1
|
Liu Z, Li H, Huang X, Liu Q. Animal Models of Helicobacter pylori Infection and Vaccines: Current Status and Future Prospects. Helicobacter 2024; 29:e13119. [PMID: 39108210 DOI: 10.1111/hel.13119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 01/02/2025]
Abstract
Helicobacter pylori infection causes chronic gastritis, ulcers, and gastric cancer, making it a threat to human health. Despite the use of antibiotic therapy, the global prevalence of H. pylori infection remains high, necessitating early eradication measures. Immunotherapy, especially vaccine development, is a promising solution in this direction, albeit the selection of an appropriate animal model is critical in efficient vaccine production. Accordingly, we conducted a literature, search and summarized the commonly used H. pylori strains, H. pylori infection-related animal models, and models for evaluating H. pylori vaccines. Based on factors such as the ability to replicate human diseases, strain compatibility, vaccine types, and eliciting of immune responses, we systematically compared the advantages and disadvantages of different animal models, to obtain the informed recommendations. In addition, we have proposed novel perspectives on H. pylori-related animal models to advance research and vaccine evaluation for the prevention and treatment of diseases such as gastric cancer.
Collapse
Affiliation(s)
- Zhili Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
- HuanKui Academy, Nanchang University, Nanchang, China
| | - He Li
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qiong Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Li F, Yang A, Hu Z, Lin S, Deng Y, Tang YZ. Probing the Energetic Metabolism of Resting Cysts under Different Conditions from Molecular and Physiological Perspectives in the Harmful Algal Blooms-Forming Dinoflagellate Scrippsiella trochoidea. Int J Mol Sci 2021; 22:7325. [PMID: 34298944 PMCID: PMC8307125 DOI: 10.3390/ijms22147325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 02/02/2023] Open
Abstract
Energetic metabolism is essential in maintaining the viability of all organisms. Resting cysts play important roles in the ecology of dinoflagellates, particularly for harmful algal blooms (HABs)-causative species. However, the energetic metabolism underlying the germination potency maintenance of resting cysts of dinoflagellate have been extremely scarce in studies from physiological and, particularly, molecular perspectives. Therefore, we used the cosmopolitan Scrippsiella trochoidea as a representative of HABs-forming and cyst-producing dinoflagellates in this work to obtain novel insights into the molecular mechanisms, regulating the energetic metabolism in dinoflagellate resting cysts, under different physical condition. As the starting step, we established a cDNA subtractive library via suppression subtractive hybridization (SSH) technology, from which we screened an incomplete sequence for the β subunit of ATP synthase gene (β-F1-ATPase), a key indicator for the status of cell's energetic metabolism. The full-length cDNA of β-F1-ATPase gene from S.trochoidea (Stβ-F1-ATPase) was then obtained via rapid amplification of cDNA ends (RACE) (Accession: MZ343333). Our real-time qPCR detections, in vegetative cells and resting cysts treated with different physical conditions, revealed that (1) the expression of Stβ-F1-ATPase in resting cysts was generally much lower than that in vegetative cells, and (2) the Stβ-F1-ATPase expressions in the resting cysts under darkness, lowered temperature, and anoxia, and during an extended duration of dormancy, were significantly lower than that in cysts under the condition normally used for culture-maintaining (a 12 h light:12 h dark cycle, 21 °C, aerobic, and newly harvested). Our detections of the viability (via Neutral Red staining) and cellular ATP content of resting cysts, at the conditions corresponding to the abovementioned treatments, showed that both the viability and ATP content decreased rapidly within 12 h and then maintained at low levels within the 4-day experimentation under all the three conditions applied (4 °C, darkness, and anoxia), which are well in accordance with the measurements of the transcription of Stβ-F1-ATPase. These results demonstrated that the energy consumption of resting cysts reaches a low, but somehow stable, level within a short time period and is lower at low temperature, darkness, and anoxia than that at ambient temperature. Our work provides an important basis for explaining that resting cysts survive long-term darkness and low temperature in marine sediments from molecular and physiological levels.
Collapse
Affiliation(s)
- Fengting Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (F.L.); (A.Y.); (Z.H.); (S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aoao Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (F.L.); (A.Y.); (Z.H.); (S.L.)
| | - Zhangxi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (F.L.); (A.Y.); (Z.H.); (S.L.)
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Siheng Lin
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (F.L.); (A.Y.); (Z.H.); (S.L.)
| | - Yunyan Deng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (F.L.); (A.Y.); (Z.H.); (S.L.)
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ying Zhong Tang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (F.L.); (A.Y.); (Z.H.); (S.L.)
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
3
|
Roberts-Thomson IC. How did the ancient bacterium, Helicobacter pylori, cause an epidemic of chronic duodenal ulceration? JGH OPEN 2021; 5:636-642. [PMID: 34124378 PMCID: PMC8171156 DOI: 10.1002/jgh3.12560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
The association of Helicobacter pylori with chronic duodenal ulceration was a seminal observation in the short history of gastroenterology. However, H. pylori is now known to be an ancient bacterium, whereas there is persuasive evidence that the epidemic of duodenal ulceration began in the second half of the 19th century and continued into the second half of the 20th century. Possible explanations for the epidemic include genomic changes in the organism and environmental or other influences on the human host. While genomic changes resulted in the appearance of virulence factors, these seem likely to have appeared thousands of years ago with minimal effects on gastritis because of coexisting suppression of gastric immunity. In contrast, the emergence of duodenal ulceration is best explained by a change in the pattern of gastritis from inflammation involving the antrum and body in most individuals to a significant minority (10-20%) with antral gastritis but with relative sparing of the body of the stomach. In the latter group, the increase in serum gastrin (particularly G17) associated with antral gastritis had trophic effects on gastric parietal cells with an increase in the parietal cell mass and hypersecretion of gastric acid. Hypersecretion of acid is seen as the major risk factor for duodenal ulceration with significant contributions from environmental factors including smoking and use of nonsteroidal, anti-inflammatory drugs. Host factors favoring changes in the pattern of gastritis include delayed acquisition of infection and improved nutrition; both with enhancing effects on mucosal immunity.
Collapse
Affiliation(s)
- Ian C Roberts-Thomson
- Faculty of Health and Medical Sciences University of Adelaide Adelaide South Australia Australia
| |
Collapse
|
4
|
Keikha M, Karbalaei M. EPIYA motifs of Helicobacter pylori cagA genotypes and gastrointestinal diseases in the Iranian population: a systematic review and meta-analysis. New Microbes New Infect 2021; 41:100865. [PMID: 33912350 PMCID: PMC8066700 DOI: 10.1016/j.nmni.2021.100865] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/01/2021] [Accepted: 03/07/2021] [Indexed: 02/08/2023] Open
Abstract
Helicobacter pylori is one of the best risk factors for gastric cancer. Recent studies have examined the relationship between virulence factors, in particular CagA toxin, and the development of gastrointestinal diseases. According to the literature, there is a significant relationship between the polymorphism of cagA-EPIYA motifs and progression to severe clinical outcomes. The main goal of our study was to determine the possible association between cagA genotypes and the risk of severe clinical outcomes in the Iranian population. We investigated these ambiguities using a comprehensive meta-analysis study, in which we evaluated data from 1762 Iranian patients for a potential correlation between all cagA gene genotypes and gastrointestinal diseases. According to statistical analysis, the frequencies of cagA genotypes including ABC, ABCC, AB and ABCCC in the Iranian population were estimated at 80.18%, 22.81%, 5.52% and 2.76%, respectively; the ABD genotype was not detected in these PCR-based studies. There was a significant relationship between cagA genotypes ABCC and ABCCC and severe clinical outcomes of infection such as peptic ulcer and gastric cancer. Overall, it can be concluded that there is a positive correlation with the number of copies of EPIYA-C and the increase of gastric cancer. Therefore, according to our results, it seems that the EPIYA-ABCCC motif has a strong positive relationship with gastric cancer in the Iranian population.
Collapse
Affiliation(s)
- M. Keikha
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - M. Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
5
|
Duan L, Zhang S, Yang Y, Wang Q, Lan Q, Wang Y, Xu W, Jin W, Li L, Chen R. A feasible method for detecting unknown GMOs via a combined strategy of PCR-based suppression subtractive hybridization and next-generation sequencing. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
6
|
An ancestral genomic locus in Mycobacterium tuberculosis clinical isolates from India hints the genetic link with Mycobacterium canettii. Int Microbiol 2020; 23:397-404. [PMID: 31898033 DOI: 10.1007/s10123-019-00113-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/06/2019] [Accepted: 12/05/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Tuberculosis remains a worldwide public health emergency. To better understand M. tuberculosis and to identify genomic variations characteristic to the Indian clinical isolates by a low-cost method, a genomic subtractive hybridization between M. tuberculosis H37Rv and a clinical isolate from South India was performed. RESULTS This revealed a novel 0.4-kb subtractive fragment which was used as a handle to pull out a 4.5-kb genomic region characteristic to the clinical isolate and was absent in H37Rv. On further studies, this 4.5-kb region was found to be present in 91% of the M. tuberculosis clinical isolates screened from Kerala, a state in South India. Interestingly, this novel region has 99% identity (with 100% query coverage) with genomic regions of M. canettii. DISCUSSION The present study hypothesizes that this locus was present in the recent common environmental ancestor of mycobacteria, retained to the maximum extent in M. canettii and ancestral isolates of M. tuberculosis, and later deleted in other modern lineages of M. tuberculosis. Thus, this region may serve as one of the links between the pathogenic mycobacteria and the environmental species. We also propose that the Indian isolates of M. tuberculosis might be closely related to the putative progenitor M. prototuberculosis with respect to this locus. More studies on other genomic loci from different strains of M. tuberculosis are required to establish more links in this direction.
