cells (1.9±0.5 in females vs 1.1±0.2 in males; p < 0.05). The percentage of CD20+CD27+ cells was found to highly correlate with animals' age (r = 0.923, p < 0.005). The basal parameters of adaptive cell-mediated immunity in naïve healthy marmosets without markers of systemic immune activation were obtained. These parameters and the described procedures are crucial in documenting the changes induced in common marmosets by prophylactic and therapeutic immune interventions.
Collapse
Affiliation(s)
- I. V. Gordeychuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, premises 8, bldg. 1, Village of Institute of Poliomyelitis, Settlement “Moskovskiy”, Moscow, 108819, Russia ,N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Gamaleya Str., 18, Moscow, 123098, Russia ,Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya Str., 19, bldg. 1, Moscow, 119146, Russia
| | - A. I. Tukhvatulin
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Gamaleya Str., 18, Moscow, 123098, Russia
| | - S. P. Petkov
- MTC, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - M. A. Abakumov
- Pirogov Russian National Research Medical University, Ostovitjanova Str. 1, Moscow, 117997, Russia ,National University of Science and Technology MISiS, Leninsky Ave., 4, Moscow, 119049, Russia
| | - S. A. Gulyaev
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, premises 8, bldg. 1, Village of Institute of Poliomyelitis, Settlement “Moskovskiy”, Moscow, 108819, Russia
| | - N. M. Tukhvatulina
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Gamaleya Str., 18, Moscow, 123098, Russia
| | - T. V. Gulyaeva
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, premises 8, bldg. 1, Village of Institute of Poliomyelitis, Settlement “Moskovskiy”, Moscow, 108819, Russia
| | - M. I. Mikhaylov
- Russian Medical Academy of Continuous Professional Education, Barrikadnaja Str., 2/1, bldg. 1, Moscow, 125993, Russia ,Mechnikov Research Institute for Vaccines and Sera, Maliy Kazenniy Lane, 5a, Moscow, 105064, Russia
| | - D. Y. Logunov
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Gamaleya Str., 18, Moscow, 123098, Russia
| | - M. G. Isaguliants
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, premises 8, bldg. 1, Village of Institute of Poliomyelitis, Settlement “Moskovskiy”, Moscow, 108819, Russia ,N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Gamaleya Str., 18, Moscow, 123098, Russia ,Rīga Stradiņš University, LV-1007, Riga, Lativa
| |
Collapse
|
18
|
Prins NW, Pohlmeyer EA, Debnath S, Mylavarapu R, Geng S, Sanchez JC, Rothen D, Prasad A. Common marmoset (Callithrix jacchus) as a primate model for behavioral neuroscience studies. J Neurosci Methods 2017; 284:35-46. [PMID: 28400103 DOI: 10.1016/j.jneumeth.2017.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 11/26/2022]
Abstract
BACKGROUND The common marmoset (Callithrix jacchus) has been proposed as a suitable bridge between rodents and larger primates. They have been used in several types of research including auditory, vocal, visual, pharmacological and genetics studies. However, marmosets have not been used as much for behavioral studies. NEW METHOD Here we present data from training 12 adult marmosets for behavioral neuroscience studies. We discuss the husbandry, food preferences, handling, acclimation to laboratory environments and neurosurgical techniques. In this paper, we also present a custom built "scoop" and a monkey chair suitable for training of these animals. RESULTS The animals were trained for three tasks: 4 target center-out reaching task, reaching tasks that involved controlling robot actions, and touch screen task. All animals learned the center-out reaching task within 1-2 weeks whereas learning reaching tasks controlling robot actions task took several months of behavioral training where the monkeys learned to associate robot actions with food rewards. COMPARISON TO EXISTING METHOD We propose the marmoset as a novel model for behavioral neuroscience research as an alternate for larger primate models. This is due to the ease of handling, quick reproduction, available neuroanatomy, sensorimotor system similar to larger primates and humans, and a lissencephalic brain that can enable implantation of microelectrode arrays relatively easier at various cortical locations compared to larger primates. CONCLUSION All animals were able to learn behavioral tasks well and we present the marmosets as an alternate model for simple behavioral neuroscience tasks.
Collapse
Affiliation(s)
- Noeline W Prins
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, United States
| | - Eric A Pohlmeyer
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, United States
| | - Shubham Debnath
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, United States
| | - Ramanamurthy Mylavarapu
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, United States
| | - Shijia Geng
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, United States
| | - Justin C Sanchez
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, United States
| | - Daniel Rothen
- Division of Veterinary Resources, University of Miami, Coral Gables, FL 33146, United States
| | - Abhishek Prasad
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, United States.
| |
Collapse
|
19
|
Grow DA, McCarrey JR, Navara CS. Advantages of nonhuman primates as preclinical models for evaluating stem cell-based therapies for Parkinson's disease. Stem Cell Res 2016; 17:352-366. [PMID: 27622596 DOI: 10.1016/j.scr.2016.08.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 08/10/2016] [Accepted: 08/22/2016] [Indexed: 01/29/2023] Open
Abstract
The derivation of dopaminergic neurons from induced pluripotent stem cells brings new hope for a patient-specific, stem cell-based replacement therapy to treat Parkinson's disease (PD) and related neurodegenerative diseases; and this novel cell-based approach has already proven effective in animal models. However, there are several aspects of this procedure that have yet to be optimized to the extent required for translation to an optimal cell-based transplantation protocol in humans. These challenges include pinpointing the optimal graft location, appropriately scaling up the graft volume, and minimizing the risk of chronic immune rejection, among others. To advance this procedure to the clinic, it is imperative that a model that accurately and fully recapitulates characteristics most pertinent to a cell-based transplantation to the human brain is used to optimize key technical aspects of the procedure. Nonhuman primates mimic humans in multiple ways including similarities in genomics, neuroanatomy, neurophysiology, immunogenetics, and age-related changes in immune function. These characteristics are critical to the establishment of a relevant model in which to conduct preclinical studies to optimize the efficacy and safety of cell-based therapeutic approaches to the treatment of PD. Here we review previous studies in rodent models, and emphasize additional advantages afforded by nonhuman primate models in general, and the baboon model in particular, for preclinical optimization of cell-based therapeutic approaches to the treatment of PD and other neurodegenerative diseases. We outline current unresolved challenges to the successful application of stem cell therapies in humans and propose that the baboon model in particular affords a number of traits that render it most useful for preclinical studies designed to overcome these challenges.
