1
|
Demongeot J, Waku J, Cohen O. Combinatorial and frequency properties of the ribosome ancestors. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:884-902. [PMID: 38303447 DOI: 10.3934/mbe.2024037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
BACKGROUND The current ribosome has evolved from the primitive stages of life on Earth. Its function is to build proteins and on the basis of this role, we are looking for a universal common ancestor to the ribosome which could: i) present optimal combinatorial properties, and ii) have left vestiges in the current molecules composing the ribosome (rRNA or r-proteins) or helping in its construction and functioning. METHODS Genomic public databases are used for finding the nucleotide sequences of rRNAs and mRNA of r-proteins and statistical calculations are performed on the occurrence in these genes of some pentamers belonging to the RNA proposed as optimal ribosome ancestor. RESULTS After having exhibited a possible solution to the problem of an RNA capable of catalyzing peptide genesis, traces of this RNA are found in many rRNAs and mRNA of r-proteins, as well as in factors contributing to the construction of the current ribosome. CONCLUSIONS The existence of an optimal primordial RNA whose function is to facilitate the creation of peptide bonds between amino acids may have contributed to accelerate the emergence of the first vital processes. Its traces should be found in many living species inside structures structurally and functionally close to the ribosome, which is already the case in the species studied in this article.
Collapse
Affiliation(s)
- Jacques Demongeot
- AGEIS, Faculty of Medicine, University Grenoble Alpes, 38700 La Tronche, France
| | - Jules Waku
- IRD UMI 209 UMMISCO and LIRIMA, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Olivier Cohen
- AGEIS, Faculty of Medicine, University Grenoble Alpes, 38700 La Tronche, France
| |
Collapse
|
2
|
Pretta A, Ziranu P, Giampieri R, Pinna G, Randon G, Donisi C, Ravarino A, Loi F, Deias G, Palmas E, Pretta G, Morano F, Semonella F, Mariani S, Deidda MA, Pusceddu V, Puzzoni M, Lai E, Solinas C, Restivo A, Zorcolo L, Barbara R, Berardi R, Faa G, Pietrantonio F, Scartozzi M. Mismatch Repair system protein deficiency as a resistance factor for locally advanced rectal adenocarcinoma patients receiving neoadjuvant chemo-radiotherapy. Br J Cancer 2023; 129:1619-1624. [PMID: 37749283 PMCID: PMC10646038 DOI: 10.1038/s41416-023-02444-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Available data on Mismatch Repair system (MMR) deficiency are conflicting and derived from small studies. Our study aimed to evaluate the therapeutic implications of MMR status in patients with locally advanced rectal cancer (LARC). METHODS We retrospectively collected data from 318 patients affected by LARC treated in Italy at the Medical Oncology Units of the University Hospital of Cagliari, Istituto Nazionale dei Tumori Milan, and AOU Ospedali Riuniti Ancona. All patients underwent neoadjuvant chemoradiotherapy. The primary objective was major TRG while secondary objectives were pathological complete response, disease-free survival (DFS) and overall survival (OS). RESULTS One hundred sixty patients (148 pMMR and 12 dMMR) were included in the exploratory cohort and 158 (146 pMMR and 12 dMMR) were included in the validation cohort. A major TRG has been shown in 42.6% and 43.1% patients with pMMR in exploratory and validation cohort, respectively; while no major TRG have been shown in dMMR patients in both cohorts. Exploratory and validation cohorts showed a statistically significant higher mDFS in pMMR patients compared to dMMR: NR vs. 14 months and NR vs. 17 months, respectively. CONCLUSION Our results indicated an association between dMMR and poor response to preoperative chemoradiotherapy and they represent a hypothesis-generating data for new neoadjuvant strategies.
Collapse
Affiliation(s)
- Andrea Pretta
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy.
| | - Pina Ziranu
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Riccardo Giampieri
- Medical Oncology Unit, Azienda Ospedaliera Universitaria delle Marche, Ancona, Italy
| | - Giovanna Pinna
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Giovanni Randon
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Clelia Donisi
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Alberto Ravarino
- UOC Anatomia Patologica, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Francesco Loi
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Giulia Deias
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Enrico Palmas
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Gianluca Pretta
- Science Department, King's School Hove, Hangleton Way, Hangleton, East Sussex, BN3 8BN, UK
| | - Federica Morano
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Francesca Semonella
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Stefano Mariani
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | | | - Valeria Pusceddu
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Marco Puzzoni
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Eleonora Lai
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Cinzia Solinas
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| | - Angelo Restivo
- Department of General Surgery, University Hospital and University of Cagliari, Cagliari, Italy
| | - Luigi Zorcolo
- Department of General Surgery, University Hospital and University of Cagliari, Cagliari, Italy
| | - Raffaele Barbara
- UOC Radioterapia Oncologica, Azienda Ospedaliera "Brotzu", Cagliari, Italy
| | - Rossana Berardi
- Medical Oncology Unit, Azienda Ospedaliera Universitaria delle Marche, Ancona, Italy
| | - Gavino Faa
- UOC Anatomia Patologica, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Mario Scartozzi
- Medical Oncology Unit, University Hospital and University of Cagliari, Cagliari, Italy
| |
Collapse
|
3
|
Putnam CD, Kolodner RD. Insights into DNA cleavage by MutL homologs from analysis of conserved motifs in eukaryotic Mlh1. Bioessays 2023; 45:e2300031. [PMID: 37424007 PMCID: PMC10530380 DOI: 10.1002/bies.202300031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/02/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023]
Abstract
MutL family proteins contain an N-terminal ATPase domain (NTD), an unstructured interdomain linker, and a C-terminal domain (CTD), which mediates constitutive dimerization between subunits and often contains an endonuclease active site. Most MutL homologs direct strand-specific DNA mismatch repair by cleaving the error-containing daughter DNA strand. The strand cleavage reaction is poorly understood; however, the structure of the endonuclease active site is consistent with a two- or three-metal ion cleavage mechanism. A motif required for this endonuclease activity is present in the unstructured linker of Mlh1 and is conserved in all eukaryotic Mlh1 proteins, except those from metamonads, which also lack the almost absolutely conserved Mlh1 C-terminal phenylalanine-glutamate-arginine-cysteine (FERC) sequence. We hypothesize that the cysteine in the FERC sequence is autoinhibitory, as it sequesters the active site. We further hypothesize that the evolutionary co-occurrence of the conserved linker motif with the FERC sequence indicates a functional interaction, possibly by linker motif-mediated displacement of the inhibitory cysteine. This role is consistent with available data for interactions between the linker motif with DNA and the CTDs in the vicinity of the active site.
Collapse
Affiliation(s)
- Christopher D. Putnam
- Ludwig Institute for Cancer Research San Diego Branch, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660
- Departments of Medicine, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660
- Moores Cancer Center, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660
| | - Richard D. Kolodner
- Ludwig Institute for Cancer Research San Diego Branch, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660
- Cellular and Molecular Medicine, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660
- Moores Cancer Center, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660
- Institute of Genomic Medicine, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660
| |
Collapse
|
4
|
Kadyrova LY, Mieczkowski PA, Kadyrov FA. Genome-wide contributions of the MutSα- and MutSβ-dependent DNA mismatch repair pathways to the maintenance of genetic stability in S. cerevisiae. J Biol Chem 2023; 299:104705. [PMID: 37059180 DOI: 10.1016/j.jbc.2023.104705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/16/2023] Open
Abstract
The DNA mismatch repair (MMR) system is a major DNA repair system that suppresses inherited and sporadic cancers in humans. In eukaryotes the MutSα-dependent and MutSβ-dependent MMR pathways correct DNA polymerase errors. Here, we investigated these two pathways on a whole-genome level in S. cerevisiae. We found that inactivation of MutSα-dependent MMR by deletion of the MSH6 gene increases the genome-wide mutation rate by ∼17-fold, and loss of MutSβ-dependent MMR via deletion of MSH3 elevates the genome-wide mutation rate by ∼4-fold. We also found that MutSα-dependent MMR does not show a preference for protecting coding or noncoding DNA from mutations, whereas MutSβ-dependent MMR preferentially protects noncoding DNA from mutations. The most frequent mutations in the msh6Δ strain are C>T transitions, whereas 1-6-bp deletions are the most common genetic alterations in the msh3Δ strain. Strikingly, MutSα-dependent MMR is more important than MutSβ-dependent MMR for protection from 1-bp insertions, while MutSβ-dependent MMR has a more critical role in the defense against 1-bp deletions and 2-6-bp indels. We also determined that a mutational signature of yeast MSH6 loss is similar to mutational signatures of human MMR deficiency. Furthermore, our analysis showed that compared to other 5'-NCN-3' trinucleotides, 5'-GCA-3' trinucleotides are at the highest risk of accumulating C>T transitions at the central position in the msh6Δ cells and that the presence of a G/A base at the -1 position is important for the efficient MutSα-dependent suppression of C>T transitions. Our results highlight key differences between the roles of the MutSα-dependent and MutSβ-dependent MMR pathways.
Collapse
Affiliation(s)
- Lyudmila Y Kadyrova
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Piotr A Mieczkowski
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Farid A Kadyrov
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA.
| |
Collapse
|
5
|
Trost H, Merkell A, Lopezcolorado FW, Stark J. Resolution of sequence divergence for repeat-mediated deletions shows a polarity that is mediated by MLH1. Nucleic Acids Res 2023; 51:650-667. [PMID: 36620890 PMCID: PMC9881173 DOI: 10.1093/nar/gkac1240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/07/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
Repeat-mediated deletions (RMDs) are a type of chromosomal rearrangement between two homologous sequences that causes loss of the sequence between the repeats, along with one of the repeats. Sequence divergence between repeats suppresses RMDs; the mechanisms of such suppression and of resolution of the sequence divergence remains poorly understood. We identified RMD regulators using a set of reporter assays in mouse cells that test two key parameters: repeat sequence divergence and the distances between one repeat and the initiating chromosomal break. We found that the mismatch repair factor MLH1 suppresses RMDs with sequence divergence in the same pathway as MSH2 and MSH6, and which is dependent on residues in MLH1 and its binding partner PMS2 that are important for nuclease activity. Additionally, we found that the resolution of sequence divergence in the RMD product has a specific polarity, where divergent bases that are proximal to the chromosomal break end are preferentially removed. Moreover, we found that the domain of MLH1 that forms part of the MLH1-PMS2 endonuclease is important for polarity of resolution of sequence divergence. We also identified distinctions between MLH1 versus TOP3α in regulation of RMDs. We suggest that MLH1 suppresses RMDs with sequence divergence, while also promoting directional resolution of sequence divergence in the RMD product.
Collapse
Affiliation(s)
- Hannah Trost
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Arianna Merkell
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | - Jeremy M Stark
- To whom correspondence should be addressed. Tel: +1 626 218-6346; Fax: +1 626 218 8892;
| |
Collapse
|
6
|
Palmer N, Talib SZA, Goh CMF, Biswas K, Sharan SK, Kaldis P. Identification PMS1 and PMS2 as potential meiotic substrates of CDK2 activity. PLoS One 2023; 18:e0283590. [PMID: 36952545 PMCID: PMC10035876 DOI: 10.1371/journal.pone.0283590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/11/2023] [Indexed: 03/25/2023] Open
Abstract
Cyclin dependent-kinase 2 (CDK2) plays important functions during the mitotic cell cycle and also facilitates several key events during germ cell development. The majority of CDK2's known meiotic functions occur during prophase of the first meiotic division. Here, CDK2 is involved in the regulation of meiotic transcription, the pairing of homologous chromosomes, and the maturation of meiotic crossover sites. Despite that some of the CDK2 substrates are known, few of them display functions in meiosis. Here, we investigate potential meiotic CDK2 substrates using in silico and in vitro approaches. We find that CDK2 phosphorylates PMS2 at Thr337, PMS1 at Thr331, and MLH1 in vitro. Phosphorylation of PMS2 affects its interaction with MLH1 to some degree. In testis extracts from mice lacking Cdk2, there are changes in expression of PMS2, MSH2, and HEI10, which may be reflective of the loss of CDK2 phosphorylation. Our work has uncovered a few CDK2 substrates with meiotic functions, which will have to be verified in vivo. A better understanding of the CDK2 substrates will help us to gain deeper insight into the functions of this universal kinase.