Collapse
|
7
|
Yu F, Huang Y, Luo L, Li X, Wu J, Chen R, Zhang M, Deng Z. An improved suppression subtractive hybridization technique to develop species-specific repetitive sequences from Erianthus arundinaceus (Saccharum complex). BMC PLANT BIOLOGY 2018; 18:269. [PMID: 30400857 PMCID: PMC6220460 DOI: 10.1186/s12870-018-1471-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 10/05/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND Sugarcane has recently attracted increased attention for its potential as a source of bioethanol and methane. However, a narrow genetic base has limited germplasm enhancement of sugarcane. Erianthus arundinaceus is an important wild genetic resource that has many excellent traits for improving cultivated sugarcane via wide hybridization. Species-specific repetitive sequences are useful for identifying genome components and investigating chromosome inheritance in noblization between sugarcane and E. arundinaceus. Here, suppression subtractive hybridization (SSH) targeting E. arundinaceus-specific repetitive sequences was performed. The five critical components of the SSH reaction system, including enzyme digestion of genomic DNA (gDNA), adapters, digested gDNA concentrations, primer concentrations, and LA Taq polymerase concentrations, were improved using a stepwise optimization method to establish a SSH system suitable for obtaining E. arundinaceus-specific gDNA fragments. RESULTS Specificity of up to 85.42% was confirmed for the SSH method as measured by reverse dot blot (RDB) of an E. arundinaceus subtractive library. Furthermore, various repetitive sequences were obtained from the E. arundinaceus subtractive library via fluorescence in situ hybridization (FISH), including subtelomeric and centromeric regions. EaCEN2-166F/R and EaSUB1-127F/R primers were then designed as species-specific markers to accurately validate E. arundinaceus authenticity. CONCLUSIONS This is the first report that E. arundinaceus-specific repetitive sequences were obtained via an improved SSH method. These results suggested that this novel SSH system could facilitate screening of species-specific repetitive sequences for species identification and provide a basis for development of similar applications for other plant species.
Collapse
Affiliation(s)
- Fan Yu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Yongji Huang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Ling Luo
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Xueting Li
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Jiayun Wu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
- Guangdong Key Laboratory of Sugarcane Improvement and Biorefinery, Guangdong Provincial Bioengineering Institute, Guangzhou, China
| | - Rukai Chen
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Muqing Zhang
- State Key Laboratory for protection and utilization of subtropical agro-bioresources, Guangxi University, Nanning, 530004 China
| | - Zuhu Deng
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
- State Key Laboratory for protection and utilization of subtropical agro-bioresources, Guangxi University, Nanning, 530004 China
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
8
|
Gupta TB, Mowat E, Brightwell G, Flint SH. Biofilm formation and genetic characterization of New Zealand Cronobacter
isolates. J Food Saf 2017. [DOI: 10.1111/jfs.12430] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Tanushree B. Gupta
- Hopkirk Research Institute; Food and Bio-Based Products, AgResearch Limited; Palmerston North New Zealand
| | - Eilidh Mowat
- Plant Physiology Team, Hill Laboratories; Hamilton New Zealand
| | - Gale Brightwell
- Hopkirk Research Institute; Food and Bio-Based Products, AgResearch Limited; Palmerston North New Zealand
| | - Steve H. Flint
- Massey Institute of Food Science and Technology, Massey University; Palmerston North New Zealand
| |
Collapse
|
9
|
Guo T, Lok KY, Yu C, Li Z. Lung fibrosis: drug screening and disease biomarker identification with a lung slice culture model and subtracted cDNA Library. Altern Lab Anim 2016; 42:235-43. [PMID: 25290944 DOI: 10.1177/026119291404200405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pulmonary fibrosis is a progressive and irreversible disorder with no appropriate cure. A practical and effective experimental model that recapitulates the disease will greatly benefit the research community and, ultimately, patients. In this study, we tested the lung slice culture (LSC) system for its potential use in drug screening and disease biomarker identification. Fibrosis was induced by treating rat lung slices with 1ng/ml TGF-β1 and 2.5μM CdCl2, quantified by measuring the content of hydroxyproline, and confirmed by detecting the expression of collagen type III alpha 1 (Col3α1) and connective tissue growth factor (CTGF) genes. The anti-fibrotic effects of pirfenidone, spironolactone and eplerenone were assessed by their capability to reduce hydroxyproline content. A subtractive hybridisation technique was used to create two cDNA libraries (subtracted and unsubtracted) from lung slices. The housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was employed to assess the subtraction efficiency of the subtracted cDNA library. Clones from the two libraries were sequenced and the genes were identified by performing a BLAST search on the NCBI GenBank database. Furthermore, the relevance of the genes to fibrosis formation was verified. The results presented here show that fibrosis was effectively induced in cultured lung slices, which exhibited significantly elevated levels of hydroxyproline and Col3α1/CTGF gene expression. Several inhibitors have demonstrated their anti-fibrotic effects by significantly reducing hydroxyproline content. The subtracted cDNA library, which was enriched for differentially expressed genes, was used to successfully identify genes associated with fibrosis. Collectively, the results indicate that our LSC system is an effective model for the screening of drug candidates and for disease biomarker identification.
Collapse
Affiliation(s)
- Tong Guo
- Goodman Institute of Investment Management, John Molson School of Business, Concordia University, Montreal, Quebec, Canada
| | | | | | - Zhuo Li
- Bio S&T, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Molina-Sánchez MD, López-Contreras JA, Toro N, Fernández-López M. Genomic characterization of Sinorhizobium meliloti AK21, a wild isolate from the Aral Sea Region. SPRINGERPLUS 2015; 4:259. [PMID: 26090306 PMCID: PMC4468178 DOI: 10.1186/s40064-015-1062-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/26/2015] [Indexed: 11/10/2022]
Abstract
The symbiotic, nitrogen-fixing bacterium Sinorhizobium meliloti has been widely studied due to its ability to improve crop yields through direct interactions with leguminous plants. S. meliloti AK21 is a wild type strain that forms nodules on Medicago plants in saline and drought conditions in the Aral Sea Region. The aim of this work was to establish the genetic similarities and differences between S. meliloti AK21 and the reference strain S. meliloti 1021. Comparative genome hybridization with the model reference strain S. meliloti 1021 yielded 365 variable genes, grouped into 11 regions in the three main replicons in S. meliloti AK21. The most extensive regions of variability were found in the symbiotic plasmid pSymA, which also contained the largest number of orthologous and polymorphic sequences identified by suppression subtractive hybridization. This procedure identified a large number of divergent sequences and others without homology in the databases, the further investigation of which could provide new insight into the alternative metabolic pathways present in S. meliloti AK21. We identified a plasmid replication module from the repABC replicon family, together with plasmid mobilization-related genes (traG and a VirB9-like protein), which suggest that this indigenous isolate harbors an accessory plasmid. Furthermore, the transcriptomic profiles reflected differences in gene content and regulation between S. meliloti AK21 and S. meliloti 1021 (ExpR and PhoB regulons), but provided evidence for an as yet unknown, alternative mechanism involving activation of the cbb3 terminal oxidase. Finally, phenotypic microarrays characterization revealed a greater versatility of substrate use and chemical degradation than for S. meliloti 1021.
Collapse
Affiliation(s)
- María Dolores Molina-Sánchez
- Grupo de Ecología Genética, Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Calle Profesor Albareda 1, 18008 Granada, Spain
| | - José Antonio López-Contreras
- Grupo de Ecología Genética, Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Calle Profesor Albareda 1, 18008 Granada, Spain
| | - Nicolás Toro
- Grupo de Ecología Genética, Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Calle Profesor Albareda 1, 18008 Granada, Spain
| | - Manuel Fernández-López
- Grupo de Ecología Genética, Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Calle Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
11
|
|
12
|
Culligan EP, Sleator RD, Marchesi JR, Hill C. Metagenomics and novel gene discovery: promise and potential for novel therapeutics. Virulence 2014; 5:399-412. [PMID: 24317337 PMCID: PMC3979868 DOI: 10.4161/viru.27208] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/21/2013] [Accepted: 11/14/2013] [Indexed: 02/06/2023] Open
Abstract
Metagenomics provides a means of assessing the total genetic pool of all the microbes in a particular environment, in a culture-independent manner. It has revealed unprecedented diversity in microbial community composition, which is further reflected in the encoded functional diversity of the genomes, a large proportion of which consists of novel genes. Herein, we review both sequence-based and functional metagenomic methods to uncover novel genes and outline some of the associated problems of each type of approach, as well as potential solutions. Furthermore, we discuss the potential for metagenomic biotherapeutic discovery, with a particular focus on the human gut microbiome and finally, we outline how the discovery of novel genes may be used to create bioengineered probiotics.
