1
|
Storz G. Unexpected Richness of the Bacterial Small RNA World. J Mol Biol 2025; 437:169045. [PMID: 40015371 PMCID: PMC12021563 DOI: 10.1016/j.jmb.2025.169045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/01/2025]
Abstract
I stumbled onto a small RNA (sRNA) induced by oxidative stress when I did the "wrong" northern blot experiment as a second-year graduate student. I was so intrigued by the very strong induction of the 109 nt OxyS RNA that I kept working to elucidate its function while carrying out other projects. Over a decade after developing the first OxyS northern, I was able to document that the RNA acts as a regulator. This finding together with concurrent observations about the 91 nt DsrA RNA by Susan Gottesman's group led to the realization that regulatory sRNAs were far more prevalent in bacteria than initially imagined. I do not think we could have anticipated how integral sRNAs are to regulatory networks in bacteria and how much we would learn about the mechanisms by which these sRNAs regulate gene expression, most commonly through limited base pairing with target mRNAs, chaperoned by the Hfq protein. Our work was greatly facilitated by the collegiality in the bacterial sRNA field and the regular discussions and collaborations between my group and the Gottesman group. Susan and I are both writing overviews but have agreed to emphasize different aspects of the investigation into bacterial sRNAs with the intent that our articles are read in parallel.
Collapse
Affiliation(s)
- Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Gottesman S. Bacterial Regulatory Circuits are Linked and Extended by Small RNAs. J Mol Biol 2025; 437:169059. [PMID: 40043836 PMCID: PMC12021557 DOI: 10.1016/j.jmb.2025.169059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/16/2025]
Abstract
I was lucky to start my research career as the molecular biology revolution was taking hold, providing a constantly increasing set of tools and questions to investigate. Starting from a fascination with bacteria and their ability to adapt to different conditions, I've investigated post-translational mechanisms and their role in the ability of E. coli to respond to stress. My research career has been primarily at the National Institutes of Health, where I run a group within the Laboratory of Molecular Biology, NCI and hold the title of NIH Distinguished Investigator. Our lab has been interested in both energy-dependent proteolysis, discussed very briefly here, and small regulatory RNAs (sRNAs). The major group of such sRNAs act by pairing with target mRNAs with the aid of the RNA chaperone Hfq, mediating both positive and negative regulation of translation and mRNA stability. Both in our own lab and in a continuing and highly productive collaboration with the laboratory of Gisela (Gigi) Storz, we have used global approaches to identify novel sRNAs, identified how many of them are regulated, both at the level of transcription and stability, and worked on understanding the role of these sRNAs in regulatory networks. Our continued work explores regulators of sRNA and Hfq function. Here, Gigi and I have split summaries of our findings, and hope that our two chapters will be read together.
Collapse
|
3
|
Velez M, Arluison V. Does the Hfq Protein Contribute to RNA Cargo Translocation into Bacterial Outer Membrane Vesicles? Pathogens 2025; 14:399. [PMID: 40333199 PMCID: PMC12030562 DOI: 10.3390/pathogens14040399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 05/09/2025] Open
Abstract
Gram-negative bacteria release outer membrane vesicles (OMVs) that deliver various molecules, including virulence factors, to interact with their host. Recent studies have suggested that OMVs may also serve as carriers for RNAs, particularly small regulatory noncoding RNAs (sRNAs). For these RNAs to function effectively, they typically require a protein cofactor, Hfq, known as an RNA chaperone. In previous work, using molecular imaging, Circular Dichroism CD, and InfraRed FTIR spectroscopies, we demonstrated that Hfq interacts with the bacterial inner membrane and forms pores, suggesting a possible role in translocating RNA from the cytoplasm to periplasm and then to OMVs. In this study, we expand on our previous findings and provide evidence that RNA molecules bind to the Escherichia coli inner membrane in an Hfq-dependent manner. Moreover, we show that the lipid nature, in particular the presence of a cardiolipin-rich domain, is crucial for this interaction. These results reveal a new aspect of RNA translocation through the inner membrane, for further packaging in OMVs, and underscore the importance of Hfq in this mechanism.
Collapse
Affiliation(s)
- Marisela Velez
- Instituto de Catálisis y Petroleoquímica (CSIC), c/Marie Curie 2, Cantoblanco, 28049 Madrid, Spain
| | - Véronique Arluison
- Laboratoire Léon Brillouin, UMR 12 CEA/CNRS, Site de Saclay, 91191 Gif-sur-Yvette, France
- Université Paris Cité, UFR SDV, 35 Rue Hélène Brion, 75013 Paris, France
| |
Collapse
|
4
|
Chen M, Cui R, Hong S, Zhu W, Yang Q, Li J, Nie Z, Zhang X, Ye Y, Xue Y, Wang D, Hong Y, Drlica K, Niu J, Zhao X. Broad-spectrum tolerance to disinfectant-mediated bacterial killing due to mutation of the PheS aminoacyl tRNA synthetase. Proc Natl Acad Sci U S A 2025; 122:e2412871122. [PMID: 39899725 PMCID: PMC11831201 DOI: 10.1073/pnas.2412871122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 12/17/2024] [Indexed: 02/05/2025] Open
Abstract
Disinfectants are essential tools for controlling infectious diseases and maintaining sterile conditions in many medical and food-industry settings. Recent work revealed that a deficiency in the carbohydrate phosphotransferase system (PTS) confers pan-tolerance to killing by diverse disinfectant types through its interaction with the cAMP-CRP regulatory network. The present work characterized a pan-tolerance mutant obtained by enrichment using phenol as a lethal probe and an Escherichia coli PTS null mutant as a parental strain. The resulting super-pan-tolerant mutant, which harbored an F158C substitution in PheS, inhibited bacterial killing by multiple disinfectant classes with surprisingly little effect on antimicrobial lethality. The PheS substitution, which was expected to lower substrate recognition efficiency and result in deacylated tRNAphe occupying the ribosomal A site, activated relA expression and synthesis of ppGpp, even in the absence of disinfectant exposure. ppGpp, along with DksA, increased RpoS function by activating promoters of dsrA and iraP, two genes whose products increase the expression and stability of RpoS. Subsequently, RpoS upregulated the expression of genes encoding a universal stress protein (UspB) and an oxidative stress peroxidase (KatE), which preconditioned bacteria to better survive a variety of disinfectants. Disinfectant-mediated accumulation of reactive oxygen species (ROS) and bacterial killing were abolished/reduced by exogenous dimethyl sulfoxide and by a PheS F158C substitution up-regulating genes encoding ROS-detoxifying enzymes (katE, sodA, oxyR, ahpC). These data identify a pheS mutation-triggered, ppGpp-stimulated transcriptional regulatory cascade that negates biocide-mediated lethality, thereby tying the stringent response to protection from ROS-mediated biocide lethality.
Collapse
Affiliation(s)
- Miaomiao Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
| | - Runbo Cui
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
| | - Shouqiang Hong
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
| | - Weiwei Zhu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
| | - Qiong Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
| | - Jiahao Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
| | - Zihan Nie
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, Fujian Province361102, China
| | - Xue Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
| | - Yanghui Ye
- Minister of Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu Province215123, China
| | - Yunxin Xue
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
| | - Dai Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
| | - Yuzhi Hong
- Minister of Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu Province215123, China
| | - Karl Drlica
- Public Health Research Institute and Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ07103
| | - Jianjun Niu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, Fujian Province361102, China
| | - Xilin Zhao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
| |
Collapse
|
5
|
Solchaga Flores E, Jagodnik J, Quenette F, Korepanov A, Guillier M. Control of iron acquisition by multiple small RNAs unravels a new role for transcriptional terminator loops in gene regulation. Nucleic Acids Res 2024; 52:13775-13791. [PMID: 39611574 PMCID: PMC11979758 DOI: 10.1093/nar/gkae1131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 10/20/2024] [Accepted: 10/31/2024] [Indexed: 11/30/2024] Open
Abstract
Small RNAs (sRNAs) controlling gene expression by imperfect base-pairing with mRNA(s) are widespread in bacteria. They regulate multiple genes, including genes involved in iron homeostasis, through a wide variety of mechanisms. We previously showed that OmrA and OmrB sRNAs repress the synthesis of the Escherichia coli FepA receptor for iron-enterobactin complexes. We now report that five additional sRNAs, namely RprA, RybB, ArrS, RseX and SdsR, responding to different environmental cues, also repress fepA, independently of one another. While RprA follows the canonical mechanism of pairing with the translation initiation region, repression by ArrS or RseX requires a secondary structure far upstream within the long fepA 5' untranslated region. We also demonstrate a dual action of SdsR, whose 5'-part pairs with the fepA translation initiation region while its 3'-end behaves like ArrS or RseX. Strikingly, mutation analysis shows a key role for the loops of these sRNAs' intrinsic terminators in the regulation. Furthermore, regulation depends on both the Hfq chaperone and the RNase E endonuclease. Overall, our data strongly suggest that FepA levels must be tightly controlled under a variety of conditions and highlight the diversity of mechanisms that underly the regulation of gene expression by sRNAs in bacteria.
Collapse
Affiliation(s)
- Eugenio Solchaga Flores
- Expression Génétique Microbienne, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Jonathan Jagodnik
- Expression Génétique Microbienne, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Fanny Quenette
- Expression Génétique Microbienne, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Alexey Korepanov
- Expression Génétique Microbienne, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Maude Guillier
- Expression Génétique Microbienne, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| |
Collapse
|
6
|
Zamba-Campero M, Soliman D, Yu H, Lasseter AG, Chang YY, Silberman JL, Liu J, Aravind L, Jewett MW, Storz G, Adams PP. Broadly conserved FlgV controls flagellar assembly and Borrelia burgdorferi dissemination in mice. Nat Commun 2024; 15:10417. [PMID: 39614093 PMCID: PMC11607428 DOI: 10.1038/s41467-024-54806-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024] Open
Abstract
Flagella propel pathogens through their environments, yet are expensive to synthesize and are immunogenic. Thus, complex hierarchical regulatory networks control flagellar gene expression. Spirochetes are highly motile bacteria, but peculiarly, the archetypal flagellar regulator σ28 is absent in the Lyme spirochete Borrelia burgdorferi. Here, we show that gene bb0268 (flgV) in B. burgdorferi, previously and incorrectly annotated to encode the RNA-binding protein Hfq, is instead a structural flagellar component that modulates flagellar assembly. The flgV gene is broadly conserved in the flagellar superoperon alongside σ28 in many Spirochaetae, Firmicutes and other phyla, with distant homologs in Epsilonproteobacteria. We find that B. burgdorferi FlgV is localized within flagellar basal bodies, and strains lacking flgV produce fewer and shorter flagellar filaments and are defective in cell division and motility. During the enzootic cycle, flgV-deficient B. burgdorferi survive and replicate in Ixodes ticks but are attenuated for infection and dissemination in mice. Our work defines infection timepoints when spirochete motility is most crucial and implicates FlgV as a broadly distributed structural flagellar component that modulates flagellar assembly.
Collapse
Affiliation(s)
- Maxime Zamba-Campero
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Daniel Soliman
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Huaxin Yu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, 06536, USA
- Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Amanda G Lasseter
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, 32827, USA
| | - Yuen-Yan Chang
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Julia L Silberman
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, 06536, USA
- Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - L Aravind
- Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Mollie W Jewett
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, 32827, USA
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Philip P Adams
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, 32827, USA.
- Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD, 20892, USA.