Collapse
Affiliation(s)
- Nathan Palmer
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Republic of Singapore
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - S Zakiah A Talib
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Republic of Singapore
- Department Biologie II, Biozentrum der LMU München, Zell- und Entwicklungsbiologie, Planegg-Martinsried, Germany
| | - Christine M F Goh
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Republic of Singapore
| | - Kajal Biswas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States of America
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States of America
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Republic of Singapore
- Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Malmö, Sweden
- Lund University Diabetes Centre, Lund University, Clinical Research Centre (CRC), Malmö, Sweden
| |
Collapse
|
7
|
DuPrie ML, Palacio T, Calil FA, Kolodner RD, Putnam CD. Mlh1 interacts with both Msh2 and Msh6 for recruitment during mismatch repair. DNA Repair (Amst) 2022; 119:103405. [PMID: 36122480 PMCID: PMC9639671 DOI: 10.1016/j.dnarep.2022.103405] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/30/2022] [Accepted: 09/10/2022] [Indexed: 11/29/2022]
Abstract
Eukaryotic DNA mismatch repair (MMR) initiates through mispair recognition by the MutS homologs Msh2-Msh6 and Msh2-Msh3 and subsequent recruitment of the MutL homologs Mlh1-Pms1 (human MLH1-PMS2). In bacteria, MutL is recruited by interactions with the connector domain of one MutS subunit and the ATPase and core domains of the other MutS subunit. Analysis of the S. cerevisiae and human homologs have only identified an interaction between the Msh2 connector domain and Mlh1. Here we investigated whether a conserved Msh6 ATPase/core domain-Mlh1 interaction and an Msh2-Msh6 interaction with Pms1 also act in MMR. Mutations in MLH1 affecting interactions with both the Msh2 and Msh6 interfaces caused MMR defects, whereas equivalent pms1 mutations did not cause MMR defects. Mutant Mlh1-Pms1 complexes containing Mlh1 amino acid substitutions were defective for recruitment to mispaired DNA by Msh2-Msh6, did not support MMR in reconstituted Mlh1-Pms1-dependent MMR reactions in vitro, but were proficient in Msh2-Msh6-independent Mlh1-Pms1 endonuclease activity. These results indicate that Mlh1, the common subunit of the Mlh1-Pms1, Mlh1-Mlh2, and Mlh1-Mlh3 complexes, but not Pms1, is recruited by Msh2-Msh6 through interactions with both of its subunits.
Collapse
Affiliation(s)
- Matthew L DuPrie
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA
| | - Tatiana Palacio
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA
| | - Felipe A Calil
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA
| | - Richard D Kolodner
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA; Department of Cellular and Molecular Medicine University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA; Moores-UCSD Cancer Center University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA; Institute of Genomic Medicine University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA
| | - Christopher D Putnam
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA; Department of Medicine University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA.
| |
Collapse
|
8
|
Abstract
Roughly 3% of the human genome consists of microsatellites or tracts of short tandem repeats (STRs). These STRs are often unstable, undergoing high-frequency expansions (increases) or contractions (decreases) in the number of repeat units. Some microsatellite instability (MSI) is seen at multiple STRs within a single cell and is associated with certain types of cancer. A second form of MSI is characterised by expansion of a single gene-specific STR and such expansions are responsible for a group of 40+ human genetic disorders known as the repeat expansion diseases (REDs). While the mismatch repair (MMR) pathway prevents genome-wide MSI, emerging evidence suggests that some MMR factors are directly involved in generating expansions in the REDs. Thus, MMR suppresses some forms of expansion while some MMR factors promote expansion in other contexts. This review will cover what is known about the paradoxical effect of MMR on microsatellite expansion in mammalian cells.
Collapse
|
9
|
Miller AK, Mao G, Knicely BG, Daniels HG, Rahal C, Putnam CD, Kolodner RD, Goellner EM. Rad5 and Its Human Homologs, HLTF and SHPRH, Are Novel Interactors of Mismatch Repair. Front Cell Dev Biol 2022; 10:843121. [PMID: 35784486 PMCID: PMC9243396 DOI: 10.3389/fcell.2022.843121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
DNA mismatch repair (MMR) repairs replication errors, and MMR defects play a role in both inherited cancer predisposition syndromes and in sporadic cancers. MMR also recognizes mispairs caused by environmental and chemotherapeutic agents; however, in these cases mispair recognition leads to apoptosis and not repair. Although mutation avoidance by MMR is fairly well understood, MMR-associated proteins are still being identified. We performed a bioinformatic analysis that implicated Saccharomyces cerevisiae Rad5 as a candidate for interacting with the MMR proteins Msh2 and Mlh1. Rad5 is a DNA helicase and E3 ubiquitin ligase involved in post-replicative repair and damage tolerance. We confirmed both interactions and found that the Mlh1 interaction is mediated by a conserved Mlh1-interacting motif (MIP box). Despite this, we did not find a clear role for Rad5 in the canonical MMR mutation avoidance pathway. The interaction of Rad5 with Msh2 and Mlh1 is conserved in humans, although each of the Rad5 human homologs, HLTF and SHPRH, shared only one of the interactions: HLTF interacts with MSH2, and SHPRH interacts with MLH1. Moreover, depletion of SHPRH, but not HLTF, results in a mild increase in resistance to alkylating agents although not as strong as loss of MMR, suggesting gene duplication led to specialization of the MMR-protein associated roles of the human Rad5 homologs. These results provide insights into how MMR accessory factors involved in the MMR-dependent apoptotic response interact with the core MMR machinery and have important health implications into how human cells respond to environmental toxins, tumor development, and treatment choices of tumors with defects in Rad5 homologs.
Collapse
Affiliation(s)
- Anna K. Miller
- College of Medicine Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Guogen Mao
- College of Medicine Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Breanna G. Knicely
- College of Medicine Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Hannah G. Daniels
- College of Medicine Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Christine Rahal
- Ludiwg Institute for Cancer Research San Diego, San Diego, CA, United States
| | - Christopher D. Putnam
- Ludiwg Institute for Cancer Research San Diego, San Diego, CA, United States
- Department of Medicine, University of California San Diego, San Diego, CA, United States
| | - Richard D. Kolodner
- Ludiwg Institute for Cancer Research San Diego, San Diego, CA, United States
- Moores-UCSD Cancer Center, San Diego, CA, United States
- Institute of Genomic Medicine, San Diego, CA, United States
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, United States
| | - Eva M. Goellner
- College of Medicine Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
10
|
Lamb NA, Bard JE, Loll-Krippleber R, Brown GW, Surtees JA. Complex mutation profiles in mismatch repair and ribonucleotide reductase mutants reveal novel repair substrate specificity of MutS homolog (MSH) complexes. Genetics 2022; 221:6605222. [PMID: 35686905 PMCID: PMC9339293 DOI: 10.1093/genetics/iyac092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/24/2022] [Indexed: 12/30/2022] Open
Abstract
Determining mutation signatures is standard for understanding the etiology of human tumors and informing cancer treatment. Multiple determinants of DNA replication fidelity prevent mutagenesis that leads to carcinogenesis, including the regulation of free deoxyribonucleoside triphosphate pools by ribonucleotide reductase and repair of replication errors by the mismatch repair system. We identified genetic interactions between rnr1 alleles that skew and/or elevate deoxyribonucleoside triphosphate levels and mismatch repair gene deletions. These defects indicate that the rnr1 alleles lead to increased mutation loads that are normally acted upon by mismatch repair. We then utilized a targeted deep-sequencing approach to determine mutational profiles associated with mismatch repair pathway defects. By combining rnr1 and msh mutations to alter and/or increase deoxyribonucleoside triphosphate levels and alter the mutational load, we uncovered previously unreported specificities of Msh2-Msh3 and Msh2-Msh6. Msh2-Msh3 is uniquely able to direct the repair of G/C single-base deletions in GC runs, while Msh2-Msh6 specifically directs the repair of substitutions that occur at G/C dinucleotides. We also identified broader sequence contexts that influence variant profiles in different genetic backgrounds. Finally, we observed that the mutation profiles in double mutants were not necessarily an additive relationship of mutation profiles in single mutants. Our results have implications for interpreting mutation signatures from human tumors, particularly when mismatch repair is defective.
Collapse
Affiliation(s)
- Natalie A Lamb
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Jonathan E Bard
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA,University at Buffalo Genomics and Bioinformatics Core, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Raphael Loll-Krippleber
- Department of Biochemistry and Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Grant W Brown
- Department of Biochemistry and Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jennifer A Surtees
- Corresponding author: Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Rm 4215, 955 Main Street, Buffalo, NY 14203, USA.
| |
Collapse
|
11
|
Ramos-Alonso L, Garcia I, Enserink JM, Chymkowitch P. Analysis of the pheromone signaling pathway by RT-qPCR in the budding yeast Saccharomyces cerevisiae. STAR Protoc 2022; 3:101210. [PMID: 35265859 PMCID: PMC8899044 DOI: 10.1016/j.xpro.2022.101210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
FUS3 and STE2 expression levels can be used as reporters for signaling through the pheromone pathway in the budding yeast Saccharomyces cerevisiae. Here, we describe an optimized protocol to measure the expression levels of FUS3 and STE2 using quantitative reverse transcription PCR (RT-qPCR). We describe the steps for comparing untreated and pheromone-treated yeast cells and how to quantify the changes in various deletion strains. The protocol can be applied to determine potential regulators of the pheromone pathway. For complete details on the use and execution of this protocol, please refer to Garcia et al. (2021). Optimized procedure to measure the activity of the mating pathway in S. cerevisiae Describes growth conditions in presence or absence of alpha mating factor Use of RT-qPCR to quantify the expression of mating pathway genes Can be used to reveal potential regulators of the pheromone signaling pathway
Collapse
Affiliation(s)
- Lucía Ramos-Alonso
- Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Ignacio Garcia
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
| | - Jorrit M. Enserink
- Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
- Corresponding author
| | - Pierre Chymkowitch
- Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
- Corresponding author
| |
Collapse
|
12
|
Voelkel-Meiman K, Oke A, Feil A, Shames A, Fung J, MacQueen AJ. A role for synaptonemal complex in meiotic mismatch repair. Genetics 2022; 220:iyab230. [PMID: 35100397 PMCID: PMC9097268 DOI: 10.1093/genetics/iyab230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/17/2021] [Indexed: 11/14/2022] Open
Abstract
A large subset of meiotic recombination intermediates form within the physical context of synaptonemal complex (SC), but the functional relationship between SC structure and homologous recombination remains obscure. Our prior analysis of strains deficient for SC central element proteins demonstrated that tripartite SC is dispensable for interhomolog recombination in Saccharomyces cerevisiae. Here, we report that while dispensable for recombination per se, SC proteins promote efficient mismatch repair at interhomolog recombination sites. Failure to repair mismatches within heteroduplex-containing meiotic recombination intermediates leads to genotypically sectored colonies (postmeiotic segregation events). We discovered increased postmeiotic segregation at THR1 in cells lacking Ecm11 or Gmc2, or in the SC-deficient but recombination-proficient zip1[Δ21-163] mutant. High-throughput sequencing of octad meiotic products furthermore revealed a genome-wide increase in recombination events with unrepaired mismatches in ecm11 mutants relative to wildtype. Meiotic cells missing Ecm11 display longer gene conversion tracts, but tract length alone does not account for the higher frequency of unrepaired mismatches. Interestingly, the per-nucleotide mismatch frequency is elevated in ecm11 when analyzing all gene conversion tracts, but is similar between wildtype and ecm11 if considering only those events with unrepaired mismatches. Thus, in both wildtype and ecm11 strains a subset of recombination events is susceptible to a similar degree of inefficient mismatch repair, but in ecm11 mutants a larger fraction of events fall into this inefficient repair category. Finally, we observe elevated postmeiotic segregation at THR1 in mutants with a dual deficiency in MutSγ crossover recombination and SC assembly, but not in the mlh3 mutant, which lacks MutSγ crossovers but has abundant SC. We propose that SC structure promotes efficient mismatch repair of joint molecule recombination intermediates, and that absence of SC is the molecular basis for elevated postmeiotic segregation in both MutSγ crossover-proficient (ecm11, gmc2) and MutSγ crossover-deficient (msh4, zip3) strains.