Collapse
Affiliation(s)
- Eamonn P Culligan
- Alimentary Pharmabiotic Centre; University College Cork; Cork, Ireland
- School of Microbiology; University College Cork; Cork, Ireland
| | - Roy D Sleator
- Alimentary Pharmabiotic Centre; University College Cork; Cork, Ireland
- Department of Biological Sciences; Cork Institute of Technology; Bishopstown, Cork, Ireland
| | - Julian R Marchesi
- Alimentary Pharmabiotic Centre; University College Cork; Cork, Ireland
- Cardiff School of Biosciences; Cardiff University; Cardiff, UK
- Department of Hepatology and Gastroenterology; Imperial College London; London, UK
| | - Colin Hill
- Alimentary Pharmabiotic Centre; University College Cork; Cork, Ireland
- School of Microbiology; University College Cork; Cork, Ireland
| |
Collapse
|
13
|
Li Q, Hu Y, Xu Y, Chen J, Fang L, Liu Z, Jiao X. A gene knock-in method used to purify plasmid pSPI12 from Salmonella enterica serovar Pullorum and characterization of IpaJ. J Microbiol Methods 2014; 98:128-33. [DOI: 10.1016/j.mimet.2014.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 01/16/2014] [Accepted: 01/16/2014] [Indexed: 11/30/2022]
|
14
|
Abstract
Stress-induced ROS changes DNA methylation patterns. A protocol combining methylation-sensitive restriction endonuclease (MS-RE) digestion with suppression subtractive hybridization (SSH) to construct the differential-methylation subtractive library was developed for finding genes regulated by methylation mechanism under cold stress. The total efficiency of target fragment detection was 74.64%. DNA methylation analysis demonstrated the methylation status of target fragments changed after low temperature or DNA methyltransferase inhibitor treatment. Transcription level analysis indicated that demethylation of DNA promotes gene expression level. The results proved that our protocol was reliable and efficient to obtain gene fragments in differential-methylation status.
Collapse
|
15
|
Lobkovsky AE, Wolf YI, Koonin EV. Gene frequency distributions reject a neutral model of genome evolution. Genome Biol Evol 2013; 5:233-42. [PMID: 23315380 PMCID: PMC3595032 DOI: 10.1093/gbe/evt002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Evolution of prokaryotes involves extensive loss and gain of genes, which lead to substantial differences in the gene repertoires even among closely related organisms. Through a wide range of phylogenetic depths, gene frequency distributions in prokaryotic pangenomes bear a characteristic, asymmetrical U-shape, with a core of (nearly) universal genes, a “shell” of moderately common genes, and a “cloud” of rare genes. We employ mathematical modeling to investigate evolutionary processes that might underlie this universal pattern. Gene frequency distributions for almost 400 groups of 10 bacterial or archaeal species each over a broad range of evolutionary distances were fit to steady-state, infinite allele models based on the distribution of gene replacement rates and the phylogenetic tree relating the species in each group. The fits of the theoretical frequency distributions to the empirical ones yield model parameters and estimates of the goodness of fit. Using the Akaike Information Criterion, we show that the neutral model of genome evolution, with the same replacement rate for all genes, can be confidently rejected. Of the three tested models with purifying selection, the one in which the distribution of replacement rates is derived from a stochastic population model with additive per-gene fitness yields the best fits to the data. The selection strength estimated from the fits declines with evolutionary divergence while staying well outside the neutral regime. These findings indicate that, unlike some other universal distributions of genomic variables, for example, the distribution of paralogous gene family membership, the gene frequency distribution is substantially affected by selection.
Collapse
Affiliation(s)
- Alexander E Lobkovsky
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
16
|
Singh P, Raghukumar C, Verma AK, Meena RM. Differentially expressed genes under simulated deep-sea conditions in the psychrotolerant yeast Cryptococcus sp. NIOCC#PY13. Extremophiles 2012; 16:777-85. [DOI: 10.1007/s00792-012-0474-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 07/23/2012] [Indexed: 11/28/2022]
|
17
|
Subtractive hybridization yields a silver resistance determinant unique to nosocomial pathogens in the Enterobacter cloacae complex. J Clin Microbiol 2012; 50:3249-57. [PMID: 22837330 DOI: 10.1128/jcm.00885-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The heterogeneity and the increasing clinical importance of the Enterobacter cloacae complex have often been discussed. However, little is known about molecular factors causing pathogenicity within this nomenspecies. Here, we analyzed the genetic differences between an avirulent plant isolate and a pathogenic strain causing an outbreak with septicemia in three patients. We identified an IncHI-2 plasmid as a major difference between these two strains. Besides resistance to several antibiotics, this plasmid encoded a silver resistance determinant. We further showed that this sil determinant was present not only in the analyzed outbreak strain but also in the vast majority of clinical isolates of the E. cloacae complex, predominantly in (sub)species that frequently cause nosocomial infections. The identified sil determinant was highly conserved within the E. cloacae complex and mediated resistance to up to 600 μM silver nitrate. As silver is often used as a disinfectant and treatment for burn wounds, we present here an important fitness factor within the clinically most prevalent subspecies of the E. cloacae complex. This provides a possible explanation for their unequal involvement in nosocomial and especially burn wound infections.
Collapse
|
18
|
Baumdicker F, Hess WR, Pfaffelhuber P. The infinitely many genes model for the distributed genome of bacteria. Genome Biol Evol 2012; 4:443-56. [PMID: 22357598 PMCID: PMC3342869 DOI: 10.1093/gbe/evs016] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The distributed genome hypothesis states that the gene pool of a bacterial taxon is much more complex than that found in a single individual genome. However, the possible fitness advantage, why such genomic diversity is maintained, whether this variation is largely adaptive or neutral, and why these distinct individuals can coexist, remains poorly understood. Here, we present the infinitely many genes (IMG) model, which is a quantitative, evolutionary model for the distributed genome. It is based on a genealogy of individual genomes and the possibility of gene gain (from an unbounded reservoir of novel genes, e.g., by horizontal gene transfer from distant taxa) and gene loss, for example, by pseudogenization and deletion of genes, during reproduction. By implementing these mechanisms, the IMG model differs from existing concepts for the distributed genome, which cannot differentiate between neutral evolution and adaptation as drivers of the observed genomic diversity. Using the IMG model, we tested whether the distributed genome of 22 full genomes of picocyanobacteria (Prochlorococcus and Synechococcus) shows signs of adaptation or neutrality. We calculated the effective population size of Prochlorococcus at 1.01 × 1011 and predicted 18 distinct clades for this population, only six of which have been isolated and cultured thus far. We predicted that the Prochlorococcus pangenome contains 57,792 genes and found that the evolution of the distributed genome of Prochlorococcus was possibly neutral, whereas that of Synechococcus and the combined sample shows a clear deviation from neutrality.
Collapse
Affiliation(s)
- Franz Baumdicker
- University of Freiburg, Center for Biosystems Analysis, Habsburgerstrasse 49, Germany
| | | | | |
Collapse
|
19
|
Watada M, Shiota S, Matsunari O, Suzuki R, Murakami K, Fujioka T, Yamaoka Y. Association between Helicobacter pylori cagA-related genes and clinical outcomes in Colombia and Japan. BMC Gastroenterol 2011; 11:141. [PMID: 22189161 PMCID: PMC3260095 DOI: 10.1186/1471-230x-11-141] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 12/22/2011] [Indexed: 12/15/2022] Open
Abstract
Background Specific genotypes of several virulence factors of Helicobacter pylori (eg, cagA-positive, vacA s1, oipA "on" and babA-positive) have been reported to be predictors of severe clinical outcomes. Importantly, the presence of these genotypes correlates with each other. We hypothesized that novel virulence genes correlate with the presence of cagA. Therefore, we aimed to find novel candidate virulence genes that correlate with cagA and examined the association of these genes with clinical outcomes in Colombian and Japanese populations. Methods cagA-associated genes were selected based on previous H. pylori genome microarray data. A total of 343 strains (174 from Colombia and 169 from Japan) were examined for the status of cagA, vacA, and candidate genes by polymerase chain reaction and dot blot. Results Microarray data showed that 9 genes were significantly correlated with the presence of cagA. Among the 9 genes, the functions of 4 were known, and we selected these 4 genes as candidate genes (hp0967, jhp0045, jhp0046, and jhp0951). The prevalences of cagA, vacA s1/m1 genotype, and hp0967 were significantly higher in Japan than Colombia, whereas those of jhp0045 and jhp0046 were more prevalent in Colombia than Japan. The prevalences of jhp0045 and jhp0046 in cagA-positive cases of gastric cancer were significantly higher than those from gastritis in Colombia (P = 0.015 and 0.047, respectively). In contrast, the prevalence of 4 candidate genes was independent of clinical outcomes in Japan. Conclusions jhp0045 and jhp0046 might be novel markers for predicting gastric cancer in cagA-positive cases in Colombia, but not in Japan.
