1
|
Farnitano MC, Karoly K, Sweigart AL. Fluctuating reproductive isolation and stable ancestry structure in a fine-scaled mosaic of hybridizing Mimulus monkeyflowers. PLoS Genet 2025; 21:e1011624. [PMID: 40163522 PMCID: PMC11978108 DOI: 10.1371/journal.pgen.1011624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 04/08/2025] [Accepted: 02/16/2025] [Indexed: 04/02/2025] Open
Abstract
Hybridization among taxa impacts a variety of evolutionary processes from adaptation to extinction. We seek to understand both patterns of hybridization across taxa and the evolutionary and ecological forces driving those patterns. To this end, we use whole-genome low-coverage sequencing of 458 wild-grown and 1565 offspring individuals to characterize the structure, stability, and mating dynamics of admixed populations of Mimulus guttatus and Mimulus nasutus across a decade of sampling. In three streams, admixed genomes are common and a M. nasutus organellar haplotype is fixed in M. guttatus, but new hybridization events are rare. Admixture is strongly unidirectional, but each stream has a unique distribution of ancestry proportions. In one stream, three distinct cohorts of admixed ancestry are spatially structured at ~20-50m resolution and stable across years. Mating system provides almost complete isolation of M. nasutus from both M. guttatus and admixed cohorts, and is a partial barrier between admixed and M. guttatus cohorts. Isolation due to phenology is near-complete between M. guttatus and M. nasutus. Phenological isolation is a strong barrier in some years between admixed and M. guttatus cohorts, but a much weaker barrier in other years, providing a potential bridge for gene flow. These fluctuations are associated with differences in water availability across years, supporting a role for climate in mediating the strength of reproductive isolation. Together, mating system and phenology accurately predict fluctuations in assortative mating across years, which we estimate directly using paired maternal and offspring genotypes. Climate-driven fluctuations in reproductive isolation may promote the longer-term stability of a complex mosaic of hybrid ancestry, preventing either complete isolation or complete collapse of species barriers.
Collapse
Affiliation(s)
- Matthew C. Farnitano
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Keith Karoly
- Department of Biology, Reed College, Portland, Oregon, United States of America
| | - Andrea L. Sweigart
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
2
|
Larsson D, Šarhanová P, Paun O, Schneeweiss GM. Recent Origin of a Range-Restricted Species With Subsequent Introgression in its Widespread Congener in the Phyteuma spicatum Group (Campanulaceae). Mol Ecol 2025; 34:e17624. [PMID: 39673088 PMCID: PMC11754710 DOI: 10.1111/mec.17624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/02/2024] [Accepted: 11/11/2024] [Indexed: 12/16/2024]
Abstract
Understanding the causes of restricted geographic distributions is of major interest to evolutionary and conservation biologists. Inferring historical factors has often relied on ad hoc interpretations of genetic data, and hypothesis testing within a statistical framework under different demographic scenarios remains underutilised. Using coalescent modelling on RAD-sequencing data, we (i) test hypotheses about the origin of Phyteuma gallicum (Campanulaceae), a range-restricted endemic of central France sympatric with its widespread congener Ph. spicatum, and (ii) date its origin, irrespective of its mode of origin, to test the hypothesis that the restricted range is due to a recent time of origin. The best supported model of origin is one of a dichotomous split of Ph. gallicum, confirmed as distinct species, and the Central European Ph. nigrum with subsequent gene flow between Ph. gallicum and Ph. spicatum. The split of Ph. gallicum and Ph. nigrum is estimated at 45-55,000 years ago. Coalescent modelling on genomic data not only clarified the mode of origin (dichotomous speciation instead of a previously hypothesised hybridogenic origin) but also identified recency of speciation as a sufficient, although likely not the sole, factor to explain the restricted distribution range. Coalescent modelling strongly improves our understanding of the evolution of range-restricted species that are frequently of conservation concern, as is the case for Ph. gallicum.
Collapse
Affiliation(s)
- Dennis Larsson
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | - Petra Šarhanová
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
- Department of Botany and ZoologyMasaryk UniversityBrnoCzech Republic
| | - Ovidiu Paun
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | | |
Collapse
|
3
|
Nevado B, Chapman MA, Brennan AC, Clark JW, Wong ELY, Batstone T, McCarthy SA, Tracey A, Torrance J, Sims Y, Abbott RJ, Filatov D, Hiscock SJ. Genomic changes and stabilization following homoploid hybrid speciation of the Oxford ragwort Senecio squalidus. Curr Biol 2024; 34:4412-4423.e5. [PMID: 39260362 DOI: 10.1016/j.cub.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/10/2024] [Accepted: 08/07/2024] [Indexed: 09/13/2024]
Abstract
Oxford ragwort (Senecio squalidus) is one of only two homoploid hybrid species known to have originated very recently, so it is a unique model for determining genomic changes and stabilization following homoploid hybrid speciation. Here, we provide a chromosome-level genome assembly of S. squalidus with 95% of the assembly contained in the 10 longest scaffolds, corresponding to its haploid chromosome number. We annotated 30,249 protein-coding genes and estimated that ∼62% of the genome consists of repetitive elements. We then characterized genome-wide patterns of linkage disequilibrium, polymorphism, and divergence in S. squalidus and its two parental species, finding that (1) linkage disequilibrium is highly heterogeneous, with a region on chromosome 4 showing increased values across all three species but especially in S. squalidus; (2) regions harboring genetic incompatibilities between the two parental species tend to be large, show reduced recombination, and have lower polymorphism in S. squalidus; (3) the two parental species have an unequal contribution (70:30) to the genome of S. squalidus, with long blocks of parent-specific ancestry supporting a very rapid stabilization of the hybrid lineage after hybrid formation; and (4) genomic regions with major parent ancestry exhibit an overrepresentation of loci with evidence for divergent selection occurring between the two parental species on Mount Etna. Our results show that both genetic incompatibilities and natural selection play a role in determining genome-wide reorganization following hybrid speciation and that patterns associated with homoploid hybrid speciation-typically seen in much older systems-can evolve very quickly following hybridization.
Collapse
Affiliation(s)
- Bruno Nevado
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK; cE3c, Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, Lisbon 1749-016, Portugal; Department of Animal Biology, Faculty of Sciences, University of Lisbon, Lisbon 1749-016, Portugal.
| | - Mark A Chapman
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Adrian C Brennan
- Biosciences Department, University of Durham, Durham DH1 3LE, UK
| | - James W Clark
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK; Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | - Edgar L Y Wong
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Tom Batstone
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | | | - Alan Tracey
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | | | - Ying Sims
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Richard J Abbott
- School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| | - Dmitry Filatov
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Simon J Hiscock
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK; University of Oxford Botanic Garden and Arboretum, Rose Lane, Oxford OX1 4AZ, UK
| |
Collapse
|
4
|
Peng F, Sun X, van Vloten C, Correll J, Langdon M, Ngochanthra W, Johnson K, Amador Kane S. Hybrid Mimulus flowers attract a new pollinator. THE NEW PHYTOLOGIST 2024; 242:1324-1332. [PMID: 38482697 DOI: 10.1111/nph.19668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/23/2024] [Indexed: 04/12/2024]
Abstract
Hybridization is common in flowering plants and is believed to be an important force driving adaptation and speciation. The flowers of hybrids often exhibit new trait combinations, which, theoretically, could attract new species of pollinators. In this study, we found that the hybrids between a hummingbird-pollinated species Mimulus cardinalis and a self-pollinated species Mimulus parishii attract bumblebees (Bombus impatiens), a pollinator not attracted to either of the progenitor species. This novel attraction is explained by new combinations of floral traits in hybrids, including, most importantly, petal color, in addition to nectar concentration and corolla size. To understand how petal color variation is perceived by bumblebees, we performed reflectance spectroscopy and multispectral imaging to model the flower appearance in bee vision. This analysis showed that color variation would impact the ease of detection. We also found that YUP, the genetic locus responsible for a large portion of floral color variation and previously shown to be important in bee interactions with other Mimulus species, also played an important role in this novel attraction. These results together suggest that the attraction of new pollinators to hybrid plants could be an underexplored avenue for pollinator shift and speciation.
Collapse
Affiliation(s)
- Foen Peng
- Department of Biology, Haverford College, Haverford, PA, 19041, USA
| | - Xiaohe Sun
- Department of Biology, Haverford College, Haverford, PA, 19041, USA
| | | | - Jude Correll
- Department of Biology, Haverford College, Haverford, PA, 19041, USA
| | - Marlena Langdon
- Department of Biology, Haverford College, Haverford, PA, 19041, USA
| | | | - Karl Johnson
- Department of Biology, Haverford College, Haverford, PA, 19041, USA
| | - Suzanne Amador Kane
- Department of Physics and Astronomy, Haverford College, Haverford, PA, 19041, USA
| |
Collapse
|
5
|
Kulmuni J, Wiley B, Otto SP. On the fast track: hybrids adapt more rapidly than parental populations in a novel environment. Evol Lett 2024; 8:128-136. [PMID: 38370548 PMCID: PMC10871894 DOI: 10.1093/evlett/qrad002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/22/2022] [Accepted: 01/26/2023] [Indexed: 02/20/2024] Open
Abstract
Rates of hybridization are predicted to increase due to climate change and human activity that cause redistribution of species and bring previously isolated populations into contact. At the same time climate change leads to rapid changes in the environment, requiring populations to adapt rapidly in order to survive. A few empirical cases suggest hybridization can facilitate adaptation despite its potential for incompatibilities and deleterious fitness consequences. Here we use simulations and Fisher's Geometric model to evaluate the conditions and time frame of adaptation via hybridization in both diploids and haplodiploids. We find that hybrids adapt faster to new environments compared to parental populations in nearly all simulated scenarios, generating a fitness advantage that can offset intrinsic incompatibilities and last for tens of generations, regardless of whether the population was diploid or haplodiploid. Our results highlight the creative role of hybridization and suggest that hybridization may help contemporary populations adapt to the changing climate. However, adaptation by hybrids may well happen at the cost of reduced biodiversity, if previously isolated lineages collapse into one.