- Independent Research Scholar Program, Intramural Research Program, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
Ng Kwan Lim E, Grüll M, Larabi N, Lalaouna D, Massé E. Coordination of cell division and chromosome segregation by iron and a sRNA in Escherichia coli. Front Microbiol 2024; 15:1493811. [PMID: 39583544 PMCID: PMC11584013 DOI: 10.3389/fmicb.2024.1493811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/07/2024] [Indexed: 11/26/2024] Open
Abstract
Iron is a vital metal ion frequently present as a cofactor in metabolic enzymes involved in central carbon metabolism, respiratory chain, and DNA synthesis. Notably, iron starvation was previously shown to inhibit cell division, although the mechanism underlying this observation remained obscure. In bacteria, the sRNA RyhB has been intensively characterized to regulate genes involved in iron metabolism during iron starvation. While using the screening tool MAPS for new RyhB targets, we found that the mRNA zapB, a factor coordinating chromosome segregation and cell division (cytokinesis), was significantly enriched in association with RyhB. To confirm the interaction between RyhB and zapB mRNA, we conducted both in vitro and in vivo experiments, which showed that RyhB represses zapB translation by binding at two distinct sites. Microscopy and flow cytometry assays revealed that, in the absence of RyhB, cells become shorter and display impaired chromosome segregation during iron starvation. We hypothesized that RyhB might suppress ZapB expression and reduce cell division during iron starvation. Moreover, we observed that deleting zapB gene completely rescued the slow growth phenotype observed in ryhB mutant during strict iron starvation. Altogether, these results suggest that during growth in the absence of iron, RyhB sRNA downregulates zapB mRNA, which leads to longer cells containing extra chromosomes, potentially to optimize survival. Thus, the RyhB-zapB interaction demonstrates intricate regulatory mechanisms between cell division and chromosome segregation depending on iron availability in E. coli.
Collapse
Affiliation(s)
| | | | | | | | - Eric Massé
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
8
|
Ekdahl AM, Julien T, Suraj S, Kribelbauer J, Tavazoie S, Freddolino PL, Contreras LM. Multiscale regulation of nutrient stress responses in Escherichia coli from chromatin structure to small regulatory RNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599902. [PMID: 38979244 PMCID: PMC11230228 DOI: 10.1101/2024.06.20.599902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Recent research has indicated the presence of heterochromatin-like regions of extended protein occupancy and transcriptional silencing of bacterial genomes. We utilized an integrative approach to track chromatin structure and transcription in E. coli K-12 across a wide range of nutrient conditions. In the process, we identified multiple loci which act similarly to facultative heterochromatin in eukaryotes, normally silenced but permitting expression of genes under specific conditions. We also found a strong enrichment of small regulatory RNAs (sRNAs) among the set of differentially expressed transcripts during nutrient stress. Using a newly developed bioinformatic pipeline, the transcription factors regulating sRNA expression were bioinformatically predicted, with experimental follow-up revealing novel relationships for 36 sRNA-transcription factors candidates. Direct regulation of sRNA expression was confirmed by mutational analysis for five sRNAs of metabolic interest: IsrB, CsrB and CsrC, GcvB, and GadY. Our integrative analysis thus reveals additional layers of complexity in the nutrient stress response in E. coli and provides a framework for revealing similar poorly understood regulatory logic in other organisms.
Collapse
Affiliation(s)
- Alyssa M Ekdahl
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Tatiana Julien
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Sahana Suraj
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Judith Kribelbauer
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA
| | - Saeed Tavazoie
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA
| | - P Lydia Freddolino
- Department of Biological Chemistry and Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
9
|
Vogt LN, Panis G, Schäpers A, Peschek N, Huber M, Papenfort K, Viollier PH, Fröhlich KS. Genome-wide profiling of Hfq-bound RNAs reveals the iron-responsive small RNA RusT in Caulobacter crescentus. mBio 2024; 15:e0315323. [PMID: 38511926 PMCID: PMC11005374 DOI: 10.1128/mbio.03153-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
The alphaproteobacterium Caulobacter crescentus thrives in oligotrophic environments and is able to optimally exploit minimal resources by entertaining an intricate network of gene expression control mechanisms. Numerous transcriptional activators and repressors have been reported to contribute to these processes, but only few studies have focused on regulation at the post-transcriptional level in C. crescentus. Small RNAs (sRNAs) are a prominent class of regulators of bacterial gene expression, and most sRNAs characterized today engage in direct base-pairing interactions to modulate the translation and/or stability of target mRNAs. In many cases, the ubiquitous RNA chaperone, Hfq, contributes to the establishment of RNA-RNA interactions. Although the deletion of the hfq gene is associated with a severe loss of fitness in C. crescentus, the RNA ligands of the chaperone have remained largely unexplored. Here we report on the identification of coding and non-coding transcripts associated with Hfq in C. crescentus and demonstrate Hfq-dependent post-transcriptional regulation in this organism. We show that the Hfq-bound sRNA RusT is transcriptionally controlled by the NtrYX two-component system and induced in response to iron starvation. By combining RusT pulse expression with whole-genome transcriptome analysis, we determine 16 candidate target transcripts that are deregulated, many of which encode outer membrane transporters. We hence suggest RusT to support remodeling of the C. crescentus cell surface when iron supplies are limited.IMPORTANCEThe conserved RNA-binding protein Hfq contributes significantly to the adaptation of bacteria to different environmental conditions. Hfq not only stabilizes associated sRNAs but also promotes inter-molecular base-pairing interactions with target transcripts. Hfq plays a pivotal role for growth and survival, controlling central metabolism and cell wall synthesis in the oligotroph Caulobacter crescentus. However, direct evidence for Hfq-dependent post-transcriptional regulation and potential oligotrophy in C. crescentus has been lacking. Here, we identified sRNAs and mRNAs associated with Hfq in vivo, and demonstrated the requirement of Hfq for sRNA-mediated regulation, particularly of outer membrane transporters in C. crescentus.
Collapse
Affiliation(s)
- Laura N. Vogt
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
- Department of Biology I, Microbiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Gaël Panis
- Department of Microbiology and Molecular Medicine, Faculty of Medicine/Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Anna Schäpers
- Department of Biology I, Microbiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Nikolai Peschek
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
- Department of Biology I, Microbiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Michaela Huber
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
- Department of Biology I, Microbiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kai Papenfort
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
- Department of Biology I, Microbiology, Ludwig-Maximilians-University Munich, Munich, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany
| | - Patrick H. Viollier
- Department of Microbiology and Molecular Medicine, Faculty of Medicine/Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Kathrin S. Fröhlich
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
- Department of Biology I, Microbiology, Ludwig-Maximilians-University Munich, Munich, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
10
|
Ponath F, Zhu Y, Vogel J. Transcriptome fine-mapping in Fusobacterium nucleatum reveals FoxJ, a new σ E-dependent small RNA with unusual mRNA activation activity. mBio 2024; 15:e0353623. [PMID: 38436569 PMCID: PMC11005410 DOI: 10.1128/mbio.03536-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 03/05/2024] Open
Abstract
The oral commensal Fusobacterium nucleatum can spread to extra-oral sites, where it is associated with diverse pathologies, including pre-term birth and cancer. Due to the evolutionary distance of F. nucleatum to other model bacteria, we lack a deeper understanding of the RNA regulatory networks that allow this bacterium to adapt to its various niches. As a first step in that direction, we recently showed that F. nucleatum harbors a global stress response governed by the extracytoplasmic function sigma factor, σE, which displays a striking functional conservation with Proteobacteria and includes a noncoding arm in the form of a regulatory small RNA (sRNA), FoxI. To search for putative additional σE-dependent sRNAs, we comprehensively mapped the 5' and 3' ends of transcripts in the model strain ATCC 23726. This enabled the discovery of FoxJ, a ~156-nucleotide sRNA previously misannotated as the 5' untranslated region (UTR) of ylmH. FoxJ is tightly controlled by σE and activated by the same stress conditions as is FoxI. Both sRNAs act as mRNA repressors of the abundant porin FomA, but FoxJ also regulates genes that are distinct from the target suite of FoxI. Moreover, FoxJ differs from other σE-dependent sRNAs in that it also positively regulates genes at the post-transcriptional level. We provide preliminary evidence for a new mode of sRNA-mediated mRNA activation, which involves the targeting of intra-operonic terminators. Overall, our study provides an important resource through the comprehensive annotation of 5' and 3' UTRs in F. nucleatum and expands our understanding of the σE response in this evolutionarily distant bacterium.IMPORTANCEThe oral microbe Fusobacterium nucleatum can colonize secondary sites, including cancer tissue, and likely deploys complex regulatory systems to adapt to these new environments. These systems are largely unknown, partly due to the phylogenetic distance of F. nucleatum to other model organisms. Previously, we identified a global stress response mediated by σE that displays functional conservation with the envelope stress response in Proteobacteria, comprising a coding and noncoding regulatory arm. Through global identification of transcriptional start and stop sites, we uncovered the small RNA (sRNA) FoxJ as a novel component of the noncoding arm of the σE response in F. nucleatum. Together with its companion sRNA FoxI, FoxJ post-transcriptionally modulates the synthesis of envelope proteins, revealing a conserved function for σE-dependent sRNAs between Fusobacteriota and Proteobacteria. Moreover, FoxJ activates the gene expression for several targets, which is a mode of regulation previously unseen in the noncoding arm of the σE response.
Collapse
Affiliation(s)
- Falk Ponath
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Yan Zhu
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- RNA Biology Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| |
Collapse
|
11
|
Snoeck S, Guidi C, De Mey M. "Metabolic burden" explained: stress symptoms and its related responses induced by (over)expression of (heterologous) proteins in Escherichia coli. Microb Cell Fact 2024; 23:96. [PMID: 38555441 PMCID: PMC10981312 DOI: 10.1186/s12934-024-02370-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Engineering bacterial strains to redirect the metabolism towards the production of a specific product has enabled the development of industrial biotechnology. However, rewiring the metabolism can have severe implications for a microorganism, rendering cells with stress symptoms such as a decreased growth rate, impaired protein synthesis, genetic instability and an aberrant cell size. On an industrial scale, this is reflected in processes that are not economically viable. MAIN TEXT In literature, most stress symptoms are attributed to "metabolic burden", however the actual triggers and stress mechanisms involved are poorly understood. Therefore, in this literature review, we aimed to get a better insight in how metabolic engineering affects Escherichia coli and link the observed stress symptoms to its cause. Understanding the possible implications that chosen engineering strategies have, will help to guide the reader towards optimising the envisioned process more efficiently. CONCLUSION This review addresses the gap in literature and discusses the triggers and effects of stress mechanisms that can be activated when (over)expressing (heterologous) proteins in Escherichia coli. It uncovers that the activation of the different stress mechanisms is complex and that many are interconnected. The reader is shown that care has to be taken when (over)expressing (heterologous) proteins as the cell's metabolism is tightly regulated.
Collapse
Affiliation(s)
- Sofie Snoeck
- Department of Biotechnology, Centre for Synthetic Biology, Coupure Links 653, Gent, 9000, Belgium
| | - Chiara Guidi
- Department of Biotechnology, Centre for Synthetic Biology, Coupure Links 653, Gent, 9000, Belgium
| | - Marjan De Mey
- Department of Biotechnology, Centre for Synthetic Biology, Coupure Links 653, Gent, 9000, Belgium.
| |
Collapse
|
12
|
Bouillet S, Bauer TS, Gottesman S. RpoS and the bacterial general stress response. Microbiol Mol Biol Rev 2024; 88:e0015122. [PMID: 38411096 PMCID: PMC10966952 DOI: 10.1128/mmbr.00151-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
SUMMARYThe general stress response (GSR) is a widespread strategy developed by bacteria to adapt and respond to their changing environments. The GSR is induced by one or multiple simultaneous stresses, as well as during entry into stationary phase and leads to a global response that protects cells against multiple stresses. The alternative sigma factor RpoS is the central GSR regulator in E. coli and conserved in most γ-proteobacteria. In E. coli, RpoS is induced under conditions of nutrient deprivation and other stresses, primarily via the activation of RpoS translation and inhibition of RpoS proteolysis. This review includes recent advances in our understanding of how stresses lead to RpoS induction and a summary of the recent studies attempting to define RpoS-dependent genes and pathways.