Collapse
Affiliation(s)
- Masahide Watada
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Idaigaoka, Hasama-machi, Yufu-City, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
McAllister LJ, Ogunniyi AD, Stroeher UH, Leach AJ, Paton JC. Contribution of serotype and genetic background to virulence of serotype 3 and serogroup 11 pneumococcal isolates. Infect Immun 2011; 79:4839-49. [PMID: 21930754 PMCID: PMC3232656 DOI: 10.1128/iai.05663-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 09/12/2011] [Indexed: 11/20/2022] Open
Abstract
The capsular serotype has long been associated with the virulence of Streptococcus pneumoniae. Here we present an in-depth study of phenotypic and genetic differences between serotype 3 and serogroup 11 S. pneumoniae clinical isolates from both the general and indigenous populations of Australia. Both serotypes/groups included clonally unrelated strains with differences in well-known polymorphic virulence genes, such as nanA and pspA, as demonstrated by multilocus sequence typing and Western blot analysis. Nonetheless, the serotype 3 strains were consistently and significantly more virulent in mice than the serogroup 11 strains. Despite extensive genomic analysis, noncapsular genes common to one serotype/group but not the other were not identified. Nevertheless, following the conversion of a serotype 11A isolate to serotype 3 and subsequent analysis in an intranasal infection model, it was evident that both capsular and noncapsular factors determine the virulence phenotype in mice. However, it appears that these noncapsular factors vary from strain to strain.
Collapse
Affiliation(s)
- Lauren J. McAllister
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide 5005, South Australia, Australia
| | - Abiodun D. Ogunniyi
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide 5005, South Australia, Australia
| | - Uwe H. Stroeher
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide 5005, South Australia, Australia
| | - Amanda J. Leach
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory 0811, Australia
| | - James C. Paton
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide 5005, South Australia, Australia
| |
Collapse
|
21
|
Ballard EL, Dietzgen RG, Sly LI, Gouk C, Horlock C, Fegan M. Development of a Bio-PCR Protocol for the Detection of Xanthomonas arboricola pv. pruni. PLANT DISEASE 2011; 95:1109-1115. [PMID: 30732059 DOI: 10.1094/pdis-09-10-0650] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A real-time SYBR Green I assay was developed and evaluated as a biological and enzymatic polymerase chain reaction (Bio-PCR) protocol for the detection of Xanthomonas arboricola pv. pruni. Suppression subtractive hybridization was used to generate a X. arboricola pv. pruni-specific subtracted DNA library, using X. arboricola pv. corylina as the driver strain. Primer pair 29F/R, designed from cloned sequence, showed no homology to GenBank sequences and amplified a 344-bp product in all X. arboricola pv. pruni isolates. Compared with other published X. arboricola pv. pruni primers, this primer pair was shown to be the only one capable of differentiating X. arboricola pv. pruni from all other X. arboricola pathovars. A real-time assay was developed and shown to be capable of detecting less than 10 CFU and 0.1 pg of DNA. Epiphytic bacteria isolated from plum tissue was used to further evaluate the specificity of the assay. A Bio-PCR protocol, developed for field evaluation, confirmed X. arboricola pv. pruni isolation from asymptomatic and symptomatic plum tissue over a 9-week period between host flowering and the first appearance of leaf and fruit symptoms in an orchard. Dilution plating enabled X. arboricola pv. pruni numbers to be quantified, providing supportive evidence for the usefulness of the Bio-PCR protocol in plant pathology and quarantine surveillance.
Collapse
Affiliation(s)
- E L Ballard
- School of Chemistry and Molecular Biosciences, The University of Queensland, Australia
| | - R G Dietzgen
- School of Chemistry and Molecular Biosciences, The University of Queensland, and Department of Employment, Economic Development and Innovation Agri-Science Queensland, Australia
| | - L I Sly
- School of Chemistry and Molecular Biosciences, The University of Queensland
| | - C Gouk
- Department of Primary Industries, Victoria, Australia
| | - C Horlock
- Department of Employment, Economic Development and Innovation, Agri-Science Queensland
| | - M Fegan
- School of Chemistry and Molecular Biosciences, The University of Queensland
| |
Collapse
|
22
|
Ghadimi D, Hassan M, Njeru PN, de Vrese M, Geis A, Shalabi SI, Abdel-Razek ST, Abdel-Khair AEAA, Heller KJ, Schrezenmeir J. Suppression subtractive hybridization identifies bacterial genomic regions that are possibly involved in hBD-2 regulation by enterocytes. Mol Nutr Food Res 2011; 55:1533-42. [PMID: 21710560 DOI: 10.1002/mnfr.201100052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Revised: 03/29/2011] [Accepted: 04/15/2011] [Indexed: 02/05/2023]
Abstract
SCOPE Human β-defensin 2 (hBD-2) is an inducible antimicrobial peptide synthesized by the epithelium to counteract bacterial adherence and invasion. It has been suggested that probiotic bacteria sustain gut barrier function via induction of defensins. The goals of this study were (i) to evaluate the potential immunomodulatory effects of 11 different Lactobacillus fermentum strains isolated from Kimere, an African fermented pearl millet (Pennisetum glaucum) dough, on the hBD-2 secretion by human intestinal CaCo-2 cell line and (ii) to examine genetic differences between two strains of L. fermentum (K2-Lb4 and K11-Lb3) which differed in their effect on the production of hBD-2 in this study. METHODS AND RESULTS Totally, 46 strains of L. fermentum from Kimere were isolated and characterized using molecular biology methods including pulsed-field gel electrophoresis patterns. After performing time- and dose-experiments, CaCo-2 cells were incubated with or without bacteria for 12 h. L. fermentum PZ1162 was included as the positive control. Cell-free supernatants were analyzed for hBD-2 protein by enzyme-linked immunosorbent assay (ELISA). To identify potential bacterial genes associated with hBD-2 regulation, suppression subtractive hybridization (SSH) was used. Among the 11 strains tested, only two strains of bacteria, K11-Lb3 and K2-Lb6, significantly induced the production of hBD-2 by CaCo-2 cells. This effect was strain-specific, dose-dependent and particularly seems to be bacterial genomic-dependent as manifested by SSH. L. fermentum strains with and without hBD-2 inducing effect differed in genes encoding proteins involved in glycosylation of cell-wall proteins e.g. glycosyltransferase, UDP-N-acetylglucosamine 2-epimerase, rod shape-determining protein MreC, lipoprotein precursors, sugar ABC transporters, and glutamine ABC transporter ATP-binding protein. CONCLUSION This study implies that certain strains of L. fermentum isolated from Kimere may stimulate the intestinal innate defense through the induction of hBD-2. The molecular basis of hBD-2 induction by L. fermentum strain K11-Lb3 may be based on glycosylated cell-surface structures synthesized with the aid of glycosyltransferase, UDP-N-acetylglucosamine 2-epimerase, and rod shape-determining protein MreC.
Collapse
Affiliation(s)
- Darab Ghadimi
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Hermann-Weigmann, Kiel, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Gong YH, Chen M, Xu Y, Dong N, Sang Z, Liu J, Yuan Y. Subtractive hybridization analysis of gastric diseases-associated Helicobacter pylori identifies peptidyl-prolyl isomerase as a potential marker for gastric cancer. FEMS Microbiol Lett 2011; 320:103-9. [PMID: 21535099 DOI: 10.1111/j.1574-6968.2011.02296.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Helicobacter pylori, a microaerophilic Gram-negative bacterium, is known to cause chronic gastritis, peptic ulcer and gastric cancer. Genes that are present in certain isolates may determine strain-specific traits such as disease association and drug resistance. In order to understand the pathogenic mechanisms of gastric diseases, identify molecular markers of the diseases associated with H. pylori strains and provide clues for target treatment of H. pylori-related diseases, a subtracted DNA library was constructed from a gastric cancer-associated H. pylori strain and a superficial gastritis-associated H. pylori strain by suppression subtractive hybridization. The presence of gastric cancer-specific genes was identified by dot blot hybridization, DNA sequencing and PCR-based screening. Twelve gastric cancer-specific high-copy genes and nine low-copy genes were found in gastric cancer compared with the superficial gastritis strain. These genes were confirmed by PCR analysis of H. pylori isolates. Notably, peptidyl-prolyl cis-trans isomerase (PPIase) was detected positively in 11 out of 22 (50%) gastric cancer-associated H. pylori strains. In contrast, <24% of the H. pylori strains from superficial gastritis showed positive results. Given the potential role of PPIases in cell growth, apoptosis and oncogenic transformation, our results suggest that PPIase may represent a novel marker and potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Yue-Hua Gong
- Cancer Research Institute and General Surgery, The First Affiliated Hospital, China Medical University, Shenyang, China Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Quantification of Propionibacterium acidipropionici P169 bacteria in environmental samples by use of strain-specific primers derived by suppressive subtractive hybridization. Appl Environ Microbiol 2011; 77:3898-902. [PMID: 21460112 DOI: 10.1128/aem.02586-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A quantitative PCR (qPCR) assay targeting a gene identified by suppressive subtractive hybridization (SSH) was developed to detect Propionibacterium acidipropionici P169, with a threshold of 10(4) CFU/U of dairy feed or rumen fluid. The report is the first using a molecular marker generated by SSH to quantify a bacterial strain in environmental samples.