Collapse
Affiliation(s)
- Douglas A Grow
- Department of Biology, University of Texas at San Antonio, San Antonio Cellular Therapeutics Institute, PriStem, United States
| | - John R McCarrey
- Department of Biology, University of Texas at San Antonio, San Antonio Cellular Therapeutics Institute, PriStem, United States
| | - Christopher S Navara
- Department of Biology, University of Texas at San Antonio, San Antonio Cellular Therapeutics Institute, PriStem, United States.
| |
Collapse
|
20
|
Song X, Zhang P, Huang K, Chen D, Guo S, Qi X, He G, Pan R, Li B. The influence of positive selection and trans-species evolution on DPB diversity in the golden snub-nosed monkeys (Rhinopithecus roxellana). Primates 2016; 57:489-99. [PMID: 27209173 DOI: 10.1007/s10329-016-0544-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/28/2016] [Indexed: 10/21/2022]
Abstract
Genetic variation plays a significant role in the adaptive potential of the endangered species. The variation at major histocompatibility complex (MHC) genes can offer valuable information on selective pressure related to natural selection and environmental adaptation, particularly the ability of a host to continuously resist evolving parasites. Thus, the genetic polymorphism on exon 2 of the MHC DPB1 gene in the golden snub-nosed monkeys (Rhinopithecus roxellana) was specifically analyzed. The results show that the 6 Rhro-DPB1 alleles identified from 87 individuals exhibit positive selection and trans-species polymorphism. The results also imply that although the populations of the species have experienced dramatic reduction and severe habitat fragmentation in recent Chinese history, balancing selection still maintains relatively consistent, with moderate DPB1 polymorphism. Thus, the study provides valuable information and evidence in developing effective strategies and tactics for genetic health and population size expansion of the species. It also offers strong genetic background for further studies on other primate species, particularly those in Rhinopithecus-a further endeavor that would result in fully understanding the MHC genetic information of the Asian colobines.
Collapse
Affiliation(s)
- Xiaoyue Song
- Shaanxi Key Laboratory for Animal Conservation, and College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Pei Zhang
- Shaanxi Key Laboratory for Animal Conservation, and College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Kang Huang
- Shaanxi Key Laboratory for Animal Conservation, and College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Dan Chen
- Shaanxi Key Laboratory for Animal Conservation, and College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Songtao Guo
- Shaanxi Key Laboratory for Animal Conservation, and College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Xiaoguang Qi
- Shaanxi Key Laboratory for Animal Conservation, and College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Gang He
- Shaanxi Key Laboratory for Animal Conservation, and College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Ruliang Pan
- Shaanxi Key Laboratory for Animal Conservation, and College of Life Sciences, Northwest University, Xi'an, 710069, China.,The School of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, Australia
| | - Baoguo Li
- Shaanxi Key Laboratory for Animal Conservation, and College of Life Sciences, Northwest University, Xi'an, 710069, China. .,Xi'an Branch of Chinese Academy of Sciences, Xi'an, China.
| |
Collapse
|
21
|
Bakker J, Ouwerling B, Heidt PJ, Kondova I, Langermans JAM. Advantages and Risks of Husbandry and Housing Changes to Improve Animal Wellbeing in a Breeding Colony of Common Marmosets (Callithrix jacchus). JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2015; 54:273-9. [PMID: 26045452 PMCID: PMC4460939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/09/2014] [Accepted: 08/05/2014] [Indexed: 06/04/2023]
Abstract
Between 1975 and 2014, housing conditions for laboratory-housed marmosets changed dramatically after the introduction of new guidelines designed to improve their care and wellbeing. According to these guidelines, our facility provided marmosets with outside enclosures, switched to deep litter as bedding material, and discontinued the use of disinfectant agents in animal enclosures. However, both deep litter and access to outside enclosures hypothetically increase the risk of potential exposure to pathogenic microorganisms. We evaluated whether these housing and husbandry modifications constituted an increased veterinary risk for laboratory-housed common marmosets (Callithrix jacchus). After the animals had been exposed to these new housing conditions for 2.5 y, we examined their intestinal bacterial flora and feces, the deep litter, and insects present in the housing. In addition, we assessed the marmosets' general health and the effect of outdoor housing on, for example, vitamin D levels. Although numerous bacterial strains--from nonpathogenic to potentially pathogenic--were cultured, we noted no increase in illness, mortality, or breeding problems related to this environmental microflora. Housing laboratory marmosets in large enriched cages, with both indoor and outdoor enclosures, providing them with deep litter, and eliminating the use of disinfectants present an increased veterinary risk. However, after evaluating all of the collected data, we estimate that the veterinary risk of the new housing conditions is minimal to none in terms of clinical disease, disease outbreaks, abnormal behavior, and negative effects on reproduction.