Collapse
Affiliation(s)
- Sophie Bouillet
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Taran S. Bauer
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| |
Collapse
|
13
|
McQuail J, Matera G, Gräfenhan T, Bischler T, Haberkant P, Stein F, Vogel J, Wigneshweraraj S. Global Hfq-mediated RNA interactome of nitrogen starved Escherichia coli uncovers a conserved post-transcriptional regulatory axis required for optimal growth recovery. Nucleic Acids Res 2024; 52:2323-2339. [PMID: 38142457 PMCID: PMC10954441 DOI: 10.1093/nar/gkad1211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/17/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023] Open
Abstract
The RNA binding protein Hfq has a central role in the post-transcription control of gene expression in many bacteria. Numerous studies have mapped the transcriptome-wide Hfq-mediated RNA-RNA interactions in growing bacteria or bacteria that have entered short-term growth-arrest. To what extent post-transcriptional regulation underpins gene expression in growth-arrested bacteria remains unknown. Here, we used nitrogen (N) starvation as a model to study the Hfq-mediated RNA interactome as Escherichia coli enter, experience, and exit long-term growth arrest. We observe that the Hfq-mediated RNA interactome undergoes extensive changes during N starvation, with the conserved SdsR sRNA making the most interactions with different mRNA targets exclusively in long-term N-starved E. coli. Taking a proteomics approach, we reveal that in growth-arrested cells SdsR influences gene expression far beyond its direct mRNA targets. We demonstrate that the absence of SdsR significantly compromises the ability of the mutant bacteria to recover growth competitively from the long-term N-starved state and uncover a conserved post-transcriptional regulatory axis which underpins this process.
Collapse
Affiliation(s)
- Josh McQuail
- Section of Molecular Microbiology and Centre for Bacterial Resistance Biology, Faculty of Medicine, Imperial College London, UK
| | - Gianluca Matera
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
| | - Tom Gräfenhan
- Core Unit Systems Medicine, University of Würzburg, D-97080 Würzburg, Germany
| | - Thorsten Bischler
- Core Unit Systems Medicine, University of Würzburg, D-97080 Würzburg, Germany
| | - Per Haberkant
- Proteomics Core Facility, EMBL Heidelberg, D-69117,Heidelberg, Germany
| | - Frank Stein
- Proteomics Core Facility, EMBL Heidelberg, D-69117,Heidelberg, Germany
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
- Institute for Molecular Infection Biology (IMIB), Faculty of Medicine, University of Würzburg, D-97080 Würzburg, Germany
| | - Sivaramesh Wigneshweraraj
- Section of Molecular Microbiology and Centre for Bacterial Resistance Biology, Faculty of Medicine, Imperial College London, UK
| |
Collapse
|
14
|
Handler S, Kirkpatrick CL. New layers of regulation of the general stress response sigma factor RpoS. Front Microbiol 2024; 15:1363955. [PMID: 38505546 PMCID: PMC10948607 DOI: 10.3389/fmicb.2024.1363955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024] Open
Abstract
The general stress response (GSR) sigma factor RpoS from Escherichia coli has emerged as one of the key paradigms for study of how numerous signal inputs are accepted at multiple levels into a single pathway for regulation of gene expression output. While many studies have elucidated the key pathways controlling the production and activity of this sigma factor, recent discoveries have uncovered still more regulatory mechanisms which feed into the network. Moreover, while the regulon of this sigma factor comprises a large proportion of the E. coli genome, the downstream expression levels of all the RpoS target genes are not identically affected by RpoS upregulation but respond heterogeneously, both within and between cells. This minireview highlights the most recent developments in our understanding of RpoS regulation and expression, in particular those which influence the regulatory network at different levels from previously well-studied pathways.
Collapse
|
15
|
Wang X, Wang L, Wang Y, Fu X, Wang X, Wu H, Wang H, Lu Z. sRNA molecules participate in hyperosmotic stress response regulation in Sphingomonas melonis TY. Appl Environ Microbiol 2024; 90:e0215823. [PMID: 38289134 PMCID: PMC10880617 DOI: 10.1128/aem.02158-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/21/2023] [Indexed: 02/22/2024] Open
Abstract
Drought and salinity are ubiquitous environmental factors that pose hyperosmotic threats to microorganisms and impair their efficiency in performing environmental functions. However, bacteria have developed various responses and regulatory systems to cope with these abiotic challenges. Posttranscriptional regulation plays vital roles in regulating gene expression and cellular homeostasis, as hyperosmotic stress conditions can lead to the induction of specific small RNA molecules (sRNAs) that participate in stress response regulation. Here, we report a candidate functional sRNA landscape of Sphingomonas melonis TY under hyperosmotic stress, and 18 sRNAs were found with a clear response to hyperosmotic stress. These findings will help in the comprehensive analysis of sRNA regulation in Sphingomonas species. Weighted correlation network analysis revealed a 263 nucleotide sRNA, SNC251, which was transcribed from its own promoter and showed the most significant correlation with hyperosmotic response factors. Deletion of snc251 affected biofilm formation and multiple cellular processes, including ribosome-related pathways, aromatic compound degradation, and the nicotine degradation capacity of S. melonis TY, while overexpression of SNC251 facilitated biofilm formation by TY under hyperosmotic stress. Two genes involved in the TonB system were further verified to be activated by SNC251, which also indicated that SNC251 is a trans-acting sRNA. Briefly, this research reports a landscape of sRNAs participating in the hyperosmotic stress response in S. melonis and reveals a novel sRNA, SNC251, which contributes to the S. melonis TY biofilm formation and thus enhances its hyperosmotic stress response ability.IMPORTANCESphingomonas species play a vital role in plant defense and pollutant degradation and survive extensively under drought or salinity. Previous studies have focused on the transcriptional and translational responses of Sphingomonas under hyperosmotic stress, but the posttranscriptional regulation of small RNA molecules (sRNAs) is also crucial for quickly modulating cellular processes to adapt dynamically to osmotic environments. In addition, the current knowledge of sRNAs in Sphingomonas is extremely scarce. This research revealed a novel sRNA landscape of Sphingomonas melonis and will greatly enhance our understanding of sRNAs' acting mechanisms in the hyperosmotic stress response.
Collapse
Affiliation(s)
- Xiaoyu Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Lvjing Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Yihan Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xueni Fu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xuejun Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Haixia Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Zamba-Campero M, Soliman D, Yu H, Lasseter AG, Chang YY, Liu J, Aravind L, Jewett MW, Storz G, Adams PP. Broadly conserved FlgV controls flagellar assembly and Borrelia burgdorferi dissemination in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574855. [PMID: 38260563 PMCID: PMC10802407 DOI: 10.1101/2024.01.09.574855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Flagella propel pathogens through their environments yet are expensive to synthesize and are immunogenic. Thus, complex hierarchical regulatory networks control flagellar gene expression. Spirochetes are highly motile bacteria, but peculiarly in the Lyme spirochete Borrelia burgdorferi, the archetypal flagellar regulator σ28 is absent. We rediscovered gene bb0268 in B. burgdorferi as flgV, a broadly-conserved gene in the flagellar superoperon alongside σ28 in many Spirochaetes, Firmicutes and other phyla, with distant homologs in Epsilonproteobacteria. We found that B. burgdorferi FlgV is localized within flagellar motors. B. burgdorferi lacking flgV construct fewer and shorter flagellar filaments and are defective in cell division and motility. During the enzootic cycle, B. burgdorferi lacking flgV survive and replicate in Ixodes ticks but are attenuated for dissemination and infection in mice. Our work defines infection timepoints when spirochete motility is most crucial and implicates FlgV as a broadly distributed structural flagellar component that modulates flagellar assembly.
Collapse
Affiliation(s)
- Maxime Zamba-Campero
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel Soliman
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Huaxin Yu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Amanda G. Lasseter
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, 32827, USA
| | - Yuen-Yan Chang
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Mollie W. Jewett
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, 32827, USA
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Philip P. Adams
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, 32827, USA
- Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD 20892, USA
- Independent Research Scholar Program, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
17
|
Turbant F, Esnouf E, Rosaz F, Wien F, Węgrzyn G, Chauvet H, Arluison V. Role of the Bacterial Amyloid-like Hfq in Fluoroquinolone Fluxes. Microorganisms 2023; 12:53. [PMID: 38257880 PMCID: PMC10819720 DOI: 10.3390/microorganisms12010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Due to their two-cell membranes, Gram-negative bacteria are particularly resistant to antibiotics. Recent investigations aimed at exploring new target proteins involved in Gram-negative bacteria adaptation helped to identify environmental changes encountered during infection. One of the most promising approaches in finding novel targets for antibacterial drugs consists of blocking noncoding RNA-based regulation using the protein cofactor, Hfq. Although Hfq is important in many bacterial pathogens, its involvement in antibiotics response is still unclear. Indeed, Hfq may mediate drug resistance by regulating the major efflux system in Escherichia coli, but it could also play a role in the influx of antibiotics. Here, using an imaging approach, we addressed this problem quantitatively at the single-cell level. More precisely, we analyzed how Hfq affects the dynamic influx and efflux of ciprofloxacin, an antibiotic from the group of fluoroquinolones that is used to treat bacterial infections. Our results indicated that the absence of either whole Hfq or its C-terminal domain resulted in a more effective accumulation of ciprofloxacin, irrespective of the presence of the functional AcrAB-TolC efflux pump. However, overproduction of the MicF small regulatory RNA, which reduces the efficiency of expression of the ompF gene (coding for a porin involved in antibiotics influx) in a Hfq-dependent manner, resulted in impaired accumulation of ciprofloxacin. These results led us to propose potential mechanisms of action of Hfq in the regulation of fluoroquinolone fluxes across the E. coli envelope.
Collapse
Affiliation(s)
- Florian Turbant
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint Aubin BP48, 91192 Gif-sur-Yvette, France; (F.T.); (F.W.); (H.C.)
- Laboratoire Léon Brillouin LLB, UMR12 CEA CNRS, CEA Saclay, 91191 Gif-sur-Yvette, France; (E.E.); (F.R.)
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| | - Emeline Esnouf
- Laboratoire Léon Brillouin LLB, UMR12 CEA CNRS, CEA Saclay, 91191 Gif-sur-Yvette, France; (E.E.); (F.R.)
| | - Francois Rosaz
- Laboratoire Léon Brillouin LLB, UMR12 CEA CNRS, CEA Saclay, 91191 Gif-sur-Yvette, France; (E.E.); (F.R.)
| | - Frank Wien
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint Aubin BP48, 91192 Gif-sur-Yvette, France; (F.T.); (F.W.); (H.C.)
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| | - Hugo Chauvet
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint Aubin BP48, 91192 Gif-sur-Yvette, France; (F.T.); (F.W.); (H.C.)
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, UMR12 CEA CNRS, CEA Saclay, 91191 Gif-sur-Yvette, France; (E.E.); (F.R.)