Collapse
Affiliation(s)
- Karen Voelkel-Meiman
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Ashwini Oke
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center of Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Arden Feil
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Alexander Shames
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Jennifer Fung
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center of Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Amy J MacQueen
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| |
Collapse
|
13
|
Garcia I, Orellana-Muñoz S, Ramos-Alonso L, Andersen AN, Zimmermann C, Eriksson J, Bøe SO, Kaferle P, Papamichos-Chronakis M, Chymkowitch P, Enserink JM. Kel1 is a phosphorylation-regulated noise suppressor of the pheromone signaling pathway. Cell Rep 2021; 37:110186. [PMID: 34965431 DOI: 10.1016/j.celrep.2021.110186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/01/2021] [Accepted: 12/07/2021] [Indexed: 11/26/2022] Open
Abstract
Mechanisms have evolved that allow cells to detect signals and generate an appropriate response. The accuracy of these responses relies on the ability of cells to discriminate between signal and noise. How cells filter noise in signaling pathways is not well understood. Here, we analyze noise suppression in the yeast pheromone signaling pathway and show that the poorly characterized protein Kel1 serves as a major noise suppressor and prevents cell death. At the molecular level, Kel1 prevents spontaneous activation of the pheromone response by inhibiting membrane recruitment of Ste5 and Far1. Only a hypophosphorylated form of Kel1 suppresses signaling, reduces noise, and prevents pheromone-associated cell death, and our data indicate that the MAPK Fus3 contributes to Kel1 phosphorylation. Taken together, Kel1 serves as a phospho-regulated suppressor of the pheromone pathway to reduce noise, inhibit spontaneous activation of the pathway, regulate mating efficiency, and prevent pheromone-associated cell death.
Collapse
Affiliation(s)
- Ignacio Garcia
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0379 Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
| | - Sara Orellana-Muñoz
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0379 Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
| | - Lucía Ramos-Alonso
- Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway; Department of Microbiology, Oslo University Hospital, 0372 Oslo, Norway
| | - Aram N Andersen
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0379 Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway; Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Christine Zimmermann
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Jens Eriksson
- Department of Medical Biochemistry and Microbiology, Uppsala University, 752 37 Uppsala, Sweden
| | - Stig Ove Bøe
- Department of Microbiology, Oslo University Hospital, 0372 Oslo, Norway
| | - Petra Kaferle
- Institut Curie, PSL Research University, CNRS, UMR3664, Sorbonne Universities, Paris, France
| | - Manolis Papamichos-Chronakis
- Department of Molecular Physiology and Cell Signalling Institute of Systems, Molecular and Integrative Biology University of Liverpool, L69 7BE Liverpool, UK
| | - Pierre Chymkowitch
- Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway; Department of Microbiology, Oslo University Hospital, 0372 Oslo, Norway
| | - Jorrit M Enserink
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0379 Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway; Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
14
|
Rad27 and Exo1 function in different excision pathways for mismatch repair in Saccharomyces cerevisiae. Nat Commun 2021; 12:5568. [PMID: 34552065 PMCID: PMC8458276 DOI: 10.1038/s41467-021-25866-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/31/2021] [Indexed: 11/20/2022] Open
Abstract
Eukaryotic DNA Mismatch Repair (MMR) involves redundant exonuclease 1 (Exo1)-dependent and Exo1-independent pathways, of which the Exo1-independent pathway(s) is not well understood. The exo1Δ440-702 mutation, which deletes the MutS Homolog 2 (Msh2) and MutL Homolog 1 (Mlh1) interacting peptides (SHIP and MIP boxes, respectively), eliminates the Exo1 MMR functions but is not lethal in combination with rad27Δ mutations. Analyzing the effect of different combinations of the exo1Δ440-702 mutation, a rad27Δ mutation and the pms1-A99V mutation, which inactivates an Exo1-independent MMR pathway, demonstrated that each of these mutations inactivates a different MMR pathway. Furthermore, it was possible to reconstitute a Rad27- and Msh2-Msh6-dependent MMR reaction in vitro using a mispaired DNA substrate and other MMR proteins. Our results demonstrate Rad27 defines an Exo1-independent eukaryotic MMR pathway that is redundant with at least two other MMR pathways. Defects in DNA mismatch repair (MMR) have been linked to inherited and sporadic cancers. Here the authors demonstrate that the DNA repair protein Rad27 (human FEN1) functions in one of three redundant mispair excision pathways, where its flap endonuclease activity catalyzes mispair excision.
Collapse
|
15
|
Mao B, Zheng W, Huang Z, Peng Y, Shao Y, Liu C, Tang L, Hu Y, Li Y, Hu L, Zhang D, Yuan Z, Luo W, Yuan L, Liu Y, Zhao B. Rice MutLγ, the MLH1-MLH3 heterodimer, participates in the formation of type I crossovers and regulation of embryo sac fertility. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1443-1455. [PMID: 33544956 PMCID: PMC8313138 DOI: 10.1111/pbi.13563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 05/23/2023]
Abstract
The development of embryo sacs is crucial for seed production in plants, but the genetic basis regulating the meiotic crossover formation in the macrospore and microspore mother cells remains largely unclear. Here, we report the characterization of a spontaneous rice female sterile variation 1 mutant (fsv1) that showed severe embryo sacs abortion with low seed-setting rate. Through map-based cloning and functional analyses, we isolated the causal gene of fsv1, OsMLH3 encoding a MutL-homolog 3 protein, an ortholog of HvMLH3 in barley and AtMLH3 in Arabidopsis. OsMLH3 and OsMLH1 (MutL-homolog 1) interact to form a heterodimer (MutLγ) to promote crossover formation in the macrospore and microspore mother cells and development of functional megaspore during meiosis, defective OsMLH3 or OsMLH1 in fsv1 and CRISPR/Cas9-based knockout lines results in reduced type I crossover and bivalent frequency. The fsv1 and OsMLH3-knockout lines are valuable germplasms for development of female sterile restorer lines for mechanized seed production of hybrid rice.
Collapse
Affiliation(s)
- Bigang Mao
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
- Long Ping BranchGraduate School of Hunan UniversityChangshaChina
| | - Wenjie Zheng
- Long Ping BranchGraduate School of Hunan UniversityChangshaChina
| | - Zhen Huang
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| | - Yan Peng
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| | - Ye Shao
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| | - Citao Liu
- College of AgriculturalHunan Agricultural UniversityChangshaChina
| | - Li Tang
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
- Long Ping BranchGraduate School of Hunan UniversityChangshaChina
| | - Yuanyi Hu
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| | - Yaokui Li
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| | - Liming Hu
- Long Ping BranchGraduate School of Hunan UniversityChangshaChina
| | - Dan Zhang
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| | - Zhicheng Yuan
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| | - Wuzhong Luo
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| | - Longping Yuan
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| | - Yaoguang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| | - Bingran Zhao
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
- Long Ping BranchGraduate School of Hunan UniversityChangshaChina
- College of AgriculturalHunan Agricultural UniversityChangshaChina
| |
Collapse
|
16
|
Strand discrimination in DNA mismatch repair. DNA Repair (Amst) 2021; 105:103161. [PMID: 34171627 DOI: 10.1016/j.dnarep.2021.103161] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/24/2022]
Abstract
DNA mismatch repair (MMR) corrects non-Watson-Crick basepairs generated by replication errors, recombination intermediates, and some forms of chemical damage to DNA. In MutS and MutL homolog-dependent MMR, damaged bases do not identify the error-containing daughter strand that must be excised and resynthesized. In organisms like Escherichia coli that use methyl-directed MMR, transient undermethylation identifies the daughter strand. For other organisms, growing in vitro and in vivo evidence suggest that strand discrimination is mediated by DNA replication-associated daughter strand nicks that direct asymmetric loading of the replicative clamp (the β-clamp in bacteria and the proliferating cell nuclear antigen, PCNA, in eukaryotes). Structural modeling suggests that replicative clamps mediate strand specificity either through the ability of MutL homologs to recognize the fixed orientation of the daughter strand relative to one face of the replicative clamps or through parental strand-specific diffusion of replicative clamps on DNA, which places the daughter strand in the MutL homolog endonuclease active site. Finally, identification of bacteria that appear to lack strand discrimination mediated by a replicative clamp and a pre-existing nick suggest that other strand discrimination mechanisms exist or that these organisms perform MMR by generating a double-stranded DNA break intermediate, which may be analogous to NucS-mediated MMR.
Collapse
|
17
|
Furman CM, Elbashir R, Pannafino G, Clark NL, Alani E. Experimental exchange of paralogous domains in the MLH family provides evidence of sub-functionalization after gene duplication. G3 (BETHESDA, MD.) 2021; 11:jkab111. [PMID: 33871573 PMCID: PMC8495741 DOI: 10.1093/g3journal/jkab111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/31/2021] [Indexed: 01/24/2023]
Abstract
Baker's yeast contains a large number of duplicated genes; some function redundantly, whereas others have more specialized roles. We used the MLH family of DNA mismatch repair (MMR) proteins as a model to better understand the steps that lead to gene specialization following a gene duplication event. We focused on two highly conserved yeast MLH proteins, Pms1 and Mlh3, with Pms1 having a major role in the repair of misincorporation events during DNA replication and Mlh3 acting to resolve recombination intermediates in meiosis to form crossovers. The baker's yeast Mlh3 and Pms1 proteins are significantly diverged (19% overall identity), suggesting that an extensive number of evolutionary steps, some major, others involving subtle refinements, took place to diversify the MLH proteins. Using phylogenetic and molecular approaches, we provide evidence that all three domains (N-terminal ATP binding, linker, C-terminal endonuclease/MLH interaction) in the MLH protein family are critical for conferring pathway specificity. Importantly, mlh3 alleles in the ATP binding and endonuclease domains improved MMR functions in strains lacking the Pms1 protein and did not disrupt Mlh3 meiotic functions. This ability for mlh3 alleles to complement the loss of Pms1 suggests that an ancestral Pms1/Mlh3 protein was capable of performing both MMR and crossover functions. Our strategy for analyzing MLH pathway specificity provides an approach to understand how paralogs have evolved to support distinct cellular processes.