Collapse
Affiliation(s)
- Jonna Kulmuni
- Organismal & Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
- Institute for Biodiversity and Ecosystem Dynamics, Department of Evolutionary and Population Biology, University of Amsterdam, Amsterdam, The Netherlands
| | - Bryn Wiley
- Department of Zoology and Biodiversity Research Center, University of British Columbia, Vancouver, Canada
| | - Sarah P Otto
- Department of Zoology and Biodiversity Research Center, University of British Columbia, Vancouver, Canada
| |
Collapse
|
6
|
Stull GW, Pham KK, Soltis PS, Soltis DE. Deep reticulation: the long legacy of hybridization in vascular plant evolution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:743-766. [PMID: 36775995 DOI: 10.1111/tpj.16142] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 05/27/2023]
Abstract
Hybridization has long been recognized as a fundamental evolutionary process in plants but, until recently, our understanding of its phylogenetic distribution and biological significance across deep evolutionary scales has been largely obscure. Over the past decade, genomic and phylogenomic datasets have revealed, perhaps not surprisingly, that hybridization, often associated with polyploidy, has been common throughout the evolutionary history of plants, particularly in various lineages of flowering plants. However, phylogenomic studies have also highlighted the challenges of disentangling signals of ancient hybridization from other sources of genomic conflict (in particular, incomplete lineage sorting). Here, we provide a critical review of ancient hybridization in vascular plants, outlining well-documented cases of ancient hybridization across plant phylogeny, as well as the challenges unique to documenting ancient versus recent hybridization. We provide a definition for ancient hybridization, which, to our knowledge, has not been explicitly attempted before. Further documenting the extent of deep reticulation in plants should remain an important research focus, especially because published examples likely represent the tip of the iceberg in terms of the total extent of ancient hybridization. However, future research should increasingly explore the macroevolutionary significance of this process, in terms of its impact on evolutionary trajectories (e.g. how does hybridization influence trait evolution or the generation of biodiversity over long time scales?), as well as how life history and ecological factors shape, or have shaped, the frequency of hybridization across geologic time and plant phylogeny. Finally, we consider the implications of ubiquitous ancient hybridization for how we conceptualize, analyze, and classify plant phylogeny. Networks, as opposed to bifurcating trees, represent more accurate representations of evolutionary history in many cases, although our ability to infer, visualize, and use networks for comparative analyses is highly limited. Developing improved methods for the generation, visualization, and use of networks represents a critical future direction for plant biology. Current classification systems also do not generally allow for the recognition of reticulate lineages, and our classifications themselves are largely based on evidence from the chloroplast genome. Updating plant classification to better reflect nuclear phylogenies, as well as considering whether and how to recognize hybridization in classification systems, will represent an important challenge for the plant systematics community.
Collapse
Affiliation(s)
- Gregory W Stull
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA
| | - Kasey K Pham
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
7
|
Owens GL, Huang K, Todesco M, Rieseberg LH. Re-evaluating Homoploid Reticulate Evolution in Helianthus Sunflowers. Mol Biol Evol 2023; 40:6989481. [PMID: 36648104 PMCID: PMC9907532 DOI: 10.1093/molbev/msad013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/03/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Sunflowers of the genus Helianthus are models for hybridization research and contain three of the best-studied examples of homoploid hybrid speciation. To understand a broader picture of hybridization within the annual sunflowers, we used whole-genome resequencing to conduct a phylogenomic analysis and test for gene flow between lineages. We find that all annual sunflower species tested have evidence of admixture, suggesting hybridization was common during the radiation of the genus. Support for the major species tree decreases with increasing recombination rate, consistent with hybridization and introgression contributing to discordant topologies. Admixture graphs found hybridization to be associated with the origins of the three putative hybrid species (Helianthus anomalus, Helianthus deserticola, and Helianthus paradoxus). However, the hybridization events are more ancient than suggested by previous work. Furthermore, H. anomalus and H. deserticola appear to have arisen from a single hybridization event involving an unexpected donor, rather than through multiple independent events as previously proposed. This means our results are consistent with, but not definitive proof of, two ancient independent homoploid hybrid speciation events in the genus. Using a broader data set that covers the whole Helianthus genus, including perennial species, we find that signals of introgression span the genus and beyond, suggesting highly divergent introgression and/or the sorting of ancient haplotypes. Thus, Helianthus can be viewed as a syngameon in which largely reproductively isolated species are linked together by occasional or frequent gene flow.
Collapse
Affiliation(s)
| | - Kaichi Huang
- Department of Botany and Beaty Biodiversity Center, University of British Columbia, Vancouver, BC, Canada
| | - Marco Todesco
- Department of Botany and Beaty Biodiversity Center, University of British Columbia, Vancouver, BC, Canada
| | - Loren H Rieseberg
- Department of Botany and Beaty Biodiversity Center, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Wong ELY, Nevado B, Hiscock SJ, Filatov DA. Rapid evolution of hybrid breakdown following recent divergence with gene flow in Senecio species on Mount Etna, Sicily. Heredity (Edinb) 2023; 130:40-52. [PMID: 36494489 PMCID: PMC9814926 DOI: 10.1038/s41437-022-00576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 12/13/2022] Open
Abstract
How do nascent species evolve reproductive isolation during speciation with on-going gene flow? How do hybrid lineages become stabilised hybrid species? While commonly used genomic approaches provide an indirect way to identify species incompatibility factors, synthetic hybrids generated from interspecific crosses allow direct pinpointing of phenotypic traits involved in incompatibilities and the traits that are potentially adaptive in hybrid species. Here we report the analysis of phenotypic variation and hybrid breakdown in crosses between closely-related Senecio aethnensis and S. chrysanthemifolius, and their homoploid hybrid species, S. squalidus. The two former species represent a likely case of recent (<200 ky) speciation with gene flow driven by adaptation to contrasting conditions of high- and low-elevations on Mount Etna, Sicily. As these species form viable and fertile hybrids, it remains unclear whether they have started to evolve reproductive incompatibility. Our analysis represents the first study of phenotypic variation and hybrid breakdown involving multiple Senecio hybrid families. It revealed wide range of variation in multiple traits, including the traits previously unrecorded in synthetic hybrids. Leaf shape, highly distinct between S. aethnensis and S. chrysanthemifolius, was extremely variable in F2 hybrids, but more consistent in S. squalidus. Our study demonstrates that interspecific incompatibilities can evolve rapidly despite on-going gene flow between the species. Further work is necessary to understand the genetic bases of these incompatibilities and their role in speciation with gene flow.
Collapse
Affiliation(s)
- Edgar L. Y. Wong
- grid.4991.50000 0004 1936 8948Department of Biology, University of Oxford, Oxford, UK ,grid.507705.0Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Bruno Nevado
- grid.4991.50000 0004 1936 8948Department of Biology, University of Oxford, Oxford, UK ,grid.9983.b0000 0001 2181 4263Centre for Ecology, Evolution and Environmental Changes, University of Lisbon, Lisbon, Portugal
| | - Simon J. Hiscock
- grid.4991.50000 0004 1936 8948Department of Biology, University of Oxford, Oxford, UK ,Oxford Botanic Garden and Arboretum, Oxford, UK
| | - Dmitry A. Filatov
- grid.4991.50000 0004 1936 8948Department of Biology, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Li J, Schumer M, Bank C. Imbalanced segregation of recombinant haplotypes in hybrid populations reveals inter- and intrachromosomal Dobzhansky-Muller incompatibilities. PLoS Genet 2022; 18:e1010120. [PMID: 35344560 PMCID: PMC8989332 DOI: 10.1371/journal.pgen.1010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 04/07/2022] [Accepted: 02/25/2022] [Indexed: 11/19/2022] Open
Abstract
Dobzhansky-Muller incompatibilities (DMIs) are a major component of reproductive isolation between species. DMIs imply negative epistasis and are exposed when two diverged populations hybridize. Mapping the locations of DMIs has largely relied on classical genetic mapping. Approaches to date are hampered by low power and the challenge of identifying DMI loci on the same chromosome, because strong initial linkage of parental haplotypes weakens statistical tests. Here, we propose new statistics to infer negative epistasis from haplotype frequencies in hybrid populations. When two divergent populations hybridize, the variance in heterozygosity at two loci decreases faster with time at DMI loci than at random pairs of loci. When two populations hybridize at near-even admixture proportions, the deviation of the observed variance from its expectation becomes negative for the DMI pair. This negative deviation enables us to detect intermediate to strong negative epistasis both within and between chromosomes. In practice, the detection window in hybrid populations depends on the demographic scenario, the recombination rate, and the strength of epistasis. When the initial proportion of the two parental populations is uneven, only strong DMIs can be detected with our method unless migration prevents parental haplotypes from being lost. We use the new statistics to infer candidate DMIs from three hybrid populations of swordtail fish. We identify numerous new DMI candidates, some of which are inferred to interact with several loci within and between chromosomes. Moreover, we discuss our results in the context of an expected enrichment in intrachromosomal over interchromosomal DMIs.
Collapse
Affiliation(s)
- Juan Li
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Gulbenkian Science Institute, Oeiras, Portugal
- Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Molly Schumer
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Claudia Bank
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Gulbenkian Science Institute, Oeiras, Portugal
- Swiss Institute for Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
10
|
Frayer ME, Payseur BA. Demographic history shapes genomic ancestry in hybrid zones. Ecol Evol 2021; 11:10290-10302. [PMID: 34367575 PMCID: PMC8328415 DOI: 10.1002/ece3.7833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 12/26/2022] Open
Abstract
Demographic factors such as migration rate and population size can impede or facilitate speciation. In hybrid zones, reproductive boundaries between species are tested and demography mediates the opportunity for admixture between lineages that are partially isolated. Genomic ancestry is a powerful tool for revealing the history of admixed populations, but models and methods based on local ancestry are rarely applied to structured hybrid zones. To understand the effects of demography on ancestry in hybrids zones, we performed individual-based simulations under a stepping-stone model, treating migration rate, deme size, and hybrid zone age as parameters. We find that the number of ancestry junctions (the transition points between genomic regions with different ancestries) and heterogenicity (the genomic proportion heterozygous for ancestry) are often closely connected to demographic history. Reducing deme size reduces junction number and heterogenicity. Elevating migration rate increases heterogenicity, but migration affects junction number in more complex ways. We highlight the junction frequency spectrum as a novel and informative summary of ancestry that responds to demographic history. A substantial proportion of junctions are expected to fix when migration is limited or deme size is small, changing the shape of the spectrum. Our findings suggest that genomic patterns of ancestry could be used to infer demographic history in hybrid zones.
Collapse
Affiliation(s)
- Megan E. Frayer
- Laboratory of GeneticsUniversity of Wisconsin MadisonMadisonWIUSA
| | - Bret A. Payseur
- Laboratory of GeneticsUniversity of Wisconsin MadisonMadisonWIUSA
| |
Collapse
|
11
|
Janzen T, Diaz F. Individual‐based simulations of genome evolution with ancestry: The
GenomeAdmixR
R package. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thijs Janzen
- Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
- Carl von Ossietzky University Oldenburg Germany
| | - Fernando Diaz
- Department of Entomology University of Arizona Tucson AZ USA
| |
Collapse
|
12
|
Brice C, Zhang Z, Bendixsen D, Stelkens R. Hybridization Outcomes Have Strong Genomic and Environmental Contingencies. Am Nat 2021; 198:E53-E67. [PMID: 34403309 DOI: 10.1086/715356] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractExtreme F2 phenotypes known as transgressive segregants can cause increased or decreased fitness in hybrids beyond the ranges seen in parental populations. Despite the usefulness of transgression for plant and animal breeding and its potential role in hybrid speciation, the genetic mechanisms and predictors of transgressive segregation remain largely untested. We generated seven hybrid crosses between five widely divergent Saccharomyces yeast species and measured the fitness of the parents and their viable F1 and F2 hybrids in seven stressful environments. We found that on average 16.6% of all replicate F2 hybrids had higher fitness than both parents. Against our predictions, transgression frequency was not a function of parental genetic and phenotypic distances across test environments. Within environments, some relationships were significant, but not in the predicted direction; for example, genetic distance was negatively related to transgression in ethanol and hydrogen peroxide. Significant effects of hybrid cross, test environment, and cross × environment interactions suggest that the amount of transgression produced in a hybrid cross is highly context specific and that outcomes of hybridization differ even among crosses made from the same two parents. If the goal is to reliably predict hybrid fitness and forecast the evolutionary potential of admixed populations, we need more efforts to identify patterns beyond the idiosyncrasies caused by specific genomic or environmental contexts.