Collapse
Affiliation(s)
- Jaco Bakker
- Animal Science Department, Biomedical Primate Research Centre, Rijswijk, The Netherlands.
| | - Boudewijn Ouwerling
- Animal Science Department, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Peter J Heidt
- Animal Science Department, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Ivanela Kondova
- Animal Science Department, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Jan A M Langermans
- Animal Science Department, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| |
Collapse
|
22
|
Müller N, Ostner J, Schülke O, Walter L. Towards the non-invasive assessment of MHC genotype in wild primates: analysis of wild Assamese macaque MHC-DRB from fecal samples. Am J Primatol 2013; 76:230-8. [PMID: 24151109 DOI: 10.1002/ajp.22225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 09/04/2013] [Accepted: 09/17/2013] [Indexed: 12/11/2022]
Abstract
The major histocompatibility complex (MHC) plays an important role in the immune response and may thus crucially affect an individual's fitness, relevant also for studies on evolutionary ecology and wildlife conservation. Detailed knowledge on the genomic organization, polymorphism and diversity of the MHC has a narrow taxonomic focus though and among macaques is only available for rhesus and long-tailed macaques-the species most commonly kept for biomedical research. The lack of data on wild populations is largely due to the difficulty of obtaining blood or tissue samples necessary for genotyping approaches. Here, we aimed at analyzing MHC-DRB from non-invasively collected fecal samples in wild Assamese macaques (Macaca assamensis), utilizing the MHC-DRB-STR (D6S2878) microsatellite marker. Due to the fecal DNA source incomplete genotypes occurred, which may be improved in the future by method refinement. We detected 28 distinct DRB-STR lengths in 43 individuals with individual genotypes containing 1-9 MHC-DRB-STRs and defined four haplotypes segregating between families in Mendelian fashion. Our results indicate that variability and diversity of MHC-DRB in Assamese macaques is comparable to that of other macaque species and importantly, that fecal samples can be used for non-invasive analysis of MHC genes after refinement of the applied methods, opening a number of opportunities for MHC research on natural populations.
Collapse
Affiliation(s)
- Nadine Müller
- Social Evolution in Primates Group, Courant Research Center Evolution of Social Behavior, Georg-August University Göttingen, Göttingen, Germany
| | | | | | | |
Collapse
|
23
|
The repertoire of MHC class I genes in the common marmoset: evidence for functional plasticity. Immunogenetics 2013; 65:841-9. [PMID: 24018468 DOI: 10.1007/s00251-013-0732-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/24/2013] [Indexed: 12/23/2022]
Abstract
In humans, the classical antigen presentation function of major histocompatibility complex (MHC) class I molecules is controlled by the human leukocyte antigen HLA -A, HLA-B and HLA-C loci. A similar observation has been made for great apes and Old World monkey species. In contrast, a New World monkey species such as the cotton-top tamarin (Saguinus oedipus) appears to employ the G locus for its classical antigen presentation function. At present, little is known about the classical MHC class I repertoire of the common marmoset (Callithrix jacchus), another New World monkey that is widely used in biomedical research. In the present population study, no evidence has been found for abundant transcription of classical I class genes. However, in each common marmoset, four to seven different G-like alleles were detected, suggesting that the ancestral locus has been subject to expansion. Segregation studies provided evidence for at least two G-like genes present per haplotype, which are transcribed by a variety of cell types. The alleles of these Caja-G genes cluster in separate lineages, suggesting that the loci diversified considerably after duplication. Phylogenetic analyses of the introns confirm that the Caja-G loci cluster in the vicinity of HLA-G, indicating that both genes shared an ancestor. In contrast to HLA-G, Caja-G shows considerable polymorphism at the peptide-binding sites. This observation, together with the lack of detectable transcripts of A and B-like genes, indicates that Caja-G genes have taken over the function of classical class I genes. These data highlight the extreme plasticity of the MHC class I gene system.
Collapse
|
24
|
Anwar Jagessar S, Fagrouch Z, Heijmans N, Bauer J, Laman JD, Oh L, Migone T, Verschoor EJ, ’t Hart BA. The Different Clinical Effects of Anti-BLyS, Anti-APRIL and Anti-CD20 Antibodies Point at a Critical Pathogenic Role of γ-Herpesvirus Infected B Cells in the Marmoset EAE Model. J Neuroimmune Pharmacol 2013; 8:727-38. [DOI: 10.1007/s11481-013-9448-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 02/27/2013] [Indexed: 11/28/2022]
|
25
|
Abstract
The HLA region shows diversity concerning the number and content of DRB genes present per haplotype. Similar observations are made for the equivalent regions in other primate species. To elucidate the evolutionary history of the various HLA-DRB genes, a large panel of intron sequences obtained from humans, chimpanzees, rhesus macaques, and common marmosets has been subjected to phylogenetic analyses. Special attention was paid to the presence and absence of particular transposable elements and/or to their segments. The sharing of different parts of the same long interspersed nuclear element-2 (LINE2, L2) and various Alu insertions by the species studied demonstrates that one precursor gene must have been duplicated several times before the Old World monkey (OWM) and hominid (HOM) divergence. At least four ancestral DRB gene families appear to have been present before the radiation of OWM and HOM, and one of these even predates the speciation of Old and New World primates. Two of these families represent the pseudogenes DRB6/DRB2 and DRB7, which have been locked in the genomes of various primate species over long evolutionary time spans. Furthermore, all phylogenies of different intron segments show consistently that, apart from the pseudogenes, only DRB5 genes are shared by OWM and HOM, and they demonstrate the common history of certain DRB genes/lineages of humans and chimpanzees. In contrast, the evolutionary history of some other DRB loci is difficult to decipher, thus illustrating the complex history of the evolution of DRB genes due to a combination of mutations and recombination-like events. The selected approach allowed us to shed light on the ancestral DRB gene pool in primates and on the evolutionary relationship of the various HLA-DRB genes.