Collapse
|
25
|
Murat C, Zampieri E, Vallino M, Daghino S, Perotto S, Bonfante P. Genomic suppression subtractive hybridization as a tool to identify differences in mycorrhizal fungal genomes. FEMS Microbiol Lett 2011; 318:115-22. [DOI: 10.1111/j.1574-6968.2011.02248.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
26
|
Liu J, Zhou T, He D, Li XZ, Wu H, Liu W, Gao X. Functions of lipopeptides bacillomycin D and fengycin in antagonism of Bacillus amyloliquefaciens C06 towards Monilinia fructicola. J Mol Microbiol Biotechnol 2011; 20:43-52. [PMID: 21335978 DOI: 10.1159/000323501] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In previous studies, Bacillus amyloliquefaciens C06 has been proven to be effective in controlling brown rot of stone fruit caused by Monilinia fructicola. When tested in vitro, cell-free filtrate of B. amyloliquefaciens C06 significantly inhibited mycelial growth and conidial germination of the fungal pathogen. This study aimed to determine the role of the antifungal compound(s) in the cell-free filtrate of B. amyloliquefaciens C06 by an approach combining a DNA-based suppression subtractive hybridization (SSH) method with MALDI-TOF-MS analysis. It was demonstrated that B. amyloliquefaciens C06 harbored two genes, bmyC and fenD, involved in biosynthesis of bacillomycin D and fengycin, two lipopeptides belonging to the iturin and fengycin family, respectively. To determine the roles of bacillomycin D and fengycin of B. amyloliquefaciens C06 in suppressing M. fructicola, the mutants of B. amyloliquefaciens C06 deficient in producing bacillomy- cin D, fengycin or both were constructed, and evaluated in vitro together with the wild-type B. amyloliquefaciens C06. The results indicated that bacillomycin D and fengycin jointly contributed to the inhibition of conidial germination of M. fructicola, and fengycin played a major role in suppressing mycelial growth of the fungal pathogen.
Collapse
Affiliation(s)
- Jun Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing, PR China
| | | | | | | | | | | | | |
Collapse
|
27
|
KUDO H, TAKEUCHI H, SHIMAMURA T, KADOTA Y, SUGIURA T, UKEDA H. In Vitro Anti-Helicobacter pylori Activity of Chinese Chive (Allium tuberosum). FOOD SCIENCE AND TECHNOLOGY RESEARCH 2011. [DOI: 10.3136/fstr.17.505] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Quantitative PCR assay for Mycobacterium pseudoshottsii and Mycobacterium shottsii and application to environmental samples and fishes from the Chesapeake Bay. Appl Environ Microbiol 2010; 76:6171-9. [PMID: 20656856 DOI: 10.1128/aem.01091-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Striped bass (Morone saxatilis) in the Chesapeake Bay are currently experiencing a very high prevalence of mycobacteriosis associated with newly described Mycobacterium species, Mycobacterium pseudoshottsii and M. shottsii. The ecology of these mycobacteria outside the striped bass host is currently unknown. In this work, we developed quantitative real-time PCR assays for M. pseudoshottsii and M. shottsii and applied these assays to DNA extracts from Chesapeake Bay water and sediment samples, as well as to tissues from two dominant prey of striped bass, Atlantic menhaden (Brevoortia tyrannus) and bay anchovy (Anchoa mitchilli). Mycobacterium pseudoshottsii was found to be ubiquitous in water samples from the main stem of the Chesapeake Bay and was also present in water and sediments from the Rappahannock River, Virginia. M. pseudoshottsii was also detected in menhaden and anchovy tissues. In contrast, M. shottsii was not detected in water, sediment, or prey fish tissues. In conjunction with its nonpigmented phenotype, which is frequently found in obligately pathogenic mycobacteria of humans, this pattern of occurrence suggests that M. shottsii may be an obligate pathogen of striped bass.
Collapse
|
29
|
Park HK, Lee SJ, Yoon JW, Shin JW, Shin HS, Kook JK, Myung SC, Kim W. Identification of the cpsA gene as a specific marker for the discrimination of Streptococcus pneumoniae from viridans group streptococci. J Med Microbiol 2010; 59:1146-1152. [PMID: 20616191 DOI: 10.1099/jmm.0.017798-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Streptococcus pneumoniae, the aetiological agent of pneumonia and non-gonococcal urethritis, shares a high degree of DNA sequence identity with the viridans group of streptococci, particularly Streptococcus mitis and Streptococcus oralis. Although their clinical and pathological manifestations are different, discrimination between S. pneumoniae and its close viridans cocci relatives is still quite difficult. Suppression subtractive hybridization was performed to identify the genomic differences between S. pneumoniae and S. mitis. Thirty-four resulting S. pneumoniae-specific clones were examined by sequence determination and comparative DNA sequence analysis using blast. S. pneumoniae-specific primers were subsequently designed from one of the clonal DNA sequences containing the cps gene (coding for capsular polysaccharide biosynthesis). The primer specificities were evaluated using 49 viridans streptococci including 26 S. pneumoniae, 54 other streptococci, 14 Lactococcus species, 14 Enterococcus species and three Vagococcus species, and compared with the specificities of previously described autolysin (lytA), pneumolysin (ply), Spn9802 and Spn9828 primers. The newly designed cpsA-specific primer set was highly specific to S. pneumoniae and was even better than the existing primers. These findings may help improve the rapid identification and differentiation of S. pneumoniae from closely related members of the viridans group streptococci.
Collapse
Affiliation(s)
- Hee Kuk Park
- Research Institute for Translational System Biomics, Chung-Ang University College of Medicine, 221 Heukseok-dong, Dongjak-gu, Seoul 156-756, Republic of Korea.,Department of Microbiology, Chung-Ang University College of Medicine, 221 Heukseok-dong, Dongjak-gu, Seoul 156-756, Republic of Korea
| | - Sang-Jae Lee
- Department of Periodontology, Wonkwang University College of Dentistry, Iksan 570-749, Republic of Korea
| | - Jang Won Yoon
- Research Institute for Translational System Biomics, Chung-Ang University College of Medicine, 221 Heukseok-dong, Dongjak-gu, Seoul 156-756, Republic of Korea.,Department of Microbiology, Chung-Ang University College of Medicine, 221 Heukseok-dong, Dongjak-gu, Seoul 156-756, Republic of Korea
| | - Jong Wook Shin
- Department of Internal Medicine, Chung-Ang University College of Medicine, 221 Heukseok-dong, Dongjak-gu, Seoul 156-756, Republic of Korea
| | - Hyoung-Shik Shin
- Department of Periodontology, Wonkwang University College of Dentistry, Iksan 570-749, Republic of Korea
| | - Joong-Ki Kook
- Department of Biochemistry, Chosun University College of Dentistry, Gwangju 501-825, Republic of Korea
| | - Soon Chul Myung
- Department of Urology, Chung-Ang University College of Medicine, 221 Heukseok-dong, Dongjak-gu, Seoul 156-756, Republic of Korea.,Research Institute for Translational System Biomics, Chung-Ang University College of Medicine, 221 Heukseok-dong, Dongjak-gu, Seoul 156-756, Republic of Korea
| | - Wonyong Kim
- Research Institute for Translational System Biomics, Chung-Ang University College of Medicine, 221 Heukseok-dong, Dongjak-gu, Seoul 156-756, Republic of Korea.,Department of Microbiology, Chung-Ang University College of Medicine, 221 Heukseok-dong, Dongjak-gu, Seoul 156-756, Republic of Korea
| |
Collapse
|
30
|
Stevens P, van Elsas JD. A putative genomic island, PGI-1, in Ralstonia solanacearum biovar 2 revealed by subtractive hybridization. Antonie van Leeuwenhoek 2010; 98:359-77. [PMID: 20467813 PMCID: PMC2935973 DOI: 10.1007/s10482-010-9450-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 04/20/2010] [Indexed: 01/14/2023]
Abstract
Ralstonia solanacearum biovar 2, a key bacterial pathogen of potato, has recently established in temperate climate waters. On the basis of isolates obtained from diseased (potato) plants, its genome has been assumed to be virtually clonal, but information on environmental isolates has been lacking. Based on differences in pulsed-field gel electrophoresis patterns, we compared the genomes of two biovar 2 strains with different life histories. Thus, genomic DNA of the novel environmental strain KZR-5 (The Netherlands) was compared to that of reference potato strain 715 (Bangladesh) by suppressive subtractive hybridization. Various strain-specific sequences were found, all being homologous to those found in the genome of reference potato strain 1609. Approximately 20% of these were related to genes involved in recombinational processes. We found a deletion of a 17.6-Kb region, denoted as a putative genomic island PGI-1, in environmental strain KZR-5. The deleted region was, at both extremes, flanked by a composite of two insertion sequence (IS) elements, identified as ISRso2 and ISRso3. The PGI-1 region contained open reading frames that putatively encoded a (p)ppGpp synthetase, a transporter protein, a transcriptional regulator, a cellobiohydrolase, a site-specific integrase/recombinase, a phage-related protein and seven hypothetical proteins. As yet, no phenotype could be assigned to the loss of PGI-1. The ecological behavior of strain KZR-5 was compared to that of reference strain 715. Strain KZR-5 showed enhanced tolerance to 4°C as compared to the reference strain, but was not affected in its virulence on tomato.
