1
|
Kothekar H, Chaudhary K. Kuru Disease: Bridging the Gap Between Prion Biology and Human Health. Cureus 2024; 16:e51708. [PMID: 38313950 PMCID: PMC10838565 DOI: 10.7759/cureus.51708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/05/2024] [Indexed: 02/06/2024] Open
Abstract
This article explores the intriguing case of Kuru disease, a rare and fatal prion disease that once afflicted the Fore people of Papua New Guinea. Scientists are still perplexed as to the origins of Kuru because efforts to discover infectious agents like viruses have been ineffective. Initial research revealed similarities between Kuru and scrapie, a neurological disorder that affects sheep, suggesting potential similarities between the two diseases. In further research, experiments in which chimpanzee brain tissue from Kuru patients was implanted led to the development of Kuru-like symptoms in the animals, suggesting a transmissible component to the condition. Furthermore, data collected from epidemiological studies highlights a drop in Kuru transmission, especially after the Fore people stopped engaging in cannibalism, and the disease showed different incubation times that affected persons within particular age groups. Neuropathological tests in the infected brain tissue have found typical intracellular vacuoles, spongiform alterations, and amyloid plaques. According to studies, Kuru susceptibility has been linked genetically to particular PRNP gene variations. Kuru and other prion disorders have few effective treatments currently, underlining the vital need for early identification. Scientists have created sensitive detection techniques to stop the spread of prion diseases and looked into possible inhibitors. Hypochlorous acid, in particular, has shown potential in cleaning processes. Besides making great progress in understanding Kuru, there are still many unresolved issues surrounding its causes, transmission, and management. The terms "kuru disease," "human prion disease," "transmissible spongiform encephalopathies," and "Creutzfeldt-Jakob syndrome" were used to search the studies; papers unrelated to the review article were removed. Eighty-four articles are included in the review text to fully understand the complexities of this puzzling disease and its consequences for prion biology and human health; additional study is essential.
Collapse
Affiliation(s)
- Himanshu Kothekar
- Anatomy, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Kirti Chaudhary
- Anatomy, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
2
|
Mathiason CK. Large animal models for chronic wasting disease. Cell Tissue Res 2023; 392:21-31. [PMID: 35113219 PMCID: PMC8811588 DOI: 10.1007/s00441-022-03590-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/19/2022] [Indexed: 11/30/2022]
Abstract
Chronic wasting disease (CWD) is a fatal neurodegenerative prion disease of cervid species including deer, elk, moose and reindeer. The disease has shown both geographic and species expansion since its discovery in the late 1960's and is now recognized in captive and free-ranging cervid populations in North America, Asia and Europe. The facile transmission of CWD is unique among prion diseases and has resulted in growing concern for cervid populations and human public health. The development of native cervid host models with longitudinal monitoring has revealed new insights about CWD pathogenesis and transmission dynamics. More than 20 years of experimental studies conducted in these models, using biologically relevant routes of infection, have led to better understanding of many aspect of CWD infections. This review addresses some of these insights, including: (i) the temporal intra-host trafficking of CWD prions in tissues and bodily fluids, (ii) the presence of infectivity shed in bodily excretions that may help explain the facile transmission of CWD, (iii) mother-to-offspring CWD transmission, (iv) the influence of some Prnp polymorphisms on CWD susceptibility, and (vi) continued development of vaccine strategies to mitigate CWD.
Collapse
Affiliation(s)
- C K Mathiason
- College of Veterinary Medicine and Biomedical Sciences, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States, 80523.
| |
Collapse
|
3
|
Silva CJ, Erickson-Beltran ML. General Method of Quantifying the Extent of Methionine Oxidation in the Prion Protein. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:255-263. [PMID: 36608322 DOI: 10.1021/jasms.2c00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The normal cellular prion protein (PrPC) and its infectious conformer, PrPSc, possess a disproportionately greater amount of methionines than would be expected for a typical mammalian protein. The thioether of methionine can be readily oxidized to the corresponding sulfoxide, which means that oxidation of methionine can be used to map the surface of the conformation of PrPC or PrPSc, as covalent changes are retained after denaturation. We identified a set of peptides (TNMK, MLGSAMSR, LLGSAMSR, PMIHFGNDWEDR, ENMNR, ENMYR, IMER, MMER, MIER, VVEQMCVTQYQK, and VVEQMCITQYQR) that contains every methionine in sheep, cervid, mouse, and bank vole PrP. Each is the product of a tryptic digestion and is suitable for a multiple reaction monitoring (MRM) based analysis. The peptides chromatograph well. The oxidized and unoxidized peptides containing one methionine readily separate. The unoxidized, two singly oxidized, and doubly oxidized forms of the MLGSAMSR and MMER peptides are also readily distinguishable. This approach can be used to determine the surface exposure of each methionine by measuring its oxidation after reaction with added hydrogen peroxide.
Collapse
Affiliation(s)
- Christopher J Silva
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, United States Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, California 94710, United States
| | - Melissa L Erickson-Beltran
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, United States Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, California 94710, United States
| |
Collapse
|
4
|
Silva CJ. Chronic Wasting Disease (CWD) in Cervids and the Consequences of a Mutable Protein Conformation. ACS OMEGA 2022; 7:12474-12492. [PMID: 35465121 PMCID: PMC9022204 DOI: 10.1021/acsomega.2c00155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/18/2022] [Indexed: 05/15/2023]
Abstract
Chronic wasting disease (CWD) is a prion disease of cervids (deer, elk, moose, etc.). It spreads readily from CWD-contaminated environments and among wild cervids. As of 2022, North American CWD has been found in 29 states, four Canadian provinces and South Korea. The Scandinavian form of CWD originated independently. Prions propagate their pathology by inducing a natively expressed prion protein (PrPC) to adopt the prion conformation (PrPSc). PrPC and PrPSc differ solely in their conformation. Like other prion diseases, transmissible CWD prions can arise spontaneously. The CWD prions can respond to selection pressures resulting in the emergence of new strain phenotypes. Annually, 11.5 million Americans hunt and harvest nearly 6 million deer, indicating that CWD is a potential threat to an important American food source. No tested CWD strain has been shown to be zoonotic. However, this may not be true for emerging strains. Should a zoonotic CWD strain emerge, it could adversely impact the hunting economy and game meat consumers.
Collapse
Affiliation(s)
- Christopher J. Silva
- Produce Safety & Microbiology
Research Unit, Western Regional Research Center, Agricultural Research
Service, United States Department of Agriculture, Albany, California 94710, United States of America
| |
Collapse
|
5
|
Silva CJ, Erickson-Beltran M. Detecting Differences in Prion Protein Conformation by Quantifying Methionine Oxidation. ACS OMEGA 2022; 7:2649-2660. [PMID: 35097263 PMCID: PMC8793083 DOI: 10.1021/acsomega.1c04989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
A prion's pathogenic character is enciphered in its conformation, which also defines the chemical environments of its amino acids. Differences in chemical environments influence the reactivity of amino acid side chains, in a conformation-dependent manner. Chemical oxidation of susceptible methionines would identify those methionines on the surface of a prion, which would reveal conformation-dependent information. We identified a set of methionine-containing peptides derived from the tryptic, chymotryptic, or tryptic/chymotryptic digestion of recombinant prion protein and the Sc237 strain of hamster-adapted scrapie. We developed a multiple reaction monitoring-based method of quantifying the extent of the methionine oxidation in those peptides. This approach can be used to define a prion's conformation and to distinguish among prion strains, which is an important component of food safety.
Collapse
|
6
|
Differential Accumulation of Misfolded Prion Strains in Natural Hosts of Prion Diseases. Viruses 2021; 13:v13122453. [PMID: 34960722 PMCID: PMC8706046 DOI: 10.3390/v13122453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 01/01/2023] Open
Abstract
Prion diseases, also known as transmissible spongiform encephalopathies (TSEs), are a group of neurodegenerative protein misfolding diseases that invariably cause death. TSEs occur when the endogenous cellular prion protein (PrPC) misfolds to form the pathological prion protein (PrPSc), which templates further conversion of PrPC to PrPSc, accumulates, and initiates a cascade of pathologic processes in cells and tissues. Different strains of prion disease within a species are thought to arise from the differential misfolding of the prion protein and have different clinical phenotypes. Different strains of prion disease may also result in differential accumulation of PrPSc in brain regions and tissues of natural hosts. Here, we review differential accumulation that occurs in the retinal ganglion cells, cerebellar cortex and white matter, and plexuses of the enteric nervous system in cattle with bovine spongiform encephalopathy, sheep and goats with scrapie, cervids with chronic wasting disease, and humans with prion diseases. By characterizing TSEs in their natural host, we can better understand the pathogenesis of different prion strains. This information is valuable in the pursuit of evaluating and discovering potential biomarkers and therapeutics for prion diseases.
Collapse
|
7
|
Peckeu L, Brandel JP, Welaratne A, Amar E, Costagliola D, Haïk S. Factors Influencing the Incubation of an Infectious Form of Creutzfeldt-Jakob Disease. Clin Infect Dis 2021; 70:1487-1490. [PMID: 31351441 DOI: 10.1093/cid/ciz692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/22/2019] [Indexed: 11/12/2022] Open
Abstract
The French epidemics of iatrogenic Creutzfeldt-Jakob disease after growth hormone (GH) treatment provide an opportunity to understand factors governing the inter-human transmission of prions. The present analysis relying on truncated Weibull distribution supports a relationship between host genetics, dose of the at-risk GH, age at treatment onset, and duration of the incubation period.