Collapse
Affiliation(s)
- Gaby G M Doxiadis
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | | | | | | |
Collapse
|
26
|
Nomenclature report on the major histocompatibility complex genes and alleles of Great Ape, Old and New World monkey species. Immunogenetics 2012; 64:615-31. [PMID: 22526602 DOI: 10.1007/s00251-012-0617-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 03/27/2012] [Indexed: 12/24/2022]
Abstract
The major histocompatibility complex (MHC) plays a central role in the adaptive immune response. The MHC region is characterised by a high gene density, and most of these genes display considerable polymorphism. Next to humans, non-human primates (NHP) are well studied for their MHC. The present nomenclature report provides the scientific community with the latest nomenclature guidelines/rules and current implemented nomenclature revisions for Great Ape, Old and New World monkey species. All the currently published MHC data for the different Great Ape, Old and New World monkey species are archived at the Immuno Polymorphism Database (IPD)-MHC NHP database. The curators of the IPD-MHC NHP database are, in addition, responsible for providing official designations for newly detected polymorphisms.
Collapse
|
27
|
Sweeney C, Ward J, Vallender EJ. Naturally occurring, physiologically normal, primate chimeras. CHIMERISM 2012; 3:43-4. [PMID: 22627807 DOI: 10.4161/chim.20729] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Callitrichids, South American primates including marmosets and tamarins, have evolved a unique physiology. Twins share a placenta during gestation and exchange stem cells, resulting in naturally occurring chimeric adults. Our study used a quantitative PCR-based assay to address whether this chimerism was restricted to blood and other cells of the hematopoietic lineage or whether it extended to other somatic tissues. These studies help to characterize species that have adapted evolutionarily to pervasive chimerism, with every individual healthy and unperturbed. This experiment of evolution offers insight into transplantation and histocompatibility, reproductive biology and behavior, and innate and adaptive immunity.
Collapse
Affiliation(s)
- Carolyn Sweeney
- New England Primate Research Center, Harvard Medical School, Southborough, MA, USA
| | | | | |
Collapse
|
28
|
Sweeney CG, Curran E, Westmoreland SV, Mansfield KG, Vallender EJ. Quantitative molecular assessment of chimerism across tissues in marmosets and tamarins. BMC Genomics 2012; 13:98. [PMID: 22429831 PMCID: PMC3337283 DOI: 10.1186/1471-2164-13-98] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 03/19/2012] [Indexed: 11/18/2022] Open
Abstract
Background Marmosets are playing an increasingly large and important role in biomedical research. They share genetic, anatomical, and physiological similarities with humans and other primate model species, but their smaller sizes, reproductive efficiency, and amenability to genetic manipulation offer an added practicality. While their unique biology can be exploited to provide insights into disease and function, it is also important that researchers are aware of the differences that exist between marmosets and other species. The New World monkey family Callitrichidae, containing both marmoset and tamarin species, typically produces dizygotic twins that show chimerism in the blood and other cells from the hematopoietic lineage. Recently, a study extended these findings to identify chimerism in many tissues, including somatic tissues from other lineages and germ cells. This has raised the intriguing possibility that chimerism may play an increasingly pervasive role in marmoset biology, ranging from natural behavioral implications to increased variability and complexity in biomedical studies. Results Using a quantitative PCR based methodology, Y-chromosomes can be reliably detected in the females with male fraternal twins allowing for a relative quantification of chimerism levels between individuals and tissues. With this approach in common marmosets (Callithrix jacchus) and cotton-top tamarins (Saguinus oedipus), chimerism was detected across a broad array of tissues. Chimerism levels were significantly higher in tissues primarily derived from the hematopoietic lineage, while they were lower, though still detectable, in tissues with other origins. Interestingly, animals with a characteristic marmoset wasting disease show higher levels of chimerism in those tissues affected. Fibroblast cell lines from chimeric individuals, however, are not found to be chimeric themselves. Conclusion Taken together, the levels of chimerism in tissues of different origins coupled with other lines of evidence suggest that indeed only hematopoietic cell lineages are chimeric in callitrichids. The chimerism detected in other tissues is likely the result of blood or lymphocytic infiltration. Using molecular methods to detect chimerism in a tissue sample seems to have allowed a substantial increase in the ability to detect these minor cell populations.
Collapse
Affiliation(s)
- Carolyn G Sweeney
- New England Primate Research Center, Harvard Medical School, One Pine Hill Drive, Southborough, MA 01772, USA
| | | | | | | | | |
Collapse
|
29
|
Singh V, Hintzen RQ, Luider TM, Stoop MP. Proteomics technologies for biomarker discovery in multiple sclerosis. J Neuroimmunol 2011; 248:40-7. [PMID: 22129845 DOI: 10.1016/j.jneuroim.2011.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 11/02/2011] [Indexed: 12/17/2022]
Abstract
Multiple sclerosis is a disabling inflammatory and neurodegenerative disorder that predominantly affects young adults. There is a great need for biomarkers, which could elucidate pathology as well as provide prognosis of disease progression and therapy response in multiple sclerosis. Rapidly evolving, technology driven applications such as mass spectrometry based proteomics are currently being developed for this purpose. In this review, we will outline the current status of the field and detail a number of the bottlenecks as well as future prospects of this type of biomarker research.
Collapse
Affiliation(s)
- Vaibhav Singh
- Laboratories of Neuro-Oncology/Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
30
|
Polymorphism and Balancing Selection of MHC Class II DAB Gene in 7 Selective Flounder (Paralichthys olivaceus) Families. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:613629. [PMID: 21808654 PMCID: PMC3145484 DOI: 10.1155/2011/613629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 04/28/2011] [Accepted: 05/30/2011] [Indexed: 11/17/2022]
Abstract
In order to determine the genetic variation of the MHC class IIB exon2 allele in the offspring, 700 fry from seven families of Japanese flounder challenged with V. anguillarum were studied, and different mortality rates were found in those families. Five to ten surviving and dead fry from each of the seven families were selected to study the MHC class II B exon2 gene with PCR and a direct sequencing method. One hundred and sixteen different exon2 sequences were found and 116 different alleles were identified, while a minimum of four loci were revealed in the MHC class II B exon2 gene. The ratio (dN/dS) of nonsynonymous substitution (dN) to synonymous substitutions (dS) in the peptide-binding region (PBR) of the MHC class IIB gene was 6.234, which indicated that balancing selection is acting on the MHC class IIB genes. The MHC IIB alleles were thus being passed on to their progeny. Some alleles were significantly more frequent in surviving than dead individuals. All together our data suggested that the alleles Paol-DAB*4301, Paol-DAB*4601, Paol-DAB*4302, Paol-DAB*3803, and Paol-DAB*4101 were associated with resistance to V. anguillarum in flounder.