Collapse
Affiliation(s)
- Christopher M Furman
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA
| | - Ryan Elbashir
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA
| | - Gianno Pannafino
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA
| | - Nathan L Clark
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84132, USA
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA
| |
Collapse
|
18
|
Replication-independent instability of Friedreich's ataxia GAA repeats during chronological aging. Proc Natl Acad Sci U S A 2021; 118:2013080118. [PMID: 33495349 PMCID: PMC7865128 DOI: 10.1073/pnas.2013080118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The inheritance of long (GAA)n repeats in the frataxin gene causes the debilitating neurodegenerative disease Friedreich’s ataxia. Subsequent expansions of these repeats throughout a patient’s lifetime in the affected tissues, like the nervous system, may contribute to disease onset. We developed an experimental model to characterize the mechanisms of repeat instability in nondividing cells to better understand how mutations can occur as cells age chronologically. We show that repeats can expand in nondividing cells. Notably, however, large deletions are the major type of repeat-mediated genome instability in nondividing cells, implicating the loss of important genetic material with aging in the progression of Friedreich’s ataxia. Nearly 50 hereditary diseases result from the inheritance of abnormally long repetitive DNA microsatellites. While it was originally believed that the size of inherited repeats is the key factor in disease development, it has become clear that somatic instability of these repeats throughout an individual’s lifetime strongly contributes to disease onset and progression. Importantly, somatic instability is commonly observed in terminally differentiated, postmitotic cells, such as neurons. To unravel the mechanisms of repeat instability in nondividing cells, we created an experimental system to analyze the mutability of Friedreich’s ataxia (GAA)n repeats during chronological aging of quiescent Saccharomyces cerevisiae. Unexpectedly, we found that the predominant repeat-mediated mutation in nondividing cells is large-scale deletions encompassing parts, or the entirety, of the repeat and adjacent regions. These deletions are caused by breakage at the repeat mediated by mismatch repair (MMR) complexes MutSβ and MutLα and DNA endonuclease Rad1, followed by end-resection by Exo1 and repair of the resulting double-strand breaks (DSBs) via nonhomologous end joining. We also observed repeat-mediated gene conversions as a result of DSB repair via ectopic homologous recombination during chronological aging. Repeat expansions accrue during chronological aging as well—particularly in the absence of MMR-induced DSBs. These expansions depend on the processivity of DNA polymerase δ while being counteracted by Exo1 and MutSβ, implicating nick repair. Altogether, these findings show that the mechanisms and types of (GAA)n repeat instability differ dramatically between dividing and nondividing cells, suggesting that distinct repeat-mediated mutations in terminally differentiated somatic cells might influence Friedreich’s ataxia pathogenesis.
Collapse
|
19
|
Molecular basis of the dual role of the Mlh1-Mlh3 endonuclease in MMR and in meiotic crossover formation. Proc Natl Acad Sci U S A 2021; 118:2022704118. [PMID: 34088835 DOI: 10.1073/pnas.2022704118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In budding yeast, the MutL homolog heterodimer Mlh1-Mlh3 (MutLγ) plays a central role in the formation of meiotic crossovers. It is also involved in the repair of a subset of mismatches besides the main mismatch repair (MMR) endonuclease Mlh1-Pms1 (MutLα). The heterodimer interface and endonuclease sites of MutLγ and MutLα are located in their C-terminal domain (CTD). The molecular basis of MutLγ's dual roles in MMR and meiosis is not known. To better understand the specificity of MutLγ, we characterized the crystal structure of Saccharomyces cerevisiae MutLγ(CTD). Although MutLγ(CTD) presents overall similarities with MutLα(CTD), it harbors some rearrangement of the surface surrounding the active site, which indicates altered substrate preference. The last amino acids of Mlh1 participate in the Mlh3 endonuclease site as previously reported for Pms1. We characterized mlh1 alleles and showed a critical role of this Mlh1 extreme C terminus both in MMR and in meiotic recombination. We showed that the MutLγ(CTD) preferentially binds Holliday junctions, contrary to MutLα(CTD). We characterized Mlh3 positions on the N-terminal domain (NTD) and CTD that could contribute to the positioning of the NTD close to the CTD in the context of the full-length MutLγ. Finally, crystal packing revealed an assembly of MutLγ(CTD) molecules in filament structures. Mutation at the corresponding interfaces reduced crossover formation, suggesting that these superstructures may contribute to the oligomer formation proposed for MutLγ. This study defines clear divergent features between the MutL homologs and identifies, at the molecular level, their specialization toward MMR or meiotic recombination functions.
Collapse
|
20
|
Pannafino G, Alani E. Coordinated and Independent Roles for MLH Subunits in DNA Repair. Cells 2021; 10:cells10040948. [PMID: 33923939 PMCID: PMC8074049 DOI: 10.3390/cells10040948] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 02/05/2023] Open
Abstract
The MutL family of DNA mismatch repair proteins (MMR) acts to maintain genomic integrity in somatic and meiotic cells. In baker’s yeast, the MutL homolog (MLH) MMR proteins form three heterodimeric complexes, MLH1-PMS1, MLH1-MLH2, and MLH1-MLH3. The recent discovery of human PMS2 (homolog of baker’s yeast PMS1) and MLH3 acting independently of human MLH1 in the repair of somatic double-strand breaks questions the assumption that MLH1 is an obligate subunit for MLH function. Here we provide a summary of the canonical roles for MLH factors in DNA genomic maintenance and in meiotic crossover. We then present the phenotypes of cells lacking specific MLH subunits, particularly in meiotic recombination, and based on this analysis, propose a model for an independent early role for MLH3 in meiosis to promote the accurate segregation of homologous chromosomes in the meiosis I division.
Collapse
|
21
|
Rahman MM, Mohiuddin M, Shamima Keka I, Yamada K, Tsuda M, Sasanuma H, Andreani J, Guerois R, Borde V, Charbonnier JB, Takeda S. Genetic evidence for the involvement of mismatch repair proteins, PMS2 and MLH3, in a late step of homologous recombination. J Biol Chem 2021; 295:17460-17475. [PMID: 33453991 DOI: 10.1074/jbc.ra120.013521] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
Homologous recombination (HR) repairs DNA double-strand breaks using intact homologous sequences as template DNA. Broken DNA and intact homologous sequences form joint molecules (JMs), including Holliday junctions (HJs), as HR intermediates. HJs are resolved to form crossover and noncrossover products. A mismatch repair factor, MLH3 endonuclease, produces the majority of crossovers during meiotic HR, but it remains elusive whether mismatch repair factors promote HR in nonmeiotic cells. We disrupted genes encoding the MLH3 and PMS2 endonucleases in the human B cell line, TK6, generating null MLH3-/- and PMS2-/- mutant cells. We also inserted point mutations into the endonuclease motif of MLH3 and PMS2 genes, generating endonuclease death MLH3DN/DN and PMS2EK/EK cells. MLH3-/- and MLH3DN/DN cells showed a very similar phenotype, a 2.5-fold decrease in the frequency of heteroallelic HR-dependent repair of restriction enzyme-induced double-strand breaks. PMS2-/- and PMS2EK/EK cells showed a phenotype very similar to that of the MLH3 mutants. These data indicate that MLH3 and PMS2 promote HR as an endonuclease. The MLH3DN/DN and PMS2EK/EK mutations had an additive effect on the heteroallelic HR. MLH3DN/DN/PMS2EK/EK cells showed normal kinetics of γ-irradiation-induced Rad51 foci but a significant delay in the resolution of Rad51 foci and a 3-fold decrease in the number of cisplatin-induced sister chromatid exchanges. The ectopic expression of the Gen1 HJ re-solvase partially reversed the defective heteroallelic HR of MLH3DN/DN/PMS2EK/EK cells. Taken together, we propose that MLH3 and PMS2 promote HR as endonucleases, most likely by processing JMs in mammalian somatic cells.
Collapse
Affiliation(s)
- Md Maminur Rahman
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mohiuddin Mohiuddin
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Islam Shamima Keka
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kousei Yamada
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masataka Tsuda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jessica Andreani
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique (CEA), CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Raphael Guerois
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique (CEA), CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Valerie Borde
- Institut Curie, CNRS, UMR3244, PSL Research University, Paris, France
| | - Jean-Baptiste Charbonnier
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique (CEA), CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
22
|
Abstract
DNA mismatch repair (MMR) is a highly conserved genome stabilizing pathway that corrects DNA replication errors, limits chromosomal rearrangements, and mediates the cellular response to many types of DNA damage. Counterintuitively, MMR is also involved in the generation of mutations, as evidenced by its role in causing somatic triplet repeat expansion in Huntington’s disease (HD) and other neurodegenerative disorders. In this review, we discuss the current state of mechanistic knowledge of MMR and review the roles of key enzymes in this pathway. We also present the evidence for mutagenic function of MMR in CAG repeat expansion and consider mechanistic hypotheses that have been proposed. Understanding the role of MMR in CAG expansion may shed light on potential avenues for therapeutic intervention in HD.
Collapse
Affiliation(s)
- Ravi R Iyer
- CHDI Management/CHDI Foundation, Princeton, NJ, USA
| | - Anna Pluciennik
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
23
|
Monakhova MV, Milakina MA, Trikin RM, Oretskaya TS, Kubareva EA. Functional Specifics of the MutL Protein of the DNA Mismatch Repair System in Different Organisms. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020060217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Identification of MLH2/hPMS1 dominant mutations that prevent DNA mismatch repair function. Commun Biol 2020; 3:751. [PMID: 33303966 PMCID: PMC7730388 DOI: 10.1038/s42003-020-01481-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/11/2020] [Indexed: 12/27/2022] Open
Abstract
Inactivating mutations affecting key mismatch repair (MMR) components lead to microsatellite instability (MSI) and cancer. However, a number of patients with MSI-tumors do not present alterations in classical MMR genes. Here we discovered that specific missense mutations in the MutL homolog MLH2, which is dispensable for MMR, confer a dominant mutator phenotype in S. cerevisiae. MLH2 mutations elevated frameshift mutation rates, and caused accumulation of long-lasting nuclear MMR foci. Both aspects of this phenotype were suppressed by mutations predicted to prevent the binding of Mlh2 to DNA. Genetic analysis revealed that mlh2 dominant mutations interfere with both Exonuclease 1 (Exo1)-dependent and Exo1-independent MMR. Lastly, we demonstrate that a homolog mutation in human hPMS1 results in a dominant mutator phenotype. Our data support a model in which yeast Mlh1-Mlh2 or hMLH1-hPMS1 mutant complexes act as roadblocks on DNA preventing MMR, unraveling a novel mechanism that can account for MSI in human cancer.
Collapse
|
25
|
Regulation of the MLH1-MLH3 endonuclease in meiosis. Nature 2020; 586:618-622. [PMID: 32814904 DOI: 10.1038/s41586-020-2592-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022]
Abstract
During prophase of the first meiotic division, cells deliberately break their DNA1. These DNA breaks are repaired by homologous recombination, which facilitates proper chromosome segregation and enables the reciprocal exchange of DNA segments between homologous chromosomes2. A pathway that depends on the MLH1-MLH3 (MutLγ) nuclease has been implicated in the biased processing of meiotic recombination intermediates into crossovers by an unknown mechanism3-7. Here we have biochemically reconstituted key elements of this pro-crossover pathway. We show that human MSH4-MSH5 (MutSγ), which supports crossing over8, binds branched recombination intermediates and associates with MutLγ, stabilizing the ensemble at joint molecule structures and adjacent double-stranded DNA. MutSγ directly stimulates DNA cleavage by the MutLγ endonuclease. MutLγ activity is further stimulated by EXO1, but only when MutSγ is present. Replication factor C (RFC) and the proliferating cell nuclear antigen (PCNA) are additional components of the nuclease ensemble, thereby triggering crossing-over. Saccharomyces cerevisiae strains in which MutLγ cannot interact with PCNA present defects in forming crossovers. Finally, the MutLγ-MutSγ-EXO1-RFC-PCNA nuclease ensemble preferentially cleaves DNA with Holliday junctions, but shows no canonical resolvase activity. Instead, it probably processes meiotic recombination intermediates by nicking double-stranded DNA adjacent to the junction points9. As DNA nicking by MutLγ depends on its co-factors, the asymmetric distribution of MutSγ and RFC-PCNA on meiotic recombination intermediates may drive biased DNA cleavage. This mode of MutLγ nuclease activation might explain crossover-specific processing of Holliday junctions or their precursors in meiotic chromosomes4.