Collapse
Affiliation(s)
- Laurène Peckeu
- Sorbonne Université, INSERM, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM
| | - Jean-Philippe Brandel
- Sorbonne Université, INSERM, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM.,AP-HP, Cellule Nationale de Référence des maladies de Creutzfeldt-Jakob, Groupe Hospitalier Pitié-Salpêtrière
| | - Arlette Welaratne
- Sorbonne Université, INSERM, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM.,AP-HP, Cellule Nationale de Référence des maladies de Creutzfeldt-Jakob, Groupe Hospitalier Pitié-Salpêtrière
| | - Elodie Amar
- AP-HP, Hôpital Lariboisière, Service de Biochimie et Biologie Moléculaire, Université Paris Descartes, Paris, France
| | - Dominique Costagliola
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique
| | - Stéphane Haïk
- Sorbonne Université, INSERM, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM.,AP-HP, Cellule Nationale de Référence des maladies de Creutzfeldt-Jakob, Groupe Hospitalier Pitié-Salpêtrière.,AP-HP, Hôpital de la Pitié-Salpêtrière, Laboratoire de Neuropathologie R Escourolle
| |
Collapse
|
8
|
Ward A, Hollister JR, McNally K, Ritchie DL, Zanusso G, Priola SA. Transmission characteristics of heterozygous cases of Creutzfeldt-Jakob disease with variable abnormal prion protein allotypes. Acta Neuropathol Commun 2020; 8:83. [PMID: 32517816 PMCID: PMC7285538 DOI: 10.1186/s40478-020-00958-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/31/2022] Open
Abstract
In the human prion disease Creutzfeldt-Jakob disease (CJD), different CJD neuropathological subtypes are defined by the presence in normal prion protein (PrPC) of a methionine or valine at residue 129, by the molecular mass of the infectious prion protein PrPSc, by the pattern of PrPSc deposition, and by the distribution of spongiform change in the brain. Heterozygous cases of CJD potentially add another layer of complexity to defining CJD subtypes since PrPSc can have either a methionine (PrPSc-M129) or valine (PrPSc-V129) at residue 129. We have recently demonstrated that the relative amount of PrPSc-M129 versus PrPSc-V129, i.e. the PrPSc allotype ratio, varies between heterozygous CJD cases. In order to determine if differences in PrPSc allotype correlated with different disease phenotypes, we have inoculated 10 cases of heterozygous CJD (7 sporadic and 3 iatrogenic) into two transgenic mouse lines overexpressing PrPC with a methionine at codon 129. In one case, brain-region specific differences in PrPSc allotype appeared to correlate with differences in prion disease transmission and phenotype. In the other 9 cases inoculated, the presence of PrPSc-V129 was associated with plaque formation but differences in PrPSc allotype did not consistently correlate with disease incubation time or neuropathology. Thus, while the PrPSc allotype ratio may contribute to diverse prion phenotypes within a single brain, it does not appear to be a primary determinative factor of disease phenotype.
Collapse
|
9
|
Stevenson M, Uttley L, Oakley JE, Carroll C, Chick SE, Wong R. Interventions to reduce the risk of surgically transmitted Creutzfeldt-Jakob disease: a cost-effective modelling review. Health Technol Assess 2020; 24:1-150. [PMID: 32122460 PMCID: PMC7103914 DOI: 10.3310/hta24110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Creutzfeldt-Jakob disease is a fatal neurological disease caused by abnormal infectious proteins called prions. Prions that are present on surgical instruments cannot be completely deactivated; therefore, patients who are subsequently operated on using these instruments may become infected. This can result in surgically transmitted Creutzfeldt-Jakob disease. OBJECTIVE To update literature reviews, consultation with experts and economic modelling published in 2006, and to provide the cost-effectiveness of strategies to reduce the risk of surgically transmitted Creutzfeldt-Jakob disease. METHODS Eight systematic reviews were undertaken for clinical parameters. One review of cost-effectiveness was undertaken. Electronic databases including MEDLINE and EMBASE were searched from 2005 to 2017. Expert elicitation sessions were undertaken. An advisory committee, convened by the National Institute for Health and Care Excellence to produce guidance, provided an additional source of information. A mathematical model was updated focusing on brain and posterior eye surgery and neuroendoscopy. The model simulated both patients and instrument sets. Assuming that there were potentially 15 cases of surgically transmitted Creutzfeldt-Jakob disease between 2005 and 2018, approximate Bayesian computation was used to obtain samples from the posterior distribution of the model parameters to generate results. Heuristics were used to improve computational efficiency. The modelling conformed to the National Institute for Health and Care Excellence reference case. The strategies evaluated included neither keeping instruments moist nor prohibiting set migration; ensuring that instruments were kept moist; prohibiting instrument migration between sets; and employing single-use instruments. Threshold analyses were undertaken to establish prices at which single-use sets or completely effective decontamination solutions would be cost-effective. RESULTS A total of 169 papers were identified for the clinical review. The evidence from published literature was not deemed sufficiently strong to take precedence over the distributions obtained from expert elicitation. Forty-eight papers were identified in the review of cost-effectiveness. The previous modelling structure was revised to add the possibility of misclassifying surgically transmitted Creutzfeldt-Jakob disease as another neurodegenerative disease, and assuming that all patients were susceptible to infection. Keeping instruments moist was estimated to reduce the risk of surgically transmitted Creutzfeldt-Jakob disease cases and associated costs. Based on probabilistic sensitivity analyses, keeping instruments moist was estimated to on average result in 2.36 (range 0-47) surgically transmitted Creutzfeldt-Jakob disease cases (across England) caused by infection occurring between 2019 and 2023. Prohibiting set migration or employing single-use instruments reduced the estimated risk of surgically transmitted Creutzfeldt-Jakob disease cases further, but at considerable cost. The estimated costs per quality-adjusted life-year gained of these strategies in addition to keeping instruments moist were in excess of £1M. It was estimated that single-use instrument sets (currently £350-500) or completely effective cleaning solutions would need to cost approximately £12 per patient to be cost-effective using a £30,000 per quality-adjusted life-year gained value. LIMITATIONS As no direct published evidence to implicate surgery as a cause of Creutzfeldt-Jakob disease has been found since 2005, the estimations of potential cases from elicitation are still speculative. A particular source of uncertainty was in the number of potential surgically transmitted Creutzfeldt-Jakob disease cases that may have occurred between 2005 and 2018. CONCLUSIONS Keeping instruments moist is estimated to reduce the risk of surgically transmitted Creutzfeldt-Jakob disease cases and associated costs. Further surgical management strategies can reduce the risks of surgically transmitted Creutzfeldt-Jakob disease but have considerable associated costs. STUDY REGISTRATION This study is registered as PROSPERO CRD42017071807. FUNDING This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 24, No. 11. See the NIHR Journals Library website for further project information.
Collapse
Affiliation(s)
- Matt Stevenson
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| | - Lesley Uttley
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| | - Jeremy E Oakley
- School of Mathematics and Statistics, University of Sheffield, Sheffield, UK
| | - Christopher Carroll
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| | | | - Ruth Wong
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| |
Collapse
|
10
|
Huang JJ, Li XN, Liu WL, Yuan HY, Gao Y, Wang K, Tang B, Pang DW, Chen J, Liang Y. Neutralizing Mutations Significantly Inhibit Amyloid Formation by Human Prion Protein and Decrease Its Cytotoxicity. J Mol Biol 2019; 432:828-844. [PMID: 31821812 DOI: 10.1016/j.jmb.2019.11.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/22/2019] [Accepted: 11/26/2019] [Indexed: 12/21/2022]
Abstract
Prion diseases, such as Creutzfeldt-Jakob disease and bovine spongiform encephalopathy, are fatal neurodegenerative diseases that affect many mammals including humans and are caused by the misfolding of prion protein (PrP). A naturally occurring protective polymorphism G127V in human PrP has recently been found to significantly attenuate prion diseases, but the mechanism has remained elusive. We herein report that the hydrophobic chain introduced in G127V significantly inhibits amyloid fibril formation by human PrP, highlighting the protective effect of the G127V polymorphism. We further introduce an amino acid with a different hydrophobic chain (Ile) at the same position and find that G127I has similar protective effects as G127V. Moreover, we show that these two neutralizing mutations, G127V and G127I, significantly decrease the human PrP cytotoxicity resulting from PrP fibril formation, mitochondrial damage, and elevated reactive oxygen species production enhanced by a strong prion-prone peptide PrP 106-126. These findings elucidate the molecular basis for a natural protective polymorphism in PrP and will enable the development of novel therapeutic strategies against prion diseases.
Collapse
Affiliation(s)
- Jun-Jie Huang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiang-Ning Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wan-Li Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Han-Ye Yuan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yuan Gao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kan Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Bo Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yi Liang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
11
|
Rossi M, Baiardi S, Parchi P. Understanding Prion Strains: Evidence from Studies of the Disease Forms Affecting Humans. Viruses 2019; 11:E309. [PMID: 30934971 PMCID: PMC6520670 DOI: 10.3390/v11040309] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022] Open
Abstract
Prion diseases are a unique group of rare neurodegenerative disorders characterized by tissue deposition of heterogeneous aggregates of abnormally folded protease-resistant prion protein (PrPSc), a broad spectrum of disease phenotypes and a variable efficiency of disease propagation in vivo. The dominant clinicopathological phenotypes of human prion disease include Creutzfeldt⁻Jakob disease, fatal insomnia, variably protease-sensitive prionopathy, and Gerstmann⁻Sträussler⁻Scheinker disease. Prion disease propagation into susceptible hosts led to the isolation and characterization of prion strains, initially operatively defined as "isolates" causing diseases with distinctive characteristics, such as the incubation period, the pattern of PrPSc distribution, and the regional severity of neuropathological changes after injection into syngeneic hosts. More recently, the structural basis of prion strains has been linked to amyloid polymorphs (i.e., variant amyloid protein conformations) and the concept extended to all protein amyloids showing polymorphic structures and some evidence of in vivo or in vitro propagation by seeding. Despite the significant advances, however, the link between amyloid structure and disease is not understood in many instances. Here we reviewed the most significant contributions of human prion disease studies to current knowledge of the molecular basis of phenotypic variability and the prion strain phenomenon and underlined the unsolved issues from the human disease perspective.