Collapse
|
13
|
Sassone AB, Hojsgaard DH, Giussani LM, Brassac J, Blattner FR. Genomic, karyological and morphological changes of South American garlics (Ipheion) provide insights into mechanisms of speciation in the Pampean region. Mol Ecol 2021; 30:3716-3729. [PMID: 34087027 DOI: 10.1111/mec.16009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 01/15/2023]
Abstract
Speciation proceeds through mechanisms that promote reproductive isolation and shape the extent of genetic variation in natural populations, and thus its study is essential to understand the evolutionary processes leading to increased biodiversity. Chromosomal rearrangements are known to facilitate reproductive isolation by hybrid sterility and favour speciation events. The genus Ipheion (Amaryllidaceae, Allioideae) is unique as its species exhibit a remarkable karyological variability but lack population-level genetic data. To unveil the diversification processes acting upon the formation of new lineages within Ipheion in the Pampas of South America, we combined morphology and karyology approaches with genotyping-by-sequencing. Our phylogenomic and population genomics results supported the taxonomic division of Ipheion into three morphological and genetically well-differentiated groups. The origin of Ipheion uniflorum was traced back to its current southern distribution area in the southern Pampean region (in Argentina), from where it had expanded to the north reaching Uruguay. Our results further suggested that chromosome rearrangements and ploidy shifts had triggered speciation events, first during the origin of I. uniflorum and later during its subsequent diversification into I. recurvifolium and I. tweedieanum, in both cases reinforced by extrinsic factors and biogeographical settings. The current study illustrates the analytical power of multidisciplinary approaches integrating phylo- and population genomics with classic analyses to reveal evolutionary processes in plants.
Collapse
Affiliation(s)
- Agostina B Sassone
- Instituto de Botánica Darwinion, CONICET-ANCEFN, Buenos Aires, Argentina.,Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Diego H Hojsgaard
- Department of Systematics, Biodiversity, and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
| | - Liliana M Giussani
- Instituto de Botánica Darwinion, CONICET-ANCEFN, Buenos Aires, Argentina
| | - Jonathan Brassac
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Frank R Blattner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|
14
|
Katche E, Gaebelein R, Idris Z, Vasquez-Teuber P, Lo YT, Nugent D, Batley J, Mason AS. Stable, fertile lines produced by hybridization between allotetraploids Brassica juncea (AABB) and Brassica carinata (BBCC) have merged the A and C genomes. THE NEW PHYTOLOGIST 2021; 230:1242-1257. [PMID: 33476056 DOI: 10.1111/nph.17225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Many flowering plant taxa contain allopolyploids that share one or more genomes in common. In the Brassica genus, crop species Brassica juncea and Brassica carinata share the B genome, with 2n = AABB and 2n = BBCC genome complements, respectively. Hybridization results in 2n = BBAC hybrids, but the fate of these hybrids over generations of self-pollination has never been reported. We produced and characterized B. juncea × B. carinata (2n = BBAC) interspecific hybrids over six generations of self-pollination under selection for high fertility using a combination of genotyping, fertility phenotyping, and cytogenetics techniques. Meiotic pairing behaviour improved from 68% bivalents in the F1 to 98% in the S5 /S6 generations, and initially low hybrid fertility also increased to parent species levels. The S5 /S6 hybrids contained an intact B genome (16 chromosomes) plus a new, stable A/C genome (18-20 chromosomes) resulting from recombination and restructuring of A and C-genome chromosomes. Our results provide the first experimental evidence that two genomes can come together to form a new, restructured genome in hybridization events between two allotetraploid species that share a common genome. This mechanism should be considered in interpreting phylogenies in taxa with multiple allopolyploid species.
Collapse
Affiliation(s)
- Elvis Katche
- Plant Breeding Department, Justus Liebig University, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
| | - Roman Gaebelein
- Plant Breeding Department, Justus Liebig University, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
| | - Zurianti Idris
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Paula Vasquez-Teuber
- Plant Breeding Department, Justus Liebig University, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Plant Production, Faculty of Agronomy, University of Concepción, Av. Vicente Méndez 595, Chillán, Chile
| | - Yu-Tzu Lo
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - David Nugent
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jacqueline Batley
- School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, WA, 6009, Australia
| | - Annaliese S Mason
- Plant Breeding Department, Justus Liebig University, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- Plant Breeding Department, University of Bonn, Katzenburgweg 5, Bonn, 53115, Germany
| |
Collapse
|
15
|
Nevado B, Harris SA, Beaumont MA, Hiscock SJ. Rapid homoploid hybrid speciation in British gardens: The origin of Oxford ragwort (
Senecio squalidus
). Mol Ecol 2020; 29:4221-4233. [DOI: 10.1111/mec.15630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 01/17/2023]
Affiliation(s)
- Bruno Nevado
- Department of Plant Sciences University of Oxford Oxford UK
| | | | | | - Simon J. Hiscock
- Department of Plant Sciences University of Oxford Oxford UK
- Oxford Botanic Garden and Arboretum Oxford UK
| |
Collapse
|
16
|
Li C, Mesgaran MB, Ades PK, Cousens RD. Inheritance of breeding system in Cakile (Brassicaceae) following hybridization: implications for plant invasions. ANNALS OF BOTANY 2020; 125:639-650. [PMID: 31802117 PMCID: PMC7102952 DOI: 10.1093/aob/mcz198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND AIMS Hybridization is commonly assumed to aid invasions through adaptive introgression. In contrast, a recent theoretical model predicted that there can be non-adaptive demographic advantages from hybridization and that the population consequences will depend on the breeding systems of the species and the extent to which subsequent generations are able to interbreed and reproduce. We examined cross-fertilization success and inheritance of breeding systems of two species in order to better assess the plausibility of the theoretical predictions. METHODS Reciprocal artificial crosses were made to produce F1, F2 and backcrosses between Cakile maritima (self-incompatible, SI) and Cakile edentula (self-compatible, SC) (Brassicaceae). Flowers were emasculated prior to anther dehiscence and pollen was introduced from donor plants to the recipient's stigma. Breeding system, pollen viability, pollen germination, pollen tube growth and reproductive output were then determined. The results were used to replace the assumptions made in the original population model and new simulations were made. KEY RESULTS The success rate with the SI species as the pollen recipient was lower than when it was the pollen donor, in quantitative agreement with the 'SI × SC rule' of unilateral incompatibility. Similar outcomes were found in subsequent generations where fertile hybrids were produced but lower success rates were observed in crosses of SI pollen donors with SC pollen recipients. Much lower proportions of SC hybrids were produced than expected from a single Mendelian allele. When incorporated into a population model, these results predicted an even faster rate of replacement of the SC species by the SI species than previously reported. CONCLUSIONS Our study of these two species provides even clearer support for the feasibility of the non-adaptive hybridization hypothesis, whereby the colonization of an SI species can be assisted by transient hybridization with a congener. It also provides novel insight into reproductive biology beyond the F1 generation.
Collapse
Affiliation(s)
- Chengjun Li
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mohsen B Mesgaran
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Peter K Ades
- School of Ecosystem and Forest Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Roger D Cousens
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
17
|
Wehenkel C, Mariscal-Lucero SDR, González-Elizondo MS, Aguirre-Galindo VA, Fladung M, López-Sánchez CA. Tall Pinus luzmariae trees with genes from P. herrerae. PeerJ 2020; 8:e8648. [PMID: 32149029 PMCID: PMC7049253 DOI: 10.7717/peerj.8648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/27/2020] [Indexed: 11/20/2022] Open
Abstract
CONTEXT Pinus herrerae and P. luzmariae are endemic to western Mexico, where they cover an area of more than 1 million hectares. Pinus herrerae is also cultivated in field trials in South Africa and South America, because of its considerable economic importance as a source of timber and resin. Seed quality, afforestation success and desirable traits may all be influenced by the presence of hybrid trees in seed stands. AIMS We aimed to determine the degree of hybridization between P. herrerae and P. luzmariae in seed stands of each species located in the Sierra Madre Occidental, Durango, Mexico. METHODS AFLP molecular markers from samples of 171 trees across five populations were analyzed with STRUCTURE and NewHybrids software to determine the degree of introgressive hybridization. The accuracy of STRUCTURE and NewHybrids in detecting hybrids was quantified using the software Hybridlab 1.0. Morphological analysis of 131 samples from two populations of P. herrerae and two populations of P. luzmariae was also conducted by Random Forest classification. The data were compared by Principal Coordinate Analysis (PCoA) in GenAlex 6.501. RESULTS Hybridization between Pinus herrerae and P. luzmariae was observed in all seed stands under study and resulted in enhancement of desirable silvicultural traits in the latter species. In P. luzmariae, only about 16% molecularly detected hybrids correspond to those identified on a morphological basis. However, the morphology of P. herrerae is not consistent with the molecularly identified hybrids from one population and is only consistent with 3.3 of those from the other population. CONCLUSIONS This is the first report of hybrid vigour (heterosis) in Mexican pines. Information about hybridization and introgression is essential for developing effective future breeding programs, successful establishment of plantations and management of natural forest stands. Understanding how natural hybridization may influence the evolution and adaptation of pines to climate change is a cornerstone to sustainable forest management including adaptive silviculture.