Collapse
|
31
|
Abstract
Based on increasing knowledge on the pathogenesis of rheumatoid arthritis (RA), more and more potential therapeutics have been developed. To evaluate their therapeutic efficacy, safety and toxicity, appropriate animal models are required. Although rodent models of RA have been extensively used for preclinical evaluation, the differences between rodents and humans limit their usability for some species-specific therapeutics. Therefore, autoimmune arthritis developed in a non-human primate with essential hallmarks of RA will be an alternative model for preclinical studies.
Collapse
|
32
|
Garamszegi LZ, Nunn CL. Parasite-mediated evolution of the functional part of the MHC in primates. J Evol Biol 2010; 24:184-95. [PMID: 21091566 DOI: 10.1111/j.1420-9101.2010.02156.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The major histocompatibility complex (MHC) is a key model of genetic polymorphism, but the mechanisms underlying its extreme variability are debated. Most hypotheses for MHC diversity focus on pathogen-driven selection and predict that MHC polymorphism evolves under the pressure of a diverse parasite fauna. Several studies reported that certain alleles offer protection against certain parasites, yet it remains unclear whether variation in parasite pressure more generally covaries with allelic diversity and rates of molecular evolution of MHC across species. We tested this prediction in a comparative study of 41 primate species. We characterized polymorphism of the exon 2 of DRB region of the MHC class II. Our phylogenetic analyses controlled for the potential effects of neutral mutation rate, population size, geographic origin and body mass and revealed that nematode species richness associates positively with nonsynonymous nucleotide substitution rate at the functional part of the molecule. We failed to find evidence for allelic diversity being strongly related to parasite species richness. Continental distribution was a strong predictor of both allelic diversity and substitution rate, with higher values in Malagasy and Neotropical primates. These results indicate that parasite pressure can influence the different estimates of MHC polymorphism, whereas geography plays an independent role in the natural history of MHC.
Collapse
Affiliation(s)
- L Z Garamszegi
- Department of Evolutionary Ecology, Estación Biológica de Doñana-CSIC, Seville, Spain.
| | | |
Collapse
|
33
|
Suárez M CF, Patarroyo MA, Patarroyo ME. Characterisation and comparative analysis of MHC-DPA1 exon 2 in the owl monkey (Aotus nancymaae). Gene 2010; 470:37-45. [PMID: 20884341 DOI: 10.1016/j.gene.2010.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 09/14/2010] [Accepted: 09/17/2010] [Indexed: 10/19/2022]
Abstract
The Aotus nancymaae (owl monkey) is an important animal model in biomedical research, particularly for the preclinical evaluation of vaccine candidates against Plasmodium falciparum and Plasmodium vivax, which require a precisely typed major histocompatibility complex. The exon 2 from A. nancymaae MHC-DPA1 gene was characterised in order to infer its allelic diversity and evolutionary history. Aona-DPA1 shows no polymorphism and is related to other primate DPA alleles (including Catarrhini and Platyrrhini), constituting an ancient trans-specific and strongly supported lineage with different variability and selective patterns when compared to other primate-MHC-DPA1 lineages. A. nancymaae monkeys have thus a smaller MHC-DP polymorphism than MHC-DQ or MHC-DR.
Collapse
Affiliation(s)
- Carlos F Suárez M
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-20, Bogotá, Colombia
| | | | | |
Collapse
|
34
|
't Hart BA, Jagessar SA, Kap YS, Brok HP. Preclinical models of multiple sclerosis in nonhuman primates. Expert Rev Clin Immunol 2010; 3:749-61. [PMID: 20477025 DOI: 10.1586/1744666x.3.5.749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Biotechnology has enabled the development of specifically acting therapies for immune-mediated inflammatory disorders (IMIDs) based on biological molecules. The high species specificity precludes safety and effectivity testing in lower species (mice and rats), thus creating a need for valid experimental models in nonhuman primates (NHPs). Here, we review the creation of relevant NHP model(s) for multiple sclerosis (MS), an IMID of the human CNS. We will also discuss how the model(s) can help in the translation of a scientific principle developed in lower species into a therapy for MS.
Collapse
Affiliation(s)
- Bert A 't Hart
- Biomedical Primate Research Centre and Erasmus Medical Centre Rotterdam, Rijswijk, The Netherlands.