Collapse
Affiliation(s)
- Marcello Rossi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna 40138, Italy.
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna 40139, Italy.
| | - Simone Baiardi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40123, Italy.
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna 40139, Italy.
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna 40138, Italy.
| |
Collapse
|
12
|
Kuru, the First Human Prion Disease. Viruses 2019; 11:v11030232. [PMID: 30866511 PMCID: PMC6466359 DOI: 10.3390/v11030232] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 12/17/2022] Open
Abstract
Kuru, the first human prion disease was transmitted to chimpanzees by D. Carleton Gajdusek (1923–2008). In this review, we summarize the history of this seminal discovery, its anthropological background, epidemiology, clinical picture, neuropathology, and molecular genetics. We provide descriptions of electron microscopy and confocal microscopy of kuru amyloid plaques retrieved from a paraffin-embedded block of an old kuru case, named Kupenota. The discovery of kuru opened new vistas of human medicine and was pivotal in the subsequent transmission of Creutzfeldt–Jakob disease, as well as the relevance that bovine spongiform encephalopathy had for transmission to humans. The transmission of kuru was one of the greatest contributions to biomedical sciences of the 20th century.
Collapse
|
13
|
Review: Fluid biomarkers in the human prion diseases. Mol Cell Neurosci 2018; 97:81-92. [PMID: 30529227 DOI: 10.1016/j.mcn.2018.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 01/27/2023] Open
Abstract
The human prion diseases are a diverse set of often rapidly progressive neurodegenerative conditions associated with abnormal forms of the prion protein. We review work to establish diagnostic biomarkers and assays that might fill other important roles, particularly those that could assist the planning and interpretation of clinical trials. The field now benefits from highly sensitive and specific diagnostic biomarkers using cerebrospinal fluid: detecting by-products of rapid neurodegeneration or specific functional properties of abnormal prion protein, with the second generation real time quaking induced conversion (RT-QuIC) assay being particularly promising. Blood has been a more challenging analyte, but has now also yielded valuable biomarkers. Blood-based assays have been developed with the potential to screen for variant Creutzfeldt-Jakob disease, although it remains uncertain whether these will ever be used in practice. The very rapid neurodegeneration of prion disease results in strong signals from surrogate protein markers in the blood that reflect neuronal, axonal, synaptic or glial pathology in the brain: notably the tau and neurofilament light chain proteins. We discuss early evidence that such tests, applied alongside robust diagnostic biomarkers, may have potential to add value as clinical trial outcome measures, predictors of future disease course (including for asymptomatic individuals at high risk of prion disease), and as rapidly accessible and sensitive markers to aid early diagnosis.
Collapse
|
14
|
Glycosylation Significantly Inhibits the Aggregation of Human Prion Protein and Decreases Its Cytotoxicity. Sci Rep 2018; 8:12603. [PMID: 30135544 PMCID: PMC6105643 DOI: 10.1038/s41598-018-30770-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 08/06/2018] [Indexed: 12/22/2022] Open
Abstract
Prion diseases are primarily caused by the misfolding of prion proteins in humans, cattle, sheep, and cervid species. The effects of glycosylation on prion protein (PrP) structure and function have not been thoroughly elucidated to date. In this study, we attempt to elucidate the effects of glycosylation on the aggregation and toxicity of human PrP. As revealed by immunocytochemical staining, wild-type PrP and its monoglycosylated mutants N181D, N197D, and T199N/N181D/N197D are primarily attached to the plasma membrane. In contrast, PrP F198S, a pathological mutant with an altered residue within the glycosylation site, and an unglycosylated PrP mutant, N181D/N197D, primarily exist in the cytoplasm. In the pathological mutant V180I, there is an equal mix of membranous and cytoplasmic PrP, indicating that N-linked glycosylation deficiency impairs the correct localization of human PrP at the plasma membrane. As shown by immunoblotting and flow cytometry, human PrP located in the cytoplasm displays considerably greater PK resistance and aggregation ability and is associated with considerably higher cellular ROS levels than PrP located on the plasma membrane. Furthermore, glycosylation deficiency enhances human PrP cytotoxicity induced by MG132 or the toxic prion peptide PrP 106-126. Therefore, we propose that glycosylation acts as a necessary cofactor in determining PrP localization on the plasma membrane and that it significantly inhibits the aggregation of human PrP and decreases its cytotoxicity.
Collapse
|
15
|
Seed CR, Hewitt PE, Dodd RY, Houston F, Cervenakova L. Creutzfeldt-Jakob disease and blood transfusion safety. Vox Sang 2018; 113:220-231. [PMID: 29359329 DOI: 10.1111/vox.12631] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/16/2017] [Accepted: 12/19/2017] [Indexed: 01/09/2023]
Abstract
Transmissible spongiform encephalopathies (TSEs) are untreatable, fatal neurologic diseases affecting mammals. Human disease forms include sporadic, familial and acquired Creutzfeldt-Jakob disease (CJD). While sporadic CJD (sCJD) has been recognized for near on 100 years, variant CJD (vCJD) was first reported in 1996 and is the result of food-borne transmission of the prion of bovine spongiform encephalopathy (BSE, 'mad cow disease'). Currently, 230 vCJD cases have been reported in 12 countries, the majority in the UK (178) and France (27). Animal studies demonstrated highly efficient transmission of natural scrapie and experimental BSE by blood transfusion and fuelled concern that sCJD was potentially transfusion transmissible. No such case has been recorded and case-control evaluations and lookback studies indicate that, if transfusion transmission occurs at all, it is very rare. In contrast, four cases of apparent transfusion transmission of vCJD infectivity have been identified in the UK. Risk minimization strategies in response to the threat of vCJD include leucodepletion, geographically based donor deferrals and deferral of transfusion recipients. A sensitive and specific, high-throughput screening test would provide a potential path to mitigation but despite substantial effort no such test has yet appeared. The initial outbreak of vCJD appears to be over, but concern remains about subsequent waves of disease among those already infected. There is considerable uncertainty about the size of the infected population, and there will be at least a perception of some continuing risk to blood safety. Accordingly, at least some precautionary measures will remain in place and continued surveillance is necessary.
Collapse
Affiliation(s)
- C R Seed
- Australian Red Cross Blood Service, Perth, WA, Australia
| | | | - R Y Dodd
- American Red Cross Scientific Affairs, Gaithersburg, MD, USA
| | - F Houston
- The Roslin Institute, University of Edinburgh, Midlothian, Scotland
| | - L Cervenakova
- The Plasma Protein Therapeutics Association (PPTA), Annapolis, MD, USA
| |
Collapse
|
16
|
Abstract
Variant CJD (vCJD) was described first in the United Kingdom in 1996. It is a zoonotic form of human prion disease, originating from dietary contamination of human food with material from bovine spongiform encephalopathy (BSE)-affected cattle. It has important epidemiologic, clinical, and neuropathogic differences from other forms of human prion disease. Cases have occurred in several countries but the United Kingdom and France have been most affected. Following the decline in BSE in cattle and the dietary protective measures adopted, vCJD has become an extremely rare disease. However, important concerns remain about asymptomatic infection in human populations (especially the United Kingdom) and the possibility of human-to-human transmission via medical and surgical interventions. Definitive diagnosis depends on neuropathology, usually undertaken at autopsy, but sometimes on brain biopsy. Clinical diagnosis with a reasonable degree of likelihood is, however, possible based on the clinical features and the finding of the pulvinar sign on cerebral magnetic resonance. There are also emerging tests (including blood tests) that have promising sensitivity and specificity for vCJD. It is a progressive illness, inevitably fatal with no curative treatment.
Collapse
Affiliation(s)
| | - Richard Knight
- National CJD Research and Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom.
| |
Collapse
|
17
|
Abstract
Prion diseases are a group of invariably fatal and transmissible neurodegenerative disorders that are associated with the misfolding of the normal cellular prion protein, with the misfolded conformers constituting an infectious unit referred to as a "prion". Prions can spread within an affected organism by directly propagating this misfolding within and between cells and can transmit disease between animals of the same and different species. Prion diseases have a range of clinical phenotypes in humans and animals, with a principle determinant of this attributed to different conformations of the misfolded protein, referred to as prion strains. This chapter will describe the different clinical manifestations of prion diseases, the evidence that these diseases can be transmitted by an infectious protein and how the misfolding of this protein causes disease.