Collapse
|
26
|
Furman CM, Elbashir R, Alani E. Expanded roles for the MutL family of DNA mismatch repair proteins. Yeast 2020; 38:39-53. [PMID: 32652606 DOI: 10.1002/yea.3512] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 12/31/2022] Open
Abstract
The MutL family of DNA mismatch repair proteins plays a critical role in excising and repairing misincorporation errors during DNA replication. In many eukaryotes, members of this family have evolved to modulate and resolve recombination intermediates into crossovers during meiosis. In these organisms, such functions promote the accurate segregation of chromosomes during the meiosis I division. What alterations occurred in MutL homolog (MLH) family members that enabled them to acquire these new roles? In this review, we present evidence that the yeast Mlh1-Mlh3 and Mlh1-Mlh2 complexes have evolved novel enzymatic and nonenzymatic activities and protein-protein interactions that are critical for their meiotic functions. Curiously, even with these changes, these complexes retain backup and accessory roles in DNA mismatch repair during vegetative growth.
Collapse
Affiliation(s)
- Christopher M Furman
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Ryan Elbashir
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
27
|
Schmidt TT, Sharma S, Reyes GX, Kolodziejczak A, Wagner T, Luke B, Hofer A, Chabes A, Hombauer H. Inactivation of folylpolyglutamate synthetase Met7 results in genome instability driven by an increased dUTP/dTTP ratio. Nucleic Acids Res 2020; 48:264-277. [PMID: 31647103 PMCID: PMC7145683 DOI: 10.1093/nar/gkz1006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 12/14/2022] Open
Abstract
The accumulation of mutations is frequently associated with alterations in gene function leading to the onset of diseases, including cancer. Aiming to find novel genes that contribute to the stability of the genome, we screened the Saccharomyces cerevisiae deletion collection for increased mutator phenotypes. Among the identified genes, we discovered MET7, which encodes folylpolyglutamate synthetase (FPGS), an enzyme that facilitates several folate-dependent reactions including the synthesis of purines, thymidylate (dTMP) and DNA methylation. Here, we found that Met7-deficient strains show elevated mutation rates, but also increased levels of endogenous DNA damage resulting in gross chromosomal rearrangements (GCRs). Quantification of deoxyribonucleotide (dNTP) pools in cell extracts from met7Δ mutant revealed reductions in dTTP and dGTP that cause a constitutively active DNA damage checkpoint. In addition, we found that the absence of Met7 leads to dUTP accumulation, at levels that allowed its detection in yeast extracts for the first time. Consequently, a high dUTP/dTTP ratio promotes uracil incorporation into DNA, followed by futile repair cycles that compromise both mitochondrial and nuclear DNA integrity. In summary, this work highlights the importance of folate polyglutamylation in the maintenance of nucleotide homeostasis and genome stability.
Collapse
Affiliation(s)
- Tobias T Schmidt
- DNA Repair Mechanisms and Cancer, German Cancer Research Center (DKFZ), Heidelberg D-69120, Germany.,Faculty of Bioscience, Heidelberg University, Heidelberg D-69120, Germany
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå SE-901 87 Sweden
| | - Gloria X Reyes
- DNA Repair Mechanisms and Cancer, German Cancer Research Center (DKFZ), Heidelberg D-69120, Germany
| | - Anna Kolodziejczak
- DNA Repair Mechanisms and Cancer, German Cancer Research Center (DKFZ), Heidelberg D-69120, Germany.,Faculty of Bioscience, Heidelberg University, Heidelberg D-69120, Germany
| | - Tina Wagner
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg Universität, 55128 Mainz, Germany
| | - Brian Luke
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg Universität, 55128 Mainz, Germany.,Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Anders Hofer
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå SE-901 87 Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå SE-901 87 Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 87 Umeå, Sweden
| | - Hans Hombauer
- DNA Repair Mechanisms and Cancer, German Cancer Research Center (DKFZ), Heidelberg D-69120, Germany
| |
Collapse
|
28
|
Human MutLγ, the MLH1-MLH3 heterodimer, is an endonuclease that promotes DNA expansion. Proc Natl Acad Sci U S A 2020; 117:3535-3542. [PMID: 32015124 PMCID: PMC7035508 DOI: 10.1073/pnas.1914718117] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
MutL proteins are ubiquitous and play important roles in DNA metabolism. MutLγ (MLH1-MLH3 heterodimer) is a poorly understood member of the eukaryotic family of MutL proteins that has been implicated in triplet repeat expansion, but its action in this deleterious process has remained unknown. In humans, triplet repeat expansion is the molecular basis for ∼40 neurological disorders. In addition to MutLγ, triplet repeat expansion involves the mismatch recognition factor MutSβ (MSH2-MSH3 heterodimer). We show here that human MutLγ is an endonuclease that nicks DNA. Strikingly, incision of covalently closed, relaxed loop-containing DNA by human MutLγ is promoted by MutSβ and targeted to the strand opposite the loop. The resulting strand break licenses downstream events that lead to a DNA expansion event in human cell extracts. Our data imply that the mammalian MutLγ is a unique endonuclease that can initiate triplet repeat DNA expansions.
Collapse
|
29
|
Resolvases, Dissolvases, and Helicases in Homologous Recombination: Clearing the Road for Chromosome Segregation. Genes (Basel) 2020; 11:genes11010071. [PMID: 31936378 PMCID: PMC7017083 DOI: 10.3390/genes11010071] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/29/2019] [Accepted: 01/01/2020] [Indexed: 12/13/2022] Open
Abstract
The execution of recombinational pathways during the repair of certain DNA lesions or in the meiotic program is associated to the formation of joint molecules that physically hold chromosomes together. These structures must be disengaged prior to the onset of chromosome segregation. Failure in the resolution of these linkages can lead to chromosome breakage and nondisjunction events that can alter the normal distribution of the genomic material to the progeny. To avoid this situation, cells have developed an arsenal of molecular complexes involving helicases, resolvases, and dissolvases that recognize and eliminate chromosome links. The correct orchestration of these enzymes promotes the timely removal of chromosomal connections ensuring the efficient segregation of the genome during cell division. In this review, we focus on the role of different DNA processing enzymes that collaborate in removing the linkages generated during the activation of the homologous recombination machinery as a consequence of the appearance of DNA breaks during the mitotic and meiotic programs. We will also discuss about the temporal regulation of these factors along the cell cycle, the consequences of their loss of function, and their specific role in the removal of chromosomal links to ensure the accurate segregation of the genomic material during cell division.
Collapse
|
30
|
Paul Solomon Devakumar LJ, Gaubitz C, Lundblad V, Kelch BA, Kubota T. Effective mismatch repair depends on timely control of PCNA retention on DNA by the Elg1 complex. Nucleic Acids Res 2020; 47:6826-6841. [PMID: 31114918 PMCID: PMC6648347 DOI: 10.1093/nar/gkz441] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 11/14/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is a sliding clamp that acts as a central co-ordinator for mismatch repair (MMR) as well as DNA replication. Loss of Elg1, the major subunit of the PCNA unloader complex, causes over-accumulation of PCNA on DNA and also increases mutation rate, but it has been unclear if the two effects are linked. Here we show that timely removal of PCNA from DNA by the Elg1 complex is important to prevent mutations. Although premature unloading of PCNA generally increases mutation rate, the mutator phenotype of elg1Δ is attenuated by PCNA mutants PCNA-R14E and PCNA-D150E that spontaneously fall off DNA. In contrast, the elg1Δ mutator phenotype is exacerbated by PCNA mutants that accumulate on DNA due to enhanced electrostatic PCNA–DNA interactions. Epistasis analysis suggests that PCNA over-accumulation on DNA interferes with both MMR and MMR-independent process(es). In elg1Δ, over-retained PCNA hyper-recruits the Msh2–Msh6 mismatch recognition complex through its PCNA-interacting peptide motif, causing accumulation of MMR intermediates. Our results suggest that PCNA retention controlled by the Elg1 complex is critical for efficient MMR: PCNA needs to be on DNA long enough to enable MMR, but if it is retained too long it interferes with downstream repair steps.
Collapse
Affiliation(s)
- Lovely Jael Paul Solomon Devakumar
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Christl Gaubitz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | - Brian A Kelch
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Takashi Kubota
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| |
Collapse
|
31
|
Garbacz MA, Cox PB, Sharma S, Lujan SA, Chabes A, Kunkel TA. The absence of the catalytic domains of Saccharomyces cerevisiae DNA polymerase ϵ strongly reduces DNA replication fidelity. Nucleic Acids Res 2019; 47:3986-3995. [PMID: 30698744 DOI: 10.1093/nar/gkz048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/15/2019] [Accepted: 01/23/2019] [Indexed: 11/13/2022] Open
Abstract
The four B-family DNA polymerases α, δ, ϵ and ζ cooperate to accurately replicate the eukaryotic nuclear genome. Here, we report that a Saccharomyces cerevisiae strain encoding the pol2-16 mutation that lacks Pol ϵ's polymerase and exonuclease activities has increased dNTP concentrations and an increased mutation rate at the CAN1 locus compared to wild type yeast. About half of this mutagenesis disappears upon deleting the REV3 gene encoding the catalytic subunit of Pol ζ. The remaining, still strong, mutator phenotype is synergistically elevated in an msh6Δ strain and has a mutation spectrum characteristic of mistakes made by Pol δ. The results support a model wherein slow-moving replication forks caused by the lack of Pol ϵ's catalytic domains result in greater involvement of mutagenic DNA synthesis by Pol ζ as well as diminished proofreading by Pol δ during replication.