- UFR SDV, Université Paris Cité, 75013 Paris, France
| |
Collapse
|
18
|
Zhang J, Zheng M, Tang Z, Zhong S, Bu T, Li Q. The Regulatory Functions of the Multiple Alternative Sigma Factors RpoE, RpoHI, and RpoHII Depend on the Growth Phase in Rhodobacter sphaeroides. Microorganisms 2023; 11:2678. [PMID: 38004690 PMCID: PMC10673084 DOI: 10.3390/microorganisms11112678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Bacterial growth, under laboratory conditions or in a natural environment, goes through different growth phases. Some gene expressions are regulated with respect to the growth phase, which allows bacteria to adapt to changing conditions. Among them, many gene transcriptions are controlled by RpoHI or RpoHII in Rhodobacter sphaeroides. In a previous study, it was proven that the alternative sigma factors, RpoE, RpoHI, and RpoHII, are the major regulators of oxidative stress. Moreover, the growth of bacteria reached a stationary phase, and following the outgrowth, rpoE, rpoHI, and rpoHII mRNAs increased with respect to the growth phase. In this study, we demonstrated the regulatory function of alternative sigma factors in the rsp_0557 gene. The gene rsp_0557 is expressed with respect to the growth phase and belongs to the RpoHI/RpoHII regulons. Reporter assays showed that the antisigma factor ChrR turns on or over the RpoE activity to regulate rsp_0557 expression across the growth phase. In the exponential phase, RpoHII and sRNA Pos19 regulate the expression of rsp_0557 to an appropriate level under RpoE control. In the stationary phase, RpoHI and Pos19 stabilize the transcription of rsp_0557 at a high level. During outgrowth, RpoHI negatively regulates the transcription of rsp_0557. Taken together, our data indicate that these regulators are recruited by cells to adapt to or survive under different conditions throughout the growth phase. However, they still did not display all of the regulators involved in growth phase-dependent regulation. More research is still needed to learn more about the interaction between the regulators and the process of adapting to changed growth conditions and environments.
Collapse
Affiliation(s)
| | | | | | | | | | - Qingfeng Li
- College of Life Sciences, Sichuan Agricultural University, Ya’an 625014, China; (J.Z.); (M.Z.); (Z.T.); (S.Z.); (T.B.)
| |
Collapse
|
19
|
Mickutė M, Krasauskas R, Kvederavičiūtė K, Tupikaitė G, Osipenko A, Kaupinis A, Jazdauskaitė M, Mineikaitė R, Valius M, Masevičius V, Vilkaitis G. Interplay between bacterial 5'-NAD-RNA decapping hydrolase NudC and DEAD-box RNA helicase CsdA in stress responses. mSystems 2023; 8:e0071823. [PMID: 37706681 PMCID: PMC10654059 DOI: 10.1128/msystems.00718-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 09/15/2023] Open
Abstract
IMPORTANCE Non-canonical 5'-caps removing RNA hydrolase NudC, along with stress-responsive RNA helicase CsdA, is crucial for 5'-NAD-RNA decapping and bacterial movement.
Collapse
Affiliation(s)
- Milda Mickutė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Renatas Krasauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Kotryna Kvederavičiūtė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Gytė Tupikaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Aleksandr Osipenko
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Algirdas Kaupinis
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Monika Jazdauskaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- Thermo Fisher Scientific Baltics, Vilnius, Lithuania
| | - Raminta Mineikaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Mindaugas Valius
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Viktoras Masevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Vilnius, Lithuania
| | - Giedrius Vilkaitis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
20
|
Adams J, Hoang J, Petroni E, Ashby E, Hardin J, Stoebel DM. The timing of transcription of RpoS-dependent genes varies across multiple stresses in Escherichia coli K-12. mSystems 2023; 8:e0066323. [PMID: 37623321 PMCID: PMC10654073 DOI: 10.1128/msystems.00663-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/14/2023] [Indexed: 08/26/2023] Open
Abstract
IMPORTANCE Bacteria adapt to changing environments by altering the transcription of their genes. Specific proteins can regulate these changes. This study explored how a single protein called RpoS controls how many genes change expression during adaptation to three stresses. We found that: (i) RpoS is responsible for activating different genes in different stresses; (ii) that during a stress, the timing of gene activation depends on the what stress it is; and (iii) that how much RpoS a gene needs in order to be activated can predict when that gene will be activated during the stress of stationary phase.
Collapse
Affiliation(s)
- Josephine Adams
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| | - Johnson Hoang
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| | - Emily Petroni
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| | - Ethan Ashby
- Department of Mathematics and Statistics, Pomona College, Claremont, California, USA
| | - Johanna Hardin
- Department of Mathematics and Statistics, Pomona College, Claremont, California, USA
| | - Daniel M. Stoebel
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| |
Collapse
|
21
|
Zhu W, Xi L, Qiao J, Du D, Wang Y, Morigen. Involvement of OxyR and Dps in the repression of replication initiation by DsrA small RNA in Escherichia coli. Gene 2023; 882:147659. [PMID: 37482259 DOI: 10.1016/j.gene.2023.147659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
Regulation of the cell cycle process is an effective measure to ensure the stability and fidelity of genetic material during the reproduction of bacteria under different stresses. The small RNA DsrA helps bacteria adapt to environments by binding to multiple targets, but its association with the cell cycle remains unclear. Detection by flow cytometry, we first found that the knockout of dsrA promoted replication initiation, and corresponding overexpression of DsrA inhibited replication initiation in Escherichia coli. The absence of the chaperone protein Hfq, the DNA replication negative regulator protein Dps, or the transcription factor OxyR, was found to cause DsrA to no longer inhibit replication initiation. Excess DsrA promotes expression of the oxyR and dps gene, whereas β-galactosidase activity assay showed that deleting oxyR limited the enhancement of dps promoter transcriptional activity by DsrA. OxyR is a known positive regulator of Dps. Our data suggests that the effect of DsrA on replication initiation requires Hfq and that the upregulation of Dps expression by OxyR in response to DsrA levels may be a potential regulatory pathway for the negative regulation of DNA replication initiation.
Collapse
Affiliation(s)
- Weiwei Zhu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Lingjun Xi
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Jiaxin Qiao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Dongdong Du
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yao Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Morigen
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| |
Collapse
|
22
|
Abstract
Small regulatory RNA (sRNAs) are key mediators of posttranscriptional gene control in bacteria. Assisted by RNA-binding proteins, a single sRNA often modulates the expression of dozens of genes, and thus sRNAs frequently adopt central roles in regulatory networks. Posttranscriptional regulation by sRNAs comes with several unique features that cannot be achieved by transcriptional regulators. However, for optimal network performance, transcriptional and posttranscriptional control mechanisms typically go hand-in-hand. This view is reflected by the ever-growing class of mixed network motifs involving sRNAs and transcription factors, which are ubiquitous in biology and whose regulatory properties we are beginning to understand. In addition, sRNA activity can be antagonized by base-pairing with sponge RNAs, adding yet another layer of complexity to these networks. In this article, we summarize the regulatory concepts underlying sRNA-mediated gene control in bacteria and discuss how sRNAs shape the output of a network, focusing on several key examples.
Collapse
Affiliation(s)
- Kai Papenfort
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany;
- Microverse Cluster, Friedrich Schiller University Jena, Jena, Germany
| | - Sahar Melamed
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel;
| |
Collapse
|
23
|
Grigorov AS, Skvortsova YV, Bychenko OS, Aseev LV, Koledinskaya LS, Boni IV, Azhikina TL. Dynamic Transcriptional Landscape of Mycobacterium smegmatis under Cold Stress. Int J Mol Sci 2023; 24:12706. [PMID: 37628885 PMCID: PMC10454040 DOI: 10.3390/ijms241612706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Bacterial adaptation to cold stress requires wide transcriptional reprogramming. However, the knowledge of molecular mechanisms underlying the cold stress response of mycobacteria is limited. We conducted comparative transcriptomic analysis of Mycobacterium smegmatis subjected to cold shock. The growth of M. smegmatis cultivated at 37 °C was arrested just after exposure to cold (acclimation phase) but later (by 24 h) was resumed at a much slower rate (adaptation phase). Transcriptomic analyses revealed distinct gene expression patterns corresponding to the two phases. During the acclimation phase, differential expression was observed for genes associated with cell wall remodeling, starvation response, and osmotic pressure stress, in parallel with global changes in the expression of transcription factors and the downregulation of ribosomal genes, suggesting an energy-saving strategy to support survival. At the adaptation phase, the expression profiles were recovered, indicating restoration of the processes repressed earlier. Comparison of transcriptional responses in M. smegmatis with those in other bacteria revealed unique adaptation strategies developed by mycobacteria. Our findings shed light on the molecular mechanisms underlying M. smegmatis survival under cold stress. Further research should clarify whether the discovered transcriptional mechanisms exist in other mycobacterial species, including pathogenic Mycobacterium tuberculosis, which could be important for transmission control.
Collapse
Affiliation(s)
- Artem S. Grigorov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | | | | | | | | | | | - Tatyana L. Azhikina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
24
|
Rodgers ML, O'Brien B, Woodson SA. Small RNAs and Hfq capture unfolded RNA target sites during transcription. Mol Cell 2023; 83:1489-1501.e5. [PMID: 37116495 PMCID: PMC10176597 DOI: 10.1016/j.molcel.2023.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/11/2023] [Accepted: 03/31/2023] [Indexed: 04/30/2023]
Abstract
Small ribonucleoproteins (sRNPs) target nascent precursor RNAs to guide folding, modification, and splicing during transcription. Yet, rapid co-transcriptional folding of the RNA can mask sRNP sites, impeding target recognition and regulation. To examine how sRNPs target nascent RNAs, we monitored binding of bacterial Hfq⋅DsrA sRNPs to rpoS transcripts using single-molecule co-localization co-transcriptional assembly (smCoCoA). We show that Hfq⋅DsrA recursively samples the mRNA before transcription of the target site to poise it for base pairing with DsrA. We adapted smCoCoA to precisely measure when the target site is synthesized and revealed that Hfq⋅DsrA often binds the mRNA during target site synthesis close to RNA polymerase (RNAP). We suggest that targeting transcripts near RNAP allows an sRNP to capture a site before the transcript folds, providing a kinetic advantage over post-transcriptional targeting. We propose that other sRNPs may also use RNAP-proximal targeting to hasten recognition and regulation.
Collapse
Affiliation(s)
- Margaret L Rodgers
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Brett O'Brien
- Chemical Biology Interface Program, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sarah A Woodson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
25
|
Carrier MC, Lalaouna D, Massé E. Hfq protein and GcvB small RNA tailoring of oppA target mRNA to levels allowing translation activation by MicF small RNA in Escherichia coli. RNA Biol 2023; 20:59-76. [PMID: 36860088 PMCID: PMC9988348 DOI: 10.1080/15476286.2023.2179582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Traffic of molecules across the bacterial membrane mainly relies on porins and transporters, whose expression must adapt to environmental conditions. To ensure bacterial fitness, synthesis and assembly of functional porins and transporters are regulated through a plethora of mechanisms. Among them, small regulatory RNAs (sRNAs) are known to be powerful post-transcriptional regulators. In Escherichia coli, the MicF sRNA is known to regulate only four targets, a very narrow targetome for a sRNA responding to various stresses, such as membrane stress, osmotic shock, or thermal shock. Using an in vivo pull-down assay combined with high-throughput RNA sequencing, we sought to identify new targets of MicF to better understand its role in the maintenance of cellular homoeostasis. Here, we report the first positively regulated target of MicF, the oppA mRNA. The OppA protein is the periplasmic component of the Opp ATP-binding cassette (ABC) oligopeptide transporter and regulates the import of short peptides, some of them bactericides. Mechanistic studies suggest that oppA translation is activated by MicF through a mechanism of action involving facilitated access to a translation-enhancing region in oppA 5'UTR. Intriguingly, MicF activation of oppA translation depends on cross-regulation by negative trans-acting effectors, the GcvB sRNA and the RNA chaperone protein Hfq.