Collapse
|
18
|
Transmissible Spongiform Encephalopathies of Humans and Animals. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00023-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
19
|
Understanding the Effect of Disease-Related Mutations on Human Prion Protein Structure: Insights From NMR Spectroscopy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:83-103. [DOI: 10.1016/bs.pmbts.2017.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
20
|
Kobayashi A, Parchi P, Yamada M, Mohri S, Kitamoto T. Neuropathological and biochemical criteria to identify acquired Creutzfeldt-Jakob disease among presumed sporadic cases. Neuropathology 2015; 36:305-10. [PMID: 26669818 DOI: 10.1111/neup.12270] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 12/17/2022]
Abstract
As an experimental model of acquired Creutzfeldt-Jakob disease (CJD), we performed transmission studies of sporadic CJD using knock-in mice expressing human prion protein (PrP). In this model, the inoculation of the sporadic CJD strain V2 into animals homozygous for methionine at polymorphic codon 129 (129 M/M) of the PRNP gene produced quite distinctive neuropathological and biochemical features, that is, widespread kuru plaques and intermediate type abnormal PrP (PrP(Sc) ). Interestingly, this distinctive combination of molecular and pathological features has been, to date, observed in acquired CJD but not in sporadic CJD. Assuming that these distinctive phenotypic traits are specific for acquired CJD, we revisited the literature and found two cases showing widespread kuru plaques despite the 129 M/M genotype, in a neurosurgeon and in a patient with a medical history of neurosurgery without dura mater grafting. By Western blot analysis of brain homogenates, we revealed the intermediate type of PrP(Sc) in both cases. Furthermore, transmission properties of brain extracts from these two cases were indistinguishable from those of a subgroup of dura mater graft-associated iatrogenic CJD caused by infection with the sporadic CJD strain V2. These data strongly suggest that the two atypical CJD cases, previously thought to represent sporadic CJD, very likely acquired the disease through exposure to prion-contaminated brain tissues. Thus, we propose that the distinctive combination of 129 M/M genotype, kuru plaques, and intermediate type PrP(Sc) , represents a reliable criterion for the identification of acquired CJD cases among presumed sporadic cases.
Collapse
Affiliation(s)
- Atsushi Kobayashi
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai, Japan.,Laboratory of Comparative Pathology, Hokkaido University Graduate School of Veterinary Medicine, Sapporo, Japan
| | - Piero Parchi
- IRCCS, Istituto delle Scienze Neurologiche, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Shirou Mohri
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuyuki Kitamoto
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
21
|
Rudge P, Jaunmuktane Z, Adlard P, Bjurstrom N, Caine D, Lowe J, Norsworthy P, Hummerich H, Druyeh R, Wadsworth JDF, Brandner S, Hyare H, Mead S, Collinge J. Iatrogenic CJD due to pituitary-derived growth hormone with genetically determined incubation times of up to 40 years. Brain 2015; 138:3386-99. [PMID: 26268531 PMCID: PMC4620512 DOI: 10.1093/brain/awv235] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/22/2015] [Indexed: 11/25/2022] Open
Abstract
Cases of iatrogenic CJD still occur in the UK 30 years after administration of human pituitary-derived growth hormone ceased. Rudge et al. report a change over time in genotype profile at polymorphic codon 129 of the human prion protein gene in UK patients, distinct from that seen in other countries. Patients with iatrogenic Creutzfeldt-Jakob disease due to administration of cadaver-sourced growth hormone during childhood are still being seen in the UK 30 years after cessation of this treatment. Of the 77 patients who have developed iatrogenic Creutzfeldt-Jakob disease, 56 have been genotyped. There has been a marked change in genotype profile at polymorphic codon 129 of the prion protein gene (PRNP) from predominantly valine homozygous to a mixed picture of methionine homozygous and methionine-valine heterozygous over time. The incubation period of iatrogenic Creutzfeldt-Jakob disease is significantly different between all three genotypes. This experience is a striking contrast with that in France and the USA, which may relate to contamination of different growth hormone batches with different strains of human prions. We describe the clinical, imaging, molecular and autopsy features in 22 of 24 patients who have developed iatrogenic Creutzfeldt-Jakob disease in the UK since 2003. Mean age at onset of symptoms was 42.7 years. Gait ataxia and lower limb dysaesthesiae were the most frequent presenting symptoms. All had cerebellar signs, and the majority had myoclonus and lower limb pyramidal signs, with relatively preserved cognitive function, when first seen. There was a progressive decline in neurological and cognitive function leading to death after 5–32 (mean 14) months. Despite incubation periods approaching 40 years, the clinical duration in methionine homozygote patients appeared to be shorter than that seen in heterozygote patients. MRI showed restricted diffusion in the basal ganglia, thalamus, hippocampus, frontal and the paracentral motor cortex and cerebellar vermis. The electroencephalogram was abnormal in 15 patients and cerebrospinal fluid 14-3-3 protein was positive in half the patients. Neuropathological examination was conducted in nine patients. All but one showed synaptic prion deposition with numerous kuru type plaques in the basal ganglia, anterior frontal and parietal cortex, thalamus, basal ganglia and cerebellum. The patient with the shortest clinical duration had an atypical synaptic deposition of abnormal prion protein and no kuru plaques. Taken together, these data provide a remarkable example of the interplay between the strain of the pathogen and host prion protein genotype. Based on extensive modelling of human prion transmission barriers in transgenic mice expressing human prion protein on a mouse prion protein null background, the temporal distribution of codon 129 genotypes within the cohort of patients with iatrogenic Creutzfeldt-Jakob disease in the UK suggests that there was a point source of infecting prion contamination of growth hormone derived from a patient with Creutzfeldt-Jakob disease expressing prion protein valine 129.
Collapse
Affiliation(s)
- Peter Rudge
- 1 National Prion Clinic, National Hospital for Neurology and Neurosurgery (NHNN), University College London (UCL) Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK 2 MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Zane Jaunmuktane
- 3 Division of Neuropathology, NHNN, UCL Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| | - Peter Adlard
- 4 UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Nina Bjurstrom
- 1 National Prion Clinic, National Hospital for Neurology and Neurosurgery (NHNN), University College London (UCL) Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| | - Diana Caine
- 1 National Prion Clinic, National Hospital for Neurology and Neurosurgery (NHNN), University College London (UCL) Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK 5 Department of Neuropsychology, NHNN, UCL Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| | - Jessica Lowe
- 2 MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Penny Norsworthy
- 2 MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Holger Hummerich
- 2 MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Ron Druyeh
- 2 MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Jonathan D F Wadsworth
- 2 MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Sebastian Brandner
- 3 Division of Neuropathology, NHNN, UCL Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK
| | - Harpreet Hyare
- 1 National Prion Clinic, National Hospital for Neurology and Neurosurgery (NHNN), University College London (UCL) Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK 2 MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Simon Mead
- 1 National Prion Clinic, National Hospital for Neurology and Neurosurgery (NHNN), University College London (UCL) Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK 2 MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - John Collinge
- 1 National Prion Clinic, National Hospital for Neurology and Neurosurgery (NHNN), University College London (UCL) Hospitals NHS Foundation Trust, Queen Square, London WC1N 3BG, UK 2 MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
22
|
The influence of PRNP polymorphisms on human prion disease susceptibility: an update. Acta Neuropathol 2015; 130:159-70. [PMID: 26022925 DOI: 10.1007/s00401-015-1447-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 05/15/2015] [Accepted: 05/16/2015] [Indexed: 02/04/2023]
Abstract
Two normally occurring polymorphisms of the human PRNP gene, methionine (M)/valine (V) at codon 129 and glutamic acid (E)/lysine (K) at codon 219, can affect the susceptibility to prion diseases. It has long been recognized that 129M/M homozygotes are overrepresented in sporadic Creutzfeldt-Jakob disease (CJD) patients and variant CJD patients, whereas 219E/K heterozygotes are absent in sporadic CJD patients. In addition to these pioneering findings, recent progress in experimental transmission studies and worldwide surveillance of prion diseases have identified novel relationships between the PRNP polymorphisms and the prion disease susceptibility. For example, although 219E/K heterozygosity confers resistance against the development of sporadic CJD, this genotype is not entirely protective against acquired forms (iatrogenic CJD and variant CJD) or genetic forms (genetic CJD and Gerstmann-Sträussler-Scheinker syndrome) of prion diseases. In addition, 129M/V heterozygotes predispose to genetic CJD caused by a pathogenic PRNP mutation at codon 180. These findings show that the effects of the PRNP polymorphisms may be more complicated than previously thought. This review aims to summarize recent advances in our knowledge about the influence of the PRNP polymorphisms on the prion disease susceptibility.
Collapse
|
23
|
Lukic A, Uphill J, Brown CA, Beck J, Poulter M, Campbell T, Adamson G, Hummerich H, Whitfield J, Ponto C, Zerr I, Lloyd SE, Collinge J, Mead S. Rare structural genetic variation in human prion diseases. Neurobiol Aging 2015; 36:2004.e1-8. [PMID: 25726360 DOI: 10.1016/j.neurobiolaging.2015.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/22/2014] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
Abstract
Prion diseases are a diverse group of neurodegenerative conditions, caused by the templated misfolding of prion protein. Aside from the strong genetic risk conferred by multiple variants of the prion protein gene (PRNP), several other variants have been suggested to confer risk in the most common type, sporadic Creutzfeldt-Jakob disease (sCJD) or in the acquired prion diseases. Large and rare copy number variants (CNVs) are known to confer risk in several related disorders including Alzheimer's disease (at APP), schizophrenia, epilepsy, mental retardation, and autism. Here, we report the first genome-wide analysis for CNV-associated risk using data derived from a recent international collaborative association study in sCJD (n = 1147 after quality control) and publicly available controls (n = 5427). We also investigated UK patients with variant Creutzfeldt-Jakob disease (n = 114) and elderly women from the Eastern Highlands of Papua New Guinea who proved highly resistant to the epidemic prion disease kuru, who were compared with healthy young Fore population controls (n = 395). There were no statistically significant alterations in the burden of CNVs >100, >500, or >1000 kb, duplications, or deletions in any disease group or geographic region. After correction for multiple testing, no statistically significant associations were found. A UK blood service control sample showed a duplication CNV that overlapped PRNP, but these were not found in prion disease. Heterozygous deletions of a 3' region of the PARK2 gene were found in 3 sCJD patients and no controls (p = 0.001, uncorrected). A cell-based prion infection assay did not provide supportive evidence for a role for PARK2 in prion disease susceptibility. These data are consistent with a modest impact of CNVs on risk of late-onset neurologic conditions and suggest that, unlike APP, PRNP duplication is not a causal high-risk mutation.