Collapse
Affiliation(s)
- Marta A Garbacz
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Phillip B Cox
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Sushma Sharma
- Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Scott A Lujan
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Andrei Chabes
- Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| |
Collapse
|
32
|
Pei YF, Liu L, Liu TL, Yang XL, Zhang H, Wei XT, Feng GJ, Hai R, Ran S, Zhang L. Joint Association Analysis Identified 18 New Loci for Bone Mineral Density. J Bone Miner Res 2019; 34:1086-1094. [PMID: 30690781 DOI: 10.1002/jbmr.3681] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/01/2019] [Accepted: 01/19/2019] [Indexed: 11/09/2022]
Abstract
Bone mineral density (BMD) at various skeletal sites have shared genetic determinants. In the present study, aiming to identify shared loci associated with BMD, we conducted a joint association study of a genomewide association study (GWAS) and a meta-analysis of BMD at different skeletal sites: (i) a single GWAS of heel BMD in 142,487 individuals from the UK Biobank, and (ii) a meta-analysis of 30 GWASs of total body (TB) BMD in 66,628 individuals from the Genetic Factors for Osteoporosis (GEFOS) Consortium. The genetic correlation coefficient of the two traits was estimated to be 0.57. We performed joint association analysis with a recently developed statistical method multi-trait analysis of GWAS (MTAG) to account for trait heterogeneity and sample overlap. The joint association analysis combining samples of up to 209,115 individuals identified 18 novel loci associated with BMD at the genomewide significance level (α = 5.0 × 10-8 ), explaining an additional 0.43% and 0.60% of heel-BMD and TB-BMD heritability, respectively. The vast majority of the identified lead SNPs or their proxies exerted local expression quantitative trait loci (cis-eQTL) activity. Credible risk variants, defined as those SNPs located within 500 kilobases (kb) of the lead SNP and with p values within two orders of magnitude of the lead SNP, were enriched in transcription factor binding sites (p = 3.58 × 10-4 ) and coding regions (p = 5.71 × 10-4 ). Fifty-six candidate genes were prioritized at these novel loci using multiple sources of information, including several genes being previously reported to play a role in bone biology but not reported in previous GWASs (PPARG, FBN2, DEF6, TNFRSF19, and NFE2L1). One newly identified gene, SCMH1, was shown to upregulate the expression of several bone biomarkers, including alkaline phosphatase (ALP), collagen type 1 (COL-I), osteocalcin (OCN), osteopontin (OPN), and runt-related transcription factor 2 (RUNX2), in mouse osteoblastic MC3T3-E1 cells, highlighting its regulatory role in bone formation. Our results may provide useful candidate genes for future functional investigations. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yu-Fang Pei
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College of Soochow University, Jiangsu, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Jiangsu, China
| | - Lu Liu
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Jiangsu, China.,Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Jiangsu, China
| | - Tao-Le Liu
- Center for Circadian Clock, School of Biology & Basic Medical Sciences, Medical College of Soochow University, Jiangsu, China
| | - Xiao-Lin Yang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Jiangsu, China.,Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Jiangsu, China
| | - Hong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Jiangsu, China.,Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Jiangsu, China
| | - Xin-Tong Wei
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Jiangsu, China.,Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Jiangsu, China
| | - Gui-Juan Feng
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Jiangsu, China.,Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Jiangsu, China
| | - Rong Hai
- Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia, China
| | - Shu Ran
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Jiangsu, China.,Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Jiangsu, China
| |
Collapse
|
33
|
Daghino S, Di Vietro L, Petiti L, Martino E, Dallabona C, Lodi T, Perotto S. Yeast expression of mammalian Onzin and fungal FCR1 suggests ancestral functions of PLAC8 proteins in mitochondrial metabolism and DNA repair. Sci Rep 2019; 9:6629. [PMID: 31036870 PMCID: PMC6488628 DOI: 10.1038/s41598-019-43136-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 04/11/2019] [Indexed: 01/07/2023] Open
Abstract
The cysteine-rich PLAC8 domain of unknown function occurs in proteins found in most Eukaryotes. PLAC8-proteins play important yet diverse roles in different organisms, such as control of cell proliferation in animals and plants or heavy metal resistance in plants and fungi. Mammalian Onzin can be either pro-proliferative or pro-apoptotic, depending on the cell type, whereas fungal FCR1 confers cadmium tolerance. Despite their different role in different organisms, we hypothesized common ancestral functions linked to the PLAC8 domain. To address this hypothesis, and to investigate the molecular function of the PLAC8 domain, murine Onzin and fungal FCR1 were expressed in the PLAC8-free yeast Saccharomyces cerevisiae. The two PLAC8-proteins localized in the nucleus and induced almost identical phenotypes and transcriptional changes when exposed to cadmium stress. Like FCR1, Onzin also reduced DNA damage and increased cadmium tolerance by a DUN1-dependent pathway. Both proteins activated transcription of ancient mitochondrial pathways such as leucine and Fe-S cluster biosynthesis, known to regulate cell proliferation and DNA repair in yeast. These results strongly suggest a common ancestral function of PLAC8 proteins and open new perspectives to understand the role of the PLAC8 domain in the cellular biology of Eukaryotes.
Collapse
Affiliation(s)
- Stefania Daghino
- Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, 10125, Torino, Italy
| | - Luigi Di Vietro
- Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, 10125, Torino, Italy.,Department of Biochemistry and Biotechnology, Bayer SAS, centre de recherche "la Dargoire" 14, impasse Pierre Baizet CS 99163, 69263, Lyon, CEDEX 09, France
| | - Luca Petiti
- Italian Institute for Genomic Medicine, via Nizza 52, 10126, Torino, Italy
| | - Elena Martino
- Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, 10125, Torino, Italy
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Viale delle Scienze 11/A, 43124, Parma, Italy
| | - Tiziana Lodi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Viale delle Scienze 11/A, 43124, Parma, Italy
| | - Silvia Perotto
- Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, 10125, Torino, Italy.
| |
Collapse
|
34
|
Graham WJ, Putnam CD, Kolodner RD. The properties of Msh2-Msh6 ATP binding mutants suggest a signal amplification mechanism in DNA mismatch repair. J Biol Chem 2018; 293:18055-18070. [PMID: 30237169 PMCID: PMC6254361 DOI: 10.1074/jbc.ra118.005439] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/17/2018] [Indexed: 11/30/2022] Open
Abstract
DNA mismatch repair (MMR) corrects mispaired DNA bases and small insertion/deletion loops generated by DNA replication errors. After binding a mispair, the eukaryotic mispair recognition complex Msh2–Msh6 binds ATP in both of its nucleotide-binding sites, which induces a conformational change resulting in the formation of an Msh2–Msh6 sliding clamp that releases from the mispair and slides freely along the DNA. However, the roles that Msh2–Msh6 sliding clamps play in MMR remain poorly understood. Here, using Saccharomyces cerevisiae, we created Msh2 and Msh6 Walker A nucleotide–binding site mutants that have defects in ATP binding in one or both nucleotide-binding sites of the Msh2–Msh6 heterodimer. We found that these mutations cause a complete MMR defect in vivo. The mutant Msh2–Msh6 complexes exhibited normal mispair recognition and were proficient at recruiting the MMR endonuclease Mlh1–Pms1 to mispaired DNA. At physiological (2.5 mm) ATP concentration, the mutant complexes displayed modest partial defects in supporting MMR in reconstituted Mlh1–Pms1-independent and Mlh1–Pms1-dependent MMR reactions in vitro and in activation of the Mlh1–Pms1 endonuclease and showed a more severe defect at low (0.1 mm) ATP concentration. In contrast, five of the mutants were completely defective and one was mostly defective for sliding clamp formation at high and low ATP concentrations. These findings suggest that mispair-dependent sliding clamp formation triggers binding of additional Msh2–Msh6 complexes and that further recruitment of additional downstream MMR proteins is required for signal amplification of mispair binding during MMR.
Collapse
Affiliation(s)
| | - Christopher D Putnam
- From the Ludwig Institute for Cancer Research San Diego,; Departments of Medicine and
| | - Richard D Kolodner
- From the Ludwig Institute for Cancer Research San Diego,; Cellular and Molecular Medicine,; Moores-UCSD Cancer Center, and; Institute of Genomic Medicine, University of California School of Medicine, San Diego, La Jolla, California 92093-0669.
| |
Collapse
|
35
|
Freudenreich CH. R-loops: targets for nuclease cleavage and repeat instability. Curr Genet 2018; 64:789-794. [PMID: 29327083 PMCID: PMC6039234 DOI: 10.1007/s00294-018-0806-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/03/2018] [Accepted: 01/08/2018] [Indexed: 01/09/2023]
Abstract
R-loops form when transcribed RNA remains bound to its DNA template to form a stable RNA:DNA hybrid. Stable R-loops form when the RNA is purine-rich, and are further stabilized by DNA secondary structures on the non-template strand. Interestingly, many expandable and disease-causing repeat sequences form stable R-loops, and R-loops can contribute to repeat instability. Repeat expansions are responsible for multiple neurodegenerative diseases, including Huntington's disease, myotonic dystrophy, and several types of ataxias. Recently, it was found that R-loops at an expanded CAG/CTG repeat tract cause DNA breaks as well as repeat instability (Su and Freudenreich, Proc Natl Acad Sci USA 114, E8392-E8401, 2017). Two factors were identified as causing R-loop-dependent breaks at CAG/CTG tracts: deamination of cytosines and the MutLγ (Mlh1-Mlh3) endonuclease, defining two new mechanisms for how R-loops can generate DNA breaks (Su and Freudenreich, Proc Natl Acad Sci USA 114, E8392-E8401, 2017). Following R-loop-dependent nicking, base excision repair resulted in repeat instability. These results have implications for human repeat expansion diseases and provide a paradigm for how RNA:DNA hybrids can cause genome instability at structure-forming DNA sequences. This perspective summarizes mechanisms of R-loop-induced fragility at G-rich repeats and new links between DNA breaks and repeat instability.
Collapse
Affiliation(s)
- Catherine H Freudenreich
- Department of Biology, Tufts University, Medford, MA, 02155, USA.
- Program in Genetics, Tufts University, Boston, MA, 02111, USA.
| |
Collapse
|
36
|
Carta CFL, Oliveira Alves MG, de Barros PP, Campos MS, Scholz J, Jorge AOC, Nunes FD, Almeida JD. Screening methylation of DNA repair genes in the oral mucosa of chronic smokers. Arch Oral Biol 2018; 92:83-87. [DOI: 10.1016/j.archoralbio.2018.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 04/29/2018] [Accepted: 04/30/2018] [Indexed: 10/17/2022]
|
37
|
Halabi A, Fuselier KTB, Grabczyk E. GAA•TTC repeat expansion in human cells is mediated by mismatch repair complex MutLγ and depends upon the endonuclease domain in MLH3 isoform one. Nucleic Acids Res 2018; 46:4022-4032. [PMID: 29529236 PMCID: PMC5934671 DOI: 10.1093/nar/gky143] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 02/15/2018] [Indexed: 12/12/2022] Open
Abstract
DNA repeat expansion underlies dozens of progressive neurodegenerative disorders. While the mechanisms driving repeat expansion are not fully understood, increasing evidence suggests a central role for DNA mismatch repair. The mismatch repair recognition complex MutSβ (MSH2-MSH3) that binds mismatched bases and/or insertion/deletion loops has previously been implicated in GAA•TTC, CAG•CTG and CGG•CCG repeat expansion, suggesting a shared mechanism. MutSβ has been studied in a number of models, but the contribution of subsequent steps mediated by the MutL endonuclease in this pathway is less clear. Here we show that MutLγ (MLH1-MLH3) is the MutL complex responsible for GAA•TTC repeat expansion. Lentiviral expression of shRNA targeting MutL nuclease components MLH1, PMS2, and MLH3 revealed that reduced expression of MLH1 or MLH3 reduced the repeat expansion rate in a human Friedreich ataxia cell model, while targeting PMS2 did not. Using splice-switching oligonucleotides we show that MLH3 isoform 1 is active in GAA•TTC repeat expansion while the nuclease-deficient MLH3 isoform 2 is not. MLH3 isoform switching slowed repeat expansion in both model cells and FRDA patient fibroblasts. Our work indicates a specific and active role for MutLγ in the expansion process and reveals plausible targets for disease-modifying therapies.
Collapse
Affiliation(s)
- Anasheh Halabi
- Division of Neurology, Department of Neurosciences, University of California, San Diego, CA 92103, USA
| | - Kayla T B Fuselier
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Ed Grabczyk
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
38
|
Sepulveda AR, J. Del Portillo A. Molecular Basis of Diseases of the Gastrointestinal Tract. MOLECULAR PATHOLOGY 2018:387-415. [DOI: 10.1016/b978-0-12-802761-5.00019-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
39
|
Cytosine deamination and base excision repair cause R-loop-induced CAG repeat fragility and instability in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2017; 114:E8392-E8401. [PMID: 28923949 DOI: 10.1073/pnas.1711283114] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
CAG/CTG repeats are structure-forming repetitive DNA sequences, and expansion beyond a threshold of ∼35 CAG repeats is the cause of several human diseases. Expanded CAG repeats are prone to breakage, and repair of the breaks can cause repeat contractions and expansions. In this study, we found that cotranscriptional R-loops formed at a CAG-70 repeat inserted into a yeast chromosome. R-loops were further elevated upon deletion of yeast RNaseH genes and caused repeat fragility. A significant increase in CAG repeat contractions was also observed, consistent with previous human cell studies. Deletion of yeast cytosine deaminase Fcy1 significantly decreased the rate of CAG repeat fragility and contractions in the rnh1Δrnh201Δ background, indicating that Fcy1-mediated deamination is one cause of breakage and contractions in the presence of R-loops. Furthermore, base excision repair (BER) is responsible for causing CAG repeat contractions downstream of Fcy1, but not fragility. The Rad1/XPF and Rad2/XPG nucleases were also important in protecting against contractions, but through BER rather than nucleotide excision repair. Surprisingly, the MutLγ (Mlh1/Mlh3) endonuclease caused R-loop-dependent CAG fragility, defining an alternative function for this complex. These findings provide evidence that breakage at expanded CAG repeats occurs due to R-loop formation and reveal two mechanisms for CAG repeat instability: one mediated by cytosine deamination of DNA engaged in R-loops and the other by MutLγ cleavage. Since disease-causing CAG repeats occur in transcribed regions, our results suggest that R-loop-mediated fragility is a mechanism that could cause DNA damage and repeat-length changes in human cells.