Collapse
Affiliation(s)
- Patricia Stevens
- Department of Microbial Ecology, Centre for Ecological and Evolutionary Studies (CEES), University of Groningen, 9759 AA Haren, The Netherlands
| | | |
Collapse
|
31
|
Ando T, Ishiguro K, Watanabe O, Miyake N, Kato T, Hibi S, Mimura S, Nakamura M, Miyahara R, Ohmiya N, Niwa Y, Goto H. Restriction-modification systems may be associated with Helicobacter pylori virulence. J Gastroenterol Hepatol 2010; 25 Suppl 1:S95-8. [PMID: 20586875 DOI: 10.1111/j.1440-1746.2009.06211.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Restriction-modification (R-M) systems are exclusive to unicellular organisms and ubiquitous in the bacterial world. Bacteria use R-M systems as a defense against invasion by foreign DNA. Analysis of the genome sequences of Helicobacter pylori strains 26 695 and J99 identified an extraordinary number of genes with homology to R-M genes in other bacterial species. All H. pylori strains possess their own unique complement of active R-M systems. All of the methylases that have been studied so far were present in all major human population groupings, suggesting that their horizontal acquisition pre-dated the separation of these populations. The two most strongly conserved methylase genes of H. pylori, hpy IM and hpy IIIM, are both preceded by alternative genes that compete for presence at their loci, and furthermore these genes may be associated with H. pylori pathogenicity. Further study should investigate the roles of H. pylori R-M systems.
Collapse
Affiliation(s)
- Takafumi Ando
- Department of Gastroenterology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
The identification of genes specific to Prevotella intermedia and Prevotella nigrescens using genomic subtractive hybridization. Anaerobe 2009; 16:265-9. [PMID: 19931406 DOI: 10.1016/j.anaerobe.2009.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 08/21/2009] [Accepted: 11/12/2009] [Indexed: 11/23/2022]
Abstract
Prevotella intermedia and Prevotella nigrescens, which are often isolated from periodontal sites, were once considered two different genotypes of P. intermedia. Although the genomic sequence of P. intermedia was determined recently, little is known about the genetic differences between P. intermedia and P. nigrescens. The subtractive hybridization technique is a powerful method for generating a set of DNA fragments differing between two closely related bacterial strains or species. We used subtractive hybridization to identify the DNA regions specific to P. intermedia ATCC 25611 and P. nigrescens ATCC 25261. Using this method, four P. intermedia ATCC 25611-specific and three P. nigrescens ATCC 25261-specific regions were determined. From the species-specific regions, insertion sequence (IS) elements were isolated for P. intermedia. IS elements play an important role in the pathogenicity of bacteria. For the P. intermedia-specific regions, the genes adenine-specific DNA-methyltransferase and 8-amino-7-oxononanoate synthase were isolated. The P. nigrescens-specific region contained a Flavobacterium psychrophilum SprA homologue, a cell-surface protein involved in gliding motility, Prevotella melaninogenica ATCC 25845 glutathione peroxide, and Porphyromonas gingivalis ATCC 33277 leucyl-tRNA synthetase. The results demonstrate that the subtractive hybridization technique was useful for distinguishing between the two closely related species. Furthermore, this technique will contribute to our understanding of the virulence of these species.
Collapse
|
33
|
Fünfhaus A, Ashiralieva A, Borriss R, Genersch E. Use of suppression subtractive hybridization to identify genetic differences between differentially virulent genotypes of Paenibacillus larvae, the etiological agent of American Foulbrood of honeybees. ENVIRONMENTAL MICROBIOLOGY REPORTS 2009; 1:240-250. [PMID: 23765853 DOI: 10.1111/j.1758-2229.2009.00039.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Paenibacillus larvae is the causative agent of American Foulbrood of honeybees, a fatal brood disease not only killing infected larvae but also lethal to infected colonies. Recently four different genotypes of P. larvae (enterobacterial repetitive intergenic consensus I-IV) have been described and it was shown that these genotypes also differ in phenotype, especially in virulence. To unravel the genetic differences between these four genotypes, suppression subtractive hybridization was used. From 106 analysed clones, 92 represented genotype-specific sequences, whereas 14 sequences turned out to be specific only for the particular strain used as tester in the subtraction. Nearly half of the sequences (46%) could only be annotated based on poorly characterized sequences. The remaining sequences corresponded to categories related to metabolism, especially secondary metabolite biosynthesis, transport and catabolism, to information storage and processing, and to cellular processes. In particular, we could show that the P. larvae genome contains genes and/or giant gene clusters coding for antibiotics, and we identified the first P. larvae toxin, a member of the family of adenosine diphosphate-ribosyltransferases.
Collapse
Affiliation(s)
- Anne Fünfhaus
- Institute for Bee Research, Friedrich-Engels-Str. 32, 16540 Hohen Neuendorf, Germany. Institute for Biology/Bacterial Genetics, Humboldt University Berlin, Chausseestr. 117, 10115 Berlin, Germany
| | | | | | | |
Collapse
|
34
|
Li LL, McCorkle SR, Monchy S, Taghavi S, van der Lelie D. Bioprospecting metagenomes: glycosyl hydrolases for converting biomass. BIOTECHNOLOGY FOR BIOFUELS 2009; 2:10. [PMID: 19450243 PMCID: PMC2694162 DOI: 10.1186/1754-6834-2-10] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 05/18/2009] [Indexed: 05/05/2023]
Abstract
Throughout immeasurable time, microorganisms evolved and accumulated remarkable physiological and functional heterogeneity, and now constitute the major reserve for genetic diversity on earth. Using metagenomics, namely genetic material recovered directly from environmental samples, this biogenetic diversification can be accessed without the need to cultivate cells. Accordingly, microbial communities and their metagenomes, isolated from biotopes with high turnover rates of recalcitrant biomass, such as lignocellulosic plant cell walls, have become a major resource for bioprospecting; furthermore, this material is a major asset in the search for new biocatalytics (enzymes) for various industrial processes, including the production of biofuels from plant feedstocks. However, despite the contributions from metagenomics technologies consequent upon the discovery of novel enzymes, this relatively new enterprise requires major improvements. In this review, we compare function-based metagenome screening and sequence-based metagenome data mining, discussing the advantages and limitations of both methods. We also describe the unusual enzymes discovered via metagenomics approaches, and discuss the future prospects for metagenome technologies.
Collapse
Affiliation(s)
- Luen-Luen Li
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Sean R McCorkle
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Sebastien Monchy
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Safiyh Taghavi
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Daniel van der Lelie
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
35
|
Gentry DR, McCloskey L, Gwynn MN, Rittenhouse SF, Scangarella N, Shawar R, Holmes DJ. Genetic characterization of Vga ABC proteins conferring reduced susceptibility to pleuromutilins in Staphylococcus aureus. Antimicrob Agents Chemother 2008; 52:4507-9. [PMID: 18838584 PMCID: PMC2592886 DOI: 10.1128/aac.00915-08] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 09/01/2008] [Accepted: 09/29/2008] [Indexed: 01/29/2023] Open
Abstract
Retapamulin MICs of > or =2 microg/ml were noted for 6 of 5,676 S. aureus recent clinical isolates evaluated. The ABC proteins VgaAv and VgaA were found to be responsible for the reduced susceptibility to pleuromutilins exhibited by these six isolates.
Collapse
Affiliation(s)
- Daniel R Gentry
- Department of Microbiology, ID-CEDD, GlaxoSmithKline, Collegeville, Pennsylvania 19426, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Rebrikov DV. Identification of differential genes by suppression subtractive hybridization: an overview. Cold Spring Harb Protoc 2008; 2008:pdb.top21. [PMID: 21356875 DOI: 10.1101/pdb.top21] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTIONSuppression subtractive hybridization (SSH) is one of the most powerful and popular methods for generating subtracted cDNA or genomic DNA libraries. This technique can be used to compare two mRNA populations and obtain cDNAs representing genes that are either overexpressed or exclusively expressed in one population as compared to another. It can also be used for comparison of genomic DNA populations. We have used SSH in studies of regeneration and development on various types of model organisms (including freshwater planaria regeneration, Xenopus laevis development, and mammalian brain cortex development). We also use SSH for the analysis of strain-specific genes in bacteria with different characteristics. During these studies, a large number of differentially regulated and differentially presented genes have been identified, including transcriptional regulation factors and restriction modification enzymes. This article describes the SSH method and considerations for its use.