Collapse
Affiliation(s)
- Ana Lukic
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - James Uphill
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Craig A Brown
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - John Beck
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Mark Poulter
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Tracy Campbell
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Gary Adamson
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Holger Hummerich
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Jerome Whitfield
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Claudia Ponto
- Department of Neurology, Georg-August University Göttingen, Göttingen, Germany; German Center for Neurodegenrative Diseases (DZNE), Gottingen, Germany
| | - Inga Zerr
- Department of Neurology, Georg-August University Göttingen, Göttingen, Germany; German Center for Neurodegenrative Diseases (DZNE), Gottingen, Germany
| | - Sarah E Lloyd
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - John Collinge
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Simon Mead
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.
| |
Collapse
|
24
|
New frontiers in the study of human cultural and genetic evolution. Curr Opin Genet Dev 2014; 29:103-9. [PMID: 25218864 DOI: 10.1016/j.gde.2014.08.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 08/25/2014] [Accepted: 08/27/2014] [Indexed: 02/01/2023]
Abstract
In this review, we discuss the dynamic linkages between culture and the genetic evolution of the human species. We begin by briefly describing the framework of gene-culture coevolutionary (or dual-inheritance) models for human evolutionary change. Until recently, the literature on gene-culture coevolution was composed primarily of mathematical models and formalized theory describing the complex dynamics underlying human behavior, adaptation, and technological evolution, but had little empirical support concerning genetics. The rapid progress in the fields of molecular genetics and genomics, however, is now providing the kinds of data needed to produce rich empirical support for gene-culture coevolutionary models. We briefly outline how theoretical and methodological progress in genome sciences has provided ways for the strength of selection on genes to be evaluated, and then outline how evidence of selection on several key genes can be directly linked to human cultural practices. We then describe some exciting new directions in the empirical study of gene-culture coevolution, and conclude with a discussion of the role of gene-culture evolutionary models in the future integration of medical, biological, and social sciences.
Collapse
|
25
|
Haïk S, Brandel JP. Infectious prion diseases in humans: cannibalism, iatrogenicity and zoonoses. INFECTION GENETICS AND EVOLUTION 2014; 26:303-12. [PMID: 24956437 DOI: 10.1016/j.meegid.2014.06.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/10/2014] [Accepted: 06/13/2014] [Indexed: 12/24/2022]
Abstract
In contrast with other neurodegenerative disorders associated to protein misfolding, human prion diseases include infectious forms (also called transmitted forms) such as kuru, iatrogenic Creutzfeldt-Jakob disease and variant Creutzfeldt-Jakob disease. The transmissible agent is thought to be solely composed of the abnormal isoform (PrP(Sc)) of the host-encoded prion protein that accumulated in the central nervous system of affected individuals. Compared to its normal counterpart, PrP(Sc) is β-sheet enriched and aggregated and its propagation is based on an autocatalytic conversion process. Increasing evidence supports the view that conformational variations of PrP(Sc) encoded the biological properties of the various prion strains that have been isolated by transmission studies in experimental models. Infectious forms of human prion diseases played a pivotal role in the emergence of the prion concept and in the characterization of the very unconventional properties of prions. They provide a unique model to understand how prion strains are selected and propagate in humans. Here, we review and discuss how genetic factors interplay with strain properties and route of transmission to influence disease susceptibility, incubation period and phenotypic expression in the light of the kuru epidemics due to ritual endocannibalism, the various series iatrogenic diseases secondary to extractive growth hormone treatment or dura mater graft and the epidemics of variant Creutzfeldt-Jakob disease linked to dietary exposure to the agent of bovine spongiform encephalopathy.
Collapse
Affiliation(s)
- Stéphane Haïk
- Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Inserm, U 1127, CNRS UMR 7225, ICM, F-75013 Paris, France; AP-HP, Groupe hospitalier Pitié-Salpêtrière, Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob, F-75013 Paris, France; Centre National de Référence des Agents Transmissibles Non Conventionnels, F-75013 Paris, France.
| | - Jean-Philippe Brandel
- Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Inserm, U 1127, CNRS UMR 7225, ICM, F-75013 Paris, France; AP-HP, Groupe hospitalier Pitié-Salpêtrière, Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob, F-75013 Paris, France; Centre National de Référence des Agents Transmissibles Non Conventionnels, F-75013 Paris, France
| |
Collapse
|
26
|
Deletion of the prion gene Prnp affects offensive aggression in mice. Behav Brain Res 2014; 266:216-21. [DOI: 10.1016/j.bbr.2014.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 02/27/2014] [Accepted: 03/03/2014] [Indexed: 01/06/2023]
|
27
|
Small-molecule theranostic probes: a promising future in neurodegenerative diseases. Int J Cell Biol 2013; 2013:150952. [PMID: 24324497 PMCID: PMC3845517 DOI: 10.1155/2013/150952] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 09/03/2013] [Indexed: 12/15/2022] Open
Abstract
Prion diseases are fatal neurodegenerative illnesses, which include Creutzfeldt-Jakob disease in humans and scrapie, chronic wasting disease, and bovine spongiform encephalopathy in animals. They are caused by unconventional infectious agents consisting primarily of misfolded, aggregated, β -sheet-rich isoforms, denoted prions, of the physiological cellular prion protein (PrP(C)). Many lines of evidence suggest that prions (PrP(Sc)) act both as a template for this conversion and as a neurotoxic agent causing neuronal dysfunction and cell death. As such, PrP(Sc) may be considered as both a neuropathological hallmark of the disease and a therapeutic target. Several diagnostic imaging probes have been developed to monitor cerebral amyloid lesions in patients with neurodegenerative disorders (such as Alzheimer's disease, Parkinson's disease, and prion disease). Examples of these probes are Congo red, thioflavin T, and their derivatives. We synthesized a series of styryl derivatives, denoted theranostics, and studied their therapeutic and/or diagnostic potentials. Here we review the salient traits of these small molecules that are able to detect and modulate aggregated forms of several proteins involved in protein misfolding diseases. We then highlight the importance of further studies for their practical implications in therapy and diagnostics.
Collapse
|
28
|
Giachin G, Biljan I, Ilc G, Plavec J, Legname G. Probing early misfolding events in prion protein mutants by NMR spectroscopy. Molecules 2013; 18:9451-76. [PMID: 23966072 PMCID: PMC6270549 DOI: 10.3390/molecules18089451] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/01/2013] [Accepted: 08/05/2013] [Indexed: 01/17/2023] Open
Abstract
The post-translational conversion of the ubiquitously expressed cellular form of the prion protein, PrPC, into its misfolded and pathogenic isoform, known as prion or PrPSc, plays a key role in prion diseases. These maladies are denoted transmissible spongiform encephalopathies (TSEs) and affect both humans and animals. A prerequisite for understanding TSEs is unraveling the molecular mechanism leading to the conversion process whereby most α-helical motifs are replaced by β-sheet secondary structures. Importantly, most point mutations linked to inherited prion diseases are clustered in the C-terminal domain region of PrPC and cause spontaneous conversion to PrPSc. Structural studies with PrP variants promise new clues regarding the proposed conversion mechanism and may help identify "hot spots" in PrPC involved in the pathogenic conversion. These investigations may also shed light on the early structural rearrangements occurring in some PrPC epitopes thought to be involved in modulating prion susceptibility. Here we present a detailed overview of our solution-state NMR studies on human prion protein carrying different pathological point mutations and the implications that such findings may have for the future of prion research.
Collapse
Affiliation(s)
- Gabriele Giachin
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265,Trieste I-34136, Italy; E-Mail:
| | - Ivana Biljan
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102A, Zagreb HR-10000, Croatia; E-Mail:
| | - Gregor Ilc
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, Ljubljana SI-1000, Slovenia; E-Mails: (G.I.); (J.P.)
- EN-FIST Center of Excellence, Ljubljana SI-1000, Slovenia
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, Ljubljana SI-1000, Slovenia; E-Mails: (G.I.); (J.P.)
- EN-FIST Center of Excellence, Ljubljana SI-1000, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana SI-1000, Slovenia
| | - Giuseppe Legname
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265,Trieste I-34136, Italy; E-Mail:
| |
Collapse
|
29
|
Liberski PP. Kuru: a journey back in time from papua new Guinea to the neanderthals' extinction. Pathogens 2013; 2:472-505. [PMID: 25437203 PMCID: PMC4235695 DOI: 10.3390/pathogens2030472] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 07/04/2013] [Accepted: 07/12/2013] [Indexed: 11/30/2022] Open
Abstract
Kuru, the first human transmissible spongiform encephalopathy was transmitted to chimpanzees by D. Carleton Gajdusek (1923-2008). In this review, I briefly summarize the history of this seminal discovery along its epidemiology, clinical picture, neuropathology and molecular genetics. The discovery of kuru opened new windows into the realms of human medicine and was instrumental in the later transmission of Creutzfeldt-Jakob disease and Gerstmann-Sträussler-Scheinker disease as well as the relevance that bovine spongiform encephalopathy had for transmission to humans. The transmission of kuru was one of the greatest contributions to biomedical sciences of the 20th century.