| | | | | | | |
Collapse
|
35
|
Comprehensive analysis and characterization of the TCR α chain sequences in the common marmoset. Immunogenetics 2010; 62:383-95. [DOI: 10.1007/s00251-010-0445-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 03/26/2010] [Indexed: 11/27/2022]
|
36
|
Induction of Progressive Demyelinating Autoimmune Encephalomyelitis in Common Marmoset Monkeys Using MOG34-56Peptide in Incomplete Freund Adjuvant. J Neuropathol Exp Neurol 2010; 69:372-85. [DOI: 10.1097/nen.0b013e3181d5d053] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
37
|
Affiliation(s)
- W. BABIK
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30‐387 Kraków, Poland
| |
Collapse
|
38
|
Doxiadis GGM, de Groot N, de Groot NG, Rotmans G, de Vos-Rouweler AJM, Bontrop RE. Extensive DRB region diversity in cynomolgus macaques: recombination as a driving force. Immunogenetics 2010; 62:137-47. [PMID: 20131048 PMCID: PMC2827794 DOI: 10.1007/s00251-010-0422-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 01/08/2010] [Indexed: 12/21/2022]
Abstract
The DR region of primate species is generally complex and displays diversity concerning the number and combination of distinct types of DRB genes present per region configuration. A highly variable short tandem repeat (STR) present in intron 2 of nearly all primate DRB genes can be utilized as a quick and accurate high through-put typing procedure. This approach resulted previously in the description of unique and haplotype-specific DRB-STR length patterns in humans, chimpanzees, and rhesus macaques. For the present study, a cohort of 230 cynomolgus monkeys, including self-sustaining breeding groups, has been examined. MtDNA analysis showed that most animals originated from the Indonesian islands, but some are derived from the mainland, south and north of the Isthmus of Kra. Haplotyping and subsequent sequencing resulted in the detection of 118 alleles, including 28 unreported ones. A total of 49 Mafa-DRB region configurations were detected, of which 28 have not yet been described. Humans and chimpanzees possess a low number of different DRB region configurations in concert with a high degree of allelic variation. In contrast, however, allelic heterogeneity within a given Mafa-DRB configuration is even less frequently observed than in rhesus macaques. Several of these region configurations appear to have been generated by recombination-like events, most probably propagated by a retroviral element mapping within DRB6 pseudogenes, which are present on the majority of haplotypes. This undocumented high level of DRB region configuration-associated diversity most likely represents a species-specific strategy to cope with various pathogens.
Collapse
Affiliation(s)
- Gaby G M Doxiadis
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands.
| | | | | | | | | | | |
Collapse
|
39
|
Major histocompatibility complex variation and evolution at a single, expressed DQA locus in two genera of elephants. Immunogenetics 2010; 62:85-100. [DOI: 10.1007/s00251-009-0413-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 11/12/2009] [Indexed: 10/20/2022]
|
40
|
Katoh H, Takabayashi S, Itoh T. Development of microsatellite DNA markers and their chromosome assignment in the common marmoset. Am J Primatol 2010; 71:912-8. [PMID: 19637280 DOI: 10.1002/ajp.20729] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This study was performed to develop microsatellite DNA markers, which are useful for linkage analyses, gene mapping and blood chimera analyses in the common marmoset (Callithrix jacchus). We searched 153 of 295 bacterial artificial clone DNA sequences of the common marmoset that were archived in the NCBI database in 2004. On the basis of the search, we designed 186 PCR primer sets. When tested using 5 unrelated individuals, we successfully detected 154 markers with PCR products, of which 80 (52%) were polymorphic and 74 (48%) were monomorphic. We assigned each of the 154 markers to a human chromosome based on BLAST searches, which was achieved by searching the entire human genome sequences using an approximately 3 kb section of each forward primer sequence, including approximately 1.5 kb of the upstream and approximately 1.5 kb of the downstream sequences. Combining our assignment data and the chromosome painting-assisted karyotype of the common marmoset [Sherlock et al., Genomics 33:214-219, 1996], we prepared a list of 154 microsatellite DNA markers that were assigned to human chromosomes, except for the Y chromosome, which is equivalent to a chromosome map. Using five microsatellite DNA markers, we have established a fragment analysis method with a sequencer, which can be routinely used for blood chimera analysis, parentage diagnosis and individual identification.
Collapse
Affiliation(s)
- Hideki Katoh
- Institute for Experimental Animals, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | | | | |
Collapse
|
41
|
Clinical, pathological, and immunologic aspects of the multiple sclerosis model in common marmosets (Callithrix jacchus). J Neuropathol Exp Neurol 2009; 68:341-55. [PMID: 19337065 DOI: 10.1097/nen.0b013e31819f1d24] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The efficacy of many new immunomodulatory therapies for multiple sclerosis (MS) patients has often been disappointing, reflecting our incomplete understanding of this enigmatic disease. There is a growing awareness that, at least in part, there may be limited applicability to the human disease of results obtained in the widely studied MS model experimental autoimmune encephalomyelitis in rodents. This review describes the experimental autoimmune encephalomyelitis model developed in a small neotropical primate, the common marmoset (Callithrix jacchus). The model has features including clinicopathologic correlation patterns, lesion heterogeneity, immunologic mechanisms, and disease markers that more closely mimic the human disease. Several unique features of experimental autoimmune encephalomyelitis in marmosets, together with their outbred nature and close genetic and immunologic similarities to humans, create an attractive experimental model for translational research into MS, particularly for the preclinical evaluation of new biologic therapeutic molecules that cannot be investigated in rodents because of their species specificity. Moreover, this model provides new insights into possible pathogenetic mechanisms in MS.
Collapse
|
42
|
Garamszegi LZ, de Groot NG, Bontrop RE. Correlated evolution of nucleotide substitution rates and allelic variation in Mhc-DRB lineages of primates. BMC Evol Biol 2009; 9:73. [PMID: 19361342 PMCID: PMC2674423 DOI: 10.1186/1471-2148-9-73] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 04/12/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The major histocompatibility complex (MHC) is a key model of genetic polymorphism. Selection pressure by pathogens or other microevolutionary forces may result in a high rate of non-synonymous substitutions at the codons specifying the contact residues of the antigen binding sites (ABS), and the maintenance of extreme MHC allelic variation at the population/species level. Therefore, selection forces favouring MHC variability for any reason should cause a correlated evolution between substitution rates and allelic polymorphism. To investigate this prediction, we characterised nucleotide substitution rates and allelic polymorphism (i.e. the number of alleles detected in relation to the number of animals screened) of several Mhc class II DRB lineages in 46 primate species, and tested for a correlation between them. RESULTS First, we demonstrate that species-specific and lineage-specific evolutionary constraints favour species- and lineage-dependent substitution rate at the codons specifying the ABS contact residues (i.e. certain species and lineages can be characterised by high substitution rate, while others have low rate). Second, we show that although the degree of the non-synonymous substitution rate at the ABS contact residues was systematically higher than the degree of the synonymous substitution rate, these estimates were strongly correlated when we controlled for species-specific and lineage-specific effects, and also for the fact that different studies relied on different sample size. Such relationships between substitution rates of different types could even be extended to the non-contact residues of the molecule. Third, we provide statistical evidence that increased substitution rate along a MHC gene may lead to allelic variation, as a high substitution rate can be observed in those lineages in which many alleles are maintained. Fourth, we show that the detected patterns were independent of phylogenetic constraints. When we used phylogenetic models that control for similarity between species, due to common descent, and focused on variations within a single lineage (DRB1*03), the positive relationship between different substitution rates and allelic polymorphisms was still robust. Finally, we found the same effects to emerge in the analyses that eliminated within-species variation in MHC traits by using strictly single population-level studies. However, in a set of contrasting analyses, in which we focused on the non-functional DRB6 locus, the correlation between substitution rates and allelic variation was not prevalent. CONCLUSION Our results indicate that positive selection for the generation of allelic polymorphism acting on the functional part of the protein has consequences for the nucleotide substitution rate along the whole exon 2 sequence of the Mhc-DRB gene. Additionally, we proved that an increased substitution rate can promote allelic variation within lineages. Consequently, the evolution of different characteristics of genetic polymorphism is not independent.