Collapse
|
37
|
Olivares-Fuster O, Arias C. Use of suppressive subtractive hybridization to identify Flavobacterium columnare DNA sequences not shared with Flavobacterium johnsoniae. Lett Appl Microbiol 2008; 46:605-12. [DOI: 10.1111/j.1472-765x.2008.02366.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Subtractive hybridization and random arbitrarily primed PCR analyses of a benzoate-assimilating bacterium, Desulfotignum balticum. Appl Microbiol Biotechnol 2008; 79:87-95. [DOI: 10.1007/s00253-008-1414-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 02/12/2008] [Accepted: 02/12/2008] [Indexed: 10/22/2022]
|
39
|
Ménard A, Danchin A, Dupouy S, Mégraud F, Lehours P. A variable gene in a conserved region of the Helicobacter pylori genome: isotopic gene replacement or rapid evolution? DNA Res 2008; 15:163-8. [PMID: 18442984 PMCID: PMC2650637 DOI: 10.1093/dnares/dsn006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The present study concerns the identification of a novel coding sequence in a region of the Helicobacter pylori genome, located between JHP1069/HP1141 and JHP1071/HP1143 according to the numbering of the J99 and 26695 reference strains, respectively, and spanning three different coding DNA sequences (CDSs). The CDSs located at the centre of this locus were highly polymorphic, as determined by the analysis of 24 European isolates, 3 Asian, and 3 African isolates. Phylogenetic and molecular evolutionary analyses showed that the CDSs were not restricted to the geographical origin of the strains. Despite a very high variability observed in the deduced protein sequences, significant similarity was observed, always with the same protein families, i.e. ATPase and bacteriophage receptor/invasion proteins. Although this variability could be explained by isotopic gene replacement via horizontal transfer of a gene with the same function but coming from a variety of sources, it seems more likely that the very high sequence variation observed at this locus is the result of a strong selection pressure exerted on the corresponding gene product. The CDSs identified in the present study could be used as strain specific markers.
Collapse
Affiliation(s)
- Armelle Ménard
- INSERM U853, Laboratoire de Bactériologie, Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, F-33076 Bordeaux cedex, France
| | | | | | | | | |
Collapse
|
40
|
Galbraith EA, Antonopoulos DA, White BA. Application of suppressive subtractive hybridization to uncover the metagenomic diversity of environmental samples. Methods Mol Biol 2008; 410:295-333. [PMID: 18642606 DOI: 10.1007/978-1-59745-548-0_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Metagenomics addresses the collective genetic structure and functional composition of a microbial environmental sample without the bias or necessity for culturing the microorganisms from the community in question. Metagenomic studies are now beginning to take advantage of the plethora of complete genome sequences and the associated tools, such as bacterial artificial chromosome (BAC) and fosmid vectors, to discover novel genes and survey the structure and function of microbial communities. Complementary and less expensive methods to compare genomes from individual microbes have been utilized in comparative genomic studies. Suppressive subtractive hybridization (SSH) is one such approach, which has been utilized to compare the genomic content of closely related species of bacteria. Recently, SSH has also been used as a comparative method to examine the microbial diversity (i.e., species composition) and functional differences (i.e., gene composition) in the genomic content of two different rumen environmental communities. Through a series of hybridizations and pblymerase chain reaction (PCR) amplifications, metagenomic differences between two environmental samples can be isolated by SSH. Subsequent DNA sequencing and bioinformatic analyses allow the putative identification of these differences.
Collapse
|
41
|
Molins-Schneekloth CR, Belisle JT, Petersen JM. Genomic markers for differentiation of Francisella tularensis subsp. tularensis A.I and A.II strains. Appl Environ Microbiol 2008; 74:336-41. [PMID: 18024683 PMCID: PMC2223193 DOI: 10.1128/aem.01522-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 10/30/2007] [Indexed: 11/20/2022] Open
Abstract
Tularemia is caused by two subspecies of Francisella tularensis, F. tularensis subsp. tularensis (type A) and F. tularensis subsp. holarctica (type B). F. tularensis subsp. tularensis is further subdivided into two genetically distinct populations (A.I and A.II) that differ with respect to geographical location, anatomical source of recovered isolates, and disease outcome. Using two human clinical isolates, suppression subtractive hybridization was performed to identify 13 genomic regions of difference between A.I and A.II strains. Two PCR assays, one to identify A.I and A.II as well as to discriminate between F. tularensis subsp. holarctica and F. novicida and another specific for A.I, were developed. This is the first report to identify and characterize conserved genomic differences between A.I and A.II.
Collapse
Affiliation(s)
- Claudia R Molins-Schneekloth
- Centers for Disease Control and Prevention, Division of Vector-Borne Infectious Diseases, Bacterial Diseases Branch, 3150 Rampart Road, Fort Collins, CO 80521, USA
| | | | | |
Collapse
|
42
|
Nautiyal CS, Srivastava S, Chauhan PS. Rhizosphere Colonization: Molecular Determinants from Plant-Microbe Coexistence Perspective. SOIL BIOLOGY 2008. [DOI: 10.1007/978-3-540-75575-3_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
43
|
Genomic differences between Fibrobacter succinogenes S85 and Fibrobacter intestinalis DR7, identified by suppression subtractive hybridization. Appl Environ Microbiol 2007; 74:987-93. [PMID: 18156324 DOI: 10.1128/aem.02514-07] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fibrobacter is a highly cellulolytic genus commonly found in the rumen of ruminant animals and cecum of monogastric animals. In this study, suppression subtractive hybridization was used to identify the genes present in Fibrobacter succinogenes S85 but absent from F. intestinalis DR7. A total of 1,082 subtractive clones were picked, plasmids were purified, and inserts were sequenced, and the clones lacking homology to F. intestinalis were confirmed by Southern hybridization. By comparison of the sequences of the clones to one another and to those of the F. succinogenes genome, 802 sequences or 955 putative genes, comprising approximately 409 kb of F. succinogenes genomic DNA, were identified that lack similarity to those of F. intestinalis chromosomal DNA. The functional groups of genes, including those involved in cell envelope structure and function, energy metabolism, and transport and binding, had the largest number of genes specific to F. succinogenes. Low-stringency Southern hybridization showed that at least 37 glycoside hydrolases are shared by both species. A cluster of genes responsible for heme, porphyrin, and cobalamin biosynthesis in F. succinogenes S85 was either missing from or not functional in F. intestinalis DR7, which explains the requirement of vitamin B12 for the growth of the F. intestinalis species. Two gene clusters encoding NADH-ubiquinone oxidoreductase subunits probably shared by Fibrobacter genera appear to have an important role in energy metabolism.
Collapse
|
44
|
Delcenserie V, Lessard MH, LaPointe G, Roy D. Genome comparison of Bifidobacterium longum strains NCC2705 and CRC-002 using suppression subtractive hybridization. FEMS Microbiol Lett 2007; 280:50-6. [PMID: 18179580 DOI: 10.1111/j.1574-6968.2007.01037.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Because probiotic effects are strain dependent, genomic explanations of these differences will contribute to understanding their mechanisms of action. The genomic sequence of the Bifidobacterium longum probiotic strain NCC2705 was determined, but little is known about the genetic diversity between strains of this species. Suppression subtractive hybridization (SSH) is a powerful method for generating a set of DNA fragments differing between two closely related bacterial strains. The purpose of this study was to identify genetic differences between genomes of B. longum strains NCC2705 and CRC-002 using PCR-based SSH. Strain CRC-002 produces exopolysaccharides whereas NCC2705 is not known for reliable exopolysaccharide production. Thirty-five and 30 different sequences were obtained from the SSH libraries of strains CRC-002 and NCC2705, respectively. Specific CRC-002 genes found were predicted to be involved in the biosynthesis of exopolysaccharides and metabolism of other carbohydrates, and these genes were not present in the genome of strain NCC2705. The identification of an endo-1,4-beta-xylanase gene in the CRC-002 SSH library is an important difference because xylanase genes have previously been proposed as a defining characteristic of the NCC2705 strain. The results demonstrate that the SSH technique was useful to highlight potential genes involved in complex sugar metabolism that differ between the two probiotic strains.
Collapse
Affiliation(s)
- Véronique Delcenserie
- Institut des Nutraceutiques et des Aliments Fonctionnels (INAF), Université Laval, Quebéc, Canada
| | | | | | | |
Collapse
|
45
|
Nagashima S, Yoshida A, Ansai T, Watari H, Notomi T, Maki K, Takehara T. Rapid detection of the cariogenic pathogens Streptococcus mutans and Streptococcus sobrinus using loop-mediated isothermal amplification. ACTA ACUST UNITED AC 2007; 22:361-8. [PMID: 17949337 DOI: 10.1111/j.1399-302x.2007.00370.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Streptococcus mutans and Streptococcus sobrinus are associated with the development of dental caries in humans. In this study, we developed a rapid, sensitive method for detecting these major cariogenic pathogens using loop-mediated isothermal amplification (LAMP). The assay procedure is quite simple: the amplification is carried out in a single tube under isothermal conditions at 63 degrees C, and the result can be obtained in less than 1 h. METHODS Initially, a set of six primers was designed by targeting S. mutans-specific and S. sobrinus-specific regions, identified using the genomic subtractive hybridization technique. We evaluated the specificities and sensitivities of these assays. Furthermore, we detected and quantified these bacteria in saliva and carious dentin from eight children. RESULTS The sensitivities of the S. mutans-specific and S. sobrinus-specific LAMP methods, examined using agarose gel electrophoresis, were each one cell for a 30-min reaction. The detection limits using real-time turbidimetry analysis were 1 to 10(7) cells (3.28 x 10(1) to 3.28 x 10(8) fg S. mutans template DNA) per reaction tube and 1 to 10(5) cells (2.72 x 10(3) to 2.72 x 10(8) fg S. sobrinus template DNA) per reaction tube. Using these assays, we detected and quantified these cariogenic bacteria for evaluation of the LAMP assay for clinical diagnosis. CONCLUSIONS Our results suggest that the LAMP-based assay in combination with subtractive hybridization is valuable for preparing species-specific primers for closely related species. Furthermore, the LAMP-based assay will be a useful tool for the rapid and sensitive prediction of dental caries.