Collapse
Affiliation(s)
- Christian Wehenkel
- Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Samantha del Rocío Mariscal-Lucero
- Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Durango, Mexico
- Instituto Tecnológico del Valle del Guadiana, Tecnológico Nacional de México, Durango, Mexico
| | | | - Víctor A. Aguirre-Galindo
- Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Durango, Mexico
| | | | - Carlos A. López-Sánchez
- Department of Organisms and Systems Biology, University of Oviedo, Polytechnic School of Mieres, Asturias, Spain
| |
Collapse
|
18
|
Abstract
Interspecific hybridization is the process where closely related species mate and produce offspring with admixed genomes. The genomic revolution has shown that hybridization is common, and that it may represent an important source of novel variation. Although most interspecific hybrids are sterile or less fit than their parents, some may survive and reproduce, enabling the transfer of adaptive variants across the species boundary, and even result in the formation of novel evolutionary lineages. There are two main variants of hybrid species genomes: allopolyploid, which have one full chromosome set from each parent species, and homoploid, which are a mosaic of the parent species genomes with no increase in chromosome number. The establishment of hybrid species requires the development of reproductive isolation against parental species. Allopolyploid species often have strong intrinsic reproductive barriers due to differences in chromosome number, and homoploid hybrids can become reproductively isolated from the parent species through assortment of genetic incompatibilities. However, both types of hybrids can become further reproductively isolated, gaining extrinsic isolation barriers, by exploiting novel ecological niches, relative to their parents. Hybrids represent the merging of divergent genomes and thus face problems arising from incompatible combinations of genes. Thus hybrid genomes are highly dynamic and undergo rapid evolutionary change, including genome stabilization in which selection against incompatible combinations results in fixation of compatible ancestry block combinations within the hybrid species. The potential for rapid adaptation or speciation makes hybrid genomes a particularly exciting subject of in evolutionary biology. Here we summarize how introgressed alleles or hybrid species can establish and how the resulting hybrid genomes evolve.
Collapse
Affiliation(s)
- Anna Runemark
- Department of Biology, Lund University, Lund, Sweden
- * E-mail:
| | - Mario Vallejo-Marin
- Biological and Environmental Sciences, University of Stirling, Stirling, Scotland, United Kingdom
| | - Joana I. Meier
- St John's College, Cambridge, Cambridge, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
19
|
Cutter AD. Reproductive transitions in plants and animals: selfing syndrome, sexual selection and speciation. THE NEW PHYTOLOGIST 2019; 224:1080-1094. [PMID: 31336389 DOI: 10.1111/nph.16075] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/17/2019] [Indexed: 05/23/2023]
Abstract
The evolution of predominant self-fertilisation frequently coincides with the evolution of a collection of phenotypes that comprise the 'selfing syndrome', in both plants and animals. Genomic features also display a selfing syndrome. Selfing syndrome traits often involve changes to male and female reproductive characters that were subject to sexual selection and sexual conflict in the obligatorily outcrossing ancestor, including the gametic phase for both plants and animals. Rapid evolution of reproductive traits, due to both relaxed selection and directional selection under the new status of predominant selfing, lays the genetic groundwork for reproductive isolation. Consequently, shifts in sexual selection pressures coupled to transitions to selfing provide a powerful paradigm for investigating the speciation process. Plant and animal studies, however, emphasise distinct selective forces influencing reproductive-mode transitions: genetic transmission advantage to selfing or reproductive assurance outweighing the costs of inbreeding depression vs the costs of males and meiosis. Here, I synthesise links between sexual selection, evolution of selfing and speciation, with particular focus on identifying commonalities and differences between plant and animal systems and pointing to areas warranting further synergy.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
20
|
Glémin S, Scornavacca C, Dainat J, Burgarella C, Viader V, Ardisson M, Sarah G, Santoni S, David J, Ranwez V. Pervasive hybridizations in the history of wheat relatives. SCIENCE ADVANCES 2019; 5:eaav9188. [PMID: 31049399 PMCID: PMC6494498 DOI: 10.1126/sciadv.aav9188] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/20/2019] [Indexed: 05/18/2023]
Abstract
Cultivated wheats are derived from an intricate history of three genomes, A, B, and D, present in both diploid and polyploid species. It was recently proposed that the D genome originated from an ancient hybridization between the A and B lineages. However, this result has been questioned, and a robust phylogeny of wheat relatives is still lacking. Using transcriptome data from all diploid species and a new methodological approach, our comprehensive phylogenomic analysis revealed that more than half of the species descend from an ancient hybridization event but with a more complex scenario involving a different parent than previously thought-Aegilops mutica, an overlooked wild species-instead of the B genome. We also detected other extensive gene flow events that could explain long-standing controversies in the classification of wheat relatives.
Collapse
Affiliation(s)
- Sylvain Glémin
- CNRS, Univ Rennes, ECOBIO (Ecosystèmes, biodiversité, évolution)–UMR 6553, F-35042 Rennes, France
- Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Celine Scornavacca
- Institut des Sciences de l’Evolution Université de Montpellier, CNRS, IRD, EPHE CC 064, Place Eugène Bataillon, 34095 Montpellier, cedex 05, France
| | - Jacques Dainat
- National Bioinformatics Infrastructure Sweden (NBIS), SciLifeLab, Uppsala Biomedicinska Centrum (BMC), Husargatan 3, S-751 23 Uppsala, Sweden
- IMBIM–Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala Biomedicinska Centrum (BMC), Husargatan 3, Box 582, S-751 23 Uppsala, Sweden
| | - Concetta Burgarella
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
- CIRAD, UMR AGAP, F-34398 Montpellier, France
| | - Véronique Viader
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Morgane Ardisson
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Gautier Sarah
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
- South Green Bioinformatics Platform, BIOVERSITY, CIRAD, INRA, IRD, Montpellier SupAgro, Montpellier, France
| | - Sylvain Santoni
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Jacques David
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Vincent Ranwez
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
21
|
Maxwell CS, Mattox K, Turissini DA, Teixeira MM, Barker BM, Matute DR. Gene exchange between two divergent species of the fungal human pathogen, Coccidioides. Evolution 2019; 73:42-58. [PMID: 30414183 PMCID: PMC6430640 DOI: 10.1111/evo.13643] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022]
Abstract
The fungal genus Coccidioides is composed of two species, Coccidioides immitis and Coccidioides posadasii. These two species are the causal agents of coccidioidomycosis, a pulmonary disease also known as valley fever. The two species are thought to have shared genetic material due to gene exchange in spite of their long divergence. To quantify the magnitude of shared ancestry between them, we analyzed the genomes of a population sample from each species. Next, we inferred what is the expected size of shared haplotypes that might be inherited from the last common ancestor of the two species and find a cutoff to find what haplotypes have conclusively been exchanged between species. Finally, we precisely identified the breakpoints of the haplotypes that have crossed the species boundary and measure the allele frequency of each introgression in this sample. We find that introgressions are not uniformly distributed across the genome. Most, but not all, of the introgressions segregate at low frequency. Our results show that divergent species can share alleles, that species boundaries can be porous, and highlight the need for a systematic exploration of gene exchange in fungal species.
Collapse
Affiliation(s)
- Colin S Maxwell
- Biology Department, University of North Carolina, Chapel Hill, North Carolina
| | - Kathleen Mattox
- Biology Department, University of North Carolina, Chapel Hill, North Carolina
| | - David A Turissini
- Biology Department, University of North Carolina, Chapel Hill, North Carolina
| | - Marcus M Teixeira
- Núcleo de Medicina Tropical, Faculdade de Medicina, University of Brasília, Brasília, Brazil
| | - Bridget M Barker
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona
| | - Daniel R Matute
- Biology Department, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
22
|
Wang Y, Yang C, Luo K, Zhang M, Qin Q, Huo Y, Song J, Tao M, Zhang C, Liu S. The Formation of the Goldfish-Like Fish Derived From Hybridization of Female Koi Carp × Male Blunt Snout Bream. Front Genet 2018; 9:437. [PMID: 30369942 PMCID: PMC6194320 DOI: 10.3389/fgene.2018.00437] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 09/14/2018] [Indexed: 01/21/2023] Open
Abstract
Goldfish (Carassius auratus var., GF; 2n = 100) is the most popular ornamental fish in the world. It is assumed that GF evolved from red crucian carp (C. auratus red var., RCC; 2n = 100). However, this hypothesis lacks direct evidence. Furthermore, our knowledge of the role of hybridization in the formation of new species is sparse. In this study, goldfish-like fish with twin tails (GF-L; 2n = 100) was produced by self-mating red crucian carp-like fish (RCC-L; 2n = 100) derived from the distant crossing of koi carp (Cyprinus carpio haematopterus, KOC; 2n = 100; ♀) with blunt snout bream (Megalobrama amblycephala, BSB; 2n = 48; ♂). The phenotypes and genotypes of GF-L and RCC-L were very similar to those of GF and RCC, respectively. Microsatellite DNA and 5S rDNA analyses revealed that GF-L and RCC-L were closely related to GF and RCC, respectively. The presence of a twin tail of GF-L was related to a base mutation in chordinA from G in RCC-L to T in GF-L, indicating that the lineage of RCC-L and GF-L can be used to study gene variation and function. The sequences of 5S rDNA in GF-L and RCC-L were mapped to the genomes of CC and BSB, which revealed that the average similarities of both GF-L and RCC-L to CC were obviously higher than those to BSB, supporting that the genomes of both RCC-L and GF-L were mainly inherited from KOC. GF-L and RCC-L were homodiploids that were mainly derived from the genome of KOC with some DNA fragments from BSB. The reproductive traits of GF-L and RCC-L were quite different from those of their parents, but were the same as those of GF and RCC. RCC-L easily diversified into GF-L, suggesting that RCC and GF evolved within the same period in their evolutionary pathway. This study provided direct evidence of the KOC-RCC-GF evolutionary pathway that was triggered by distant hybridization, which had important significance in evolutionary biology and genetic breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
23
|
Becher H. Digest: Ancestry mosaics hint at selection and may provide an alternative to differentiation scans. Evolution 2018; 72:1723-1724. [PMID: 29985523 DOI: 10.1111/evo.13549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 07/02/2018] [Indexed: 11/28/2022]
Abstract
We now have a flood of genomic sequencing data available to study reproductive isolation and selection in action, but how are these data best analyzed? Usually, genetic differentiation is compared between two groups, scanning along genomes. This approach has several drawbacks, and has been criticized repeatedly. An alternative, truly genetic approach, based on blocks of common ancestry in a hybrid zone setting, is presented by Hvala et al. (2018) in this issue.
Collapse
Affiliation(s)
- Hannes Becher
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, Scotland
| |
Collapse
|
24
|
Hvala JA, Frayer ME, Payseur BA. Signatures of hybridization and speciation in genomic patterns of ancestry. Evolution 2018; 72:10.1111/evo.13509. [PMID: 29806154 PMCID: PMC6261709 DOI: 10.1111/evo.13509] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 05/03/2018] [Indexed: 12/27/2022]
Abstract
Genomes sampled from hybrid zones between nascent species provide important clues into the speciation process. With advances in genome sequencing and single nucleotide polymorphism (SNP) genotyping, it is now feasible to measure variation in gene flow with high genomic resolution. This progress motivates the development of conceptual and analytical frameworks for hybrid zones that complement well-established cline approaches. We extend the perspective that genomic distributions of ancestry are sensitive indicators of hybridization history. We use simulations to examine the behavior of the number of ancestry junctions-a simple summary of genomic patterns-in hybrid zones under increasingly realistic scenarios. Neutral simulations revealed that ancestry junction number is shaped by population structure, migration rate, and population size. Modeling multiple genetic architectures of hybrid dysfunction, with an emphasis on epistatic hybrid incompatibilities, showed that selection reduces junction number near loci that confer reproductive barriers. The magnitude of this signature was affected by the form of selection, dominance, and genomic location (autosome vs. sex chromosome) of incompatible loci. Our results suggest that researchers can identify loci involved in reproductive isolation by scanning hybrid genomes for local reductions in junction number. We outline necessary directions for future theory and method development to realize this goal.