Collapse
Affiliation(s)
- Pawel P Liberski
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Kosciuszki st. 4, Lodz 90-419, Poland.
| |
Collapse
|
30
|
Atkins KE, Townsend JP, Medlock J, Galvani AP. Epidemiological mechanisms of genetic resistance to kuru. J R Soc Interface 2013; 10:20130331. [PMID: 23740487 DOI: 10.1098/rsif.2013.0331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Transmissible spongiform encephalopathies (TSEs), such as kuru, are invariably fatal neurodegenerative conditions caused by a malformation of the prion protein. Heterozygosity of codon 129 of the prion protein gene has been associated with increased host resistance to TSEs, although the mechanism by which this resistance is achieved has not been determined. To evaluate the epidemiological mechanism of human resistance to kuru, we developed a model that combines the dynamics of kuru transmission and the population genetics of human resistance. We fitted our model to kuru data from the epidemic that occurred in Papua New Guinea over the last hundred years. To elucidate the epidemiological mechanism of human resistance, we estimated the incubation period and transmission rate of kuru for codon 129 heterozygotes and homozygotes using kuru incidence data and human genotype frequency data from 1957 to 2004. Our results indicate that human resistance arises from a combination of both a longer incubation period and reduced susceptibility to infection. This work provides evidence for balancing selection acting on a human population and the mechanistic basis for the heterozygote resistance to kuru.
Collapse
Affiliation(s)
- Katherine E Atkins
- Yale School of Public Health, 135 College Street, New Haven, CT 06510, USA.
| | | | | | | |
Collapse
|
31
|
Prion diseases. Neurogenetics 2012. [DOI: 10.1017/cbo9781139087711.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
Abstract
Kuru was the first human transmissible spongiform encephalopathy (TSE) or prion disease identified, occurring in the Fore linguistic group of Papua New Guinea. Kuru was a uniformly fatal cerebellar ataxic syndrome, usually followed by choreiform and athetoid movements. Kuru imposed a strong balancing selection on the Fore population, with individuals homozygous for the 129 Met allele of the gene (PRNP) encoding for prion protein (PrP) being the most susceptible. The decline in the incidence of kuru in the Fore has been attributed to the exhaustion of the susceptible genotype and ultimately by discontinuation of exposure via cannibalism. Neuropathologically, kuru-affected brains were characterized by widespread degeneration of neurons, astroglial and microglial proliferation, and the presence of amyloid plaques. These early findings have been confirmed and extended by recent immunohistochemical studies for the detection of the TSE-specific PrP (PrP). Confocal laser microscopy also showed the concentration of glial fibrillary acidic protein-positive astrocytic processes at the plaque periphery. The fine structure of plaques corresponds to that described earlier by light microscopy. The successful experimental transmission of kuru led to the awareness of its similarity to Creutzfeldt-Jakob disease and Gerstmann-Sträussler-Scheinker disease and formed a background against which the recent epidemics of iatrogenic and variant Creutzfeldt-Jakob disease could be studied.
Collapse
|
33
|
|
34
|
Abstract
Transmissible spongiform encephalopathies (TSEs) or prion diseases are the names given to the group of fatal neurodegenerative disorders that includes kuru, Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker disease (GSS), fatal and sporadic familial insomnia and the novel prion disease variable protease-sensitive prionopathy (PSPr) in humans. Kuru was restricted to natives of the Foré linguistic group in Papua New Guinea and spread by ritualistic endocannibalism. CJD appears as sporadic, familial (genetic or hereditary) and infectious (iatrogenic) forms. Variant CJD is a zoonotic CJD type and of major public health importance, which resulted from transmission from bovine spongiform encephalopathy (BSE) through ingestion of contaminated meat products. GSS is a slowly progressive hereditary autosomal dominant disease and the first human TSE in which a mutation in a gene encoding for prion protein (PrP) was discovered. The rarest human prion disease is fatal insomnia, which may occur, in genetic and sporadic form. More recently a novel prion disease variable protease-sensitive prionopathy (PSPr) was described in humans.TSEs are caused by a still incompletely defined infectious agent known as a "prion" which is widely regarded to be an aggregate of a misfolded isoform (PrP(Sc)) of a normal cellular glycoprotein (PrP(c)). The conversion mechanism of PrP(c) into PrP(Sc) is still not certain.
Collapse
Affiliation(s)
- Beata Sikorska
- Department of Molecular Pathology and Neuropathology, Chair of Oncology, Medical University of Lodz, Czechoslowacka st. 8/10, 92-216, Lodz, Poland,
| | | |
Collapse
|
35
|
Frequency of Met129Val allele associated with predisposition to variant Creutzfeldt - Jakob disease in the Middle ages. Open Med (Wars) 2011. [DOI: 10.2478/s11536-011-0053-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractDirect deciphering of past genes may reflect real characteristics of forebears, even of whole ancestral populations. This is obviously one of the most powerful and direct methods to follow evolutionary changes of the species. We attempted to apply ancient DNA (aDNA) technology to analyse a polymorphism at codon 129 of PRNP which probably plays a role in susceptibility to a variant Creutzfeldt - Jakob (vCJD) disease. As previously suggested, 129 Val-Val and heterozygous individuals are nearly completely protected from vCJD, in contrast to 129 Met-Met homozygous ones. We examined the frequency of the alleles encoding methionine and valine at codon 129 in DNA isolated from 100 skeletal remains of individuals who lived between 10th and 13th century. Our results confirmed significant alteration in previously studied alleles frequency between the populations of medieval Polish Lands and contemporaries. The calculated frequency of the alleles in medieval Poland (51% as compared to contemporary 65% for 129Met, and appropriately 49% vs. 35% for 129Val) implies a selection process that shaped 129 Met-Val distribution profiles in the Middle Ages. We suggest that the study of the genetic relationship between past and present-day populations could be a useful tool to follow allelic composition of particular genes (here: of the PRNP) over a span of time which may contribute to the understanding of evolutionary and selective mechanisms including epidemiological cases.
Collapse
|
36
|
Abstract
Over the last decade remarkable advances in genotyping and sequencing technology have resulted in hundreds of novel gene associations with disease. These have typically involved high frequency alleles in common diseases and with the advent of next generation sequencing, disease causing recessive mutations in rare inherited syndromes. Here we discuss the impact of these advances and other gene discovery methods in the prion diseases. Several quantitative trait loci in mouse have been mapped and their human counterparts analysed (HECTD2, CPNE8); other candidate genes regions have been chosen for functional reasons (SPRN, CTSD). Human genome wide association has been done in variant Creutzfeldt-Jakob disease (CJD) and are ongoing in larger collections of sporadic CJD with findings around, but not clearly beyond, the levels of statistical significance required in these studies (THRB-RARB, STMN2). Future work will include closer integration of animal and human genetic studies, larger and combined genome wide association, analysis of structural genetic variantion and next generation sequencing studies involving the entire coding exome or genome.
Collapse
Affiliation(s)
- Ana Lukic
- National Prion Clinic, UCLH NHS Trust, London, UK
| | | |
Collapse
|
37
|
Dominant prion mutants induce curing through pathways that promote chaperone-mediated disaggregation. Nat Struct Mol Biol 2011; 18:486-92. [PMID: 21423195 PMCID: PMC3082495 DOI: 10.1038/nsmb.2031] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 12/16/2010] [Indexed: 12/15/2022]
Abstract
Protein misfolding underlies many neurodegenerative diseases, including the transmissible spongiform encephalopathies (prion diseases). Although cells typically recognize and process misfolded proteins, prion proteins evade protective measures by forming stable, self-replicating aggregates. However, coexpression of dominant-negative prion mutants can overcome aggregate accumulation and disease progression through currently unknown pathways. Here we determine the mechanisms by which two mutants of the Saccharomyces cerevisiae Sup35 protein cure the [PSI(+)] prion. We show that both mutants incorporate into wild-type aggregates and alter their physical properties in different ways, diminishing either their assembly rate or their thermodynamic stability. Whereas wild-type aggregates are recalcitrant to cellular intervention, mixed aggregates are disassembled by the molecular chaperone Hsp104. Thus, rather than simply blocking misfolding, dominant-negative prion mutants target multiple events in aggregate biogenesis to enhance their susceptibility to endogenous quality-control pathways.
Collapse
|
38
|
Sweeting B, Khan MQ, Chakrabartty A, Pai EF. Structural factors underlying the species barrier and susceptibility to infection in prion disease. Biochem Cell Biol 2010; 88:195-202. [PMID: 20453922 DOI: 10.1139/o09-172] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The term prion disease describes a group of fatal neurodegenerative diseases that are believed to be caused by the pathogenic misfolding of a host cell protein, PrP. Susceptibility to prion disease differs between species and incubation periods before symptom onset can change dramatically when infectious prion strains are transmitted between species. This effect is referred to as the species or transmission barrier. Prion strains represent different structures of PrPSc and the conformational selection model proposes that the source of theses barriers is the preferential incorporation of PrP from a given species into only a subset of PrPSc structures of another species. The basis of this preferential incorporation is predicted to reside in subtle structural differences in PrP from varying species. The overall fold of PrP is highly conserved among species, but small differences in the amino acid sequence give rise to structural variability. In particular, the loop between the second beta-strand and the second alpha-helix has shown structural variability between species, with loop mobility correlating with resistance to prion disease. Single amino acid polymorphisms in PrP within a species can also affect prion susceptibility, but do not appear to drastically alter the biophysical properties of the native form. These polymorphisms affect the propensity of self-association, in recombinant PrP, to form beta-sheet enriched, oligomeric, and amyloid-like forms. These results indicate that the major factor in determining susceptibility to prion disease is the ability of PrP to adopt these misfolded forms by promoting conformational change and self association.