Collapse
Affiliation(s)
- Marie-Claude Carrier
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - David Lalaouna
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Eric Massé
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
26
|
Cossa A, Trépout S, Wien F, Groen J, Le Brun E, Turbant F, Besse L, Pereiro E, Arluison V. Cryo soft X-ray tomography to explore Escherichia coli nucleoid remodeling by Hfq master regulator. J Struct Biol 2022; 214:107912. [PMID: 36283630 DOI: 10.1016/j.jsb.2022.107912] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/28/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022]
Abstract
The bacterial chromosomic DNA is packed within a membrane-less structure, the nucleoid, due to the association of DNA with proteins called Nucleoid Associated Proteins (NAPs). Among these NAPs, Hfq is one of the most intriguing as it plays both direct and indirect roles on DNA structure. Indeed, Hfq is best known to mediate post-transcriptional regulation by using small noncoding RNA (sRNA). Although Hfq presence in the nucleoid has been demonstrated for years, its precise role is still unclear. Recently, it has been shown in vitro that Hfq forms amyloid-like structures through its C-terminal region, hence belonging to the bridging family of NAPs. Here, using cryo soft X-ray tomography imaging of native unlabeled cells and using a semi-automatic analysis and segmentation procedure, we show that Hfq significantly remodels the Escherichia coli nucleoid. More specifically, Hfq influences nucleoid density especially during the stationary growth phase when it is more abundant. Our results indicate that Hfq could regulate nucleoid compaction directly via its interaction with DNA, but also at the post-transcriptional level via its interaction with RNAs. Taken together, our findings reveal a new role for this protein in nucleoid remodeling in vivo, that may serve in response to stress conditions and in adapting to changing environments.
Collapse
Affiliation(s)
- Antoine Cossa
- Institut Curie, Université PSL, CNRS UAR2016, Inserm US43, Université Paris-Saclay, Multimodal Imaging Center, 91400 Orsay, France; Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Sylvain Trépout
- Institut Curie, Université PSL, CNRS UAR2016, Inserm US43, Université Paris-Saclay, Multimodal Imaging Center, 91400 Orsay, France; Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Victoria 3800, Australia.
| | - Frank Wien
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91192 Gif-sur-Yvette, France
| | - Johannes Groen
- Mistral Beamline, Alba Light Source, Cerdanyola del Valles, 08290 Barcelona, Spain
| | - Etienne Le Brun
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Florian Turbant
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France; Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Laetitia Besse
- Institut Curie, Université PSL, CNRS UAR2016, Inserm US43, Université Paris-Saclay, Multimodal Imaging Center, 91400 Orsay, France
| | - Eva Pereiro
- Mistral Beamline, Alba Light Source, Cerdanyola del Valles, 08290 Barcelona, Spain
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France; Université Paris Cité, UFR Sciences du vivant, 75006 Paris cedex, France.
| |
Collapse
|
27
|
Meng X, He M, Xia P, Wang J, Wang H, Zhu G. Functions of Small Non-Coding RNAs in Salmonella–Host Interactions. BIOLOGY 2022; 11:biology11091283. [PMID: 36138763 PMCID: PMC9495376 DOI: 10.3390/biology11091283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary In the process of infecting the host, Salmonella senses and adapts to the environment within the host, breaks through the host’s defense system, and survives and multiplies in the host cell. As a class of universal regulators encoded in intergenic space, an increasing number of small non-coding RNAs (sRNAs) have been found to be involved in a series of processes during Salmonella infection, and they play an important role in interactions with the host cell. In this review, we discuss how sRNAs help Salmonella resist acidic environmental stress by regulating acid resistance genes and modulate adhesion and invasion to non-phagocytic cells by regulating virulent genes such as fimbrial subunits and outer membrane proteins. In addition, sRNAs help Salmonella adapt to oxidative stress within host cells and promote survival within macrophages. Although the function of a variety of sRNAs has been studied during host–Salmonella interactions, many of sRNAs’ functions remain to be discovered. Abstract Salmonella species infect hosts by entering phagocytic and non-phagocytic cells, causing diverse disease symptoms, such as fever, gastroenteritis, and even death. Therefore, Salmonella has attracted much attention. Many factors are involved in pathogenesis, for example, the capsule, enterotoxins, Salmonella pathogenicity islands (SPIs), and corresponding regulators. These factors are all traditional proteins associated with virulence and regulation. Recently, small non-coding RNAs (sRNAs) have also been reported to function as critical regulators. Salmonella has become a model organism for studying sRNAs. sRNAs regulate gene expression by imperfect base-pairing with targets at the post-transcriptional level. sRNAs are involved in diverse biological processes, such as virulence, substance metabolism, and adaptation to stress environments. Although some studies have reported the crucial roles of sRNAs in regulating host–pathogen interactions, the function of sRNAs in host–Salmonella interactions has rarely been reviewed. Here, we review the functions of sRNAs during the infection of host cells by Salmonella, aiming to deepen our understanding of sRNA functions and the pathogenic mechanism of Salmonella.
Collapse
Affiliation(s)
- Xia Meng
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of China, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou 225009, China
- Correspondence:
| | - Mengping He
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of China, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou 225009, China
| | - Pengpeng Xia
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of China, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou 225009, China
| | - Jinqiu Wang
- Department of Animal Husbandry and Veterinary Medicine, Beijing Agricultural Vocational College, Beijing 102442, China
| | - Heng Wang
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of China, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou 225009, China
| | - Guoqiang Zhu
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of China, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou 225009, China
| |
Collapse
|
28
|
Gelalcha BD, Brown SM, Crocker HE, Agga GE, Kerro Dego O. Regulation Mechanisms of Virulence Genes in Enterohemorrhagic Escherichia coli. Foodborne Pathog Dis 2022; 19:598-612. [PMID: 35921067 DOI: 10.1089/fpd.2021.0103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is one of the most common E. coli pathotypes reported to cause several outbreaks of foodborne illnesses. EHEC is a zoonotic pathogen, and ruminants, especially cattle, are considered important reservoirs for the most common EHEC serotype, E. coli O157:H7. Humans are infected indirectly through the consumption of food (milk, meat, leafy vegetables, and fruits) and water contaminated by animal feces or direct contact with carrier animals or humans. E. coli O157:H7 is one of the most frequently reported causes of foodborne illnesses in developed countries. It employs two essential virulence mechanisms to trigger damage to the host. These are the development of attaching and effacing (AE) phenotypes on the intestinal mucosa of the host and the production of Shiga toxin (Stx) that causes hemorrhagic colitis and hemolytic uremic syndrome. The AE phenotype is controlled by the pathogenicity island, the locus of enterocyte effacement (LEE). The induction of both AE and Stx is under strict and highly complex regulatory mechanisms. Thus, a good understanding of these mechanisms, major proteins expressed, and environmental cues involved in the regulation of the expression of the virulence genes is vital to finding a method to control the colonization of reservoir hosts, especially cattle, and disease development in humans. This review is a concise account of the current state of knowledge of virulence gene regulation in the LEE-positive EHEC.
Collapse
Affiliation(s)
- Benti D Gelalcha
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Selina M Brown
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Hannah E Crocker
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Getahun E Agga
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, Bowling Green, Kentucky, USA
| | - Oudessa Kerro Dego
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| |
Collapse
|
29
|
Brosse A, Boudry P, Walburger A, Magalon A, Guillier M. Synthesis of the NarP response regulator of nitrate respiration in Escherichia coli is regulated at multiple levels by Hfq and small RNAs. Nucleic Acids Res 2022; 50:6753-6768. [PMID: 35748881 PMCID: PMC9262595 DOI: 10.1093/nar/gkac504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Two-component systems (TCS) and small RNAs (sRNA) are widespread regulators that participate in the response and the adaptation of bacteria to their environments. TCSs and sRNAs mostly act at the transcriptional and post-transcriptional levels, respectively, and can be found integrated in regulatory circuits, where TCSs control sRNAs transcription and/or sRNAs post-transcriptionally regulate TCSs synthesis. In response to nitrate and nitrite, the paralogous NarQ-NarP and NarX-NarL TCSs regulate the expression of genes involved in anaerobic respiration of these alternative electron acceptors to oxygen. In addition to the previously reported repression of NarP synthesis by the SdsN137 sRNA, we show here that RprA, another Hfq-dependent sRNA, also negatively controls narP. Interestingly, the repression of narP by RprA actually relies on two independent mechanisms of control. The first is via the direct pairing of the central region of RprA to the narP translation initiation region and presumably occurs at the translation initiation level. In contrast, the second requires only the very 5' end of the narP mRNA, which is targeted, most likely indirectly, by the full-length or the shorter, processed, form of RprA. In addition, our results raise the possibility of a direct role of Hfq in narP control, further illustrating the diversity of post-transcriptional regulation mechanisms in the synthesis of TCSs.
Collapse
Affiliation(s)
- Anaïs Brosse
- UMR8261, CNRS, Université de Paris Cité, Institut de Biologie Physico-Chimique, 75005Paris, France
| | - Pierre Boudry
- UMR8261, CNRS, Université de Paris Cité, Institut de Biologie Physico-Chimique, 75005Paris, France
| | - Anne Walburger
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13402Marseille, France
| | - Axel Magalon
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13402Marseille, France
| | - Maude Guillier
- To whom correspondence should be addressed. Tel: +33 01 58 41 51 49; Fax: +33 01 58 41 50 25;
| |
Collapse
|
30
|
Sun Z, Zhou N, Zhang W, Xu Y, Yao YF. Dual role of CsrA in regulating the hemolytic activity of Escherichia coli O157:H7. Virulence 2022; 13:859-874. [PMID: 35609307 PMCID: PMC9132389 DOI: 10.1080/21505594.2022.2073023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Post-transcriptional global carbon storage regulator A (CsrA) is a sequence-specific RNA-binding protein involved in the regulation of multiple bacterial processes. Hemolysin is an important virulence factor in the enterohemorrhagic Escherichia coli O157:H7 (EHEC). Here, we show that CsrA plays a dual role in the regulation of hemolysis in EHEC. CsrA significantly represses plasmid-borne enterohemolysin (EhxA)-mediated hemolysis and activates chromosome-borne hemolysin E (HlyE)-mediated hemolysis through different mechanisms. RNA structure prediction revealed a well-matched stem-loop structure with two potential CsrA binding sites located on the 5' untranslated region (UTR) of ehxB, which encodes a translocator required for EhxA secretion. CsrA inhibits EhxA secretion by directly binding to the RNA leader sequence of ehxB to repress its expression in two different ways: CsrA either binds to the Shine–Dalgarno sequence of ehxB to block ribosome access or to ehxB transcript to promote its mRNA decay. The predicted CsrA-binding site 1 of ehxB is essential for its regulation. There is a single potential CsrA-binding site at the 5'-end of the hlyE transcript, and its mutation completely abolishes CsrA-dependent activation. CsrA can also stabilize hlyE mRNA by directly binding to its 5' UTR. Overall, our results indicate that CsrA acts as a hemolysis modulator to regulate pathogenicity under certain conditions.