Collapse
Affiliation(s)
- John A. Hvala
- Laboratory of Genetics, University of Wisconsin-Madison
| | | | | |
Collapse
|
25
|
Bourne SD, Hudson J, Holman LE, Rius M. Marine Invasion Genomics: Revealing Ecological and Evolutionary Consequences of Biological Invasions. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/13836_2018_21] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Janzen T, Nolte AW, Traulsen A. The breakdown of genomic ancestry blocks in hybrid lineages given a finite number of recombination sites. Evolution 2018; 72:735-750. [PMID: 29411878 PMCID: PMC5947311 DOI: 10.1111/evo.13436] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 01/16/2018] [Indexed: 01/03/2023]
Abstract
When a lineage originates from hybridization genomic blocks of contiguous ancestry from different ancestors are fragmented through genetic recombination. The resulting blocks are delineated by so called junctions, which accumulate with every generation that passes. Modeling the accumulation of ancestry block junctions can elucidate processes and timeframes of genomic admixture. Previous models have not addressed ancestry block dynamics for chromosomes that consist of a finite number of recombination sites. However, genomic data typically consist of informative markers that are interspersed with fragments for which no ancestry information is available. Hence, repeated recombination events may occur between markers, effectively removing existing junctions. Here, we present an analytical treatment of the dynamics of the mean number of junctions over time, taking into account the number of recombination sites per chromosome, population size, genetic map length, and the frequency of the ancestral species in the founding hybrid swarm. We describe the expected number of junctions using equidistant molecular markers and estimate the number of junctions using random markers. This extended theory of junctions thus reflects properties of empirical data and can serve to study the genomic patterns following admixture.
Collapse
Affiliation(s)
- Thijs Janzen
- Carl von Ossietzky UniversityCarl‐von‐Ossietzky‐Str. 9‐1126111OldenburgGermany
- Max‐Planck‐Institute for Evolutionary BiologyAugust‐Thienemann‐Straße 224306PlönGermany
| | - Arne W. Nolte
- Carl von Ossietzky UniversityCarl‐von‐Ossietzky‐Str. 9‐1126111OldenburgGermany
| | - Arne Traulsen
- Max‐Planck‐Institute for Evolutionary BiologyAugust‐Thienemann‐Straße 224306PlönGermany
| |
Collapse
|
27
|
Comeault AA. The genomic and ecological context of hybridization affects the probability that symmetrical incompatibilities drive hybrid speciation. Ecol Evol 2018; 8:2926-2937. [PMID: 29531706 PMCID: PMC5838063 DOI: 10.1002/ece3.3872] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 01/03/2023] Open
Abstract
Despite examples of homoploid hybrid species, theoretical work describing when, where, and how we expect homoploid hybrid speciation to occur remains relatively rare. Here, I explore the probability of homoploid hybrid speciation due to "symmetrical incompatibilities" under different selective and genetic scenarios. Through simulation, I test how genetic architecture and selection acting on traits that do not themselves generate incompatibilities interact to affect the probability that hybrids evolve symmetrical incompatibilities with their parent species. Unsurprisingly, selection against admixture at "adaptive" loci that are linked to loci that generate incompatibilities tends to reduce the probability of evolving symmetrical incompatibilities. By contrast, selection that favors admixed genotypes at adaptive loci can promote the evolution of symmetrical incompatibilities. The magnitude of these outcomes is affected by the strength of selection, aspects of genetic architecture such as linkage relationships and the linear arrangement of loci along a chromosome, and the amount of hybridization following the formation of a hybrid zone. These results highlight how understanding the nature of selection, aspects of the genetics of traits affecting fitness, and the strength of reproductive isolation between hybridizing taxa can all be used to inform when we expect to observe homoploid hybrid speciation due to symmetrical incompatibilities.
Collapse
|
28
|
Mondon A, Owens GL, Poverene M, Cantamutto M, Rieseberg LH. Gene flow in Argentinian sunflowers as revealed by genotyping-by-sequencing data. Evol Appl 2017; 11:193-204. [PMID: 29387155 PMCID: PMC5775495 DOI: 10.1111/eva.12527] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/26/2017] [Indexed: 01/04/2023] Open
Abstract
Gene flow can have several different applied consequences, ranging from extinction to the escape of transgenes to the evolution of weedy or invasive lineages. Here, we describe patterns of hybridization and gene flow involving domesticated and wild sunflowers in Argentina. To address the risks of introgression of variants from the cultivated sunflower into invasive wild Helianthus, we used genotyping‐by‐sequencing (GBS) to genotype 182 samples from 11 sites in Argentina, along with previously published data from samples from the native range (North America), to determine the native source populations of the Argentinian samples and to detect admixture. We unexpectedly discovered two distinctive forms of H. petiolaris in Argentina, one from H. petiolaris subsp. petiolaris as expected, but the other from an unknown source. Extensive admixture was observed among Argentinian sunflowers, largely confirming phenotypic predictions. While many hybrids are F1s, there were signals consistent with introgression from the domesticated sunflower into H. petiolaris. Whether this introgression is incidental or a causal driver of invasiveness is not yet clear, but it seems likely that genes found in the domesticated sunflower genome (whether engineered or not) will quickly find their way into wild Argentinian sunflower populations.
Collapse
Affiliation(s)
- Ana Mondon
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS) CCT Bahía Blanca Provincia de Buenos Aires Argentina
| | - Gregory L Owens
- Department of Botany and Biodiversity Research Centre University of British Columbia Vancouver BC Canada
| | - Mónica Poverene
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS) CCT Bahía Blanca Provincia de Buenos Aires Argentina.,Dpto. Agronomía Universidad Nacional del Sur (UNS) Bahía Blanca Argentina
| | - Miguel Cantamutto
- Estación Experimental Agropecuaria Instituto Nacional de Tecnología Agropecuaria (INTA) Hilario Ascasubi Argentina
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre University of British Columbia Vancouver BC Canada
| |
Collapse
|
29
|
Szlachetko DL, Kolanowska M, Naczk A, Górniak M, Dudek M, Rutkowski P, Chiron G. Taxonomy of Cyrtochilum-alliance (Orchidaceae) in the light of molecular and morphological data. BOTANICAL STUDIES 2017; 58:8. [PMID: 28510191 PMCID: PMC5430592 DOI: 10.1186/s40529-017-0164-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 01/08/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The generic separateness and specific composition of the orchid genus Cyrtochilum was discussed for almost two centuries. Over the years several smaller taxa were segregated from this taxon, but their separateness was recently questioned based on molecular studies outcomes. The aim of our study was to revise concepts of morphological-based generic delimitation in Cyrtochilum-alliance and to compare it with the results of genetic analysis. We used phylogenetic framework in combination with phenetical analysis to provide proposal of the generic delimitation within Cyrtochilum-alliance. Two molecular markers, ITS and matK were used to construct phylogenetic tree. A total of over 5000 herbarium specimens were included in the morphological examination and the phenetical analysis included 29 generative and vegetative characters. RESULTS Comparative morphology of the previously recognized genera: Buesiella, Dasyglossum, Neodryas, Rusbyella, Siederella and Trigonochilum is presented. A new species within the the latter genus is described. Fourteen new combinations are proposed. The key to the identification of the genera of the Cyrtochilum-alliance and morphological characteristics of each genus are provided. CONCLUSIONS A total of six separated genera are recognized within Cyrtochilum-alliance. The reasons of the incompatibility between morphological differences observed within studied taxa and phylogenetic tree are argued and the taxonomic implications of such inconsistency, resulting in fragmentation or lumping of taxonomic units, are discussed.
Collapse
Affiliation(s)
- Dariusz L. Szlachetko
- Department of Plant Taxonomy and Nature Conservation, The University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Marta Kolanowska
- Department of Plant Taxonomy and Nature Conservation, The University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
- Department of Biodiversity Research, Global Change Research Institute AS CR, Bělidla 4a., 603 00 Brno, Czech Republic
| | - Aleksandra Naczk
- Department of Molecular Evolution, The University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Marcin Górniak
- Department of Molecular Evolution, The University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Magdalena Dudek
- Department of Plant Taxonomy and Nature Conservation, The University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Piotr Rutkowski
- Department of Plant Taxonomy and Nature Conservation, The University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Guy Chiron
- Herbiers, Université de Lyon I, 69622 Villeurbanne Cedex, France
| |
Collapse
|
30
|
Beddows I, Reddy A, Kloesges T, Rose LE. Population Genomics in Wild Tomatoes-The Interplay of Divergence and Admixture. Genome Biol Evol 2017; 9:3023-3038. [PMID: 29077853 PMCID: PMC5714242 DOI: 10.1093/gbe/evx224] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2017] [Indexed: 01/03/2023] Open
Abstract
Hybridization between closely related plant species is widespread, but the outcomes of hybridization are not fully understood. This study investigates phylogenetic relationships and the history of hybridization in the wild tomato clade (Solanum sect. Lycopersicon). We sequenced RNA from individuals of 38 different populations and, by combining this with published data, build a comprehensive genomic data set for the entire clade. The data indicate that many taxa are not monophyletic and many individuals are admixed due to repeated hybridization. The most polymorphic species, Solanum peruvianum, has two genetic and geographical subpopulations, while its sister species, Solanum chilense, has distinct coastal populations and reduced heterozygosity indicating a recent expansion south following speciation from S. peruvianum circa 1.25 Ma. Discontinuous populations west of 72° are currently described as S. chilense, but are genetically intermediate between S. chilense and S. peruvianum. Based upon molecular, morphological, and crossing data, we test the hypothesis that these discontinuous "S. chilense" populations are an example of recombinational speciation. Recombinational speciation is rarely reported, and we discuss the difficulties in identifying it and differentiating between alternative demographic scenarios. This discovery presents a new opportunity to understand the genomic outcomes of hybridization in plants.