Collapse
Affiliation(s)
- László Z Garamszegi
- Department of Biology, University of Antwerp, Campus Drie Eiken Universiteitsplein 1, B-2610 Wilrijk, Belgium
- Department of Evolutionary Ecology, Estación Biológica de Doñana-CSIC, c/Americo Vespucio, s/n, 41092, Sevilla, Spain
| | - Natasja G de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, PO Box 3306, 2280 GH Rijswijk, the Netherlands
| | - Ronald E Bontrop
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, PO Box 3306, 2280 GH Rijswijk, the Netherlands
| |
Collapse
|
43
|
Abstract
Since its first description, experimental autoimmune encephalomyelitis, originally designated experimental allergic encephalitis (EAE), has been proposed as animal model to investigate pathogenetic hypotheses and test new treatments in the field of central nervous system inflammation and demyelination, which has become, in the last 30 years, the most popular animal model of multiple sclerosis (MS). This experimental disease can be obtained in all mammals tested so far, including nonhuman primates, allowing very advanced preclinical studies. Its appropriate use has led to the development of the most recent treatments approved for MS, also demonstrating its predictive value when properly handled. Some of the most exciting experiments validating the use of neural precursor cells (NPCs) as a potential therapeutic option in CNS inflammation have been performed in this model. We review here the most relevant immunological features of EAE in the different animal species and strains, and describe detailed protocols to obtain the three most common clinical courses of EAE in mice, with the hope to provide both cultural and practical basis for the use of this fascinating animal model.
Collapse
Affiliation(s)
- Roberto Furlan
- Neuroimmunology Unit - DIBIT and Department of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | | | | |
Collapse
|
44
|
Comparative genetics of a highly divergent DRB microsatellite in different macaque species. Immunogenetics 2008; 60:737-48. [PMID: 18956179 PMCID: PMC4629986 DOI: 10.1007/s00251-008-0333-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 09/29/2008] [Indexed: 12/11/2022]
Abstract
The DRB region of the major histocompatibility complex (MHC) of cynomolgus and rhesus macaques is highly plastic, and extensive copy number variation together with allelic polymorphism makes it a challenging enterprise to design a typing protocol. All intact DRB genes in cynomolgus monkeys (Mafa) appear to possess a compound microsatellite, DRB-STR, in intron 2, which displays extensive length polymorphism. Therefore, this STR was studied in a large panel of animals, comprising pedigreed families as well. Sequencing analysis resulted in the detection of 60 Mafa-DRB exon 2 sequences that were unambiguously linked to the corresponding microsatellite. Its length is often allele specific and follows Mendelian segregation. In cynomolgus and rhesus macaques, the nucleotide composition of the DRB-STR is in concordance with the phylogeny of exon 2 sequences. As in humans and rhesus monkeys, this protocol detects specific combinations of different DRB-STR lengths that are unique for each haplotype. In the present panel, 22 Mafa-DRB region configurations could be defined, which exceeds the number detected in a comparable cohort of Indian rhesus macaques. The results suggest that, in cynomolgus monkeys, even more frequently than in rhesus macaques, new haplotypes are generated by recombination-like events. Although both macaque species are known to share several identical DRB exon 2 sequences, the lengths of the corresponding microsatellites often differ. Thus, this method allows not only fast and accurate DRB haplotyping but may also permit discrimination between highly related macaque species.
Collapse
|
45
|
Impact of endogenous intronic retroviruses on major histocompatibility complex class II diversity and stability. J Virol 2008; 82:6667-77. [PMID: 18448532 DOI: 10.1128/jvi.00097-08] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major histocompatibility complex (MHC) represents a multigene family that is known to display allelic and gene copy number variations. Primate species such as humans, chimpanzees (Pan troglodytes), and rhesus macaques (Macaca mulatta) show DRB region configuration polymorphism at the population level, meaning that the number and content of DRB loci may vary per haplotype. Introns of primate DRB alleles differ significantly in length due to insertions of transposable elements as long endogenous retrovirus (ERV) and human ERV (HERV) sequences in the DRB2, DRB6, and DRB7 pseudogenes. Although the integration of intronic HERVs resulted sooner or later in the inactivation of the targeted genes, the fixation of these endogenous retroviral segments over long time spans seems to have provided evolutionary advantage. Intronic HERVs may have integrated in a sense or an antisense manner. On the one hand, antisense-oriented retroelements such as HERV-K14I, observed in intron 2 of the DRB7 genes in humans and chimpanzees, seem to promote stability, as configurations/alleles containing these hits have experienced strong conservative selection during primate evolution. On the other hand, the HERVK3I present in intron 1 of all DRB2 and/or DRB6 alleles tested so far integrated in a sense orientation. The data suggest that multigenic regions in particular may benefit from sense introgressions by HERVs, as these elements seem to promote and maintain the generation of diversity, whereas these types of integrations may be lethal in monogenic systems, since they are known to influence transcript regulation negatively.