Collapse
Affiliation(s)
- Zhibin Sun
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ning Zhou
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenting Zhang
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Xu
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Infectious Diseases, Shanghai Ruijin Hospital, Shanghai, China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| |
Collapse
|
31
|
Sharma A, Alajangi HK, Pisignano G, Sood V, Singh G, Barnwal RP. RNA thermometers and other regulatory elements: Diversity and importance in bacterial pathogenesis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1711. [PMID: 35037405 DOI: 10.1002/wrna.1711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/09/2021] [Accepted: 12/16/2021] [Indexed: 01/11/2023]
Abstract
Survival of microorganisms depends to a large extent on environmental conditions and the occupied host. By adopting specific strategies, microorganisms can thrive in the surrounding environment and, at the same time, preserve their viability. Evading the host defenses requires several mechanisms compatible with the host survival which include the production of RNA thermometers to regulate the expression of genes responsible for heat or cold shock as well as of those involved in virulence. Microorganisms have developed a variety of molecules in response to the environmental changes in temperature and even more specifically to the host they invade. Among all, RNA-based regulatory mechanisms are the most common ones, highlighting the importance of such molecules in gene expression control and novel drug development by suitable structure-based alterations. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA in Disease and Development > RNA in Disease RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh, India.,University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Hema Kumari Alajangi
- Department of Biophysics, Panjab University, Chandigarh, India.,University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | | - Vikas Sood
- Department of Biochemistry, Jamia Hamdard, New Delhi, India
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | |
Collapse
|
32
|
Identification of BvgA-Dependent and BvgA-Independent Small RNAs (sRNAs) in Bordetella pertussis Using the Prokaryotic sRNA Prediction Toolkit ANNOgesic. Microbiol Spectr 2021; 9:e0004421. [PMID: 34550019 PMCID: PMC8557813 DOI: 10.1128/spectrum.00044-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Noncoding small RNAs (sRNAs) are crucial for the posttranscriptional regulation of gene expression in all organisms and are known to be involved in the regulation of bacterial virulence. In the human pathogen Bordetella pertussis, which causes whooping cough, virulence is controlled primarily by the master two-component system BvgA (response regulator)/BvgS (sensor kinase). In this system, BvgA is phosphorylated (Bvg+ mode) or nonphosphorylated (Bvg- mode), with global transcriptional differences between the two. B. pertussis also carries the bacterial sRNA chaperone Hfq, which has previously been shown to be required for virulence. Here, we conducted transcriptomic analyses to identify possible B. pertussis sRNAs and to determine their BvgAS dependence using transcriptome sequencing (RNA-seq) and the prokaryotic sRNA prediction program ANNOgesic. We identified 143 possible candidates (25 Bvg+ mode specific and 53 Bvg- mode specific), of which 90 were previously unreported. Northern blot analyses confirmed all of the 10 ANNOgesic candidates that we tested. Homology searches demonstrated that 9 of the confirmed sRNAs are highly conserved among B. pertussis, Bordetella parapertussis, and Bordetella bronchiseptica, with one that also has homologues in other species of the Alcaligenaceae family. Using coimmunoprecipitation with a B. pertussis FLAG-tagged Hfq, we demonstrated that 3 of the sRNAs interact directly with Hfq, which is the first identification of sRNA binding to B. pertussis Hfq. Our study demonstrates that ANNOgesic is a highly useful tool for the identification of sRNAs in this system and that its combination with molecular techniques is a successful way to identify various BvgAS-dependent and Hfq-binding sRNAs. IMPORTANCE Noncoding small RNAs (sRNAs) are crucial for posttranscriptional regulation of gene expression in all organisms and are known to be involved in the regulation of bacterial virulence. We have investigated the presence of sRNAs in the obligate human pathogen B. pertussis, using transcriptome sequencing (RNA-seq) and the recently developed prokaryotic sRNA search program ANNOgesic. This analysis has identified 143 sRNA candidates (90 previously unreported). We have classified their dependence on the B. pertussis two-component system required for virulence, namely, BvgAS, based on their expression in the presence/absence of the phosphorylated response regulator BvgA, confirmed several by Northern analyses, and demonstrated that 3 bind directly to B. pertussis Hfq, the RNA chaperone involved in mediating sRNA effects. Our study demonstrates the utility of combining RNA-seq, ANNOgesic, and molecular techniques to identify various BvgAS-dependent and Hfq-binding sRNAs, which may unveil the roles of sRNAs in pertussis pathogenesis.
Collapse
|
33
|
Evguenieva-Hackenberg E. Riboregulation in bacteria: From general principles to novel mechanisms of the trp attenuator and its sRNA and peptide products. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1696. [PMID: 34651439 DOI: 10.1002/wrna.1696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/25/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022]
Abstract
Gene expression strategies ensuring bacterial survival and competitiveness rely on cis- and trans-acting RNA-regulators (riboregulators). Among the cis-acting riboregulators are transcriptional and translational attenuators, and antisense RNAs (asRNAs). The trans-acting riboregulators are small RNAs (sRNAs) that bind proteins or base pairs with other RNAs. This classification is artificial since some regulatory RNAs act both in cis and in trans, or function in addition as small mRNAs. A prominent example is the archetypical, ribosome-dependent attenuator of tryptophan (Trp) biosynthesis genes. It responds by transcription attenuation to two signals, Trp availability and inhibition of translation, and gives rise to two trans-acting products, the attenuator sRNA rnTrpL and the leader peptide peTrpL. In Escherichia coli, rnTrpL links Trp availability to initiation of chromosome replication and in Sinorhizobium meliloti, it coordinates regulation of split tryptophan biosynthesis operons. Furthermore, in S. meliloti, peTrpL is involved in mRNA destabilization in response to antibiotic exposure. It forms two types of asRNA-containing, antibiotic-dependent ribonucleoprotein complexes (ARNPs), one of them changing the target specificity of rnTrpL. The posttranscriptional role of peTrpL indicates two emerging paradigms: (1) sRNA reprograming by small molecules and (2) direct involvement of antibiotics in regulatory RNPs. They broaden our view on RNA-based mechanisms and may inspire new approaches for studying, detecting, and using antibacterial compounds. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
|
34
|
Binding of the RNA Chaperone Hfq on Target mRNAs Promotes the Small RNA RyhB-Induced Degradation in Escherichia coli. Noncoding RNA 2021; 7:ncrna7040064. [PMID: 34698252 PMCID: PMC8544716 DOI: 10.3390/ncrna7040064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/03/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022] Open
Abstract
Many RNA-RNA interactions depend on molecular chaperones to form and remain stable in living cells. A prime example is the RNA chaperone Hfq, which is a critical effector involved in regulatory interactions between small RNAs (sRNAs) and cognate target mRNAs in Enterobacteriaceae. While there is a great deal of in vitro biochemical evidence supporting the model that Hfq enhances rates or affinities of sRNA:mRNA interactions, there is little corroborating in vivo evidence. Here we used in vivo tools including reporter genes, co-purification assays, and super-resolution microscopy to analyze the role of Hfq in RyhB-mediated regulation, and we found that Hfq is often unnecessary for efficient RyhB:mRNA complex formation in vivo. Remarkably, our data suggest that a primary function of Hfq is to promote RyhB-induced cleavage of mRNA targets by RNase E. Moreover, our work indicates that Hfq plays a more limited role in dictating regulatory outcomes following sRNAs RybB and DsrA complex formation with specific target mRNAs. Our investigation helps evaluate the roles played by Hfq in some RNA-mediated regulation.
Collapse
|
35
|
Turbant F, Wu P, Wien F, Arluison V. The Amyloid Region of Hfq Riboregulator Promotes DsrA: rpoS RNAs Annealing. BIOLOGY 2021; 10:biology10090900. [PMID: 34571778 PMCID: PMC8468756 DOI: 10.3390/biology10090900] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 11/16/2022]
Abstract
Hfq is a bacterial RNA chaperone which promotes the pairing of small noncoding RNAs to target mRNAs, allowing post-transcriptional regulation. This RNA annealing activity has been attributed for years to the N-terminal region of the protein that forms a toroidal structure with a typical Sm-fold. Nevertheless, many Hfqs, including that of Escherichia coli, have a C-terminal region with unclear functions. Here we use a biophysical approach, Synchrotron Radiation Circular Dichroism (SRCD), to probe the interaction of the E. coli Hfq C-terminal amyloid region with RNA and its effect on RNA annealing. This C-terminal region of Hfq, which has been described to be dispensable for sRNA:mRNA annealing, has an unexpected and significant effect on this activity. The functional consequences of this novel property of the amyloid region of Hfq in relation to physiological stress are discussed.
Collapse
Affiliation(s)
- Florian Turbant
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France;
| | - Pengzhi Wu
- Department of Biology, ETH Zürich, 8093 Zürich, Switzerland;
| | - Frank Wien
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint Aubin BP48, 91192 Gif-sur-Yvette, France
- Correspondence: (F.W.); or (V.A.); Tel.: +33-(0)169359665 (F.W.); +33-(0)169083282 (V.A.)
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France;
- UFR Sciences du Vivant, Université de Paris, 75006 Paris, France
- Correspondence: (F.W.); or (V.A.); Tel.: +33-(0)169359665 (F.W.); +33-(0)169083282 (V.A.)
| |
Collapse
|
36
|
Sudo N, Lee K, Sekine Y, Ohnishi M, Iyoda S. RNA-binding protein Hfq downregulates locus of enterocyte effacement-encoded regulators independent of small regulatory RNA in enterohemorrhagic Escherichia coli. Mol Microbiol 2021; 117:86-101. [PMID: 34411346 DOI: 10.1111/mmi.14799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 11/25/2022]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) causes severe human diseases worldwide. The type 3 secretion system and effector proteins are essential for EHEC infection, and are encoded by the locus of enterocyte effacement (LEE). RNA-binding protein Hfq is essential for small regulatory RNA (sRNA)-mediated regulation at a posttranscriptional level and full virulence of many pathogenic bacteria. Although two early studies indicated that Hfq represses LEE expression by posttranscriptionally controlling the expression of genes grlRA and/or ler, both of which encode LEE regulators mediating a positive regulatory loop, the detailed molecular mechanism and biological significance remain unclear. Herein, we show that LEE overexpression was caused by defective RNA-binding activity of the Hfq distal face, which posttranscriptionally represses grlA and ler expression. In vitro analyses revealed that the Hfq distal face directly binds near the translational initiation site of grlA and ler mRNAs, and inhibits their translation. Taken together, we conclude that Hfq inhibits grlA and ler translation by binding their mRNAs through the distal face in an sRNA-independent manner. Additionally, we show that Hfq-mediated repression of LEE is critical for normal EHEC growth because all suppressor mutations that restored the growth defect in the hfq mutant abolished hfq deletion-induced overexpression of LEE.
Collapse
Affiliation(s)
- Naoki Sudo
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenichi Lee
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasuhiko Sekine
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sunao Iyoda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
37
|
Grützner J, Remes B, Eisenhardt KMH, Scheller D, Kretz J, Madhugiri R, McIntosh M, Klug G. sRNA-mediated RNA processing regulates bacterial cell division. Nucleic Acids Res 2021; 49:7035-7052. [PMID: 34125915 PMCID: PMC8266604 DOI: 10.1093/nar/gkab491] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 01/16/2023] Open
Abstract
Tight control of cell division is essential for survival of most organisms. For prokaryotes, the regulatory mechanisms involved in the control of cell division are mostly unknown. We show that the small non-coding sRNA StsR has an important role in controlling cell division and growth in the alpha-proteobacterium Rhodobacter sphaeroides. StsR is strongly induced by stress conditions and in stationary phase by the alternative sigma factors RpoHI/HII, thereby providing a regulatory link between cell division and environmental cues. Compared to the wild type, a mutant lacking StsR enters stationary phase later and more rapidly resumes growth after stationary phase. A target of StsR is UpsM, the most abundant sRNA in the exponential phase. It is derived from partial transcriptional termination within the 5' untranslated region of the mRNA of the division and cell wall (dcw) gene cluster. StsR binds to UpsM as well as to the 5' UTR of the dcw mRNA and the sRNA-sRNA and sRNA-mRNA interactions lead to a conformational change that triggers cleavage by the ribonuclease RNase E, affecting the level of dcw mRNAs and limiting growth. These findings provide interesting new insights into the role of sRNA-mediated regulation of cell division during the adaptation to environmental changes.