Collapse
Affiliation(s)
- Ian Beddows
- Institute of Population Genetics, Heinrich Heine University, Duesseldorf, Germany
- International Graduate School in Plant Sciences (iGRAD-Plant), Duesseldorf, Germany
| | - Aparna Reddy
- Institute of Population Genetics, Heinrich Heine University, Duesseldorf, Germany
| | - Thorsten Kloesges
- Institute of Population Genetics, Heinrich Heine University, Duesseldorf, Germany
| | - Laura E Rose
- Institute of Population Genetics, Heinrich Heine University, Duesseldorf, Germany
- International Graduate School in Plant Sciences (iGRAD-Plant), Duesseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Duesseldorf, Germany
| |
Collapse
|
31
|
Zhang R, Gong X, Folk R. Evidence for continual hybridization rather than hybrid speciation between Ligularia duciformis and L. paradoxa (Asteraceae). PeerJ 2017; 5:e3884. [PMID: 29038755 PMCID: PMC5640982 DOI: 10.7717/peerj.3884] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 09/13/2017] [Indexed: 11/20/2022] Open
Abstract
Background Hybrids possess phenotypic traits that are often intermediate between their parental taxa, which commonly serves as evidence of hybridization in morphological analyses. Natural hybridization has been shown to occur frequently in Ligularia (Asteraceae). In a previous study, Ligularia ×maoniushanensis was demonstrated as a natural hybrid species between L. duciformis and L. paradoxa based on morphological and reproductive traits. Methods We used three chloroplast (cpDNA) fragments (psbA-trnH, trnL-rpl32 and trnQ-5′rps16), the nuclear ribosomal internal transcribed spacer (nrITS), and co-dominant SSR and dominant ISSR markers to study natural hybridization between L. duciformis and L. paradoxa growing sympatrically in two locations. Parental taxa were inferred using network analyses of cpDNA and nrITS haplotypes. Admixture among individuals was examined using the Bayesian clustering programs STRUCTURE and NewHybrids based on the SSR and ISSR data; and potential introgression in the SSR loci was assessed using the INTROGRESS package. Results The putative parental species were clearly distinguished from other sympatric Ligularia species by nrITS data, and L. ×maoniushanensis individuals were confirmed to be the hybrid offspring of L. duciformis and L. paradoxa. Moreover, introgression was detected among several individuals morphologically identified as L. duciformis or L. paradoxa. Analyses of the cpDNA data revealed primarily unidirectional hybridization between L. duciformis and L. paradoxa, with L. paradoxa as the maternal parent in Mt. Maoniu, whereas bidirectional but asymmetrical hybridization was inferred to occur in Heihai Lake. The STRUCTURE analyses based on the SSR data detected two distinct clusters among the three taxa. The NewHybrids analyses showed that individuals circumscribed as L. ×maoniushanensis were dominated by early- and later-generation and backcrossing hybrids. The NewHybrids results based on the ISSR data were congruent with SSR results. In addition, introgression was detected in some SSR loci, and heterogeneity among loci was found in terms of detected patterns of introgression. Conclusions Our data provide strong evidence for hybridization and introgression between L. duciformis and L. paradoxa. Ligularia ×maoniushanensis was demonstrated to be of hybrid origin. Since no evident reproductive isolation was found between the two parental species, detected hybrids appear to be part of hybrid swarms resulting from frequent and ongoing gene flow, which might impede the formation of a new hybrid species.
Collapse
Affiliation(s)
- Rong Zhang
- Key Laboratory of Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xun Gong
- Key Laboratory of Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Ryan Folk
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| |
Collapse
|
32
|
Wang S, Ye X, Wang Y, Chen Y, Lin B, Yi Z, Mao Z, Hu F, Zhao R, Wang J, Zhou R, Ren L, Yao Z, Tao M, Zhang C, Xiao J, Qin Q, Liu S. A new type of homodiploid fish derived from the interspecific hybridization of female common carp × male blunt snout bream. Sci Rep 2017. [PMID: 28646171 PMCID: PMC5482800 DOI: 10.1038/s41598-017-04582-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
It is commonly believed that hybridization might lead to the formation of new polyploidy species, but it is unclear whether hybridization can produce a new homodiploid species. Here, we report the spontaneous occurrence of a new crucian carp-like homodiploid fish (2n = 100) that originated from the interspecific hybridization of female common carp (Cyprinus carpio, Cyprininae, 2n = 100) × male blunt snout bream (Megalobrama amblycephala, Cultrinae, 2n = 48). The phenotype and reproductive traits of this new crucian carp-like homodiploid fish were found to be very similar to those of the existing diploid species (diploid crucian carp; Carassius auratus). FISH and 5S rDNA analyses revealed that the genotype of the crucian carp-like homodiploid fish differs from those of its parents but is closely related to that of diploid crucian carp. The results provide evidence of the existence of a possible route through which the distant hybridization of this cross can generate crucian carp. The new type of homodiploid fish is of great value in fish genetic breeding and for studying the early evolutionary process.
Collapse
Affiliation(s)
- Shi Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Xiaolan Ye
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Yude Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Yuting Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Bowen Lin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Zhenfeng Yi
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Zhuangwen Mao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Fangzhou Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Rurong Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Juan Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Rong Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Zhanzhou Yao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Chun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China. .,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.
| |
Collapse
|
33
|
Eriksson JS, Blanco-Pastor JL, Sousa F, Bertrand YJK, Pfeil BE. A cryptic species produced by autopolyploidy and subsequent introgression involving Medicago prostrata (Fabaceae). Mol Phylogenet Evol 2016; 107:367-381. [PMID: 27919807 DOI: 10.1016/j.ympev.2016.11.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 11/21/2016] [Accepted: 11/29/2016] [Indexed: 01/28/2023]
Abstract
Although hybridisation through genome duplication is well known, hybridisation without genome duplication (homoploid hybrid speciation, HHS) is not. Few well-documented cases have been reported. A possible instance of HHS in Medicago prostrata Jacq. was suggested previously, based on only two genes and one individual. We tested whether this species was formed through HHS by sampling eight nuclear loci and 22 individuals, with additional individuals from related species, using gene capture and Illumina sequencing. Phylogenetic inference and coalescent simulations were performed to infer the causes of gene tree incongruence. We found no evidence that phylogenetic differences among M. prostrata individuals were the result of HHS. Instead, an autopolyploid origin of tetraploids with introgression from tetraploids of the M. sativa complex is likely. We argue that tetraploid M. prostrata individuals constitute a new species, characterised by a partially non-overlapping distribution and distinctive alleles (from the M. sativa complex). No gene flow from tetraploid to diploid M. prostrata is apparent, suggesting partial reproductive isolation. Thus, speciation via autopolyploidy appears to have been reinforced by introgression. This raises the intriguing possibility that introgressed alleles may be responsible for the increased range exploited by tetraploid M. prostrata with respect to that of the diploids.
Collapse
Affiliation(s)
- J S Eriksson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530 Gothenburg, Sweden.
| | - J L Blanco-Pastor
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530 Gothenburg, Sweden
| | - F Sousa
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530 Gothenburg, Sweden
| | - Y J K Bertrand
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530 Gothenburg, Sweden
| | - B E Pfeil
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530 Gothenburg, Sweden
| |
Collapse
|
34
|
Shapiro JA. Nothing in Evolution Makes Sense Except in the Light of Genomics: Read-Write Genome Evolution as an Active Biological Process. BIOLOGY 2016; 5:E27. [PMID: 27338490 PMCID: PMC4929541 DOI: 10.3390/biology5020027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/20/2016] [Accepted: 06/02/2016] [Indexed: 01/15/2023]
Abstract
The 21st century genomics-based analysis of evolutionary variation reveals a number of novel features impossible to predict when Dobzhansky and other evolutionary biologists formulated the neo-Darwinian Modern Synthesis in the middle of the last century. These include three distinct realms of cell evolution; symbiogenetic fusions forming eukaryotic cells with multiple genome compartments; horizontal organelle, virus and DNA transfers; functional organization of proteins as systems of interacting domains subject to rapid evolution by exon shuffling and exonization; distributed genome networks integrated by mobile repetitive regulatory signals; and regulation of multicellular development by non-coding lncRNAs containing repetitive sequence components. Rather than single gene traits, all phenotypes involve coordinated activity by multiple interacting cell molecules. Genomes contain abundant and functional repetitive components in addition to the unique coding sequences envisaged in the early days of molecular biology. Combinatorial coding, plus the biochemical abilities cells possess to rearrange DNA molecules, constitute a powerful toolbox for adaptive genome rewriting. That is, cells possess "Read-Write Genomes" they alter by numerous biochemical processes capable of rapidly restructuring cellular DNA molecules. Rather than viewing genome evolution as a series of accidental modifications, we can now study it as a complex biological process of active self-modification.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, GCIS W123B, 979 E. 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
35
|
Ávila-Flores IJ, Hernández-Díaz JC, González-Elizondo MS, Prieto-Ruíz JÁ, Wehenkel C. Degree of Hybridization in Seed Stands of Pinus engelmannii Carr. In the Sierra Madre Occidental, Durango, Mexico. PLoS One 2016; 11:e0152651. [PMID: 27064490 PMCID: PMC4827862 DOI: 10.1371/journal.pone.0152651] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 03/17/2016] [Indexed: 11/24/2022] Open
Abstract
Hybridization is an important evolutionary force, because interspecific gene transfer can introduce more new genetic material than is directly generated by mutations. Pinus engelmannii Carr. is one of the nine most common pine species in the pine-oak forest ecoregion in the state of Durango, Mexico. This species is widely harvested for lumber and is also used in reforestation programmes. Interspecific hybrids between P.engelmannii and Pinus arizonica Engelm. have been detected by morphological analysis. The presence of hybrids in P. engelmannii seed stands may affect seed quality and reforestation success. Therefore, the goals of this research were to identify introgressive hybridization between P. engelmannii and other pine species in eight seed stands of this species in Durango, Mexico, and to examine how hybrid proportion is related to mean genetic dissimilarity between trees in these stands, using Amplified Fragment Length Polymorphism (AFLP) markers and morphological traits. Differences in the average current annual increment of putative hybrids and pure trees were also tested for statistical significance. Morphological and genetic analyses of 280 adult trees were carried out. Putative hybrids were found in all the seed stands studied. The hybrids did not differ from the pure trees in vigour or robustness. All stands with putative P. engelmannii hybrids detected by both AFLPs and morphological traits showed the highest average values of the Tanimoto distance, which indicates: i) more heterogeneous genetic material, ii) higher genetic variation and therefore iii) the higher evolutionary potential of these stands, and iv) that the morphological differentiation (hybrid/not hybrid) is strongly associated with the Tanimoto distance per stand. We conclude that natural pairwise hybrids are very common in the studied stands. Both morphological and molecular approaches are necessary to confirm the genetic identity of forest reproductive material.