Collapse
|
40
|
Al-Sweel N, Raghavan V, Dutta A, Ajith VP, Di Vietro L, Khondakar N, Manhart CM, Surtees JA, Nishant KT, Alani E. mlh3 mutations in baker's yeast alter meiotic recombination outcomes by increasing noncrossover events genome-wide. PLoS Genet 2017; 13:e1006974. [PMID: 28827832 PMCID: PMC5578695 DOI: 10.1371/journal.pgen.1006974] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 08/31/2017] [Accepted: 08/12/2017] [Indexed: 12/11/2022] Open
Abstract
Mlh1-Mlh3 is an endonuclease hypothesized to act in meiosis to resolve double Holliday junctions into crossovers. It also plays a minor role in eukaryotic DNA mismatch repair (MMR). To understand how Mlh1-Mlh3 functions in both meiosis and MMR, we analyzed in baker’s yeast 60 new mlh3 alleles. Five alleles specifically disrupted MMR, whereas one (mlh3-32) specifically disrupted meiotic crossing over. Mlh1-mlh3 representatives for each class were purified and characterized. Both Mlh1-mlh3-32 (MMR+, crossover-) and Mlh1-mlh3-45 (MMR-, crossover+) displayed wild-type endonuclease activities in vitro. Msh2-Msh3, an MSH complex that acts with Mlh1-Mlh3 in MMR, stimulated the endonuclease activity of Mlh1-mlh3-32 but not Mlh1-mlh3-45, suggesting that Mlh1-mlh3-45 is defective in MSH interactions. Whole genome recombination maps were constructed for wild-type and MMR+ crossover-, MMR- crossover+, endonuclease defective and null mlh3 mutants in an S288c/YJM789 hybrid background. Compared to wild-type, all of the mlh3 mutants showed increases in the number of noncrossover events, consistent with recombination intermediates being resolved through alternative recombination pathways. Our observations provide a structure-function map for Mlh3 that reveals the importance of protein-protein interactions in regulating Mlh1-Mlh3’s enzymatic activity. They also illustrate how defective meiotic components can alter the fate of meiotic recombination intermediates, providing new insights for how meiotic recombination pathways are regulated. During meiosis, diploid germ cells that become eggs or sperm undergo a single round of DNA replication followed by two consecutive chromosomal divisions. The segregation of chromosomes at the first meiotic division is dependent in most organisms on at least one genetic exchange, or crossover event, between chromosome homologs. Homologs that do not receive a crossover frequently undergo nondisjunction at the first meiotic division, yielding gametes that lack chromosomes or contain additional copies. Such events have been linked to human disease and infertility. Recent studies suggest that the Mlh1-Mlh3 complex is an endonuclease that resolves recombination intermediates into crossovers. Interestingly, this complex also acts as a matchmaker in DNA mismatch repair (MMR) to remove DNA replication errors. How does one complex act in two different processes? We investigated this question by performing a mutational analysis of the baker’s yeast Mlh3 protein. Five mutations were identified that disrupted MMR but not crossing over, and one mutation disrupted crossing over while maintaining MMR. Using a combination of biochemical and genetic analyses to further characterize these mutants we illustrate the importance of protein-protein interactions for Mlh1-Mlh3’s activity. Importantly, our data illustrate how defective meiotic components can alter the outcome of meiotic recombination events. They also provide new insights for the basis of infertility syndromes.
Collapse
Affiliation(s)
- Najla Al-Sweel
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Vandana Raghavan
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Abhishek Dutta
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum, India
| | - V. P. Ajith
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum, India
| | - Luigi Di Vietro
- Department of Life Sciences and Systems Biology, University of Turin, Via Verdi, Turin, Italy
| | - Nabila Khondakar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Carol M. Manhart
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Jennifer A. Surtees
- Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - K. T. Nishant
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum, India
- Center for Computation Modelling and Simulation, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum, India
- * E-mail: (EA); (KTN)
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail: (EA); (KTN)
| |
Collapse
|
41
|
Claeys Bouuaert C, Keeney S. Distinct DNA-binding surfaces in the ATPase and linker domains of MutLγ determine its substrate specificities and exert separable functions in meiotic recombination and mismatch repair. PLoS Genet 2017; 13:e1006722. [PMID: 28505149 PMCID: PMC5448812 DOI: 10.1371/journal.pgen.1006722] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/30/2017] [Accepted: 03/29/2017] [Indexed: 11/18/2022] Open
Abstract
Mlh1-Mlh3 (MutLγ) is a mismatch repair factor with a central role in formation of meiotic crossovers, presumably through resolution of double Holliday junctions. MutLγ has DNA-binding, nuclease, and ATPase activities, but how these relate to one another and to in vivo functions are unclear. Here, we combine biochemical and genetic analyses to characterize Saccharomyces cerevisiae MutLγ. Limited proteolysis and atomic force microscopy showed that purified recombinant MutLγ undergoes ATP-driven conformational changes. In vitro, MutLγ displayed separable DNA-binding activities toward Holliday junctions (HJ) and, surprisingly, single-stranded DNA (ssDNA), which was not predicted from current models. MutLγ bound DNA cooperatively, could bind multiple substrates simultaneously, and formed higher-order complexes. FeBABE hydroxyl radical footprinting indicated that the DNA-binding interfaces of MutLγ for ssDNA and HJ substrates only partially overlap. Most contacts with HJ substrates were located in the linker regions of MutLγ, whereas ssDNA contacts mapped within linker regions as well as the N-terminal ATPase domains. Using yeast genetic assays for mismatch repair and meiotic recombination, we found that mutations within different DNA-binding surfaces exert separable effects in vivo. For example, mutations within the Mlh1 linker conferred little or no meiotic phenotype but led to mismatch repair deficiency. Interestingly, mutations in the N-terminal domain of Mlh1 caused a stronger meiotic defect than mlh1Δ, suggesting that the mutant proteins retain an activity that interferes with alternative recombination pathways. Furthermore, mlh3Δ caused more chromosome missegregation than mlh1Δ, whereas mlh1Δ but not mlh3Δ partially alleviated meiotic defects of msh5Δ mutants. These findings illustrate functional differences between Mlh1 and Mlh3 during meiosis and suggest that their absence impinges on chromosome segregation not only via reduced formation of crossovers. Taken together, our results offer insights into the structure-function relationships of the MutLγ complex and reveal unanticipated genetic relationships between components of the meiotic recombination machinery.
Collapse
Affiliation(s)
- Corentin Claeys Bouuaert
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center and Howard Hughes Medical Institute, New York, New York, United States of America
- * E-mail: (C.C.B.); (S.K.)
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center and Howard Hughes Medical Institute, New York, New York, United States of America
- * E-mail: (C.C.B.); (S.K.)
| |
Collapse
|
42
|
The mismatch repair and meiotic recombination endonuclease Mlh1-Mlh3 is activated by polymer formation and can cleave DNA substrates in trans. PLoS Biol 2017; 15:e2001164. [PMID: 28453523 PMCID: PMC5409509 DOI: 10.1371/journal.pbio.2001164] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 03/31/2017] [Indexed: 01/21/2023] Open
Abstract
Crossing over between homologs is initiated in meiotic prophase by the formation of DNA double-strand breaks that occur throughout the genome. In the major interference-responsive crossover pathway in baker’s yeast, these breaks are resected to form 3' single-strand tails that participate in a homology search, ultimately forming double Holliday junctions (dHJs) that primarily include both homologs. These dHJs are resolved by endonuclease activity to form exclusively crossovers, which are critical for proper homolog segregation in Meiosis I. Recent genetic, biochemical, and molecular studies in yeast are consistent with the hypothesis of Mlh1-Mlh3 DNA mismatch repair complex acting as the major endonuclease activity that resolves dHJs into crossovers. However, the mechanism by which the Mlh1-Mlh3 endonuclease is activated is unknown. Here, we provide evidence that Mlh1-Mlh3 does not behave like a structure-specific endonuclease but forms polymers required to generate nicks in DNA. This conclusion is supported by DNA binding studies performed with different-sized substrates that contain or lack polymerization barriers and endonuclease assays performed with varying ratios of endonuclease-deficient and endonuclease-proficient Mlh1-Mlh3. In addition, Mlh1-Mlh3 can generate religatable double-strand breaks and form an active nucleoprotein complex that can nick DNA substrates in trans. Together these observations argue that Mlh1-Mlh3 may not act like a canonical, RuvC-like Holliday junction resolvase and support a novel model in which Mlh1-Mlh3 is loaded onto DNA to form an activated polymer that cleaves DNA. In sexually reproducing organisms, crossing over between homologous chromosomes in meiosis creates physical linkages required to segregate chromosomes into haploid gametes. In baker’s yeast, which utilizes meiotic recombination pathways conserved in mice and humans, the majority of meiotic crossovers are initiated through the formation of a branched DNA intermediate, which is stabilized by the Msh4-Msh5 complex. This DNA intermediate is further processed to form a structure (a double Holliday junction), which requires the endonuclease activity of the Mlh1-Mlh3 DNA mismatch repair factor to be resolved exclusively into a crossover product. Current meiotic recombination models invoke the use of structure-specific enzymes that symmetrically cleave single Holliday junctions. In this study, we provide evidence that the yeast Mlh1-Mlh3 complex is unlikely to act as a structure-specific enzyme. Furthermore, we showed that Mlh1-Mlh3’s endonuclease activity is dependent upon its ability to form a polymer on DNA and suggest that it is capable of cleaving DNA that is captured in an active complex. Together, our biochemical observations support a novel model involving regulated polymerization of Mlh1-Mlh3 for its cleavage function, potentially in meiotic crossovers or in mismatch repair.
Collapse
|
43
|
Sinha S, Li F, Villarreal D, Shim JH, Yoon S, Myung K, Shim EY, Lee SE. Microhomology-mediated end joining induces hypermutagenesis at breakpoint junctions. PLoS Genet 2017; 13:e1006714. [PMID: 28419093 PMCID: PMC5413072 DOI: 10.1371/journal.pgen.1006714] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 05/02/2017] [Accepted: 03/24/2017] [Indexed: 01/12/2023] Open
Abstract
Microhomology (MH) flanking a DNA double-strand break (DSB) drives chromosomal rearrangements but its role in mutagenesis has not yet been analyzed. Here we determined the mutation frequency of a URA3 reporter gene placed at multiple locations distal to a DSB, which is flanked by different sizes (15-, 18-, or 203-bp) of direct repeat sequences for efficient repair in budding yeast. Induction of a DSB accumulates mutations in the reporter gene situated up to 14-kb distal to the 15-bp MH, but more modestly to those carrying 18- and 203-bp or no homology. Increased mutagenesis in MH-mediated end joining (MMEJ) appears coupled to its slower repair kinetics and the extensive resection occurring at flanking DNA. Chromosomal translocations via MMEJ also elevate mutagenesis of the flanking DNA sequences 7.1 kb distal to the breakpoint junction as compared to those without MH. The results suggest that MMEJ could destabilize genomes by triggering structural alterations and increasing mutation burden. Recurrent chromosome translocations juxtapose chromosomal fragments and alter expression of tumor suppressors or oncogenes at or near breakpoint junctions to develop distinct types of leukemias and childhood sarcomas. The prevalence of 2–20 bp of imperfect overlapping sequences (a.k.a. microhomology [MH]) at the breakpoint junctions suggests the type of repair events joining two chromosomal fragments and the formation of oncogenic chromosomal translocations. In this study, we discovered that MH-mediated end joining (MMEJ) operates with kinetics markedly slower than other repair options. The slower kinetics leads to extensive resection and drives hypermutagenesis at sequences flanking the break site. We also found that MH-mediated chromosomal translocations accumulate mutations at sequences up to several kilobases distal to the breakpoint junction as compared to those without MH. Our results revealed that MH contributes to genetic instability by facilitating chromosomal translocations and increasing mutational load at the sequences flanking the breakpoints.