Collapse
Affiliation(s)
- Julian Grützner
- Institute of Microbiology and Molecular Biology, University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Bernhard Remes
- Institute of Microbiology and Molecular Biology, University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Katrin M H Eisenhardt
- Institute of Microbiology and Molecular Biology, University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Daniel Scheller
- Institute of Microbiology and Molecular Biology, University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Jonas Kretz
- Institute of Microbiology and Molecular Biology, University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Ramakanth Madhugiri
- Institute of Medical Virology, University of Giessen, Schubertstr. 81, D-35392 Giessen, Germany
| | - Matthew McIntosh
- Institute of Microbiology and Molecular Biology, University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Gabriele Klug
- Institute of Microbiology and Molecular Biology, University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| |
Collapse
|
38
|
Małecka EM, Woodson SA. Stepwise sRNA targeting of structured bacterial mRNAs leads to abortive annealing. Mol Cell 2021; 81:1988-1999.e4. [PMID: 33705712 PMCID: PMC8106647 DOI: 10.1016/j.molcel.2021.02.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/08/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
Bacterial small RNAs (sRNAs) regulate the expression of hundreds of transcripts via base pairing mediated by the Hfq chaperone protein. sRNAs and the mRNA sites they target are heterogeneous in sequence, length, and secondary structure. To understand how Hfq can flexibly match diverse sRNA and mRNA pairs, we developed a single-molecule Förster resonance energy transfer (smFRET) platform that visualizes the target search on timescales relevant in cells. Here we show that unfolding of target secondary structure on Hfq creates a kinetic energy barrier that determines whether target recognition succeeds or aborts before a stable anti-sense complex is achieved. Premature dissociation of the sRNA can be alleviated by strong RNA-Hfq interactions, explaining why sRNAs have different target recognition profiles. We propose that the diverse sequences and structures of Hfq substrates create an additional layer of information that tunes the efficiency and selectivity of non-coding RNA regulation in bacteria.
Collapse
Affiliation(s)
- Ewelina M Małecka
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sarah A Woodson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
39
|
TusA Is a Versatile Protein That Links Translation Efficiency to Cell Division in Escherichia coli. J Bacteriol 2021; 203:JB.00659-20. [PMID: 33526615 DOI: 10.1128/jb.00659-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/11/2021] [Indexed: 11/20/2022] Open
Abstract
To enable accurate and efficient translation, sulfur modifications are introduced posttranscriptionally into nucleosides in tRNAs. The biosynthesis of tRNA sulfur modifications involves unique sulfur trafficking systems for the incorporation of sulfur atoms in different nucleosides of tRNA. One of the proteins that is involved in inserting the sulfur for 5-methylaminomethyl-2-thiouridine (mnm5s2U34) modifications in tRNAs is the TusA protein. TusA, however, is a versatile protein that is also involved in numerous other cellular pathways. Despite its role as a sulfur transfer protein for the 2-thiouridine formation in tRNA, a fundamental role of TusA in the general physiology of Escherichia coli has also been discovered. Poor viability, a defect in cell division, and a filamentous cell morphology have been described previously for tusA-deficient cells. In this report, we aimed to dissect the role of TusA for cell viability. We were able to show that the lack of the thiolation status of wobble uridine (U34) nucleotides present on Lys, Gln, or Glu in tRNAs has a major consequence on the translation efficiency of proteins; among the affected targets are the proteins RpoS and Fis. Both proteins are major regulatory factors, and the deregulation of their abundance consequently has a major effect on the cellular regulatory network, with one consequence being a defect in cell division by regulating the FtsZ ring formation.IMPORTANCE More than 100 different modifications are found in RNAs. One of these modifications is the mnm5s2U modification at the wobble position 34 of tRNAs for Lys, Gln, and Glu. The functional significance of U34 modifications is substantial since it restricts the conformational flexibility of the anticodon, thus providing translational fidelity. We show that in an Escherichia coli TusA mutant strain, involved in sulfur transfer for the mnm5s2U34 thio modifications, the translation efficiency of RpoS and Fis, two major cellular regulatory proteins, is altered. Therefore, in addition to the transcriptional regulation and the factors that influence protein stability, tRNA modifications that ensure the translational efficiency provide an additional crucial regulatory factor for protein synthesis.
Collapse
|
40
|
Velema WA, Park HS, Kadina A, Orbai L, Kool ET. Trapping Transient RNA Complexes by Chemically Reversible Acylation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Willem A. Velema
- Institute for Molecules and Materials Radboud University Nijmegen 6525 AJ The Netherlands
| | - Hyun Shin Park
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | - Anastasia Kadina
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | - Lucian Orbai
- Cell Data Sciences 46127 Landing Pkwy Fremont CA 94538 USA
| | - Eric T. Kool
- Department of Chemistry Stanford University Stanford CA 94305 USA
| |
Collapse
|
41
|
Hör J, Di Giorgio S, Gerovac M, Venturini E, Förstner KU, Vogel J. Grad-seq shines light on unrecognized RNA and protein complexes in the model bacterium Escherichia coli. Nucleic Acids Res 2020; 48:9301-9319. [PMID: 32813020 PMCID: PMC7498339 DOI: 10.1093/nar/gkaa676] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/29/2020] [Accepted: 08/14/2020] [Indexed: 12/21/2022] Open
Abstract
Stable protein complexes, including those formed with RNA, are major building blocks of every living cell. Escherichia coli has been the leading bacterial organism with respect to global protein-protein networks. Yet, there has been no global census of RNA/protein complexes in this model species of microbiology. Here, we performed Grad-seq to establish an RNA/protein complexome, reconstructing sedimentation profiles in a glycerol gradient for ∼85% of all E. coli transcripts and ∼49% of the proteins. These include the majority of small noncoding RNAs (sRNAs) detectable in this bacterium as well as the general sRNA-binding proteins, CsrA, Hfq and ProQ. In presenting use cases for utilization of these RNA and protein maps, we show that a stable association of RyeG with 30S ribosomes gives this seemingly noncoding RNA of prophage origin away as an mRNA of a toxic small protein. Similarly, we show that the broadly conserved uncharacterized protein YggL is a 50S subunit factor in assembled 70S ribosomes. Overall, this study crucially extends our knowledge about the cellular interactome of the primary model bacterium E. coli through providing global RNA/protein complexome information and should facilitate functional discovery in this and related species.
Collapse
Affiliation(s)
- Jens Hör
- Institute of Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany
| | - Silvia Di Giorgio
- Institute of Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany.,ZB MED - Information Centre for Life Sciences, D-50931 Cologne, Germany
| | - Milan Gerovac
- Institute of Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany
| | - Elisa Venturini
- Institute of Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany
| | - Konrad U Förstner
- ZB MED - Information Centre for Life Sciences, D-50931 Cologne, Germany.,TH Köln, Faculty of Information Science and Communication Studies, D-50678 Cologne, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany.,Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
| |
Collapse
|
42
|
Ng Kwan Lim E, Sasseville C, Carrier MC, Massé E. Keeping Up with RNA-Based Regulation in Bacteria: New Roles for RNA Binding Proteins. Trends Genet 2020; 37:86-97. [PMID: 33077249 DOI: 10.1016/j.tig.2020.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 01/06/2023]
Abstract
RNA binding proteins (RBPs) are ubiquitously found in all kingdoms of life. They are involved in a plethora of regulatory events, ranging from direct regulation of gene expression to guiding modification of RNA molecules. As bacterial regulators, RBPs can act alone or in concert with RNA-based regulators, such as small regulatory RNAs (sRNAs), riboswitches, or clustered regularly interspaced short palindromic repeats (CRISPR) RNAs. Various functions of RBPs, whether dependent or not on an RNA regulator, have been described in the past. However, the past decade has been a fertile ground for the development of novel high-throughput methods. These methods acted as stepping-stones for the discovery of new functions of RBPs and helped in the understanding of the molecular mechanisms behind previously described regulatory events. Here, we present an overview of the recently identified roles of major bacterial RBPs from different model organisms. Moreover, the tight relationship between RBPs and RNA-based regulators will be explored.
Collapse
Affiliation(s)
- Evelyne Ng Kwan Lim
- Faculty of Medicine and Health Sciences, Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, J1H 5N4, QC, Canada
| | - Charles Sasseville
- Faculty of Medicine and Health Sciences, Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, J1H 5N4, QC, Canada
| | - Marie-Claude Carrier
- Faculty of Medicine and Health Sciences, Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, J1H 5N4, QC, Canada
| | - Eric Massé
- Faculty of Medicine and Health Sciences, Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, J1H 5N4, QC, Canada.
| |
Collapse
|
43
|
Crucial Role of the C-Terminal Domain of Hfq Protein in Genomic Instability. Microorganisms 2020; 8:microorganisms8101598. [PMID: 33080799 PMCID: PMC7603069 DOI: 10.3390/microorganisms8101598] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 01/25/2023] Open
Abstract
G-rich DNA repeats that can form G-quadruplex structures are prevalent in bacterial genomes and are frequently associated with regulatory regions of genes involved in virulence, antigenic variation, and antibiotic resistance. These sequences are also inherently mutagenic and can lead to changes affecting cell survival and adaptation. Transcription of the G-quadruplex-forming repeat (G3T)n in E. coli, when mRNA comprised the G-rich strand, promotes G-quadruplex formation in DNA and increases rates of deletion of G-quadruplex-forming sequences. The genomic instability of G-quadruplex repeats may be a source of genetic variability that can influence alterations and evolution of bacteria. The DNA chaperone Hfq is involved in the genetic instability of these G-quadruplex sequences. Inactivation of the hfq gene decreases the genetic instability of G-quadruplex, demonstrating that the genomic instability of this regulatory element can be influenced by the E. coli highly pleiotropic Hfq protein, which is involved in small noncoding RNA regulation pathways, and DNA organization and packaging. We have shown previously that the protein binds to and stabilizes these sequences, increasing rates of their genomic instability. Here, we extend this analysis to characterize the role of the C-terminal domain of Hfq protein in interaction with G-quadruplex structures. This allows to better understand the function of this specific region of the Hfq protein in genomic instability.
Collapse
|
44
|
Velema WA, Park HS, Kadina A, Orbai L, Kool ET. Trapping Transient RNA Complexes by Chemically Reversible Acylation. Angew Chem Int Ed Engl 2020; 59:22017-22022. [PMID: 32845055 DOI: 10.1002/anie.202010861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Indexed: 01/01/2023]
Abstract
RNA-RNA interactions are essential for biology, but they can be difficult to study due to their transient nature. While crosslinking strategies can in principle be used to trap such interactions, virtually all existing strategies for crosslinking are poorly reversible, chemically modifying the RNA and hindering molecular analysis. We describe a soluble crosslinker design (BINARI) that reacts with RNA through acylation. We show that it efficiently crosslinks noncovalent RNA complexes with mimimal sequence bias and establish that the crosslink can be reversed by phosphine reduction of azide trigger groups, thereby liberating the individual RNA components for further analysis. The utility of the new approach is demonstrated by reversible protection against nuclease degradation and trapping transient RNA complexes of E. coli DsrA-rpoS derived bulge-loop interactions, which underlines the potential of BINARI crosslinkers to probe RNA regulatory networks.