Collapse
Affiliation(s)
- Israel Jaime Ávila-Flores
- Doctorado Institucional en Ciencias Agropecuarias y Forestales, Universidad Juárez del Estado de Durango, Apdo, Postal 741, Zona Centro, Durango, Durango, México, C.P., 34000
| | - José Ciro Hernández-Díaz
- Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Apdo, Postal 741, Zona Centro, Durango, Durango, México, C.P., 34000
| | - Maria Socorro González-Elizondo
- CIIDIR Unidad Durango, Instituto Politécnico Nacional, Sigma 119 Fracc, 20 de Noviembre II, Durango, Durango, México, C.P., 34220
| | - José Ángel Prieto-Ruíz
- Facultad de Ciencias Forestales, Universidad Juárez del Estado de Durango, Blv. Durango y Ave, Papaloapan s/n. Col. Valle del Sur, Durango, Durango, México, C.P., 34120
| | - Christian Wehenkel
- Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Apdo, Postal 741, Zona Centro, Durango, Durango, México, C.P., 34000
| |
Collapse
|
36
|
Gompert Z. A Continuous Correlated Beta Process Model for Genetic Ancestry in Admixed Populations. PLoS One 2016; 11:e0151047. [PMID: 26966908 PMCID: PMC4788345 DOI: 10.1371/journal.pone.0151047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 02/23/2016] [Indexed: 11/24/2022] Open
Abstract
Admixture and recombination create populations and genomes with genetic ancestry from multiple source populations. Analyses of genetic ancestry in admixed populations are relevant for trait and disease mapping, studies of speciation, and conservation efforts. Consequently, many methods have been developed to infer genome-average ancestry and to deconvolute ancestry into continuous local ancestry blocks or tracts within individuals. Current methods for local ancestry inference perform well when admixture occurred recently or hybridization is ongoing, or when admixture occurred in the distant past such that local ancestry blocks have fixed in the admixed population. However, methods to infer local ancestry frequencies in isolated admixed populations still segregating for ancestry do not exist. In the current paper, I develop and test a continuous correlated beta process model to fill this analytical gap. The method explicitly models autocorrelations in ancestry frequencies at the population-level and uses discriminant analysis of SNP windows to take advantage of ancestry blocks within individuals. Analyses of simulated data sets show that the method is generally accurate such that ancestry frequency estimates exhibited low root-mean-square error and were highly correlated with the true values, particularly when large (±10 or ±20) SNP windows were used. Along these lines, the proposed method outperformed post hoc inference of ancestry frequencies from a traditional hidden Markov model (i.e., the linkage model in structure), particularly when admixture occurred more distantly in the past with little on-going gene flow or was followed by natural selection. The reliability and utility of the method was further assessed by analyzing genetic ancestry in an admixed human population (Uyghur) and three populations from a hybrid zone between Mus domesticus and M. musculus. Considerable variation in ancestry frequencies was detected within and among chromosomes in the Uyghur, with a large region of excess French ancestry harboring a gene with a known disease association. Similar variation was detected in the mouse hybrid zone, with notable constancy in regions of excess ancestry among admixed populations. By filling what has been an analytical gap, the proposed method should be a useful tool for many biologists. A computer program (popanc), written in C++, has been developed based on the proposed method and is available on-line at http://sourceforge.net/projects/popanc/.
Collapse
Affiliation(s)
- Zachariah Gompert
- Department of Biology, Utah State University, Logan, UT, United States of America
- * E-mail:
| |
Collapse
|
37
|
Videvall E, Sletvold N, Hagenblad J, Ågren J, Hansson B. Strong Maternal Effects on Gene Expression inArabidopsis lyrataHybrids. Mol Biol Evol 2015; 33:984-94. [DOI: 10.1093/molbev/msv342] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
38
|
Sedghifar A, Brandvain Y, Ralph P, Coop G. The Spatial Mixing of Genomes in Secondary Contact Zones. Genetics 2015; 201:243-61. [PMID: 26205988 PMCID: PMC4566267 DOI: 10.1534/genetics.115.179838] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/18/2015] [Indexed: 12/25/2022] Open
Abstract
Recent genomic studies have highlighted the important role of admixture in shaping genome-wide patterns of diversity. Past admixture leaves a population genomic signature of linkage disequilibrium (LD), reflecting the mixing of parental chromosomes by segregation and recombination. These patterns of LD can be used to infer the timing of admixture, but the results of inference can depend strongly on the assumed demographic model. Here, we introduce a theoretical framework for modeling patterns of LD in a geographic contact zone where two differentiated populations have come into contact and are mixing by diffusive local migration. Assuming that this secondary contact is recent enough that genetic drift can be ignored, we derive expressions for the expected LD and admixture tract lengths across geographic space as a function of the age of the contact zone and the dispersal distance of individuals. We develop an approach to infer age of contact zones, using population genomic data from multiple spatially sampled populations by fitting our model to the decay of LD with recombination distance. To demonstrate an application of our model, we use our approach to explore the fit of a geographic contact zone model to three human genomic data sets from populations in Indonesia, Central Asia, and India and compare our results to inference under different demographic models. We obtain substantially different results from those of the commonly used model of panmictic admixture, highlighting the sensitivity of admixture timing results to the choice of demographic model.
Collapse
Affiliation(s)
- Alisa Sedghifar
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, California 95616
| | - Yaniv Brandvain
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Peter Ralph
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089
| | - Graham Coop
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, California 95616
| |
Collapse
|
39
|
McMullan M, Gardiner A, Bailey K, Kemen E, Ward BJ, Cevik V, Robert-Seilaniantz A, Schultz-Larsen T, Balmuth A, Holub E, van Oosterhout C, Jones JDG. Evidence for suppression of immunity as a driver for genomic introgressions and host range expansion in races of Albugo candida, a generalist parasite. eLife 2015; 4. [PMID: 25723966 PMCID: PMC4384639 DOI: 10.7554/elife.04550] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 02/26/2015] [Indexed: 12/13/2022] Open
Abstract
How generalist parasites with wide host ranges can evolve is a central question in parasite evolution. Albugo candida is an obligate biotrophic parasite that consists of many physiological races that each specialize on distinct Brassicaceae host species. By analyzing genome sequence assemblies of five isolates, we show they represent three races that are genetically diverged by ∼1%. Despite this divergence, their genomes are mosaic-like, with ∼25% being introgressed from other races. Sequential infection experiments show that infection by adapted races enables subsequent infection of hosts by normally non-infecting races. This facilitates introgression and the exchange of effector repertoires, and may enable the evolution of novel races that can undergo clonal population expansion on new hosts. We discuss recent studies on hybridization in other eukaryotes such as yeast, Heliconius butterflies, Darwin's finches, sunflowers and cichlid fishes, and the implications of introgression for pathogen evolution in an agro-ecological environment.
Collapse
Affiliation(s)
| | | | - Kate Bailey
- The Sainsbury Laboratory, Norwich, United Kingdom
| | - Eric Kemen
- Max Planck Research Group Fungal Biodiversity, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ben J Ward
- School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | - Volkan Cevik
- The Sainsbury Laboratory, Norwich, United Kingdom
| | | | - Torsten Schultz-Larsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Eric Holub
- Warwick Crop Centre, University of Warwick, School of Life Sciences, Warwick, United Kingdom
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | | |
Collapse
|
40
|
Renaut S, Rowe HC, Ungerer MC, Rieseberg LH. Genomics of homoploid hybrid speciation: diversity and transcriptional activity of long terminal repeat retrotransposons in hybrid sunflowers. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0345. [PMID: 24958919 DOI: 10.1098/rstb.2013.0345] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hybridization is thought to play an important role in plant evolution by introducing novel genetic combinations and promoting genome restructuring. However, surprisingly little is known about the impact of hybridization on transposable element (TE) proliferation and the genomic response to TE activity. In this paper, we first review the mechanisms by which homoploid hybrid species may arise in nature. We then present hybrid sunflowers as a case study to examine transcriptional activity of long terminal repeat retrotransposons in the annual sunflowers Helianthus annuus, Helianthus petiolaris and their homoploid hybrid derivatives (H. paradoxus, H. anomalus and H. deserticola) using high-throughput transcriptome sequencing technologies (RNAseq). Sampling homoploid hybrid sunflower taxa revealed abundant variation in TE transcript accumulation. In addition, genetic diversity for several candidate genes hypothesized to regulate TE activity was characterized. Specifically, we highlight one candidate chromatin remodelling factor gene with a direct role in repressing TE activity in a hybrid species. This paper shows that TE amplification in hybrid lineages is more idiosyncratic than previously believed and provides a first step towards identifying the mechanisms responsible for regulating and repressing TE expansions.
Collapse
Affiliation(s)
- Sebastien Renaut
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Heather C Rowe
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Mark C Ungerer
- Division of Biology, Kansas State University, 426 Ackert Hall, Manhattan, KS 66506, USA
| | - Loren H Rieseberg
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 Department of Biology, Indiana University, 1001 East Third St., Bloomington, IN 47405, USA
| |
Collapse
|
41
|
Frey M, Spring O. Molecular traits to elucidate the ancestry of Helianthus x multiflorus. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2014.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
42
|
Litsios G, Salamin N. Hybridisation and diversification in the adaptive radiation of clownfishes. BMC Evol Biol 2014; 14:245. [PMID: 25433367 PMCID: PMC4264551 DOI: 10.1186/s12862-014-0245-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/17/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The importance of hybridisation during species diversification has long been debated among evolutionary biologists. It is increasingly recognised that hybridisation events occurred during the evolutionary history of numerous species, especially during the early stages of adaptive radiation. We study the effect of hybridisation on diversification in the clownfishes, a clade of coral reef fish that diversified through an adaptive radiation process. While two species of clownfish are likely to have been described from hybrid specimens, the occurrence and effect of hybridisation on the clade diversification is yet unknown. RESULTS We generate sequences of three mitochondrial genes to complete an existing dataset of nuclear sequences and document cytonuclear discordance at a node, which shows a drastic increase of diversification rate. Then, using a tree-based jack-knife method, we identify clownfish species likely stemming from hybridisation events. Finally, we use molecular cloning and identify the putative parental species of four clownfish specimens that display the morphological characteristics of hybrids. CONCLUSIONS Our results show that consistently with the syngameon hypothesis, hybridisation events are linked with a burst of diversification in the clownfishes. Moreover, several recently diverged clownfish lineages likely originated through hybridisation, which indicates that diversification, catalysed by hybridisation events, may still be happening.