Collapse
Affiliation(s)
- B Sweeting
- Department of Medical Biophysics, University of Toronto, MaRS Centre TMDT 4-307, Toronto, ON M5G 1L7, Canada.
| | | | | | | |
Collapse
|
39
|
Parchi P, Cescatti M, Notari S, Schulz-Schaeffer WJ, Capellari S, Giese A, Zou WQ, Kretzschmar H, Ghetti B, Brown P. Agent strain variation in human prion disease: insights from a molecular and pathological review of the National Institutes of Health series of experimentally transmitted disease. Brain 2010; 133:3030-42. [PMID: 20823086 DOI: 10.1093/brain/awq234] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Six clinico-pathological phenotypes of sporadic Creutzfeldt-Jakob disease have been characterized which correlate at the molecular level with the type (1 or 2) of the abnormal prion protein, PrP(TSE), present in the brain and with the genotype of polymorphic (methionine or valine) codon 129 of the prion protein gene. However, to what extent these phenotypes with their corresponding molecular combinations (i.e. MM1, MM2, VV1 etc.) encipher distinct prion strains upon transmission remains uncertain. We studied the PrP(TSE) type and the prion protein gene in archival brain tissues from the National Institutes of Health series of transmitted Creutzfeldt-Jakob disease and kuru cases, and characterized the molecular and pathological phenotype in the affected non-human primates, including squirrel, spider, capuchin and African green monkeys. We found that the transmission properties of prions from the common sporadic Creutzfeldt-Jakob disease MM1 phenotype are homogeneous and significantly differ from those of sporadic Creutzfeldt-Jakob disease VV2 or MV2 prions. Animals injected with iatrogenic Creutzfeldt-Jakob disease MM1 and genetic Creutzfeldt-Jakob disease MM1 linked to the E200K mutation showed the same phenotypic features as those infected with sporadic Creutzfeldt-Jakob disease MM1 prions, whereas kuru most closely resembled the sporadic Creutzfeldt-Jakob disease VV2 or MV2 prion signature and neuropathology. The findings indicate that two distinct prion strains are linked to the three most common Creutzfeldt-Jakob disease clinico-pathological and molecular subtypes and kuru, and suggest that kuru may have originated from cannibalistic transmission of a sporadic Creutzfeldt-Jakob disease of the VV2 or MV2 subtype.
Collapse
Affiliation(s)
- Piero Parchi
- Department of Neurological Sciences, University of Bologna, Via Foscolo 7, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Béjot Y, Osseby GV, Caillier M, Moreau T, Laplanche JL, Giroud M. Rare E196K mutation in the PRNP gene of a patient exhibiting behavioral abnormalities. Clin Neurol Neurosurg 2010; 112:244-7. [DOI: 10.1016/j.clineuro.2009.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Revised: 10/30/2009] [Accepted: 11/06/2009] [Indexed: 11/28/2022]
|
41
|
Harrison CF, Lawson VA, Coleman BM, Kim YS, Masters CL, Cappai R, Barnham KJ, Hill AF. Conservation of a glycine-rich region in the prion protein is required for uptake of prion infectivity. J Biol Chem 2010; 285:20213-23. [PMID: 20356832 DOI: 10.1074/jbc.m109.093310] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prion diseases are associated with the misfolding of the endogenously expressed prion protein (designated PrP(C)) into an abnormal isoform (PrP(Sc)) that has infectious properties. The hydrophobic domain of PrP(C) is highly conserved and contains a series of glycine residues that show perfect conservation among all species, strongly suggesting it has functional and evolutionary significance. These glycine residues appear to form repeats of the GXXXG protein-protein interaction motif (two glycines separated by any three residues); the retention of these residues is significant and presumably relates to the functionality of PrP(C). Mutagenesis studies demonstrate that minor alterations to this highly conserved region of PrP(C) drastically affect the ability of cells to uptake and replicate prion infection in both cell and animal bioassay. The localization and processing of mutant PrP(C) are not affected, although in vitro and in vivo studies demonstrate that this region is not essential for interaction with PrP(Sc), suggesting these residues provide conformational flexibility. These data suggest that this region of PrP(C) is critical in the misfolding process and could serve as a novel, species-independent target for prion disease therapeutics.
Collapse
Affiliation(s)
- Christopher F Harrison
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Bishop MT, Pennington C, Heath CA, Will RG, Knight RSG. PRNP variation in UK sporadic and variant Creutzfeldt Jakob disease highlights genetic risk factors and a novel non-synonymous polymorphism. BMC MEDICAL GENETICS 2009; 10:146. [PMID: 20035629 PMCID: PMC2806268 DOI: 10.1186/1471-2350-10-146] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 12/26/2009] [Indexed: 12/03/2022]
Abstract
Background Genetic analysis of the human prion protein gene (PRNP) in suspect cases of Creutzfeldt-Jakob disease (CJD) is necessary for accurate diagnosis and case classification. Previous publications on the genetic variation at the PRNP locus have highlighted the presence of numerous polymorphisms, in addition to the well recognised one at codon 129, with significant variability between geographically distinct populations. It is therefore of interest to consider their influence on susceptibility or the clinico-pathological disease phenotype. This study aimed to characterise the frequency and effect of PRNP open reading frame polymorphisms other than codon 129 in both disease and control samples sourced from the United Kingdom population. Methods DNA was extracted from blood samples and genetic data obtained by full sequence analysis of the prion protein gene or by restriction fragment length polymorphism analysis using restriction enzymes specific to the gene polymorphism under investigation. Results 147 of 166 confirmed cases of variant CJD (vCJD) in the UK have had PRNP codon 129 genotyping and all are methionine homozygous at codon 129; 118 have had full PRNP gene sequencing. Of the latter, 5 cases have shown other polymorphic loci: at codon 219 (2, 1.69%), at codon 202 (2, 1.69%), and a 24 bp deletion in the octapeptide repeat region (1, 0.85%). E219K and D202D were not found in sporadic CJD (sCJD) cases and therefore may represent genetic risk factors for vCJD. Genetic analysis of 309 confirmed UK sCJD patients showed codon 129 genotype frequencies of MM: 59.5% (n = 184), MV: 21.4% (n = 66), and VV: 19.1% (n = 59). Thirteen (4.2%) had the A117A polymorphism, one of which also had the P68P polymorphism, four (1.3%) had a 24 bp deletion, and a single patient had a novel missense variation at codon 167. As the phenotype of this latter case is similar to sCJD and in the absence of a family history of CJD, it is unknown whether this is a form of genetic CJD, or simply a neutral polymorphism. Conclusions This analysis of PRNP genetic variation in UK CJD patients is the first to show a comprehensive comparison with healthy individuals (n = 970) from the same population, who were genotyped for the three most common variations (codon 129, codon 117, and 24 bp deletion). These latter two genetic variations were equally frequent in UK sCJD or vCJD cases and a normal (healthy blood donor) UK population.
Collapse
Affiliation(s)
- Matthew T Bishop
- National CJD Surveillance Unit, University of Edinburgh, Bryan Matthews Building, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK.
| | | | | | | | | |
Collapse
|
43
|
Abstract
Transmissible spongiform encephalopathies, or prion diseases, are fatal neurodegenerative disorders. In aetiological viewpoint, human prion diseases are classified into 1) sporadic Creutzfeldt-Jakob disease (CJD) which comprises 80-90% of the total population of human prion disaeses, 2) inherited forms, and 3) acquired types by prion-contaminated surgical instruments, biopharmaceuticals or foodstuffs. The diseases cause an accumulation of the disease-associated form(s) of prion protein (PrP(Sc)) in the central nervous system. PrP(Sc) is regarded as the entity of prion agents and generally exerts infectivity, irrespective of its origin being from the sporadic cases or the inherited cases. Variant CJD (vCJD), first identified in the United Kingdom (UK) in 1996, is an acquired type of human CJD by oral intake of BSE prion. Cumulative numbers of 215 patients in the world have been reported for definite or probable vCJD cases according to the UK National Creutzfeldt-Jakob Disease Surveillance Unit by September, 2009. Different from sporadic CJD cases, vCJD patients show an accumulation of PrP(Sc) in spleen and tonsils. Such distribution of PrP(Sc) in lymphoid tissues raised clinical concern about the potential infectivity in the blood or blood components used for blood transfusion. To date, five instances of probable transfusion-mediated transmission of vCJD prion have been found in UK. Here we review the past and the present issues about the acquired human prion diseases.