Collapse
Affiliation(s)
- Willem A Velema
- Institute for Molecules and Materials, Radboud University, Nijmegen, 6525, AJ, The Netherlands
| | - Hyun Shin Park
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Anastasia Kadina
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Lucian Orbai
- Cell Data Sciences, 46127 Landing Pkwy, Fremont, CA, 94538, USA
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
45
|
Abstract
Enterohemorrhagic E. coli is a significant human pathogen that can cause severe disease due to the release of Shiga toxins. The toxins are encoded within lysogenic bacteriophage and controlled by antitermination of the phage late promoter, PR′. This promoter is always active, but terminated immediately downstream during lysogeny. A byproduct of antitermination regulation is transcription of a short RNA that is thought to be nonfunctional. Here we demonstrate that in Shiga toxin-encoding phages, this short RNA is a Hfq-binding regulatory small RNA. The small RNA represses toxin production threefold under lysogenic conditions and promotes high cell density growth. Lysogenic bacteriophages are highly abundant and our results suggest that antiterminated phage promoters may be a rich source of regulatory RNAs. Enterohemorrhagic Escherichia coli is a significant human pathogen that causes disease ranging from hemorrhagic colitis to hemolytic uremic syndrome. The latter can lead to potentially fatal renal failure and is caused by the release of Shiga toxins that are encoded within lambdoid bacteriophages. The toxins are encoded within the late transcript of the phage and are regulated by antitermination of the PR′ late promoter during lytic induction of the phage. During lysogeny, the late transcript is prematurely terminated at tR′ immediately downstream of PR′, generating a short RNA that is a byproduct of antitermination regulation. We demonstrate that this short transcript binds the small RNA chaperone Hfq, and is processed into a stable 74-nt regulatory small RNA that we have termed StxS. StxS represses expression of Shiga toxin 1 under lysogenic conditions through direct interactions with the stx1AB transcript. StxS acts in trans to activate expression of the general stress response sigma factor, RpoS, through direct interactions with an activating seed sequence within the 5′ UTR. Activation of RpoS promotes high cell density growth under nutrient-limiting conditions. Many phages utilize antitermination to regulate the lytic/lysogenic switch and our results demonstrate that short RNAs generated as a byproduct of this regulation can acquire regulatory small RNA functions that modulate host fitness.
Collapse
|
46
|
Maertens L, Leys N, Matroule JY, Van Houdt R. The Transcriptomic Landscape of Cupriavidus metallidurans CH34 Acutely Exposed to Copper. Genes (Basel) 2020; 11:E1049. [PMID: 32899882 PMCID: PMC7563307 DOI: 10.3390/genes11091049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022] Open
Abstract
Bacteria are increasingly used for biotechnological applications such as bioremediation, biorecovery, bioproduction, and biosensing. The development of strains suited for such applications requires a thorough understanding of their behavior, with a key role for their transcriptomic landscape. We present a thorough analysis of the transcriptome of Cupriavidus metallidurans CH34 cells acutely exposed to copper by tagRNA-sequencing. C. metallidurans CH34 is a model organism for metal resistance, and its potential as a biosensor and candidate for metal bioremediation has been demonstrated in multiple studies. Several metabolic pathways were impacted by Cu exposure, and a broad spectrum of metal resistance mechanisms, not limited to copper-specific clusters, was overexpressed. In addition, several gene clusters involved in the oxidative stress response and the cysteine-sulfur metabolism were induced. In total, 7500 transcription start sites (TSSs) were annotated and classified with respect to their location relative to coding sequences (CDSs). Predicted TSSs were used to re-annotate 182 CDSs. The TSSs of 2422 CDSs were detected, and consensus promotor logos were derived. Interestingly, many leaderless messenger RNAs (mRNAs) were found. In addition, many mRNAs were transcribed from multiple alternative TSSs. We observed pervasive intragenic TSSs both in sense and antisense to CDSs. Antisense transcripts were enriched near the 5' end of mRNAs, indicating a functional role in post-transcriptional regulation. In total, 578 TSSs were detected in intergenic regions, of which 35 were identified as putative small regulatory RNAs. Finally, we provide a detailed analysis of the main copper resistance clusters in CH34, which include many intragenic and antisense transcripts. These results clearly highlight the ubiquity of noncoding transcripts in the CH34 transcriptome, many of which are putatively involved in the regulation of metal resistance.
Collapse
Affiliation(s)
- Laurens Maertens
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; (L.M.); (N.L.)
- Research Unit in Microorganisms Biology (URBM), Narilis Institute, University of Namur, 5000 Namur, Belgium;
| | - Natalie Leys
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; (L.M.); (N.L.)
| | - Jean-Yves Matroule
- Research Unit in Microorganisms Biology (URBM), Narilis Institute, University of Namur, 5000 Namur, Belgium;
| | - Rob Van Houdt
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; (L.M.); (N.L.)
| |
Collapse
|
47
|
McQuail J, Switzer A, Burchell L, Wigneshweraraj S. The RNA-binding protein Hfq assembles into foci-like structures in nitrogen starved Escherichia coli. J Biol Chem 2020; 295:12355-12367. [PMID: 32532816 PMCID: PMC7458820 DOI: 10.1074/jbc.ra120.014107] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/09/2020] [Indexed: 11/13/2022] Open
Abstract
The initial adaptive responses to nutrient depletion in bacteria often occur at the level of gene expression. Hfq is an RNA-binding protein present in diverse bacterial lineages that contributes to many different aspects of RNA metabolism during gene expression. Using photoactivated localization microscopy and single-molecule tracking, we demonstrate that Hfq forms a distinct and reversible focus-like structure in Escherichia coli specifically experiencing long-term nitrogen starvation. Using the ability of T7 phage to replicate in nitrogen-starved bacteria as a biological probe of E. coli cell function during nitrogen starvation, we demonstrate that Hfq foci have a role in the adaptive response of E. coli to long-term nitrogen starvation. We further show that Hfq foci formation does not depend on gene expression once nitrogen starvation has set in and occurs indepen-dently of the transcription factor N-regulatory protein C, which activates the initial adaptive response to N starvation in E. coli These results serve as a paradigm to demonstrate that bacterial adaptation to long-term nutrient starvation can be spatiotemporally coordinated and can occur independently of de novo gene expression during starvation.
Collapse
Affiliation(s)
- Josh McQuail
- Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Amy Switzer
- Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Lynn Burchell
- Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Sivaramesh Wigneshweraraj
- Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| |
Collapse
|
48
|
Adams PP, Storz G. Prevalence of small base-pairing RNAs derived from diverse genomic loci. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194524. [PMID: 32147527 DOI: 10.1016/j.bbagrm.2020.194524] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 12/21/2022]
Abstract
Small RNAs (sRNAs) that act by base-pairing have been shown to play important roles in fine-tuning the levels and translation of their target transcripts across a variety of model and pathogenic organisms. Work from many different groups in a wide range of bacterial species has provided evidence for the importance and complexity of sRNA regulatory networks, which allow bacteria to quickly respond to changes in their environment. However, despite the expansive literature, much remains to be learned about all aspects of sRNA-mediated regulation, particularly in bacteria beyond the well-characterized Escherichia coli and Salmonella enterica species. Here we discuss what is known, and what remains to be learned, about the identification of regulatory base-pairing RNAs produced from diverse genomic loci including how their expression is regulated. This article is part of a Special Issue entitled: RNA and gene control in bacteria edited by Dr. M. Guillier and F. Repoila.
Collapse
Affiliation(s)
- Philip P Adams
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA; Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD 20892-6200, USA.
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA
| |
Collapse
|
49
|
Hör J, Matera G, Vogel J, Gottesman S, Storz G. Trans-Acting Small RNAs and Their Effects on Gene Expression in Escherichia coli and Salmonella enterica. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0030-2019. [PMID: 32213244 PMCID: PMC7112153 DOI: 10.1128/ecosalplus.esp-0030-2019] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Indexed: 12/20/2022]
Abstract
The last few decades have led to an explosion in our understanding of the major roles that small regulatory RNAs (sRNAs) play in regulatory circuits and the responses to stress in many bacterial species. Much of the foundational work was carried out with Escherichia coli and Salmonella enterica serovar Typhimurium. The studies of these organisms provided an overview of how the sRNAs function and their impact on bacterial physiology, serving as a blueprint for sRNA biology in many other prokaryotes. They also led to the development of new technologies. In this chapter, we first summarize how these sRNAs were identified, defining them in the process. We discuss how they are regulated and how they act and provide selected examples of their roles in regulatory circuits and the consequences of this regulation. Throughout, we summarize the methodologies that were developed to identify and study the regulatory RNAs, most of which are applicable to other bacteria. Newly updated databases of the known sRNAs in E. coli K-12 and S. enterica Typhimurium SL1344 serve as a reference point for much of the discussion and, hopefully, as a resource for readers and for future experiments to address open questions raised in this review.
Collapse
Affiliation(s)
- Jens Hör
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Gianluca Matera
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), 97080 Würzburg, Germany
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Susan Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD 20892
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892
| |
Collapse
|
50
|
Wang H, Huang M, Zeng X, Peng B, Xu X, Zhou G. Resistance Profiles of Salmonella Isolates Exposed to Stresses and the Expression of Small Non-coding RNAs. Front Microbiol 2020; 11:130. [PMID: 32180763 PMCID: PMC7059537 DOI: 10.3389/fmicb.2020.00130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/21/2020] [Indexed: 01/21/2023] Open
Abstract
Salmonella can resist various stresses and survive during food processing, storage, and distribution, resulting in potential health risks to consumers. Therefore, evaluation of bacterial survival profiles under various environmental stresses is necessary. In this study, the resistance profiles of five Salmonella isolates [serotypes with Agona, Infantis, Typhimurium, Enteritidis, and a standard strain (ATCC 13076, Enteritidis serotype)] to acidic, hyperosmotic, and oxidative stresses were examined, and the relative expressions of non-coding small RNAs were also evaluated, including CyaR, MicC, MicA, InvR, RybB, and DsrA, induced by specific stresses. The results indicated that although all tested strains displayed a certain resistance to stresses, there was great diversity in stress resistance among the strains. According to the reduction numbers of cells exposed to stress for 3 h, S. Enteritidis showed the highest resistance to acidic and hyperosmotic stresses, whereas ATCC 13076 showed the greatest resistance to oxidative stress, with less than 0.1 Log CFU/ml of cell reduction. Greater resistance of cells to acidic, hyperosmotic, and oxidative stresses was observed within 1 h, after 2 h, and from 1 to 2 h, respectively. The relative expression of sRNAs depended on the isolate for each stress; acidic exposure for the tested isolates induced high expression levels of DsrA, MicC, InvR, RybB, MicA, and CyaR. The sRNA RybB, associated with sigma E and outer membrane protein in bacteria, showed a fold change of greater than 7 in S. Enteritidis exposed to the tested stresses. CyaR and InvR involved in general stress responses and stress adaptation were also induced to show high expression levels of Salmonella exposed to hyperosmotic stress. Overall, these findings demonstrated that the behaviors of Salmonella under specific stresses varied according to strain and were likely not related to other profiles. The finding also provided insights into the survival of Salmonella subjected to short-term stresses and for controlling Salmonella in the food industry.
Collapse
Affiliation(s)
- Huhu Wang
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Mingyuan Huang
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Xianming Zeng
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Bing Peng
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
- College of Animal Medicine, Xinjiang Agricultural University, Ürümqi, China
| | - Xinglian Xu
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Guanghong Zhou
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|