Collapse
Affiliation(s)
- S Nagashima
- Division of Community Oral Health Science, Kyushu Dental College, Kitakyushu, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Huang X, Li Y, Niu Q, Zhang K. Suppression Subtractive Hybridization (SSH) and its modifications in microbiological research. Appl Microbiol Biotechnol 2007; 76:753-60. [PMID: 17634936 DOI: 10.1007/s00253-007-1076-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2007] [Revised: 06/04/2007] [Accepted: 06/05/2007] [Indexed: 11/27/2022]
Abstract
Suppression subtractive hybridization (SSH) is an effective approach to identify the genes that vary in expression levels during different biological processes. It is often used in higher eukaryotes to study the molecular regulation in complex pathogenic progress, such as tumorigenesis and other chronic multigene-associated diseases. Because microbes have relatively smaller genomes compared with eukaryotes, aside from the analysis at the mRNA level, SSH as well as its modifications have been further employed to isolate specific chromosomal locus, study genomic diversity related with exceptional bacterial secondary metabolisms or genes with special microbial function. This review introduces the SSH and its associated methods and focus on their applications to detect specific functional genes or DNA markers in microorganisms.
Collapse
Affiliation(s)
- Xiaowei Huang
- Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, China
| | | | | | | |
Collapse
|
47
|
Baumgart M, Dogan B, Rishniw M, Weitzman G, Bosworth B, Yantiss R, Orsi RH, Wiedmann M, McDonough P, Kim SG, Berg D, Schukken Y, Scherl E, Simpson KW. Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn's disease involving the ileum. ISME JOURNAL 2007; 1:403-18. [PMID: 18043660 DOI: 10.1038/ismej.2007.52] [Citation(s) in RCA: 475] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intestinal bacteria are implicated increasingly as a pivotal factor in the development of Crohn's disease, but the specific components of the complex polymicrobial enteric environment driving the inflammatory response are unresolved. This study addresses the role of the ileal mucosa-associated microflora in Crohn's disease. A combination of culture-independent analysis of bacterial diversity (16S rDNA library analysis, quantitative PCR and fluorescence in situ hybridization) and molecular characterization of cultured bacteria was used to examine the ileal mucosa-associated flora of patients with Crohn's disease involving the ileum (13), Crohn's disease restricted to the colon (CCD) (8) and healthy individuals (7). Analysis of 16S rDNA libraries constructed from ileal mucosa yielded nine clades that segregated according to their origin (P<0.0001). 16S rDNA libraries of ileitis mucosa were enriched in sequences for Escherichia coli (P<0.001), but relatively depleted in a subset of Clostridiales (P<0.05). PCR of mucosal DNA was negative for Mycobacterium avium subspecies paratuberculosis, Shigella and Listeria. The number of E. coli in situ correlated with the severity of ileal disease (rho 0.621, P<0.001) and invasive E. coli was restricted to inflamed mucosa. E. coli strains isolated from the ileum were predominantly novel in phylogeny, displayed pathogen-like behavior in vitro and harbored chromosomal and episomal elements similar to those described in extraintestinal pathogenic E. coli and pathogenic Enterobacteriaceae. These data establish that dysbiosis of the ileal mucosa-associated flora correlates with an ileal Crohn's disease (ICD) phenotype, and raise the possibility that a selective increase in a novel group of invasive E. coli is involved in the etiopathogenesis to Crohn's disease involving the ileum.
Collapse
Affiliation(s)
- Martin Baumgart
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ogura M, Perez JC, Mittl PRE, Lee HK, Dailide G, Tan S, Ito Y, Secka O, Dailidiene D, Putty K, Berg DE, Kalia A. Helicobacter pylori evolution: lineage- specific adaptations in homologs of eukaryotic Sel1-like genes. PLoS Comput Biol 2007; 3:e151. [PMID: 17696605 PMCID: PMC1941758 DOI: 10.1371/journal.pcbi.0030151] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Accepted: 06/18/2007] [Indexed: 12/16/2022] Open
Abstract
Geographic partitioning is postulated to foster divergence of Helicobacter pylori populations as an adaptive response to local differences in predominant host physiology. H. pylori's ability to establish persistent infection despite host inflammatory responses likely involves active management of host defenses using bacterial proteins that may themselves be targets for adaptive evolution. Sequenced H. pylori genomes encode a family of eight or nine secreted proteins containing repeat motifs that are characteristic of the eukaryotic Sel1 regulatory protein, whereas the related Campylobacter and Wolinella genomes each contain only one or two such "Sel1-like repeat" (SLR) genes ("slr genes"). Signatures of positive selection (ratio of nonsynonymous to synonymous mutations, dN/dS = omega > 1) were evident in the evolutionary history of H. pylori slr gene family expansion. Sequence analysis of six of these slr genes (hp0160, hp0211, hp0235, hp0519, hp0628, and hp1117) from representative East Asian, European, and African H. pylori strains revealed that all but hp0628 had undergone positive selection, with different amino acids often selected in different regions. Most striking was a divergence of Japanese and Korean alleles of hp0519, with Japanese alleles having undergone particularly strong positive selection (omegaJ > 25), whereas alleles of other genes from these populations were intermingled. Homology-based structural modeling localized most residues under positive selection to SLR protein surfaces. Rapid evolution of certain slr genes in specific H. pylori lineages suggests a model of adaptive change driven by selection for fine-tuning of host responses, and facilitated by geographic isolation. Characterization of such local adaptations should help elucidate how H. pylori manages persistent infection, and potentially lead to interventions tailored to diverse human populations.
Collapse
Affiliation(s)
- Masako Ogura
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Nwaneshiudu AI, Mucci T, Pickard DJ, Okeke IN. A second large plasmid encodes conjugative transfer and antimicrobial resistance in O119:H2 and some typical O111 enteropathogenic Escherichia coli strains. J Bacteriol 2007; 189:6074-9. [PMID: 17573481 PMCID: PMC1952026 DOI: 10.1128/jb.00349-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel and functional conjugative transfer system identified in O119:H2 enteropathogenic Escherichia coli (EPEC) strain MB80 by subtractive hybridization is encoded on a large multidrug resistance plasmid, distinct from the well-described EPEC adherence factor (EAF) plasmid. Variants of the MB80 conjugative resistance plasmid were identified in other EPEC strains, including the prototypical O111:NM strain B171, from which the EAF plasmid has been sequenced. This separate large plasmid and the selective advantage that it confers in the antibiotic era have been overlooked because it comigrates with the virulence plasmid on conventional gels.
Collapse
Affiliation(s)
- Adaobi I Nwaneshiudu
- Department of Biology, Haverford College, 370 Lancaster Avenue, Haverford, PA 19041, USA
| | | | | | | |
Collapse
|
50
|
Levine SM, Lin EA, Emara W, Kang J, DiBenedetto M, Ando T, Falush D, Blaser MJ. Plastic cells and populations: DNA substrate characteristics in Helicobacter pylori transformation define a flexible but conservative system for genomic variation. FASEB J 2007; 21:3458-67. [PMID: 17567566 DOI: 10.1096/fj.07-8501com] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Helicobacter pylori, bacteria that colonize the human gastric mucosa, are naturally competent for transformation by exogenous DNA, and show a panmictic population structure. To understand the mechanisms involved in its horizontal gene transfer, we sought to define the interval required from exposure to substrate DNA until DNA uptake and expression of a selectable phenotype, as well as the relationship of transforming fragment length, concentration, homology, symmetry, and strandedness, to the transformation frequency. We provide evidence that natural transformation in H. pylori differs in efficiency among wild-type strains but is saturable and varies with substrate DNA length, symmetry, strandedness, and species origin. We show that H. pylori cells can be transformed within one minute of contact with DNA, by DNA fragments as small as 50 bp, and as few as 5 bp on one flank of a selectable single nucleotide mutation is sufficient substrate for recombination of a transforming fragment, and that double-stranded DNA is the preferred (1000-fold >single-stranded) substrate. The high efficiency of double-stranded DNA as transformation substrate, in conjunction with strain-specific restriction endonucleases suggests a model of short-fragment recombination favoring closest relatives, consistent with the observed H. pylori population biology.
Collapse
Affiliation(s)
- Steven M Levine
- Dept. of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|