Collapse
Affiliation(s)
- Ken'ichi Hagiwara
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | | | | |
Collapse
|
44
|
Conformational diversity in prion protein variants influences intermolecular beta-sheet formation. EMBO J 2009; 29:251-62. [PMID: 19927125 DOI: 10.1038/emboj.2009.333] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 10/22/2009] [Indexed: 11/08/2022] Open
Abstract
A conformational transition of normal cellular prion protein (PrP(C)) to its pathogenic form (PrP(Sc)) is believed to be a central event in the transmission of the devastating neurological diseases known as spongiform encephalopathies. The common methionine/valine polymorphism at residue 129 in the PrP influences disease susceptibility and phenotype. We report here seven crystal structures of human PrP variants: three of wild-type (WT) PrP containing V129, and four of the familial variants D178N and F198S, containing either M129 or V129. Comparison of these structures with each other and with previously published WT PrP structures containing M129 revealed that only WT PrPs were found to crystallize as domain-swapped dimers or closed monomers; the four mutant PrPs crystallized as non-swapped dimers. Three of the four mutant PrPs aligned to form intermolecular beta-sheets. Several regions of structural variability were identified, and analysis of their conformations provides an explanation for the structural features, which can influence the formation and conformation of intermolecular beta-sheets involving the M/V129 polymorphic residue.
Collapse
|
45
|
Mead S, Whitfield J, Poulter M, Shah P, Uphill J, Campbell T, Al-Dujaily H, Hummerich H, Beck J, Mein CA, Verzilli C, Whittaker J, Alpers MP, Collinge J. A novel protective prion protein variant that colocalizes with kuru exposure. N Engl J Med 2009; 361:2056-65. [PMID: 19923577 DOI: 10.1056/nejmoa0809716] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Kuru is a devastating epidemic prion disease that affected a highly restricted geographic area of the Papua New Guinea highlands; at its peak, it predominantly affected adult women and children of both sexes. Its incidence has steadily declined since the cessation of its route of transmission, endocannibalism. METHODS We performed genetic and selected clinical and genealogic assessments of more than 3000 persons from Eastern Highland populations, including 709 who participated in cannibalistic mortuary feasts, 152 of whom subsequently died of kuru. RESULTS Persons who were exposed to kuru and survived the epidemic in Papua New Guinea are predominantly heterozygotes at the known resistance factor at codon 129 of the prion protein gene (PRNP). We now report a novel PRNP variant--G127V--that was found exclusively in people who lived in the region in which kuru was prevalent and that was present in half of the otherwise susceptible women from the region of highest exposure who were homozygous for methionine at PRNP codon 129. Although this allele is common in the area with the highest incidence of kuru, it is not found in patients with kuru and in unexposed population groups worldwide. Genealogic analysis reveals a significantly lower incidence of kuru in pedigrees that harbor the protective allele than in geographically matched control families. CONCLUSIONS The 127V polymorphism is an acquired prion disease resistance factor selected during the kuru epidemic, rather than a pathogenic mutation that could have triggered the kuru epidemic. Variants at codons 127 and 129 of PRNP demonstrate the population genetic response to an epidemic of prion disease and represent a powerful episode of recent selection in humans.
Collapse
Affiliation(s)
- Simon Mead
- Medical Research Council Prion Unit, Department of Neurodegenerative Disease, University College London Institute of Neurology, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sakaguchi S, Ishibashi D, Matsuda H. Antibody-based immunotherapeutic attempts in experimental animal models of prion diseases. Expert Opin Ther Pat 2009; 19:907-17. [PMID: 19514955 DOI: 10.1517/13543770902988530] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND There has been a dramatic decrease in the risk of transmission of bovine spongiform encephalopathy to humans. In contrast, the risk of human-to-human transmission of variant Creutzfeldt-Jakob disease (vCJD) via medical treatments became potentially high since 4 vCJD cases were reported to be possibly transmitted through blood transfusion in the UK. However, no treatments are yet available for curing prion diseases. OBJECTIVE Conversion of the normal prion protein, PrP(C), to the amyloidogenic PrP, PrP(Sc), plays a pivotal role in the pathogenesis. Recently, certain anti-PrP or anti-37/67-kDa laminin receptor (LRP/LR) antibodies were shown to have the potential to cure chronically infected cells, clearing PrP(Sc) from the cells. This has raised the possibility of antibody based-immunotherapy for prion diseases. This article aims to introduce and discuss the recently published attempts of immunotherapy in prion diseases. METHODS Bibliographic research was carried out using the PubMed database. Patent literature was searched using the UK Intellectual Property Office website. RESULTS/CONCLUSION No satisfying consequences in animals could be detected with anti-PrP antibodies directly infused into the brains of animals by the intraventricular route or by anti-PrP or anti-LRP/LR single chain fragment antibodies directly delivered into the brain by virus vector-mediated gene transfer. This is probably because such delivery systems failed to deliver the antibodies to the neurons relevant for the treatments.
Collapse
Affiliation(s)
- Suehiro Sakaguchi
- The University of Tokushima, The Institute for Enzyme Research, Division of Molecular Neurobiology, 3-18-15 Kuramoto-cho, Tokushima, Japan.
| | | | | |
Collapse
|
47
|
Abstract
Bovine spongiform encephalopathy is an infectious disease of cattle that is transmitted through the consumption of meat-and-bone meal from infected cattle. The etiologic agent is an aberrant isoform of the native cellular prion protein that is a normal component of neurologic tissue. There currently are no approved tests that can detect BSE in live cattle.
Collapse
Affiliation(s)
- Jane L Harman
- Food Safety and Inspection Service, Office of Public Health Science, USDA, 1400 Independence Ave SW, Washington, DC 20250, USA
| | | |
Collapse
|
48
|
Harrington RD, Herrmann-Hoesing LM, White SN, O'Rourke KI, Knowles DP. Ovine progressive pneumonia provirus levels are unaffected by the prion 171R allele in an Idaho sheep flock. Genet Sel Evol 2009; 41:17. [PMID: 19284685 PMCID: PMC3225825 DOI: 10.1186/1297-9686-41-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 01/22/2009] [Indexed: 11/10/2022] Open
Abstract
Selective breeding of sheep for arginine (R) at prion gene (PRNP) codon 171 confers resistance to classical scrapie. However, other effects of 171R selection are uncertain. Ovine progressive pneumonia/Maedi-Visna virus (OPPV) may infect up to 66% of a flock thus any affect of 171R selection on OPPV susceptibility or disease progression could have major impact on the sheep industry. Hypotheses that the PRNP 171R allele is 1) associated with the presence of OPPV provirus and 2) associated with higher provirus levels were tested in an Idaho ewe flock. OPPV provirus was found in 226 of 358 ewes by quantitative PCR. The frequency of ewes with detectable provirus did not differ significantly among the 171QQ, 171QR, and 171RR genotypes (p > 0.05). Also, OPPV provirus levels in infected ewes were not significantly different among codon 171 genotypes (p > 0.05). These results show that, in the flock examined, the presence of OPPV provirus and provirus levels are not related to the PRNP 171R allele. Therefore, a genetic approach to scrapie control is not expected to increase or decrease the number of OPPV infected sheep or the progression of disease. This study provides further support to the adoption of PRNP 171R selection as a scrapie control measure.
Collapse
Affiliation(s)
- Robert D Harrington
- Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Pullman, WA 99164-6630, USA.
| | | | | | | | | |
Collapse
|
49
|
McLean CA. Review. The neuropathology of kuru and variant Creutzfeldt-Jakob disease. Philos Trans R Soc Lond B Biol Sci 2008; 363:3685-7. [PMID: 18849282 PMCID: PMC2735511 DOI: 10.1098/rstb.2008.0086] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A comparison of the pathological profiles of two spongiform encephalopathies with a similar presumptive route of infection was performed. Archival kuru and recent variant Creutzfeldt–Jakob disease (vCJD) cases reveal distinct lesional differences, particularly with respect to prion protein, suggesting that the strain of agent is important in determining the phenotype. Genotype analysis of the polymorphism on codon 129 reveals (in conjunction with updated information from more kuru cases) that all three genotypes (VV, MV and MM (where M is methionine and V is valine)) are detected in kuru with some preference for MM homozygosity. The presence of valine does not therefore appear to determine peripheral selection of PrPCJD. vCJD remains restricted to date to MM homozygosity on codon 129. It remains to be determined whether this genotype is dictating a shorter incubation period.
Collapse
Affiliation(s)
- Catriona A McLean
- Department of Pathology, The Alfred Hospital, Commercial Road, Prahran, Victoria 3181, Australia.
| |
Collapse
|
50
|
Wadsworth JDF, Joiner S, Linehan JM, Asante EA, Brandner S, Collinge J. Review. The origin of the prion agent of kuru: molecular and biological strain typing. Philos Trans R Soc Lond B Biol Sci 2008; 363:3747-53. [PMID: 18849291 PMCID: PMC2581656 DOI: 10.1098/rstb.2008.0069] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Kuru is an acquired human prion disease that primarily affected the Fore linguistic group of the Eastern Highlands of Papua New Guinea. The central clinical feature of kuru is progressive cerebellar ataxia and, in sharp contrast to most cases of sporadic Creutzfeldt–Jakob disease (CJD), dementia is a less prominent and usually late clinical feature. In this regard, kuru is more similar to variant CJD, which also has similar prodromal symptoms of sensory disturbance and joint pains in the legs and psychiatric and behavioural changes. Since a significant part of the clinicopathological diversity seen in human prion disease is likely to relate to the propagation of distinct human prion strains, we have compared the transmission properties of kuru prions with those isolated from patients with sporadic, iatrogenic and variant CJD in both transgenic and wild-type mice. These data have established that kuru prions have prion strain properties equivalent to those of classical (sporadic and iatrogenic) CJD prions but distinct from variant CJD prions. Here, we review these findings and discuss how peripheral routes of infection and other factors may be critical modifiers of the kuru phenotype.
Collapse
Affiliation(s)
- Jonathan D F Wadsworth
- Department of Neurodegenerative Disease, MRC Prion Unit, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | | | | | | | | | | |
Collapse
|