Collapse
|
46
|
Autoimmunity Against Myelin Oligodendrocyte Glycoprotein Is Dispensable for the Initiation Although Essential for the Progression of Chronic Encephalomyelitis in Common Marmosets. J Neuropathol Exp Neurol 2008; 67:326-40. [DOI: 10.1097/nen.0b013e31816a6851] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
47
|
't Hart BA, Hintzen RQ, Laman JD. Preclinical assessment of therapeutic antibodies against human CD40 and human interleukin-12/23p40 in a nonhuman primate model of multiple sclerosis. NEURODEGENER DIS 2008; 5:38-52. [PMID: 18075274 DOI: 10.1159/000109937] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 01/11/2007] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Proinflammatory cytokines, such as interleukin (IL)-12 and IL-23, and costimulatory molecules on antigen-presenting cells (APC), such as CD40, are critical to autoreactive T cell activation by APC, and hence, are considered relevant targets of therapy for immune-mediated inflammatory diseases (IMID). OBJECTIVE The current review discusses the preclinical evaluation of two novel immunotherapeutic monoclonal antibodies (mAbs), one directed against human IL-12/23p40 and the other against CD40. As the antibodies only recognize their target molecule in primates, the efficacy could not be tested in rodent models. RESULTS As a preclinical IMID model for the in vivo evaluation of both mAbs, we have used the experimental autoimmune/allergic encephalomyelitis (EAE) model in common marmoset monkeys (Callithrix jacchus). Both mAbs show beneficial activities in the EAE model when administered early in disease development as well as after the onset of brain inflammation. The treatment effects were evaluated using a combination of quantitative magnetic resonance imaging and a series of ex vivo and immunopathological evaluations. CONCLUSION The promising effects during ongoing disease in a relevant preclinical IMID model illustrate the potential of these two antibodies as treatment of IMID, in particular for multiple sclerosis on which disease EAE has been modeled.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands.
| | | | | |
Collapse
|
48
|
Kap YS, Smith P, Jagessar SA, Remarque E, Blezer E, Strijkers GJ, Laman JD, Hintzen RQ, Bauer J, Brok HPM, 't Hart BA. Fast progression of recombinant human myelin/oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis in marmosets is associated with the activation of MOG34-56-specific cytotoxic T cells. THE JOURNAL OF IMMUNOLOGY 2008; 180:1326-37. [PMID: 18209026 DOI: 10.4049/jimmunol.180.3.1326] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The recombinant human (rh) myelin/oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) model in the common marmoset is characterized by 100% disease incidence, a chronic disease course, and a variable time interval between immunization and neurological impairment. We investigated whether monkeys with fast and slow disease progression display different anti-MOG T or B cell responses and analyzed the underlying pathogenic mechanism(s). The results show that fast progressor monkeys display a significantly wider specificity diversification of anti-MOG T cells at necropsy than slow progressors, especially against MOG(34-56) and MOG(74-96). MOG(34-56) emerged as a critical encephalitogenic peptide, inducing severe neurological disease and multiple lesions with inflammation, demyelination, and axonal injury in the CNS. Although EAE was not observed in MOG(74-96)-immunized monkeys, weak T cell responses against MOG(34-56) and low grade CNS pathology were detected. When these cases received a booster immunization with MOG(34-56) in IFA, full-blown EAE developed. MOG(34-56)-reactive T cells expressed CD3, CD4, or CD8 and CD56, but not CD16. Moreover, MOG(34-56)-specific T cell lines displayed specific cytotoxic activity against peptide-pulsed B cell lines. The phenotype and cytotoxic activity suggest that these cells are NK-CTL. These results support the concept that cytotoxic cells may play a role in the pathogenesis of multiple sclerosis.
Collapse
Affiliation(s)
- Yolanda S Kap
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Toda M. Analysis of dendritic cells from common marmosets for the treatment of CNS injury. Inflamm Regen 2008. [DOI: 10.2492/inflammregen.28.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
50
|
Virus-specific T-cell immunity correlates with control of GB virus B infection in marmosets. J Virol 2007; 82:3054-60. [PMID: 18094181 DOI: 10.1128/jvi.01153-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GB virus B (GBV-B) is a hepatotropic virus that is closely related to hepatitis C virus (HCV). GBV-B causes acute hepatitis in infected marmosets and tamarins and is therefore a useful small-animal model for the study of HCV. We investigated virus-specific T-cell responses in marmosets infected with GBV-B. Gamma interferon (IFN-gamma) enzyme-linked immunospot (ELISPOT) assay responses in the peripheral blood of two marmosets were assessed throughout the course of GBV-B infection. These T-cell responses were directed against the GBV-B nonstructural proteins 3 (NS3), 4A (NS4A), and 5B (NS5B), and their appearance was temporally associated with clearance of viremia. These marmosets were then rechallenged with GBV-B at least 3 months after clearance of the primary infection to determine if the animals were protected from reinfection. There was no detectable viremia following reinfection, although a sharp increase in T-cell responses against GBV-B proteins was observed. Epitope mapping of T-cell responses to GBV-B was performed with liver and blood samples from both marmosets after rechallenge with GBV-B. Three shared, immunodominant T-cell epitopes within NS3 were identified in animals with multiple common major histocompatibility complex class I alleles. IFN-gamma ELISPOT responses were also detected in the livers of two marmosets that had resolved a primary GBV-B infection. These responses were high in frequency and were directed against epitopes within GBV-B NS3, NS4A, and NS5B proteins. These results indicate that virus-specific T-cell responses are detectable in the liver and blood of GBV-B-infected marmosets and that the clearance of GBV-B is associated with the appearance of these responses.
Collapse
|