Collapse
Affiliation(s)
- Glenn Litsios
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Génopode, Quartier Sorge, 1015, Lausanne, Switzerland.
| | - Nicolas Salamin
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Génopode, Quartier Sorge, 1015, Lausanne, Switzerland.
| |
Collapse
|
43
|
Robarts DWH, Wolfe AD. Sequence-related amplified polymorphism (SRAP) markers: A potential resource for studies in plant molecular biology(1.). APPLICATIONS IN PLANT SCIENCES 2014; 2:apps.1400017. [PMID: 25202637 PMCID: PMC4103474 DOI: 10.3732/apps.1400017] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/15/2014] [Indexed: 05/10/2023]
Abstract
In the past few decades, many investigations in the field of plant biology have employed selectively neutral, multilocus, dominant markers such as inter-simple sequence repeat (ISSR), random-amplified polymorphic DNA (RAPD), and amplified fragment length polymorphism (AFLP) to address hypotheses at lower taxonomic levels. More recently, sequence-related amplified polymorphism (SRAP) markers have been developed, which are used to amplify coding regions of DNA with primers targeting open reading frames. These markers have proven to be robust and highly variable, on par with AFLP, and are attained through a significantly less technically demanding process. SRAP markers have been used primarily for agronomic and horticultural purposes, developing quantitative trait loci in advanced hybrids and assessing genetic diversity of large germplasm collections. Here, we suggest that SRAP markers should be employed for research addressing hypotheses in plant systematics, biogeography, conservation, ecology, and beyond. We provide an overview of the SRAP literature to date, review descriptive statistics of SRAP markers in a subset of 171 publications, and present relevant case studies to demonstrate the applicability of SRAP markers to the diverse field of plant biology. Results of these selected works indicate that SRAP markers have the potential to enhance the current suite of molecular tools in a diversity of fields by providing an easy-to-use, highly variable marker with inherent biological significance.
Collapse
Affiliation(s)
- Daniel W. H. Robarts
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 318 West 12th Avenue, Columbus, Ohio 43210 USA
| | - Andrea D. Wolfe
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 318 West 12th Avenue, Columbus, Ohio 43210 USA
| |
Collapse
|
44
|
P chromosomes involved in intergenomic rearrangements of Kengyilia thoroldiana affected by the environment. J Genet 2014; 93:199-202. [PMID: 24840840 DOI: 10.1007/s12041-014-0335-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Sovic MG, Kubatko LS, Fuerst PA. The effects of locus number, genetic divergence, and genotyping error on the utility of dominant markers for hybrid identification. Ecol Evol 2014; 4:462-73. [PMID: 24634730 PMCID: PMC3936392 DOI: 10.1002/ece3.833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/03/2013] [Accepted: 09/06/2013] [Indexed: 11/27/2022] Open
Abstract
In surveys of hybrid zones, dominant genetic markers are often used to identify individuals of hybrid origin and assign these individuals to one of several potential hybrid classes. Quantitative analyses that address the statistical power of dominant markers in such inference are scarce. In this study, dominant genotype data were simulated to evaluate the effects of, first, the number of loci analyzed, second, the magnitude of differentiation between the markers scored in the groups that are hybridizing, and third, the level of genotyping error associated with the data when assigning individuals to various parental and hybrid categories. The overall performance of the assignment methods was relatively modest at the lowest level of divergence examined (Fst ˜ 0.4), but improved substantially at higher levels of differentiation (Fst ˜ 0.67 or 0.8). The effect of genotyping error was dependent on the level of divergence between parental taxa, with larger divergences tempering the effects of genotyping error. These results highlight the importance of considering the effects of each of the variables when assigning individuals to various parental and hybrid categories, and can help guide decisions regarding the number of loci employed in future hybridization studies to achieve the power and level of resolution desired.
Collapse
Affiliation(s)
- Michael G Sovic
- Department of Evolution, Ecology, and Organismal Biology, 314 Aronoff Laboratory, The Ohio State University 318 W. 12th Ave, Columbus, Ohio, 43210
| | - Laura S Kubatko
- Departments of Statistics and Evolution, Ecology, and Organismal Biology, The Ohio State University 404 Cockins Hall, 1958 Neil Ave., Columbus, Ohio, 43210
| | - Paul A Fuerst
- Department of Evolution, Ecology, and Organismal Biology, 386 Aronoff Laboratory, The Ohio State University 318 W. 12th Ave, Columbus, Ohio, 43210
| |
Collapse
|
46
|
Yanchukov A, Proulx SR. Migration-selection balance at multiple Loci and selection on dominance and recombination. PLoS One 2014; 9:e88651. [PMID: 24551127 PMCID: PMC3925130 DOI: 10.1371/journal.pone.0088651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/08/2014] [Indexed: 01/25/2023] Open
Abstract
A steady influx of a single deleterious multilocus genotype will impose genetic load on the resident population and leave multiple descendants carrying various numbers of the foreign alleles. Provided that the foreign types are rare at equilibrium, and all immigrant genes are eventually eliminated by selection, the population structure can be inferred explicitly from the branching process taking place within a single immigrant lineage. Unless the migration and recombination rates were high, this novel method gives a close approximation to the simulation with all possible multilocus genotypes considered. Once the load and the foreign genotypes frequencies are known, it becomes possible to estimate selection acting on the invading modifiers of (i) dominance and (ii) recombination rate on the foreign gene block. We found that the modifiers of the (i) type are able to invade faster than the type (ii) modifier, however, this result only applies in the strong selection/low migration/low recombination scenario. Varying the number of genes in the immigrant genotype can have a non-monotonic effect on the migration load and the modifier’s invasion rate: although blocks carrying more genes can give rise to longer lineages, they also experience stronger selection pressure. The heaviest load is therefore imposed by the genotypes carrying moderate numbers of genes.
Collapse
Affiliation(s)
- Alexey Yanchukov
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- * E-mail:
| | - Stephen R. Proulx
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| |
Collapse
|
47
|
McTavish EJ, Hillis DM. A Genomic Approach for Distinguishing between Recent and Ancient Admixture as Applied to Cattle. ACTA ACUST UNITED AC 2014; 105:445-456. [PMID: 24510946 PMCID: PMC4048551 DOI: 10.1093/jhered/esu001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 12/19/2013] [Indexed: 12/27/2022]
Abstract
Genomic data facilitate opportunities to track complex population histories of divergence and gene flow. We developed a metric, scaled block size (SBS), which uses the nonrecombined block size of introgressed regions of chromosomes to differentiate between recent and ancient types of admixture, and applied it to the reconstruction of admixture in cattle. Cattle are descendants of 2 independently domesticated lineages, taurine and indicine, which diverged more than 200 000 years ago. Several breeds have hybrid ancestry between these divergent lineages. Using 47 506 single-nucleotide polymorphisms, we analyzed the genomic architecture of the ancestry of 1369 individuals. We focused on 4 groups with admixed ancestry, including 2 anciently admixed African breeds (n = 58; n = 43), New World cattle of Spanish origin (n = 51), and known recent hybrids (n = 46). We estimated the ancestry of chromosomal regions for each individual and used the SBS metric to differentiate the timing of admixture among groups and among individuals within groups. By comparing SBS values of test individuals with standards with known recent hybrid ancestry, we were able to differentiate individuals of recent hybrid origin from other admixed cattle. We also estimated ancestry at the chromosomal scale. The X chromosome exhibits reduced indicine ancestry in recent hybrid, New World, and western African cattle, with virtually no evidence of indicine ancestry in New World cattle.
Collapse
Affiliation(s)
- Emily Jane McTavish
- From the Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712 (McTavish and Hillis); and the Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045 (McTavish).
| | - David M Hillis
- From the Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712 (McTavish and Hillis); and the Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045 (McTavish)
| |
Collapse
|
48
|
Ranjini MS, Ramachandra NB. Rapid evolution of a few members of nasuta-albomicans complex of Drosophila: study on two candidate genes, Sod1 and Rpd3. J Mol Evol 2013; 76:311-23. [PMID: 23619741 DOI: 10.1007/s00239-013-9560-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 04/10/2013] [Indexed: 11/29/2022]
Abstract
Drosophila nasuta nasuta (2n = 8) and D. n. albomicans (2n = 6) are morphologically identical, cross fertile and karyotypically dissimilar pair of chromosomal races belonging to nasuta subgroup of immigrans group of Drosophila. Interracial hybridization between these two races yielded karyotypically stabilized newly evolved Cytoraces with new combinations of chromosomes and DNA content, and are called nasuta-albomicans complex of Drosophila. Along with many other features, striking plasticity in the lifespan has been observed in the karyotypically stabilized members of nasuta-albomicans complex of Drosophila. These findings provide a strong background to understand any changes at the molecular levels. In view of this, we cloned and characterized Sod1 and Rpd3 in the members of nasuta-albomicans complex of Drosophila. The evolution of Sod1 and Rpd3 in D. n. nasuta and D. n. albomicans is contrasting with the other species of Drosophila, at the level of synonymous mutations, intron variation, InDels and secondary structure changes in protein. In the members of NAC of Drosophila there were synonymous changes, variations in intron sequences of Sod1, whereas, in Rpd3, synonymous, nonsynonymous, intron variation, and secondary structure changes in protein were observed. The contrasting differences in the levels of Rpd3 (and Sir2) proteins were also noticed among short-lived and long-lived Cytoraces. The Cytoraces have exhibited not only specific changes in Sod1 and Rpd3, but also show pronounced changes in the levels of synthesis of these proteins, which indicates rapid evolution of these Cytoraces in laboratory. Further these Cytoraces have become a model system to understand the process of anagenesis.
Collapse
Affiliation(s)
- Mysore S Ranjini
- Unit on Evolution and Genetics Laboratory, Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore, 570 006, Karnataka, India
| | | |
Collapse
|
49
|
Abstract
Human activity and climate change are increasingly driving species, which were once separate together, leading to the potential for gene flow. Hybridization between diverged species brings together two genomes which have evolved to meet different adaptive requirements. The unique combination of these traits in a hybrid may be beneficial or maladaptive, but either way it results in increased phenotypic variation. A percentage of hybrid individuals may, therefore, find themselves able to exploit environmental niches which their progenitors cannot, leading to invasive hybrid swarms becoming established in new habitats. Previous research into hybrids, most famously that of Loren Rieseberg and co-workers (Rieseberg et al. 1999, 2003) in sunflowers, demonstrated that hybridization can give rise to transgressive segregation of adaptive traits, wherein the combination of favourable alleles from both parents in hybrids can enable them to outperform either. However, the question still remains as to how much of the competitive ability of hybrids is a direct result of admixture and how much is the result of selection after the fact. In this issue of Molecular Ecology, (Czypionka et al. 2012) describe their study of transcriptional changes resulting from hybridization in a fish hybrid termed invasive sculpins (Cottus). Using gene expression microarray assays, they compare gene expression in both wild and lab-reared invasive hybrids to the progenitor species and experimentally produced F(2) hybrids. They demonstrate that whilst hybridization alone does result in higher variance in gene expression (some of which is transgressive), many of the transgressive changes distinguishing the invasives appear to have come about subsequent to the initial natural hybridization event. They speculate that initial success of the hybrids in their new habitat is facilitated by hybridization, but that optimization of the invasive phenotype and removal of maladaptive traits rapidly reduces the variation in gene expression seen in early hybrids.
Collapse
Affiliation(s)
- M J Hegarty
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK.
| |
Collapse
|
50
|
Barton NH. Does hybridization influence speciation? J Evol Biol 2013; 26:267-9. [DOI: 10.1111/jeb.12015] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 09/04/2012] [Accepted: 09/07/2012] [Indexed: 11/28/2022]
|