Collapse
Affiliation(s)
- Supriya Sinha
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Fuyang Li
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Diana Villarreal
- Children's Hospital of San Antonio, Baylor College of Medicine, San Antonio, TX, United States of America
| | - Jae Hoon Shim
- Korea Institute of Radiological & Medical Sciences (KIRAMS), 75 Nowon-ro, Nowon-gu, Seoul, Republic of Korea
| | - Suhyeon Yoon
- Department of Biological Science, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44818, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44818, Republic of Korea
- Department of Biological Science, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44818, Republic of Korea
| | - Eun Yong Shim
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Sang Eun Lee
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
- * E-mail:
| |
Collapse
|
44
|
Bowen N, Kolodner RD. Reconstitution of Saccharomyces cerevisiae DNA polymerase ε-dependent mismatch repair with purified proteins. Proc Natl Acad Sci U S A 2017; 114:3607-3612. [PMID: 28265089 PMCID: PMC5389320 DOI: 10.1073/pnas.1701753114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mammalian and Saccharomyces cerevisiae mismatch repair (MMR) proteins catalyze two MMR reactions in vitro. In one, mispair binding by either the MutS homolog 2 (Msh2)-MutS homolog 6 (Msh6) or the Msh2-MutS homolog 3 (Msh3) stimulates 5' to 3' excision by exonuclease 1 (Exo1) from a single-strand break 5' to the mispair, excising the mispair. In the other, Msh2-Msh6 or Msh2-Msh3 activate the MutL homolog 1 (Mlh1)-postmeiotic segregation 1 (Pms1) endonuclease in the presence of a mispair and a nick 3' to the mispair, to make nicks 5' to the mispair, allowing Exo1 to excise the mispair. DNA polymerase δ (Pol δ) is thought to catalyze DNA synthesis to fill in the gaps resulting from mispair excision. However, colocalization of the S. cerevisiae mispair recognition proteins with the replicative DNA polymerases during DNA replication has suggested that DNA polymerase ε (Pol ε) may also play a role in MMR. Here we describe the reconstitution of Pol ε-dependent MMR using S. cerevisiae proteins. A mixture of Msh2-Msh6 (or Msh2-Msh3), Exo1, RPA, RFC-Δ1N, PCNA, and Pol ε was found to catalyze both short-patch and long-patch 5' nick-directed MMR of a substrate containing a +1 (+T) mispair. When the substrate contained a nick 3' to the mispair, a mixture of Msh2-Msh6 (or Msh2-Msh3), Exo1, RPA, RFC-Δ1N, PCNA, and Pol ε was found to catalyze an MMR reaction that required Mlh1-Pms1. These results demonstrate that Pol ε can act in eukaryotic MMR in vitro.
Collapse
Affiliation(s)
- Nikki Bowen
- Ludwig Institute for Cancer Research, University of California School of Medicine, La Jolla, CA 92093-0669
| | - Richard D Kolodner
- Ludwig Institute for Cancer Research, University of California School of Medicine, La Jolla, CA 92093-0669;
- Department of Cellular and Molecular Medicine, University of California School of Medicine, La Jolla, CA 92093-0669
- Moores-University of California San Diego Cancer Center, University of California School of Medicine, La Jolla, CA 92093-0669
- Institute of Genomic Medicine, University of California School of Medicine, La Jolla, CA 92093-0669
| |
Collapse
|
45
|
Microevolution of Serial Clinical Isolates of Cryptococcus neoformans var. grubii and C. gattii. mBio 2017; 8:mBio.00166-17. [PMID: 28270580 PMCID: PMC5340869 DOI: 10.1128/mbio.00166-17] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The pathogenic species of Cryptococcus are a major cause of mortality owing to severe infections in immunocompromised as well as immunocompetent individuals. Although antifungal treatment is usually effective, many patients relapse after treatment, and in such cases, comparative analyses of the genomes of incident and relapse isolates may reveal evidence of determinative, microevolutionary changes within the host. Here, we analyzed serial isolates cultured from cerebrospinal fluid specimens of 18 South African patients with recurrent cryptococcal meningitis. The time between collection of the incident isolates and collection of the relapse isolates ranged from 124 days to 290 days, and the analyses revealed that, during this period within the patients, the isolates underwent several genetic and phenotypic changes. Considering the vast genetic diversity of cryptococcal isolates in sub-Saharan Africa, it was not surprising to find that the relapse isolates had acquired different genetic and correlative phenotypic changes. They exhibited various mechanisms for enhancing virulence, such as growth at 39°C, adaptation to stress, and capsule production; a remarkable amplification of ERG11 at the native and unlinked locus may provide stable resistance to fluconazole. Our data provide a deeper understanding of the microevolution of Cryptococcus species under pressure from antifungal chemotherapy and host immune responses. This investigation clearly suggests a promising strategy to identify novel targets for improved diagnosis, therapy, and prognosis. Opportunistic infections caused by species of the pathogenic yeast Cryptococcus lead to chronic meningoencephalitis and continue to ravage thousands of patients with HIV/AIDS. Despite receiving antifungal treatment, over 10% of patients develop recurrent disease. In this study, we collected isolates of Cryptococcus from cerebrospinal fluid specimens of 18 patients at the time of their diagnosis and when they relapsed several months later. We then sequenced and compared the genomic DNAs of each pair of initial and relapse isolates. We also tested the isolates for several key properties related to cryptococcal virulence as well as for their susceptibility to the antifungal drug fluconazole. These analyses revealed that the relapsing isolates manifested multiple genetic and chromosomal changes that affected a variety of genes implicated in the pathogenicity of Cryptococcus or resistance to fluconazole. This application of comparative genomics to serial clinical isolates provides a blueprint for identifying the mechanisms whereby pathogenic microbes adapt within patients to prolong disease.
Collapse
|
46
|
Schmidt TT, Hombauer H. Visualization of mismatch repair complexes using fluorescence microscopy. DNA Repair (Amst) 2016; 38:58-67. [DOI: 10.1016/j.dnarep.2015.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/30/2015] [Accepted: 11/30/2015] [Indexed: 11/15/2022]
|
47
|
Kolodner RD. A personal historical view of DNA mismatch repair with an emphasis on eukaryotic DNA mismatch repair. DNA Repair (Amst) 2016; 38:3-13. [PMID: 26698650 PMCID: PMC4740188 DOI: 10.1016/j.dnarep.2015.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 10/30/2015] [Accepted: 11/30/2015] [Indexed: 01/12/2023]
Affiliation(s)
- Richard D Kolodner
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, Moores-UCSD Cancer Center and Institute for Molecular Medicine, University of CA, San Diego School of Medicine, La Jolla, CA 92093-0669, United States.
| |
Collapse
|
48
|
Kadyrova LY, Kadyrov FA. Endonuclease activities of MutLα and its homologs in DNA mismatch repair. DNA Repair (Amst) 2016; 38:42-49. [PMID: 26719141 PMCID: PMC4820397 DOI: 10.1016/j.dnarep.2015.11.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 08/26/2015] [Accepted: 11/30/2015] [Indexed: 12/28/2022]
Abstract
MutLα is a key component of the DNA mismatch repair system in eukaryotes. The DNA mismatch repair system has several genetic stabilization functions. Of these functions, DNA mismatch repair is the major one. The loss of MutLα abolishes DNA mismatch repair, thereby predisposing humans to cancer. MutLα has an endonuclease activity that is required for DNA mismatch repair. The endonuclease activity of MutLα depends on the DQHA(X)2E(X)4E motif which is a part of the active site of the nuclease. This motif is also present in many bacterial MutL and eukaryotic MutLγ proteins, DNA mismatch repair system factors that are homologous to MutLα. Recent studies have shown that yeast MutLγ and several MutL proteins containing the DQHA(X)2E(X)4E motif possess endonuclease activities. Here, we review the endonuclease activities of MutLα and its homologs in the context of DNA mismatch repair.
Collapse
Affiliation(s)
- Lyudmila Y Kadyrova
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Farid A Kadyrov
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA.
| |
Collapse
|
49
|
Manhart CM, Alani E. Roles for mismatch repair family proteins in promoting meiotic crossing over. DNA Repair (Amst) 2016; 38:84-93. [PMID: 26686657 PMCID: PMC4740264 DOI: 10.1016/j.dnarep.2015.11.024] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 08/14/2015] [Accepted: 11/30/2015] [Indexed: 12/13/2022]
Abstract
The mismatch repair (MMR) family complexes Msh4-Msh5 and Mlh1-Mlh3 act with Exo1 and Sgs1-Top3-Rmi1 in a meiotic double strand break repair pathway that results in the asymmetric cleavage of double Holliday junctions (dHJ) to form crossovers. This review discusses how meiotic roles for Msh4-Msh5 and Mlh1-Mlh3 do not fit paradigms established for post-replicative MMR. We also outline models used to explain how these factors promote the formation of meiotic crossovers required for the accurate segregation of chromosome homologs during the Meiosis I division.
Collapse
Affiliation(s)
- Carol M Manhart
- Department of Molecular Biology and Genetics, Cornell University, 457 Biotechnology Building, Ithaca, NY 14853-2703, USA
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, 457 Biotechnology Building, Ithaca, NY 14853-2703, USA.
| |
Collapse
|
50
|
An intact Pms2 ATPase domain is not essential for male fertility. DNA Repair (Amst) 2015; 39:46-51. [PMID: 26753533 DOI: 10.1016/j.dnarep.2015.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 01/08/2023]
Abstract
The DNA mismatch repair (MMR) machinery in mammals plays critical roles in both mutation avoidance and spermatogenesis. Meiotic analysis of knockout mice of two different MMR genes, Mlh1 and Mlh3, revealed both male and female infertility associated with a defect in meiotic crossing over. In contrast, another MMR gene knockout, Pms2 (Pms2(ko/ko)), which contained a deletion of a portion of the ATPase domain, produced animals that were male sterile but female fertile. However, the meiotic phenotype of Pms2(ko/ko) males was less clear-cut than for Mlh1- or Mlh3-deficient meiosis. More recently, we generated a different Pms2 mutant allele (Pms2(cre)), which results in deletion of the same portion of the ATPase domain. Surprisingly, Pms2(cre/cre) male mice were completely fertile, suggesting that the ATPase domain of Pms2 is not required for male fertility. To explore the difference in male fertility, we examined the Pms2 RNA and found that alternative splicing of the Pms2(cre) allele results in a predicted Pms2 containing the C-terminus, which contains the Mlh1-interaction domain, a possible candidate for stabilizing Mlh1 levels. To study further the basis of male fertility, we examined Mlh1 levels in testes and found that whereas Pms2 loss in Pms2(ko/ko) mice results in severely reduced levels of Mlh1 expression in the testes, Mlh1 levels in Pms2(cre/cre) testes were reduced to a lesser extent. Thus, we propose that a primary function of Pms2 during spermatogenesis is to stabilize Mlh1 levels prior to its critical crossing over function with Mlh3.
Collapse
|